JP3543619B2 - High toughness wear-resistant steel and method of manufacturing the same - Google Patents

High toughness wear-resistant steel and method of manufacturing the same Download PDF

Info

Publication number
JP3543619B2
JP3543619B2 JP15604798A JP15604798A JP3543619B2 JP 3543619 B2 JP3543619 B2 JP 3543619B2 JP 15604798 A JP15604798 A JP 15604798A JP 15604798 A JP15604798 A JP 15604798A JP 3543619 B2 JP3543619 B2 JP 3543619B2
Authority
JP
Japan
Prior art keywords
less
content
resistance
delayed fracture
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15604798A
Other languages
Japanese (ja)
Other versions
JPH1171631A (en
Inventor
友弥 川畑
一志 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15604798A priority Critical patent/JP3543619B2/en
Publication of JPH1171631A publication Critical patent/JPH1171631A/en
Application granted granted Critical
Publication of JP3543619B2 publication Critical patent/JP3543619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば土木、鉱山用の建設機械や大型の産業機械といった、耐摩耗性を要求される機械の構成部材として用いるのに好適な、高靱性耐摩耗鋼およびその製造方法に関する。
【0002】
【従来の技術】
周知のように、部材の耐摩耗性はその表面硬度に強く支配されることから、例えば土木、鉱山用の建設機械や大型の産業機械といった、耐摩耗性を要求される機械の構成部材には、高硬度鋼が適用される。例えば、これまでにも、HB450 以上の表面硬度を有する厚鋼板が広く利用されてきた。
【0003】
例えば、特開平1−31928 号公報には、その実施例において、C:0.28〜0.33% (以下、本明細書においては特にことわりがない限り「%」は「重量%」を意味するものとする。) 、Si:0.29〜0.36%を含有するNb添加鋼に熱間圧延を行った後、直接焼入れを行うことにより完全マルテンサイト組織化を図り、表面硬度をHB 579〜590 程度に向上させる技術が提案されている。
【0004】
ところで、近年では、このような高硬度鋼には、表面硬度以外にも2つの別の特性が要求されるようになってきた。その一方は耐遅れ破壊性であり、他方は耐熱亀裂発生性である。
【0005】
耐遅れ破壊性を向上する技術として、例えば特開平5−51691 号公報には、耐遅れ破壊感受性を増大させる元素であるMnを0.30〜0.60%に低減するとともにMn低減による硬度低下をCr、Mo等を添加することにより補う技術が提案されている。また、特開昭63−317623号公報には、Mn含有量を0.50〜0.80%に低減するとともにTiを0.005 〜0.025 %添加することにより耐遅れ破壊性を向上させ、Mn低減による硬度低下をNbを添加することにより補う技術が提案されている。
【0006】
一方、過酷な摩耗環境下において発生する熱亀裂に対する耐熱亀裂発生性を向上するには、摩擦が発生する表層の塑性流動抵抗を小さくすること、すなわち塑性流動部直下の靱性を確保することが有効であることが従来より知られている。つまり、耐熱亀裂発生性の向上には母材の靱性確保がポイントである。
【0007】
例えば、特開平1−172514号公報には、鋼組成および製造条件それぞれを特定することにより、得られる鋼材の靱性を高めて耐熱亀裂発生性を向上させる技術が提案されている。
【0008】
さらに、特開平8−295990号公報には、残留オーステナイト量を5%以上15%以上とすることにより硬度上昇を図った耐摩耗鋼が提案されている。
【0009】
【発明が解決しようとする課題】
しかし、これらの従来のいずれの技術によっても、高い靱性を有するとともに耐摩耗性に優れ、さらに耐遅れ破壊性および耐熱亀裂発生性に優れた鋼を得ることはできない。
【0010】
すなわち、特開平1−31928 号公報により提案された技術は、表面硬度を確保するには確かに有効であるものの、熱間圧延後に直接焼入れを行うため、靱性低下により耐熱亀裂発生性が低下してしまう。また、この技術では、その実施例に記載されているようにMn量が1.00%程度と比較的高く、耐遅れ破壊性も所望のレベルには達しない。
【0011】
また、特開平5−51691 号公報、特開昭63−317623号公報により提案された技術においても、熱間圧延後に直接焼入れを行うため、靱性低下による耐熱亀裂発生性の低下を生じてしまう。また、これらの技術では、耐遅れ破壊性向上のためのMn含有量低減による硬度低下を補うために、Cr、MoやNbといった合金元素を添加する必要があり、必然的にコスト上昇を生じてしまう。
【0012】
また、特開平1−172514号公報により提案された技術では、その実施例にも記載されているようにMn含有量が0.55〜1.05%程度と比較的高く、所望のレベルの耐遅れ破壊性を得ることはできない。
【0013】
さらに、特開平8−295990号公報により提案された技術では、残留オーステナイトは母材靱性を著しく劣化させてしまう。また、その実施例においても、母材靱性や遅れ破壊抵抗性に関して、何ら開示していない。そのため、耐遅れ破壊性および耐熱亀裂発生性に優れた高靱性耐摩耗鋼を提供することはできない。
【0014】
ここに、本発明の目的は、高い靱性を有するとともに耐摩耗性に優れ、さらに耐遅れ破壊性および耐熱亀裂発生性に優れた鋼を提供し、これにより、例えば土木、鉱山用の建設機械や大型の産業機械といった機械の構成部材として用いるのに好適な、高靱性耐摩耗鋼およびその製造方法を提供することにある。
【0015】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究を重ね、母材靱性 (すなわち耐熱亀裂発生性) および耐遅れ破壊性をともに所望のレベルに維持するには、C量を低減することが大きなポイントとなることを、新規に知見した。
【0016】
また、本発明者らは、C量の低減には所望の表面硬度を維持するために限度があり、表面硬度および耐遅れ破壊性をともに高レベルで両立させるには、旧オーステナイト粒微細化効果を有するNbの添加が有効であることを、新規に知見した。Nbは、ともに、オーステナイト域へ再加熱するときにピンニング粒子としてオーステナイト粒の粗大化を抑制するため、母材靱性を著しく向上させる。
【0017】
また、本発明者らは、耐遅れ破壊性の向上に関して、Si量を適正値まで増加させることが有効であることを、新規に知見した。Siは、焼入れ性向上にも効果があるため、多めに添加することによりC量低減による表面硬度低下を補うことができる。
【0018】
さらに、一般的に、焼きが入り過ぎて表面硬度が上昇した組織であるほど、耐遅れ破壊性が劣化すること、および耐遅れ破壊性の確保のためにはMn量を適正値にまで低減することが有効であることが知られているが、本発明者らは、上述した新規な知見とMn量低減とをバランスさせること、具体的には、0.80〜1.50%の範囲であってかつ、Mn≦25.4×Nb/(C+0.64Si)+0.60を満足するMn量とすることにより、Mn量を極度に低減することなく耐遅れ破壊性を所望のレベルに確保できることを、新規に知見した。
【0019】
本発明者らは、これらの新規な知見に基づいて鋭意検討を重ね、高価な合金元素の添加を可及的抑制しながら、高い靱性を有して耐熱亀裂発生性および耐遅れ破壊性に優れた、HB450 以上の高硬度耐摩耗鋼を、直接焼入れを行うことなく、得ることが可能となることを知見して、本発明を完成した。
【0020】
ここに、本発明の要旨とするところは、C:0.23〜0.28%、Si:0.50%超〜1.20%、Mn:0.80〜1.50%、P:0.015 %以下、S:0.004 %以下、Cr:0.20〜1.20%、Nb:0.01〜0.05%、B:0.0005〜0.0025%、sol.Al:0.01〜0.10%、望ましくはCu:0.05〜1.00%、Ni:0.05〜1.00%、Mo:0.05〜1.00%、V:0.02〜0.10%、Ti:0.005 〜0.05%およびZr:0.05%以下からなる群から選ばれた1種または2種以上、残部Feおよび不可避的不純物からなり、さらに、Mn≦25.4×Nb/(C+0.64Si)+0.60を満足する鋼組成を有することを特徴とする耐遅れ破壊性および耐熱亀裂発生性に優れた高靱性耐摩耗鋼である。
【0021】
上記の本発明では、Ca:0.001 〜0.008 %を含有することが望ましい。
さらに、上記の本発明では、残留オーステナイト量が5%未満であり、マルテンサイトあるいはマルテンサイトベイナイト組織を呈することが、望ましい。
【0022】
これらの本発明にかかる高靱性耐摩耗鋼は、上記の鋼組成を有する鋼を、1000〜1200℃に加熱および均熱してから熱間圧延を行って室温まで冷却し、次いで加熱して Ac3点以上から焼入れることにより製造され、その後に必要に応じて、Ac1 点以下の温度で焼き戻しを行ってもよい。
【0023】
【発明の実施の形態】
以下、本発明を詳細に説明する。
まず、本発明にかかる高靱性耐摩耗鋼の組成を上述したように、限定する理由を詳細に説明する。
【0024】
C: 0.23 0.28
Cは、表面硬度の向上に最も有効であり、かつ安価な元素である。C含有量が0.23%未満であると多くの合金元素を添加して硬度低下を補う必要が生じ、コスト増となり、一方、0.28%を超えると耐遅れ破壊性が著しく阻害される。そこで、本発明では、C含有量は0.23%以上0.28%以下に限定する。
【0025】
Si:0.50%超〜1.20%
Siは、表面硬度、耐遅れ破壊性それぞれの向上に寄与する。Si含有量が0.50%以下ではかかる効果が不十分であり、一方、1.20を超えると耐熱亀裂発生性に影響を与える靱性を劣化させる。そこで、本発明では、Si含有量は0.50%超1.20%以下に限定する。
【0026】
Mn 0.80 1.50
Mnは、焼入れ性向上を通じて表面硬度を向上させる。Mn含有量が0.80%未満では、合金元素を添加して硬度を補う必要が生じコスト増となり、一方、1.50%を超えると、耐遅れ破壊性能を著しく損なう。そこで、本発明では、Mn含有量は0.80%以上1.50%以下に限定する。
【0027】
P: 0.015 %以下
Pは、結晶粒界に偏析して鋼の耐遅れ破壊性および靱性を劣化させるため、その含有量はできるだけ低いことが望ましい。特に、P含有量が0.010 %を超えると劣化が著しいため、P含有量は0.015 %以下に限定する。
【0028】
S: 0.004 %以下
Sは、鋼の延性や靱性を劣化させる不純物元素であり、その含有量が0.004 %を超えるとこのような悪影響が顕在化してくることから、S含有量は0.004 %以下に限定する。
【0029】
Cr 0.20 1.20
Crは、焼入れ性を高める働きを通じて、硬度および靱性の向上にともに有効である。Cr含有量が0.20%未満ではかかる効果が充分ではなく、一方、1.20%を超えると靱性を著しく劣化させる。そこで、本発明では、Cr含有量は0.20%以上1.20%以下に限定する。
【0030】
Nb 0.01 0.05
Nbは、スラブ加熱時に結晶粒粗大化を抑制する他、焼入れ時にも同様の効果を発揮し、破面単位の微細な鋼材の製造に有効である。Nb含有量が0.01%未満ではかかる効果が充分ではなく、一方、0.05%を超えるとその効果が飽和するだけでなく溶接性を著しく阻害する。そこで、本発明では、Nb含有量は0.01%以上0.05%以下に限定する。
【0031】
B: 0.0005 0.0025
Bは、0.0005%以上の添加により焼入れ性を著しく向上させる極めて重要な元素であるが、0.0025%を超えて添加すると、靱性を著しく劣化させる。そこで、本発明では、B含有量は、0.0005%以上0.0025%以下に限定する。
【0032】
sol.Al 0.01 0.10
Alは、0.01%以上含有することにより、スラブ加熱時にAlNを生成することにより初期オーステナイト粒の過成長を効果的に抑制する。しかし、0.10%超含有すると、靱性が著しく劣化する。そこで、本発明では、sol.Alは0.01%以上0.10%以下に限定する。
【0033】
上記以外は、Feと不可避的不純物である。
さらに、本発明にかかる高靱性耐摩耗鋼では、Mn含有量と、Nb含有量、C含有量およびSi含有量との間には、次の関係がある。すなわち、▲1▼C:0.23〜0.28%というC量低減による表面硬度の維持、▲2▼Nb:0.01〜0.05%による旧オーステナイト粒微細化による表面硬度および耐遅れ破壊性の維持、および▲3▼Si:0.50%超〜1.20%という耐遅れ破壊性および焼入れ性の向上と、Mn量低減による耐遅れ破壊性向上とを、Mn:0.80〜1.50%の範囲であって下式▲1▼
Mn≦25.4×Nb/ (C+0.64Si)+0.60 ・・・・・・・▲1▼
を満足するMn量とすることにより、バランスさせる。これにより、本発明によれば、Mn量を極度に低減することなく耐遅れ破壊性を所望のレベルに確保することができる。
【0034】
図1は、本発明の範囲を満足する鋼組成の鋼片について、Mn含有量、Nb含有量、C含有量およびSi含有量を変化させた場合に、{25.4×Nb/ (C+0.64Si)+0.60−Mn}(%)と限界引張応力(MPa) との関係の一例を示すグラフである。なお、限界引張応力とは、図2に示す水素チャージ試験において 200時間負荷したまま保持しても破断しない最大応力を意味する。
【0035】
このグラフに示すように、{25.4×Nb/(C+0.64Si)+0.60−Mn}<0の範囲では、{25.4×Nb/(C+0.64Si)+0.60−Mn}の値の増加により限界引張応力も増加するが、{25.4×Nb/(C+0.64Si)+0.60−Mn}≧0の範囲では、{25.4×Nb/(C+0.64Si)+0.60−Mn}の値が増加しても、限界引張応力は略一定しており、良好な耐遅れ破壊性が得られることがわかる。そこで、本発明では、Mn含有量は、前述したように、0.80%以上1.50%以下であって、Mn≦25.4×Nb/(C+0.64Si)+0.60の範囲に限定する。
【0036】
さらに、本発明にかかる高靱性耐摩耗鋼は、任意添加元素として、Cu、Ni、Mo、V、Ti、Zr、Caを含有してもよい。以下、これらの任意添加元素について説明する。
【0037】
Cu 0.05 1.00
Cuは、0.05%以上添加することにより硬度上昇に効果があるが、1.00%を超えて添加するとスケール発生により鋼材の表面性状を著しく劣化させる。そこで、Cuを添加する場合には、その含有量は0.05%以上1.00%以下に限定することが望ましい。
【0038】
Ni 0.05 1.00
Niは、0.05%以上添加することにより硬度、靱性をそれぞれ向上させるが、1.00%超添加するとコストの上昇を招く。そこで、Niを添加する場合には、その含有量は0.05%以上1.00%以下に限定することが望ましい。
【0039】
Mo 0.05 1.00
Moは、0.05%以上添加することにより焼入れ性を高めて硬度、靱性の向上に有効であるが、1.00%を超えて添加すると靱性を損なう。そこで、Moを添加する場合には、その含有量は0.05%以上1.00%以下に限定することが望ましい。
【0040】
V: 0.02 0.10
Vは、焼入れ時にVCとしてピンニング効果を発揮し、オーステナイト粒の過成長を抑制して、硬度、靱性をそれぞれ向上させる。V含有量が0.02%未満ではかかる効果が十分でなく、一方、0.10%を超えるとこの効果が飽和するだけでなく、溶接性を著しく阻害する。そこで、Vを添加する場合には、その含有量は、0.02%以上0.10%以下に限定することが望ましい。
【0041】
Ti 0.005 0.05
Tiは、0.005 %以上含有することにより、スラブ加熱時にTiNを生成することにより初期オーステナイト粒の過成長を抑制して、硬度、靱性をそれぞれ向上させる。一方、0.05%超添加すると、TiCの粗大化により靱性が著しく劣化する。そこで、Tiを添加する場合には、その含有量は、0.005 %以上0.05%以下に限定することが望ましい。
【0042】
Zr 0.05 %以下
Zrには、析出することにより強度や硬度を高める働きがあるが、0.05%を超えて添加すると靱性を著しく損なう。そこで、Zrを添加する場合には、その含有量は、0.05%以下と限定することが望ましい。
【0043】
Ca 0.001 0.008
Caは、0.001 %以上添加することにより硫化物系非金属介在物の形態を制御して遅れ破壊進展抵抗を高めることができるとともに靱性を向上させるが、0.008 %を超えて添加すると非金属介在物の量が増加し、これらの製造が損なわれる傾向が現れるようになる。そこで、Caを添加する場合には、その含有量は0.001 %以上0.008 %以下に限定することが望ましい。
【0044】
さらに、好ましくは、母材靱性にとって大きな阻害要因である残留オーステナイト量を体積率で5%未満に限定することにより、耐熱亀裂抵抗特性の向上を図ることができる。残留オーステナイトは一部が高炭素濃度のマルテンサイト組織に変態し、そのマルテンサイトが非常に高い硬度値を示すことが知られている。しかし、高硬度部はそれ自体あるいは、母材マトリックスとの界面に極めて脆い部分を持つことになり、ひいては耐熱亀裂抵抗特性にとって大きな阻害要因となる。そこで、本発明では、残留オーステナイト以外の組織を靱性、遅れ破壊特性の優れたマルテンサイトあるいはマルテンサイトベイナイト組織とすることにより、製品全体での耐熱亀裂特性および耐遅れ破壊特性の向上を図る。
【0045】
本発明にかかる高靱性耐摩耗鋼は、以上説明した鋼組成を有しており、高い靱性を有するとともに耐摩耗性に優れ、さらに耐遅れ破壊性および耐熱亀裂発生性に優れる。
【0046】
次に、この本発明にかかる高靱性耐摩耗鋼の製造方法を説明する。
まず、上記の鋼組成を有する鋼から連続鋳造法または鋼塊法等によりスラブを製造し、このスラブに対して以下の工程(I) 〜工程(III) を順次行う。
工程(I) :1000〜1200℃の温度域への加熱、均熱
工程(II) :所望の板厚への熱間圧延
工程(III):室温への冷却、再加熱およびAc3 点以上の温度からの焼入れ。
【0047】
工程(I) における加熱温度が1000℃未満であると、圧延時に析出して焼入れ時にピンニング粒子として作用するNbやVの固溶が不十分になり、一方、加熱温度が1200℃を超えるとスケール付着量が多くなって圧延中に疵を生成する原因になる可能性がある。そこで、本発明では、加熱温度は、1000℃以上1200℃以下に限定する。
【0048】
工程(II)における熱間圧延については、特に限定を要する事項はなく、所望の板厚へ適宜熱間圧延を行えばよい。
【0049】
さらに、工程(III) における焼入れ温度は、焼入れ組織を確保するために焼入れ前の全ての組織がオーステナイト化している必要がある。そこで、工程(II)における熱間圧延を行った後、一旦室温まで冷却し、その後に加熱して Ac3点以上の温度域から、焼入れる。
【0050】
さらに、必要に応じて、工程(III) を行った後に、以下に示す工程(IV)を行ってもよい。
工程(IV):Ac1 点以下の温度での焼き戻し
この焼き戻し処理により、靱性をさらに向上させることができる。
このようにして、本発明にかかる高靱性耐摩耗鋼を製造することができる。
【0051】
さらに、本発明にかかる高靱性耐摩耗鋼およびその製造方法をデータを参照しながらより具体的に説明するが、これは本発明の例示であり、これにより本発明が限定されるものではない。
【0052】
【実施例】
表1に示す組成を有する鋼塊に、表2に示す試験条件で、加熱および均熱、熱間圧延、室温までの冷却、再加熱および焼入れ行って、板厚が20mmの試料No.1〜試料No.26 を得た。
【0053】
【表1】

Figure 0003543619
【0054】
これらの試料について、ブリネル表面硬度試験を行うとともに、1/4tの位置 (板厚方向1/4 の位置) においてシャルピー衝撃試験を行ってその遷移温度を測定した。さらに、水素チャージ試験を行って限界引張応力を求めることにより、耐遅れ破壊性を評価した。試験結果を表2に併せて示す。
【0055】
【表2】
Figure 0003543619
【0056】
試料No.1〜試料20の本発明例は、いずれも良好な性能を示しており、この確認試験により、本発明の範囲を満足することにより、高い靱性を有するとともに耐摩耗性に優れ、さらに耐遅れ破壊性および耐熱亀裂発生性に優れる鋼が得られたことがわかる。
【0057】
これに対し、試料No.21 は、C含有量が本発明の範囲を上限を上回るとともに、Mn含有量が本発明の範囲の下限を下回るため、シャルピー靱性値および耐遅れ破壊特性がともに劣化した。
【0058】
試料No.22 はB含有量が本発明の範囲を下回り、試料No.24 はSi含有量が本発明の範囲を下回り、さらに、試料No.25 はC含有量が本発明の範囲を下回るため、いずれも、焼入れ性が不足し、表面硬度が、目標値である450(Hv) に達しなかった。
【0059】
試料No.23 は、P含有量、S含有量がともに本発明の範囲を上回るため、耐遅れ破壊特性が劣化した。
さらに、試料No.26 は、C含有量が本発明の範囲を上回るため、シャルピー靱性値および耐遅れ破壊特性がともに劣化した。
【0060】
【発明の効果】
以上詳細に説明したように、本発明にかかる高靱性耐摩耗鋼およびその製造方法により、靱性および耐摩耗性がともに高く、耐遅れ破壊性および耐熱亀裂発生性に優れた鋼を提供することが可能となった。これにより、例えば土木、鉱山用の建設機械や大型の産業機械といった、耐摩耗性を要求される機械の構成部材として用いるのに好適な高靱性耐摩耗鋼を提供することができる。
かかる効果を有する本発明の意義は極めて著しい。
【図面の簡単な説明】
【図1】本発明の範囲を満足する鋼組成の鋼片について、Mn含有量、Nb含有量、C含有量およびSi含有量を変化させた場合に、{25.4×Nb/(C+0.64Si)+0.60−Mn} (%) と限界引張応力(MPa) との関係の一例を示すグラフである。
【図2】水素チャージ試験の概要を示す説明図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-toughness wear-resistant steel suitable for use as a component of a machine requiring wear resistance, such as a construction machine for civil engineering, mining, or a large-sized industrial machine, and a method for producing the same.
[0002]
[Prior art]
As is well known, since the wear resistance of a member is strongly controlled by its surface hardness, for example, components of a machine that requires wear resistance, such as civil engineering, construction equipment for mines, and large industrial machines, are used. , High hardness steel is applied. For example, thick steel plates having a surface hardness of HB450 or higher have been widely used.
[0003]
For example, Japanese Patent Application Laid-Open No. 1-31928 discloses that, in the examples, C: 0.28 to 0.33% (hereinafter, "%" means "% by weight" unless otherwise specified. ), A technique of hot rolling to Nb-containing steel containing 0.29 to 0.36% of Si and then directly quenching to achieve complete martensite structure and improve the surface hardness to about HB 579 to 590. Has been proposed.
[0004]
By the way, in recent years, such high-hardness steel has been required to have two other characteristics in addition to the surface hardness. One is delayed fracture resistance and the other is heat crack resistant.
[0005]
As a technique for improving delayed fracture resistance, for example, Japanese Patent Application Laid-Open No. 5-51691 discloses a technique in which Mn, which is an element that increases delayed fracture resistance, is reduced to 0.30 to 0.60% and the decrease in hardness due to the reduction of Mn is reduced to Cr and Mo. There has been proposed a technique for supplementing the content by adding such a component. Japanese Patent Application Laid-Open No. 63-317623 discloses that the Mn content is reduced to 0.50 to 0.80% and the delayed fracture resistance is improved by adding 0.005 to 0.025% of Ti. A technique has been proposed to compensate for this by adding.
[0006]
On the other hand, in order to improve the heat crack resistance against thermal cracks generated in a severe wear environment, it is effective to reduce the plastic flow resistance of the surface layer where friction occurs, that is, to secure the toughness immediately below the plastic flow part Is conventionally known. In other words, it is important to ensure the toughness of the base material to improve the heat cracking resistance.
[0007]
For example, Japanese Patent Application Laid-Open No. 1-172514 proposes a technique in which the steel composition and the manufacturing conditions are specified to increase the toughness of the obtained steel material and improve the heat crack resistance.
[0008]
Further, Japanese Patent Application Laid-Open No. 8-295990 proposes a wear-resistant steel in which the hardness is increased by setting the amount of retained austenite to 5% or more and 15% or more.
[0009]
[Problems to be solved by the invention]
However, none of these conventional techniques makes it possible to obtain a steel having high toughness, excellent wear resistance, and excellent delayed fracture resistance and heat crack initiation resistance.
[0010]
That is, although the technique proposed by JP-A-1-31928 is certainly effective in securing the surface hardness, it is directly quenched after hot rolling. Would. Further, according to this technique, as described in the example, the Mn content is relatively high at about 1.00%, and the delayed fracture resistance does not reach a desired level.
[0011]
Also, in the techniques proposed in JP-A-5-51691 and JP-A-63-317623, since direct quenching is performed after hot rolling, a decrease in heat crack generation due to a decrease in toughness occurs. In addition, in these technologies, alloy elements such as Cr, Mo and Nb need to be added to compensate for a decrease in hardness due to a reduction in the Mn content for improving delayed fracture resistance, which inevitably increases costs. I will.
[0012]
Further, in the technique proposed in Japanese Patent Application Laid-Open No. 1-172514, the Mn content is relatively high at about 0.55 to 1.05% as described in the examples, and a desired level of delayed fracture resistance is not achieved. I can't get it.
[0013]
Further, in the technique proposed in Japanese Patent Application Laid-Open No. 8-295990, the retained austenite significantly deteriorates the base material toughness. Also, in the examples, nothing is disclosed about the base material toughness or delayed fracture resistance. Therefore, it is not possible to provide a high-toughness wear-resistant steel excellent in delayed fracture resistance and heat crack initiation resistance.
[0014]
Here, an object of the present invention is to provide steel having high toughness and excellent wear resistance, and further excellent in delayed fracture resistance and heat crack initiation resistance. An object of the present invention is to provide a high-toughness wear-resistant steel suitable for use as a component of a machine such as a large-sized industrial machine, and a method for producing the same.
[0015]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and in order to maintain both the base metal toughness (that is, heat crack initiation resistance) and delayed fracture resistance at desired levels, it is necessary to reduce the amount of C. Has become a new point.
[0016]
In addition, the present inventors have found that there is a limit in reducing the C content in order to maintain a desired surface hardness, and in order to achieve both a high level of surface hardness and delayed fracture resistance at the same time, the effect of the prior austenite grain refining must be reduced. It was newly found that the addition of Nb having Nb both suppresses coarsening of austenite grains as pinning particles when reheating to the austenite region, and therefore significantly improves the base material toughness.
[0017]
In addition, the present inventors have newly found that it is effective to increase the amount of Si to an appropriate value for improving delayed fracture resistance. Since Si is also effective in improving the hardenability, by adding a large amount, it is possible to compensate for a decrease in surface hardness due to a reduction in the amount of C.
[0018]
Furthermore, in general, as the structure becomes too hardened and the surface hardness increases, the delayed fracture resistance deteriorates, and the Mn content is reduced to an appropriate value in order to secure the delayed fracture resistance. It is known that it is effective, the present inventors balance the novel findings described above and the reduction of the amount of Mn, specifically, in the range of 0.80 to 1.50%, and It is newly found that by setting the amount of Mn to satisfy Mn ≦ 25.4 × Nb / (C + 0.64Si) +0.60, it is possible to secure the desired level of delayed fracture resistance without extremely reducing the amount of Mn. did.
[0019]
The present inventors have conducted intensive studies based on these new findings, and while suppressing the addition of expensive alloy elements as much as possible, have high toughness and have excellent heat crack initiation resistance and delayed fracture resistance. In addition, the inventors have found that it is possible to obtain a high-hardness wear-resistant steel having a hardness of HB450 or more without performing direct quenching, and have completed the present invention.
[0020]
Here, the gist of the present invention is as follows: C: 0.23 to 0.28%, Si: more than 0.50% to 1.20%, Mn: 0.80 to 1.50%, P: 0.015% or less, S: 0.004% or less, Cr: 0.20% ~ 1.20%, Nb: 0.01 ~ 0.05%, B: 0.0005 ~ 0.0025%, sol.Al:0.01~0.10%, desirably Cu: 0.05 ~ 1.00%, Ni: 0.05 ~ 1.00%, Mo: 0.05 ~ 1.00%, V: 0.02 to 0.10%, Ti: 0.005 to 0.05% and Zr: one or more selected from the group consisting of 0.05% or less, the balance being Fe and unavoidable impurities, and Mn ≦ 25.4 × Nb / It is a high toughness wear-resistant steel having a steel composition satisfying (C + 0.64Si) +0.60 and having excellent delayed fracture resistance and heat cracking resistance.
[0021]
In the above-mentioned present invention, it is desirable to contain Ca: 0.001 to 0.008%.
Furthermore, in the above-mentioned present invention, it is desirable that the retained austenite amount is less than 5% and that it exhibits a martensite or martensite bainite structure.
[0022]
The high toughness wear-resistant steel according to the present invention is obtained by heating and equalizing a steel having the above-described steel composition to 1000 to 1200 ° C., performing hot rolling, cooling to room temperature, and then heating to obtain Ac 3 It may be manufactured by quenching from above the point, and then, if necessary, may be tempered at a temperature below the Ac 1 point.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
First, the reason for limiting the composition of the high toughness wear-resistant steel according to the present invention as described above will be described in detail.
[0024]
C: 0.23 to 0.28 %
C is the most effective and inexpensive element for improving the surface hardness. If the C content is less than 0.23%, it is necessary to add many alloying elements to compensate for the decrease in hardness, resulting in an increase in cost. On the other hand, if the C content exceeds 0.28%, the delayed fracture resistance is significantly impaired. Therefore, in the present invention, the C content is limited to 0.23% or more and 0.28% or less.
[0025]
Si: more than 0.50% to 1.20%
Si contributes to the improvement of each of surface hardness and delayed fracture resistance. If the Si content is less than 0.50%, such an effect is insufficient, while if it exceeds 1.20 % , the toughness which affects the heat cracking resistance is deteriorated. Therefore, in the present invention, the Si content is limited to more than 0.50% and 1.20% or less.
[0026]
Mn : 0.80 to 1.50 %
Mn improves surface hardness through improvement of hardenability. If the Mn content is less than 0.80%, it is necessary to supplement the hardness by adding an alloying element, thereby increasing the cost. On the other hand, if it exceeds 1.50%, the delayed fracture resistance is significantly impaired. Therefore, in the present invention, the Mn content is limited to 0.80% or more and 1.50% or less.
[0027]
P: 0.015 % or less P segregates at the crystal grain boundaries and deteriorates the delayed fracture resistance and toughness of the steel. Therefore, the content of P is desirably as low as possible. In particular, if the P content exceeds 0.010%, the deterioration is remarkable, so the P content is limited to 0.015% or less.
[0028]
S: 0.004 % or less S is an impurity element that deteriorates the ductility and toughness of steel. If the content exceeds 0.004%, such an adverse effect becomes apparent, so the S content is reduced to 0.004% or less. limit.
[0029]
Cr : 0.20 to 1.20 %
Cr is effective in improving both hardness and toughness through the function of enhancing hardenability. If the Cr content is less than 0.20%, such an effect is not sufficient, while if it exceeds 1.20%, the toughness is significantly deteriorated. Therefore, in the present invention, the Cr content is limited to 0.20% or more and 1.20% or less.
[0030]
Nb : 0.01 to 0.05 %
Nb not only suppresses crystal grain coarsening during slab heating, but also exerts the same effect during quenching, and is effective in the production of fine steel materials in units of fracture surface. If the Nb content is less than 0.01%, such effects are not sufficient, while if it exceeds 0.05%, the effects are not only saturated but also significantly impair weldability. Therefore, in the present invention, the Nb content is limited to 0.01% or more and 0.05% or less.
[0031]
B: 0.0005 to 0.0025 %
B is a very important element that significantly improves the hardenability when added in an amount of 0.0005% or more, but when added in an amount exceeding 0.0025%, the toughness is significantly deteriorated. Therefore, in the present invention, the B content is limited to 0.0005% or more and 0.0025% or less.
[0032]
sol.Al : 0.01 to 0.10 %
When Al is contained at 0.01% or more, AlN is generated at the time of slab heating, thereby effectively suppressing the overgrowth of the initial austenite grains. However, if the content exceeds 0.10%, the toughness is significantly deteriorated. Therefore, in the present invention, sol.Al is limited to 0.01% or more and 0.10% or less.
[0033]
Other than the above are Fe and inevitable impurities.
Furthermore, in the high toughness wear-resistant steel according to the present invention, the following relationship exists between the Mn content, the Nb content , the C content, and the Si content. That is, (1) C: maintenance of surface hardness by reduction of C amount of 0.23 to 0.28%, (2) Nb: maintenance of surface hardness and delayed fracture resistance by refinement of old austenite grains by 0.01 to 0.05%, and (3) ▼ Si: The improvement of delayed fracture resistance and hardenability of more than 0.50% to 1.20% and the improvement of delayed fracture resistance by reduction of Mn amount are in the range of Mn: 0.80 to 1.50% and the following formula (1)
Mn ≦ 25.4 × Nb / (C + 0.64Si) +0.60 ・ ・ ・ ・ ・ ・ ・ ▲ 1 ▼
Is satisfied by setting the Mn amount to satisfy Thus, according to the present invention, it is possible to ensure delayed fracture resistance at a desired level without extremely reducing the amount of Mn.
[0034]
FIG. 1 shows that when the Mn content, Nb content , C content, and Si content of a steel slab satisfying the scope of the present invention were changed, {25.4 × Nb / (C + 0.64Si 4 is a graph showing an example of a relationship between +) − 0.60−Mn} (%) and a critical tensile stress (MPa). The critical tensile stress means the maximum stress that does not break even if the load is maintained for 200 hours in the hydrogen charge test shown in FIG.
[0035]
As shown in this graph, in the range of {25.4 × Nb / (C + 0.64Si) + 0.60−Mn} <0, the value of {25.4 × Nb / (C + 0.64Si) + 0.60−Mn} The critical tensile stress increases with the increase, but in the range of {25.4 × Nb / (C + 0.64Si) + 0.60−Mn} ≧ 0, {25.4 × Nb / (C + 0.64Si) + 0.60−Mn} It can be seen that even when the value of increases, the critical tensile stress is substantially constant, and good delayed fracture resistance can be obtained. Therefore, in the present invention, as described above, the Mn content is 0.80% or more and 1.50% or less, and is limited to the range of Mn ≦ 25.4 × Nb / (C + 0.64Si) +0.60.
[0036]
Further, the high toughness wear-resistant steel according to the present invention may contain Cu, Ni, Mo, V, Ti, Zr, and Ca as optional additional elements. Hereinafter, these optional elements will be described.
[0037]
Cu : 0.05 to 1.00 %
Addition of 0.05% or more of Cu is effective in increasing the hardness, but addition of more than 1.00% remarkably deteriorates the surface properties of the steel material due to generation of scale. Therefore, when Cu is added, its content is desirably limited to 0.05% or more and 1.00% or less.
[0038]
Ni : 0.05 to 1.00 %
Addition of 0.05% or more of Ni improves hardness and toughness, respectively, but adding more than 1.00% causes an increase in cost. Therefore, when adding Ni, its content is desirably limited to 0.05% or more and 1.00% or less.
[0039]
Mo: 0.05 ~ 1.00%
Mo is effective in improving hardenability and improving hardness and toughness by adding 0.05% or more. However, adding Mo in excess of 1.00% impairs toughness. Therefore, when Mo is added, its content is preferably limited to 0.05% or more and 1.00% or less.
[0040]
V: 0.02 to 0.10 %
V exerts a pinning effect as VC during quenching, suppresses overgrowth of austenite grains, and improves hardness and toughness, respectively. If the V content is less than 0.02%, such an effect is not sufficient, while if it exceeds 0.10%, this effect is not only saturated but also significantly impairs weldability. Therefore, when V is added, its content is desirably limited to 0.02% or more and 0.10% or less.
[0041]
Ti : 0.005 to 0.05 %
By containing Ti in an amount of 0.005% or more, TiN is generated at the time of slab heating, thereby suppressing the overgrowth of the initial austenite grains and improving the hardness and the toughness, respectively. On the other hand, if added over 0.05%, the toughness is significantly deteriorated due to coarsening of TiC. Therefore, when Ti is added, its content is desirably limited to 0.005% or more and 0.05% or less.
[0042]
Zr : 0.05 % or less
Zr has the function of increasing the strength and hardness by precipitating, but when added in excess of 0.05%, the toughness is significantly impaired. Therefore, when Zr is added, its content is desirably limited to 0.05% or less.
[0043]
Ca : 0.001 to 0.008 %
When Ca is added in an amount of 0.001% or more, the morphology of the sulfide-based nonmetallic inclusions can be controlled to increase the delayed fracture propagation resistance and improve toughness. And their production tends to be compromised. Therefore, when Ca is added, its content is desirably limited to 0.001% or more and 0.008% or less.
[0044]
Further, preferably, by limiting the amount of retained austenite, which is a major obstacle to the toughness of the base material, to less than 5% by volume, the heat crack resistance can be improved. It is known that a part of retained austenite is transformed into a martensite structure having a high carbon concentration, and the martensite exhibits a very high hardness value. However, the high hardness portion has an extremely brittle portion on its own or at the interface with the base material matrix, and thus is a great obstacle to the heat crack resistance. Therefore, in the present invention, by improving the structure other than retained austenite to a martensite or martensite bainite structure having excellent toughness and delayed fracture characteristics, the heat crack resistance and delayed fracture resistance of the entire product are improved.
[0045]
The high toughness wear-resistant steel according to the present invention has the steel composition described above, has high toughness, is excellent in wear resistance, and is excellent in delayed fracture resistance and heat crack initiation resistance.
[0046]
Next, a method for producing the high toughness wear-resistant steel according to the present invention will be described.
First, a slab is manufactured from a steel having the above-described steel composition by a continuous casting method or an ingot method, and the following steps (I) to (III) are sequentially performed on the slab.
Step (I): Heating to a temperature range of 1000 to 1200 ° C, soaking step (II): Hot rolling step to desired sheet thickness (III): Cooling to room temperature, reheating and Ac 3 points or more Quenching from temperature.
[0047]
If the heating temperature in the step (I) is less than 1000 ° C., the solid solution of Nb and V which precipitate during rolling and act as pinning particles during quenching becomes insufficient. There is a possibility that the amount of adhesion increases and causes flaws to be generated during rolling. Therefore, in the present invention, the heating temperature is limited to 1000 ° C or more and 1200 ° C or less.
[0048]
There is no particular limitation on the hot rolling in the step (II), and the hot rolling may be appropriately performed to a desired thickness.
[0049]
Further, the quenching temperature in the step (III) requires that all the structures before quenching are austenite in order to secure a quenched structure. Therefore, after performing the hot rolling in the step (II), the steel sheet is once cooled to room temperature, then heated and quenched from a temperature range of three or more Ac points.
[0050]
Further, if necessary, after performing the step (III), the following step (IV) may be performed.
Step (IV): Tempering at a temperature of 1 point or less of Ac By this tempering treatment, toughness can be further improved.
Thus, the high toughness wear-resistant steel according to the present invention can be manufactured.
[0051]
Further, the high toughness wear-resistant steel according to the present invention and the method for producing the same will be described more specifically with reference to data. However, this is an exemplification of the present invention, and the present invention is not limited thereto.
[0052]
【Example】
A steel ingot having a composition shown in Table 1 was subjected to heating and soaking, hot rolling, cooling to room temperature, reheating and quenching under the test conditions shown in Table 2 to obtain samples No. 1 to 20 mm in thickness. Sample No. 26 was obtained.
[0053]
[Table 1]
Figure 0003543619
[0054]
For these samples, a Brinell surface hardness test was performed, and a Charpy impact test was performed at a 1 / 4t position (a position at 1/4 in the thickness direction) to measure the transition temperature. Further, a delayed charge resistance was evaluated by obtaining a critical tensile stress by performing a hydrogen charge test. The test results are shown in Table 2.
[0055]
[Table 2]
Figure 0003543619
[0056]
All of the inventive examples of Sample Nos. 1 to 20 show good performance, and by this confirmation test, by satisfying the range of the present invention, they have high toughness and excellent wear resistance, and furthermore, It can be seen that a steel excellent in delayed fracture resistance and heat crack initiation was obtained.
[0057]
On the other hand, in Sample No. 21, since the C content exceeded the upper limit of the range of the present invention and the Mn content was lower than the lower limit of the range of the present invention, both the Charpy toughness value and the delayed fracture resistance deteriorated. .
[0058]
Sample No. 22 has a B content lower than the range of the present invention, sample No. 24 has a Si content lower than the range of the present invention, and sample No. 25 has a C content lower than the range of the present invention. In each case, the hardenability was insufficient, and the surface hardness did not reach the target value of 450 (Hv).
[0059]
In Sample No. 23, since both the P content and the S content exceeded the range of the present invention, the delayed fracture resistance deteriorated.
Further, in Sample No. 26, since the C content exceeded the range of the present invention, both the Charpy toughness value and the delayed fracture resistance deteriorated.
[0060]
【The invention's effect】
As described in detail above, the high toughness wear-resistant steel and the method for producing the same according to the present invention can provide a steel having both high toughness and wear resistance, and excellent in delayed fracture resistance and heat crack initiation resistance. It has become possible. This makes it possible to provide a high-toughness wear-resistant steel suitable for use as a component of a machine requiring wear resistance, such as a construction machine for civil engineering, mining, or a large industrial machine.
The significance of the present invention having such an effect is extremely remarkable.
[Brief description of the drawings]
FIG. 1 shows that when the Mn content, Nb content , C content, and Si content of a steel slab satisfying the scope of the present invention are changed, {25.4 × Nb / (C + 0.64Si 6 is a graph showing an example of the relationship between (+) − 0.60−Mn} (%) and the critical tensile stress (MPa).
FIG. 2 is an explanatory diagram showing an outline of a hydrogen charge test.

Claims (6)

重量%で、C:0.23〜0.28%、Si:0.50%超〜1.20%、Mn:0.80〜1.50%、P:0.015 %以下、S:0.004 %以下、Cr:0.20〜1.20%、Nb:0.01〜0.05%、B:0.0005〜0.0025%、sol.Al:0.01〜0.10%、残部Feおよび不可避的不純物からなり、さらに、Mn≦25.4×Nb/(C+0.64Si)+0.60を満足する鋼組成を有することを特徴とする耐遅れ破壊性および耐熱亀裂発生性に優れた高靱性耐摩耗鋼。By weight%, C: 0.23-0.28%, Si: more than 0.50% -1.20%, Mn: 0.80-1.50%, P: 0.015% or less, S: 0.004% or less, Cr: 0.20-1.20%, Nb: 0.01- 0.05%, B: 0.0005-0.0025%, sol. Al: 0.01-0.10%, balance Fe and unavoidable impurities, further satisfying Mn ≦ 25.4 × Nb / (C + 0.64Si) +0.60 High toughness wear-resistant steel excellent in delayed fracture resistance and heat crack initiation resistance characterized by having: さらに、重量%で、Cu:0.05〜1.00%、Ni:0.05〜1.00%、、Mo:0.05〜1.00%、V:0.02〜0.10%、Ti:0.005 〜0.05%およびZr:0.05%以下からなる群から選ばれた1種または2種以上を含有することを特徴とする請求項1記載の耐遅れ破壊性および耐熱亀裂発生性に優れた高靱性耐摩耗鋼。Further, a group consisting of Cu: 0.05 to 1.00%, Ni: 0.05 to 1.00%, Mo: 0.05 to 1.00%, V: 0.02 to 0.10%, Ti: 0.005 to 0.05%, and Zr: 0.05% or less by weight%. The high-toughness wear-resistant steel according to claim 1, wherein the steel comprises at least one member selected from the group consisting of: さらに、重量%で、Ca:0.001 〜0.008 %を含有することを特徴とする請求項1または請求項2記載の耐遅れ破壊性および耐熱亀裂発生性に優れた高靱性耐摩耗鋼。3. The high-toughness wear-resistant steel according to claim 1 or 2, further comprising 0.001 to 0.008% by weight of Ca. さらに、残留オーステナイト量が体積率で5%未満であり、マルテンサイトあるいはマルテンサイトベイナイト組織を呈する請求項1から請求項3までのいずれか1項に記載の耐遅れ破壊性および耐熱亀裂発生性に優れた高靱性耐摩耗鋼。Furthermore, the amount of retained austenite is less than 5% by volume, and the martensite or martensite bainite structure is exhibited. The delayed fracture resistance and heat crack initiation resistance according to any one of claims 1 to 3 are improved. Excellent high toughness wear-resistant steel. 請求項1から請求項3までのいずれか1項に記載の鋼組成を有する鋼を、1000〜1200℃に加熱および均熱してから熱間圧延を行って室温まで冷却し、次いで加熱して Ac3点以上から焼入れることを特徴とする耐遅れ破壊性および耐熱亀裂発生性に優れた高靱性耐摩耗鋼の製造方法。A steel having the steel composition according to any one of claims 1 to 3 is heated and soaked to 1000 to 1200 ° C, then hot-rolled, cooled to room temperature, and then heated to obtain Ac. A method for producing a high-toughness wear-resistant steel excellent in delayed fracture resistance and heat crack initiation resistance characterized by quenching from three or more points. さらに、Ac1 点以下の温度で焼き戻すことを特徴とする請求項5記載の耐遅れ破壊性および耐熱亀裂発生性に優れた高靱性耐摩耗鋼の製造方法。6. The method for producing a high-toughness wear-resistant steel excellent in delayed fracture resistance and thermal crack initiation resistance according to claim 5, further comprising tempering at a temperature of 1 point or less of Ac.
JP15604798A 1997-06-26 1998-06-04 High toughness wear-resistant steel and method of manufacturing the same Expired - Fee Related JP3543619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15604798A JP3543619B2 (en) 1997-06-26 1998-06-04 High toughness wear-resistant steel and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-170303 1997-06-26
JP17030397 1997-06-26
JP15604798A JP3543619B2 (en) 1997-06-26 1998-06-04 High toughness wear-resistant steel and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH1171631A JPH1171631A (en) 1999-03-16
JP3543619B2 true JP3543619B2 (en) 2004-07-14

Family

ID=26483891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15604798A Expired - Fee Related JP3543619B2 (en) 1997-06-26 1998-06-04 High toughness wear-resistant steel and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3543619B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171730A (en) * 1999-12-08 2003-06-20 Nkk Corp Wear resistant steel having delayed fracture resistance, and production method therefor
JP5145805B2 (en) * 2007-07-26 2013-02-20 Jfeスチール株式会社 Wear-resistant steel plate with excellent gas cut surface properties and low-temperature tempering embrittlement cracking resistance
BRPI0905362B1 (en) * 2008-09-17 2017-07-04 Nippon Steel & Sumitomo Metal Corporation HIGH RESISTANCE STEEL SHEET
CN101835917B (en) 2008-11-11 2012-06-20 新日本制铁株式会社 Thick steel sheet having high strength and method for producing same
JP2012031511A (en) * 2010-06-30 2012-02-16 Jfe Steel Corp Wear-resistant steel sheet having excellent toughness of multi-layer-welded part and lagging destruction resistance properties
JP5866820B2 (en) * 2010-06-30 2016-02-24 Jfeスチール株式会社 Wear-resistant steel plate with excellent weld toughness and delayed fracture resistance
US20120132322A1 (en) * 2010-11-30 2012-05-31 Kennametal Inc. Abrasion resistant steel, method of manufacturing an abrasion resistant steel and articles made therefrom
BR112013025002B1 (en) 2011-03-29 2023-09-26 Jfe Steel Corporation THICK ABRASION RESISTANT STEEL SHEET AND METHOD FOR PRODUCING THE SAME
EP2592168B1 (en) * 2011-11-11 2015-09-16 Tata Steel UK Limited Abrasion resistant steel plate with excellent impact properties and method for producing said steel plate
CN102747282B (en) * 2012-07-31 2015-04-22 宝山钢铁股份有限公司 High-hardness high-tenacity wear-resistant steel plate and production method thereof
CN102747280B (en) * 2012-07-31 2014-10-01 宝山钢铁股份有限公司 Wear resistant steel plate with high intensity and high toughness and production method thereof
US9982331B2 (en) 2012-09-19 2018-05-29 Jfe Steel Corporation Abrasion resistant steel plate having excellent low-temperature toughness and excellent corrosive wear resistance
CN103014519B (en) * 2012-12-01 2015-09-09 滁州恒昌机械制造有限公司 Excavator silicomanganese alloy trolley sawtooth casting and complete processing thereof
SI2789699T1 (en) 2013-08-30 2017-06-30 Rautaruukki Oyj A high-hardness hot-rolled steel product, and a method of manufacturing the same
JP6394378B2 (en) * 2014-12-26 2018-09-26 新日鐵住金株式会社 Abrasion resistant steel plate and method for producing the same
CN108411217A (en) * 2018-04-20 2018-08-17 安徽省宁国市亚晨碾磨铸件有限责任公司 A kind of wear-resisting excavator bucket teeth and preparation method thereof
JP7180147B2 (en) * 2018-07-04 2022-11-30 日本製鉄株式会社 Corrosion-resistant wear-resistant steel plate
KR102314432B1 (en) * 2019-12-16 2021-10-19 주식회사 포스코 Wear resistant steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
CN112981277B (en) * 2021-02-02 2022-04-01 北京科技大学 Preparation method of ultrahigh-strength medium-carbon nano bainite steel

Also Published As

Publication number Publication date
JPH1171631A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
JP3543619B2 (en) High toughness wear-resistant steel and method of manufacturing the same
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
JP3273404B2 (en) Manufacturing method of thick high hardness and high toughness wear resistant steel
JP4650013B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP4238832B2 (en) Abrasion-resistant steel plate and method for producing the same
EP2154262A1 (en) Abrasion-resistant steel sheet having excellent processability, and method for production thereof
EP2940171B1 (en) High-manganese wear resistant steel having excellent weldability and method for manufacturing same
JPH0841535A (en) Production of high hardness wear resistant steel excellent in low temperature toughness
JP2007092155A (en) Wear resistant steel sheet having excellent low temperature toughness and its production method
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JP2008169443A (en) Wear-resistant steel sheet superior in workability and manufacturing method therefor
JP2002256382A (en) Wear resistant steel sheet and production method therefor
JP5458624B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
WO2001042523A1 (en) Wear-resistant steel product and method for production thereof
JPH0748621A (en) Production of steel for pressure vessel excellent in ssc resistance and hic resistance
JPH0551691A (en) Wear resistant steel sheet excellent in delayed fracture resistance and its production
JP3698082B2 (en) Wear resistant steel
JPH0615686B2 (en) Manufacturing method of abrasion resistant structural steel
JP4655372B2 (en) Method for producing high-tensile steel with high yield point
JP3536687B2 (en) Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the same
JP2705946B2 (en) Manufacturing method of high strength steel sheet with excellent SSC resistance
JP3336877B2 (en) Method for manufacturing thick high strength steel sheet with excellent brittle fracture arrestability and weldability
JPH059570A (en) Production of high weldability and high strength steel
JP2533935B2 (en) Method for producing high Mn non-magnetic steel having excellent SR embrittlement resistance, high strength and high toughness

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees