JPH0615686B2 - Manufacturing method of abrasion resistant structural steel - Google Patents

Manufacturing method of abrasion resistant structural steel

Info

Publication number
JPH0615686B2
JPH0615686B2 JP4787285A JP4787285A JPH0615686B2 JP H0615686 B2 JPH0615686 B2 JP H0615686B2 JP 4787285 A JP4787285 A JP 4787285A JP 4787285 A JP4787285 A JP 4787285A JP H0615686 B2 JPH0615686 B2 JP H0615686B2
Authority
JP
Japan
Prior art keywords
steel
less
total
rolling
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4787285A
Other languages
Japanese (ja)
Other versions
JPS61207511A (en
Inventor
康 森山
鉄治郎 武田
義弘 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4787285A priority Critical patent/JPH0615686B2/en
Publication of JPS61207511A publication Critical patent/JPS61207511A/en
Publication of JPH0615686B2 publication Critical patent/JPH0615686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐摩耗構造用鋼材の製造法に係り、さらに詳
しくは耐摩耗性鋼と、強度、靭性及び溶接性にすぐれた
鋼とから構成される耐摩耗構造用複合鋼材の製造法に関
する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a wear-resistant structural steel material, and more specifically, to a wear-resistant steel and a steel excellent in strength, toughness, and weldability. The present invention relates to a method for manufacturing a composite steel material for wear-resistant structures.

(従来技術および問題点) 近年ブルドーザ、パワーショベル等土木機械の高性能
化、軽量化が進み、その摩耗をうける部分には耐用期間
の延長のため耐摩耗用鋼が使用され、そのような耐摩耗
用鋼としては従来BHN(ブリネル硬さ)による硬さが2
70,310,360程度のものが使用されていたが、
最近更に耐用年数の延長を図るためBHN400,450の鋼材
料を使用するようになり、この傾向は漸次高硬度化の方
向にある。
(Prior art and problems) In recent years, the performance and weight of civil engineering machinery such as bulldozers and power shovels have advanced, and wear-resistant steel has been used to extend the service life of parts that are subject to wear. As a wear steel, the hardness according to the conventional BHN (Brinell hardness) is 2
The ones of 70, 310, 360 were used,
Recently, BHN400 and 450 steel materials have been used in order to further extend the service life, and this tendency is gradually increasing in hardness.

一般にこのような耐摩耗用鋼としては、その用途によ
り、つまり摩耗を生じる機構によりそれに対応する特性
の異なる材料が使用される。例えばブルドーザ等の土木
機械には土、砂、岩石等による衝撃、摺動等をうけ、一
般に硬さの増加がその主な対応策であるが、この場合に
はSC材(JIS G4051、機械構造用炭素鋼鋼材)、SK材(JIS
G4401炭素工具鋼)或いはSCR,SCM材(JIS G4052)のよ
うにC量が0.2〜1.5%程度含む鋼材が考えられ、これら
は靭性が低く溶接性が極めて劣ることが知られている。
次にC量を0.2%以下に低め代りにMn,Ni,Cr,Mo,Nb,V等
の合金元素を添加させて焼入硬化性を高めた低合金系耐
摩耗用鋼は、比較的靭性もあり溶接性もあるために最近
土木機械等の耐摩耗部分に使用されている。この鋼の長
所は摩耗が進んでこの部分を肉盛補修する場合も比較的
溶接が容易で現地溶接も可能なことである。また海底掘
削や川床掘削用のドレッジャーパイプ等は海水や汚水に
よる腐蝕を受けこれが摩耗を促進するためCr,Cu等の耐
食性元素を含む耐候性鋼(JISG3114)に炭素量を高めて
硬さを加えた鋼が使用される。
In general, as such wear-resistant steel, materials having different properties corresponding to the application, that is, the mechanism causing wear are used. For example, civil engineering machines such as bulldozers are subject to impact, sliding, etc. due to soil, sand, rocks, etc., and generally increasing hardness is the main countermeasure, but in this case, SC material (JIS G4051, mechanical structure For carbon steel), SK (JIS
G4401 carbon tool steel) or SCR, SCM materials (JIS G4052) are considered to be steel materials having a C content of about 0.2 to 1.5%, and these are known to have low toughness and extremely poor weldability.
Next, the low alloy wear-resistant steel, in which the quenching hardenability is enhanced by adding alloy elements such as Mn, Ni, Cr, Mo, Nb, and V in place of the C content to 0.2% or less, has relatively high toughness. Since it has good weldability, it has recently been used for wear-resistant parts of civil engineering machines. The advantage of this steel is that it can be relatively easily welded and can be field-welded even when it is worn and repaired by overlaying. In addition, dredger pipes for seabed drilling and riverbed drilling are corroded by seawater and sewage, which promotes wear. Added steel is used.

一方摺動的摩耗でなく大きな衝動荷重のかかるような摩
耗に対しては或る程度靭性のある鋼が良好とされる。鉱
石などの破砕を行うクラッシャーなどがこの例で高炭素
の高Mn鋼(JISG5131等)がよく用いられる。この鋼は常
温における組織はオーステナイトであるが歪を受けると
容易に高炭素のマルテンサイトに変態し耐摩耗性を増加
する。
On the other hand, steel having a certain degree of toughness is considered to be good for wear that is subjected to a large impulse load rather than sliding wear. In this example, a crusher for crushing ore or the like is often used with high carbon high Mn steel (JIS G5131 etc.). The structure of this steel is austenite at normal temperature, but when strained, it easily transforms into high-carbon martensite and increases wear resistance.

これらの耐摩耗用鋼は通常熱間圧延を終了し一旦冷却し
た後、再び加熱して焼入れや水靭処理が行われ所定の特
性を持たせて使用される。
These wear resistant steels are usually used after having been given hot rolling and water toughening treatment by heating again after finishing hot rolling and once cooling.

しかし、これらの耐摩耗用鋼は、一般に高強度であるた
め靭性、溶接性に乏しく、機械組立施工時に曲げ割れや
溶接割れを生じることがあり、また使用中腐蝕環境に於
ては応力腐蝕割れなどが発生し致命的欠陥を生じること
があり、一般に靭性、溶接性を必要とする強度メンバー
構造部材としての特性に欠ける。従ってこれらの要求に
対しては現在特に有効な手段はなく、耐摩耗用鋼の特性
もBHN400〜450程度のものが上限と考えられこれを超え
る特性の鋼材料の開発は困難であった。
However, since these wear resistant steels generally have high strength, they are poor in toughness and weldability, and may cause bending cracks and weld cracks during mechanical assembly, and stress corrosion cracking during use in a corrosive environment. And the like, which may cause fatal defects, and generally lack the properties as a strength member structural member that requires toughness and weldability. Therefore, there is no effective means at present for these requirements, and it is considered that the upper limit of the characteristics of the wear resistant steel is BHN of 400 to 450, and it is difficult to develop a steel material having the characteristics exceeding this.

(問題を解決するための手段) そこで本発明者らは種々検討を重ねた結果、耐摩耗性を
必要とする表面層に耐摩耗性材料を、また、その下層と
して靭性、溶接性のすぐれた構造用鋼を夫々配置した複
合鋼材を製造することにより、強度メンバーとしての耐
摩耗用鋼の製造が可能であること、また、耐摩耗用鋼材
は通常水冷などによって焼入組織を得、硬さや靭性を少
しでも上昇させるものであることからこのように複合構
成された鋼片を熱間圧延後水冷することにより耐摩耗鋼
材の硬さ、靭性向上と同時に構造用鋼材についても強
度、靭性の向上を行うことが出来ると云う結論に達し
た。即ち、構造用材料として具備すべき性質、即ち或る
程度の強度と靭性は構造用鋼材に持たせ、一方耐摩耗用
としての特性は耐摩耗用鋼に持たせることによって構造
用鋼としての特性と、耐摩耗用材料としての特性とを兼
備させ得ることを見出したものであって、その製造法と
して予め目的によって選択した化学成分を持つ耐摩耗用
鋼と、圧延後水冷によって強度、靭性の両方を向上可能
なように成分設計された鋼とをあらかじめ定められた厚
み比(クラッド比)になるように積層したのち加熱、熱
間圧延し、圧延後まだいずれの鋼もオーステナイト状態
にある温度域から水冷を行うことにより夫々の鋼につい
ての特性を充分付与し、これによって複合鋼材としての
相乗効果を遺憾なく発揮せしめることが可能であると云
う全く新たな知見に基いて本発明をなしたものである。
(Means for Solving the Problem) Then, as a result of various studies by the present inventors, a wear-resistant material was formed on the surface layer requiring wear resistance, and the toughness and weldability were excellent as the lower layer. It is possible to manufacture wear-resistant steel as a strength member by manufacturing a composite steel material in which structural steels are arranged, and the wear-resistant steel material usually obtains a quenched structure by water cooling, etc. Since it increases the toughness as much as possible, by hot rolling the steel slabs with such a composite structure, it is possible to improve the hardness and toughness of the wear-resistant steel and at the same time improve the strength and toughness of structural steel. We have come to the conclusion that we can. That is, the properties that a structural material should have, that is, a certain degree of strength and toughness, are imparted to the structural steel material, while the wear resistance characteristics are imparted to the wear resistant steel. And, it has been found that it can be combined with the characteristics as a wear-resistant material, the wear-resistant steel having a chemical composition previously selected according to the purpose as its manufacturing method, and the strength and toughness of the water-cooled after rolling. Both steels, whose components are designed so that both can be improved, are laminated so as to have a predetermined thickness ratio (cladding ratio), heated and hot-rolled, and the temperature at which any steel is still in the austenite state after rolling. Based on a completely new finding that it is possible to fully impart the characteristics of each steel by water cooling from the region, and thereby to fully realize the synergistic effect as a composite steel material. Te is that none of the present invention.

(発明の構成・作用) 本発明は、以上の如き知見に基いてなされたものであっ
て、その要旨とするところは耐摩耗性のすぐれた化学成
分を有する鋼と、 重量%でC0.02〜0.22%、Si0.5%以下、Mn
0.3〜2.0%、Total Al0.1%以下を夫々含有
し、さらに必要に応じて(A)Nb0.005〜0.05
%、V0.005〜0.05%、Cr0.6%以下、Ni
1.3%以下、Cu0.3%以下、Mo0.5%以下、B
0.0005〜0.012%、Ti0.005〜0.03
%の1種又は2種以上を含み、且つCr,Ni,Cu,Moの合計
が0.2〜2.5%、 或いは(B)Ca0.005%以下の、(A),(B)いずれか一
方又は両方を含み、残部がFeおよび不可避的不純物から
成る鋼、 との積層により構成される複合鋼片を熱間圧延し、圧延
後いずれの鋼も組織がオーステナイト状態にある温度域
から水冷を行うことを特徴とする耐摩耗構造用鋼材の製
造法にある。
(Structure / Operation of the Invention) The present invention has been made based on the above findings, and the gist thereof is to provide a steel having a chemical component with excellent wear resistance and a C0.02 weight% content. ~ 0.22%, Si 0.5% or less, Mn
0.3-2.0%, Total Al 0.1% or less, respectively, and (A) Nb 0.005-0.05 if necessary.
%, V 0.005-0.05%, Cr 0.6% or less, Ni
1.3% or less, Cu 0.3% or less, Mo 0.5% or less, B
0.0005-0.012%, Ti 0.005-0.03
%, And the total of Cr, Ni, Cu, Mo is 0.2 to 2.5%, or (B) Ca is 0.005% or less, either (A) or (B). One or both of them, the balance of which is steel composed of Fe and unavoidable impurities, the hot rolling is performed on a composite billet, and after rolling, all steels are water-cooled from the temperature range where the structure is in the austenite state. The method for producing a wear-resistant structural steel material is characterized in that

以下に本発明を詳細に説明する。The present invention will be described in detail below.

まず最初に本発明において耐摩耗性のすぐれた化学成分
を有する鋼とは、目的に応じた耐摩耗性、即ち先にのべ
たように衝撃摩耗、摺動摩耗、腐蝕摩耗等摩耗の機構に
応じてそれぞれ対応した特性を持った耐摩耗性を有する
鋼材例えば前記の高炭素鋼、中炭素低合金鋼、高炭素高
Mn鋼、耐食性高炭素鋼などの焼入れ処理を主とする熱処
理によって硬さ増加や靭性増加により耐摩耗性を付与し
た各種の耐摩耗用鋼を指すものであるが本発明では、こ
れら耐摩耗用鋼の種類については特に指定せず本発明の
製造法にて製造しようとする耐摩耗構造用鋼材の目的に
応じて化学成分を選択すればよい。
First, in the present invention, steel having a chemical composition with excellent wear resistance means wear resistance according to the purpose, that is, according to the mechanism of wear such as impact wear, sliding wear, and corrosion wear as mentioned above. Steel materials having wear resistance with corresponding properties, such as the above-mentioned high carbon steel, medium carbon low alloy steel, and high carbon high
Mn steel, corrosion-resistant high-carbon steel, etc. refers to various wear-resistant steels that have been provided with wear resistance by increasing hardness and toughness by heat treatment mainly for quenching treatment. The type of steel is not particularly specified, and the chemical composition may be selected according to the purpose of the wear resistant structural steel material to be manufactured by the manufacturing method of the present invention.

次に、構造用材料としての特性即ち強度、靭性、溶接性
等の諸特性を有する鋼材料としては、引張強さ40〜8
0kgf/mm2程度、靭性は一般的に使用される温度におけ
る衝撃値(シャルピー試験温度での)が3.5〜4.8
kgf.m程度、若しくはそれ以上のものが用いられる。こ
のような特性を具備する鋼とするためには以下のような
成分組成を有していなければならない。
Next, as a steel material having characteristics as a structural material, that is, various characteristics such as strength, toughness, and weldability, a tensile strength of 40 to 8 is used.
0 kgf / mm 2 and toughness has an impact value (at Charpy test temperature) of 3.5 to 4.8 at a temperature generally used.
About kgf.m or more is used. In order to obtain a steel having such characteristics, the steel must have the following composition.

先ずCは焼入性および強度を確保するために必要な元素
であるが0.02%未満ではC拡散律速であるパーライ
ト、ベイナイトなどの変態組織が得られないため目的と
する強度レベルの構造用鋼が得られない。また0.22
%を超えると靭性、溶接性が不良となり構造用鋼として
の特性を得ることはむづかしいのでCは0.02〜0.
22%とした。このうちで最も良好な範囲は0.05〜
0.18%である。
First, C is an element necessary for ensuring hardenability and strength, but if it is less than 0.02%, a transformation structure such as pearlite or bainite, which is the C diffusion-controlling rate, cannot be obtained. I can't get steel. 0.22
%, The toughness and weldability become poor and it is difficult to obtain the characteristics as a structural steel, so C is 0.02 to 0.
22%. Of these, the best range is 0.05-
It is 0.18%.

次にSiは通常の製鋼法では鋼中に多少は含まれ、固溶硬
化により強度上昇に寄与するが、多量に添加すると靭性
が劣化し0.5%超では特に溶接部の靭性も著しく劣化
するため0.5%以下とした。
Next, Si is contained in the steel to some extent in the ordinary steelmaking method and contributes to the strength increase due to solid solution hardening, but if added in a large amount, the toughness deteriorates, and if it exceeds 0.5%, the toughness of the welded part also deteriorates significantly. Therefore, it was set to 0.5% or less.

Mnは靭性を大きく損わずに強度を上げるのに有効な元素
であり、鋼中に通常含有されるものであるが0.3%未
満では構造用鋼としての強度を確保することが困難で、
また2%超では大きく溶接性を低下させる原因となる。
Mn is an element effective in increasing the strength without significantly impairing the toughness, and is usually contained in steel, but if it is less than 0.3%, it is difficult to secure the strength as structural steel. ,
On the other hand, if it exceeds 2%, it causes a large decrease in weldability.

Alは、通常脱酸のために鋼中に添加されるものであって
Nと結合して加熱時のオーステナイト粒の粗粒化防止に
役立つが、添加量でTotal0.1%を超えると反って粒
の粗大化とAl2O3等の介在物量の増大を招き、靭性や加
工性を阻害する場合がある。従ってAl含有量はTotal量
で0.1%を上限とした。
Al is usually added to the steel for deoxidization and is combined with N to help prevent coarsening of austenite grains during heating, but if the addition amount exceeds 0.1%, it warps. This may lead to grain coarsening and increase in the amount of inclusions such as Al 2 O 3 and impair toughness and workability. Therefore, the upper limit of the Al content is 0.1% in total.

以上が基本的な元素であるが、さらに本発明の対象とす
る鋼には前記以外の元素として(A)Nb,V,Cr,Ni,Cu,Mo,B,
Tiの1種又は2種以上を鋼板と断面厚みに応じて、構造
用材料としての所定の強度、靭性と溶接性のバランスを
確保する目的で、又は(B)Caを溶接部の靭性向上や母材
の機械的性質の方向性を少くする目的で(A),(B)いずれ
か一方又は両方を添加することが出来る。
Although the above is a basic element, as a steel other than the above in the steel targeted by the present invention (A) Nb, V, Cr, Ni, Cu, Mo, B,
Depending on the steel plate and cross-sectional thickness, one or more types of Ti may be used to secure a predetermined balance of strength, toughness and weldability as a structural material, or (B) Ca to improve the toughness of the welded part or Either or both of (A) and (B) can be added for the purpose of reducing the direction of mechanical properties of the base material.

先ず(A)群の成分であるがNbおよびVはいずれも制御圧
延の際の未再結晶域の上限温度を上昇させ圧延の細粒化
効果域を拡大させるのと、或る程度の焼入性を保持する
のと、鋼片加熱時のオーステナイト粒の成長抑制などの
重要元素であるがそれぞれ0.005%未満の少量であ
ると所期の効果が得られず、一方0.05%を超えても
上記効果は飽和するのみならず溶接部の靭性を低下させ
る要因となる。したがってNb,V共その含有範囲を0.0
05〜0.05%とした。
First, Nb and V, which are the components of the (A) group, both increase the upper limit temperature of the unrecrystallized region during controlled rolling to expand the grain refining effect region of rolling and to some extent quenching. Property is an important element for maintaining the austenite grain growth during heating of steel slab, but if the amount is less than 0.005% each, the desired effect cannot be obtained, while 0.05% is required. If it exceeds the above range, the above effect is not only saturated, but also becomes a factor of lowering the toughness of the welded portion. Therefore, the content range of both Nb and V is 0.0
It was set to 05 to 0.05%.

Cr,Ni,Cu,MoについてはMnと同様な効果をもたらし、い
ずれも鋼の変態を遅らせ変態温度を下げるのに有効な元
素であるためMnの一部をこれらの元素の1種以上で置き
換えたりMnとの共存でさらに効果を助長することが出来
る。その際厚手鋼材の厚み中央部の冷却速度により目標
とする強度を得るためにはCr0.6%以下、Ni1.3%
以下、Cu0.3%以下、Mo0.5%以下で且つCr,Ni,C
u,Moの合計で少くとも0.2%は必要である。なおこれ
らの各元素のうちNi,Cuは夫々1.3%以下、0.3%
以下を含有せしめることによりとくに靭性を向上させる
のに効果があり、Cr,Moは圧延後水冷を行う場合の焼入
性の向上効果や炭化物の組成や形態を改善する等の効
果、Moはさらに水冷後焼戻しを行う場合や強度が60kg
f/mm2以上の高張力鋼の溶接部の応力除去焼鈍による脆
化を防止する効果等多くの効果があるのでCr0.6%以
下、Mo0.5%以下を含有せしめることが有効である。
しかしこれらの元素をあまり多量に添加することは溶接
性などを損うことになるため、これら4成分の合計を
2.5%以下にとどめた。
Cr, Ni, Cu, and Mo have the same effects as Mn, and all of them are effective elements for delaying the transformation of steel and lowering the transformation temperature, so part of Mn is replaced with one or more of these elements. The effect can be further promoted by coexisting with Mn. At that time, in order to obtain the target strength by the cooling rate of the central portion of the thickness of thick steel, Cr 0.6% or less, Ni 1.3%
Below, Cu 0.3% or less, Mo 0.5% or less, and Cr, Ni, C
The total of u and Mo must be at least 0.2%. Among these elements, Ni and Cu are 1.3% or less and 0.3%, respectively.
By including the following is particularly effective in improving toughness, Cr, Mo is an effect of improving the hardenability when water cooling after rolling and the effect of improving the composition and morphology of carbides, Mo is further Strength of 60 kg when tempering after water cooling
Since there are many effects such as the effect of preventing embrittlement due to stress relief annealing of the welded part of high-strength steel of f / mm 2 or more, it is effective to contain Cr 0.6% or less and Mo 0.5% or less.
However, adding too much of these elements impairs weldability and the like, so the total of these four components was limited to 2.5% or less.

Bは焼入性の向上効果があるが、0.0005%未満で
はその効果が少く、0.0012%超では溶接熱影響部
等にBの化合物が生じ靭性を劣化させる。
B has an effect of improving hardenability, but if it is less than 0.0005%, its effect is small, and if it exceeds 0.0012%, a compound of B is produced in the weld heat affected zone and the like and deteriorates toughness.

TiはNを固定し、Bを有効化させる性質をもつため0.
005%以上添加することが有効である。しかしながら
Tiが0.03%を超えた場合は地鉄中に固溶することが
あり著るしく靭性を劣化させる。
Since Ti has the property of fixing N and enabling B, Ti.
It is effective to add 005% or more. However
If Ti exceeds 0.03%, it may form a solid solution in the base metal, resulting in marked deterioration of toughness.

また、(B)の成分であるCaは硫化物の形態制御を行い、
圧延方向に直角な方向の切欠靭性や溶接熱影響部の切欠
靭性を向上させるため添加されると有効であるがCaは
0.005%を超えると表面および内部欠陥が多発す
る。
Further, Ca, which is a component of (B), controls the morphology of sulfides,
It is effective if added to improve the notch toughness in the direction perpendicular to the rolling direction and the notch toughness of the weld heat affected zone, but if Ca exceeds 0.005%, many surface and internal defects occur.

このように本発明で構造用鋼の化学成分を特定したのは
以下にのべる工程により積層後加熱圧延を行ったのち水
冷を行って前述の諸特性を有するものにするためであ
る。即ち圧延に先立ち前記耐摩耗鋼および上記構造用鋼
を積層して、複合鋼片を構成せしめるものであるが、積
層の手段としては、たとえば鋳込みを利用し、CC鋳片内
や鋼塊鋳型内で溶鋼を注入して鋳ぐるみを行う手段、鋼
片の段階で積層したのち、周囲を溶接する手段、さらに
は爆着法、或いはサブマージドアーク溶接やエレクトロ
ガス、エレクトロスラグ溶接などの溶接手段を用いた帯
状電極による肉盛法など多くの手段がある。
Thus, the chemical composition of the structural steel is specified in the present invention in order to obtain the above-mentioned various properties by performing hot rolling after lamination and then water cooling in the following steps. That is, prior to rolling, the wear-resistant steel and the structural steel are laminated to form a composite steel slab, but as a means of lamination, for example, casting is used, in a CC slab or in a steel ingot mold. With the method of injecting molten steel into the cast iron, the method of welding the surroundings after stacking at the stage of steel slab, the explosive welding method, or the welding method such as submerged arc welding, electrogas, and electroslag welding. There are many means such as the overlaying method using the strip electrode used.

いずれも本発明の目的を充分満足するものであり、選択
する鋼の化学成分と複合鋼片の寸法、厚み、厚み比等を
考慮して選択すればよい。鋼片を構成する耐摩耗鋼と構
造用鋼との厚み比は圧延後その比がそのまま保持される
ため所定の用途と目的に応じて予じめ最終製品の厚みを
考慮した厚み比を採用することが必要になる。この場合
複合鋼片としては耐摩耗鋼と構造用鋼を表・裏にそれぞ
れ配置して2層としたものでも、中央層に構造用鋼を、
表・裏層に耐摩耗鋼を配置した3層のものでもよい。
All of them sufficiently satisfy the object of the present invention, and may be selected in consideration of the chemical composition of the steel to be selected and the dimensions, thickness, thickness ratio, etc. of the composite steel slab. The thickness ratio between the wear-resistant steel and the structural steel that compose the billet is maintained after rolling, so the thickness ratio that takes into consideration the thickness of the final product is adopted in advance according to the intended use and purpose. Will be needed. In this case, as the composite billet, even if wear-resistant steel and structural steel are arranged on the front and back to form two layers, the structural steel is formed on the central layer.
It may be a three-layer structure in which wear-resistant steel is arranged on the front and back layers.

このような複合鋼片の加熱、熱間圧延条件については特
に規定しないが圧延後水冷を行う関係上、水冷時の板厚
方向の冷却速度差に起因する板厚方向の強度差の是正の
ためや構造用鋼の靭性を向上するための組織の微細化の
目的から加熱温度は通常950〜1150℃、圧延条件
も950℃以下での圧下を或る程度行うなどの制御圧延
を行うことも好ましい。
Although the conditions for heating and hot rolling of such composite steel slabs are not specified, in order to correct the strength difference in the plate thickness direction due to the difference in cooling rate in the plate thickness direction during water cooling, it is necessary to perform water cooling after rolling. For the purpose of refining the microstructure for improving the toughness of steel and structural steel, it is also preferable to perform controlled rolling such as heating at a temperature of 950 to 1150 ° C. and rolling conditions to a certain degree at 950 ° C. or less. .

圧延後の水冷は両方の鋼が共にオーステナイトである状
態から行うが、目的は両方の鋼でそれぞれ異なる。即ち
耐摩耗鋼の場合は水冷によって高炭素マルテンサイト等
の焼入硬化組織や、高Mn鋼の場合は整粒オーステナイト
組織を得ることにより耐摩耗性を向上せしめるのが目的
で、この場合Ar点を切ってフェライトを生ぜしめると
焼入組織は不完全になり極端に硬度の低下を生じる。又
高Mn鋼ではAr点は常温以下であるが圧延後水冷開始温
度が低いと粒界に析出物が生じ靭性を低下させる。
Water cooling after rolling is performed from a state where both steels are both austenite, but the purpose is different for both steels. That is, by water cooling in the case of wear-resistant steel hardened tissue or such as a high carbon martensite, in order that of improving the wear resistance by obtaining the granulated austenite structure for high Mn steel, in this case Ar 3 When the points are cut to form ferrite, the quenched structure becomes incomplete and the hardness is extremely reduced. In high Mn steel, the Ar 3 point is below room temperature, but if the water-cooling start temperature after rolling is low, precipitates will form at grain boundaries and reduce toughness.

一方構造用鋼の場合、Ar点以下に温度が低下すると変
態時の組織の細粒化効果が充分でなく所定の強度・靭性
が得られない。
On the other hand, in the case of structural steel, if the temperature is lowered to the Ar 3 point or lower, the effect of grain refinement of the structure during transformation is not sufficient and the prescribed strength and toughness cannot be obtained.

したがって両鋼のAr点のいずれをも上廻る温度から水
冷を行う必要があるが、Ar点以上のどの共通の温度か
ら行うかは、水冷時の鋼の厚みや水冷装置の長さ、水量
密度、圧延材の長さ等を考慮して決定される。
Therefore, it is necessary to perform water cooling from a temperature above both Ar 3 points of both steels, but which common temperature above 3 Ar points depends on the thickness of the steel during water cooling and the length of the water cooling device. It is determined in consideration of water density, length of rolled material, and the like.

水冷は鋼が常温近くの温度に達する迄行われる場合と3
00〜400℃の温度で停止し後空冷することがあり、
その選択は目的とする鋼の特性により変えるが耐摩耗用
鋼の焼入れを充分に行うためには通常近くまで連続して
行うことが望ましい。さらに水冷に際しては圧延材の上
下より水冷を行うが、両鋼の熱膨脹係数が異なる場合は
曲りを防止するため上下の水量密度を意識的に変化させ
ることが有効である。
Water cooling is performed until the steel reaches a temperature near room temperature, and 3
It may be stopped at a temperature of 00 to 400 ° C and then air cooled,
The selection depends on the characteristics of the target steel, but in order to sufficiently quench the wear-resistant steel, it is usually desirable to continuously carry out the quenching. Further, in water cooling, water is cooled from above and below the rolled material, but if the thermal expansion coefficients of both steels are different, it is effective to intentionally change the water density above and below in order to prevent bending.

次に本発明の効果を実施例につきさらに具体的に説明す
る。
Next, the effects of the present invention will be described more specifically with reference to examples.

(実施例) 第1表、第2表に示す化学成分を有する鋼を溶製し、表
欄外に示す鋳造、圧延条件にて複合鋼片、鋼板を製造し
た。その後第3表に示す複合鋼片として厚み比に応じた
積層を行い圧延に供した。
(Example) Steel having the chemical composition shown in Table 1 and Table 2 was melted, and a composite billet and a steel plate were manufactured under the casting and rolling conditions shown outside the table. Then, the composite steel pieces shown in Table 3 were laminated according to the thickness ratio and subjected to rolling.

積層手段としては四周を被覆金属アーク溶接にて溶接後
両鋼の間隙の空気を真空ポンプで脱気する所謂真空引き
法と、真空室の鋳で電子ビーム溶接による四周溶接を行
う電子ビーム溶接法の2種類を用いた。圧延後全て水冷
を行ったがうち一部は500℃での焼戻しを行った。製
作した本発明法による鋼材と、一方比較のために本発明
の規定する化学成分を有する鋼と耐摩耗鋼との積層鋼片
を圧延し本発明の規定する条件から逸脱する条件で冷却
した鋼種21〜27と、耐摩耗鋼のうちの数例を同一溶
鋼からの鋼片を選んで圧延し、従来と同一の方法で再加
熱焼入れを行った鋼種28〜34、および第4表に示す
本発明の規定する化学成分から外れる化学成分を有する
鋼を構造用鋼として積層せしめた鋼片を圧延し、本発明
の規定する条件で冷却を行った鋼種35〜40をそれぞ
れ作成、いずれの鋼材も硬さ、引張試験、0℃における
衝撃試験を実施した。
As the laminating means, the so-called vacuum drawing method of degassing the air in the gap between both steels with a vacuum pump after welding the four circumferences with covered metal arc welding, and the electron beam welding method of performing the four circumference welding by electron beam welding in the casting of the vacuum chamber 2 types were used. After rolling, all were water-cooled, but part of them was tempered at 500 ° C. A steel material produced by the method of the present invention and, on the other hand, for comparison, a laminated steel piece of a steel having a chemical composition specified by the present invention and an abrasion resistant steel was rolled and cooled under a condition deviating from the condition specified by the present invention. 21 to 27 and several examples of wear resistant steels, steel pieces from the same molten steel were selected, rolled, and reheat-quenched by the same method as the conventional steel types 28 to 34, and the books shown in Table 4. Steel pieces having a chemical composition deviating from the chemical composition specified by the invention are laminated as structural steel, and a steel slab is rolled and cooled under the conditions specified by the present invention to produce steel types 35 to 40, respectively. Hardness, tensile test, and impact test at 0 ° C. were performed.

結果は第3表、第5表に示す。The results are shown in Tables 3 and 5.

全鋼種 連続鋳造法 鋼種 A1〜9 鋳片厚み200mm,巾1550mm,引抜速度0.55m
/分 A10〜17 鋳片厚み200mm,巾1550mm, 引抜速度0.4m/分 にてそれぞれ鋳造後一旦冷却、その後本発明の目的で複
合鋼片の厚みと厚み比に応じ減厚圧延を必要に応じて実
施した。
All steel types Continuous casting method Steel types A1-9 Slab thickness 200 mm, width 1550 mm, drawing speed 0.55 m
/ Min A10-17 Slab thickness 200 mm, width 1550 mm, drawing speed 0.4 m / min, respectively, after casting, cooling once, then reduction rolling is required for the purpose of the present invention depending on the thickness and thickness ratio of the composite steel slab. Carried out accordingly.

Ar点は下記式を使用して計算した。Ar 3 points were calculated using the following formula.

Ar3(℃)=868−396C+24.6Si−68.1Mn−24.8Cr− 36.1Ni−20.7Cu+29.6Mo 鋼種B−5は鋼塊法にて製造 上広32トン鋼塊(鋼塊寸法 平均厚み875mm,平均
巾2317mm,高さ2500mm,押湯比20%)に鋳
造,型抜後直ちに均熱炉に入れ1300℃に均熱後25
0×2300×2600の鋼片に分塊圧延。
Ar 3 (℃) = 868-396C + 24.6Si-68.1Mn-24.8Cr-36.1Ni-20.7Cu + 29.6Mo Steel type B-5 is manufactured by the steel ingot method. A wide 32 ton steel ingot (steel ingot size average thickness 875 mm, average width 2317 mm, height 2500 mm, riser ratio 20%) is cast, and immediately put into a soaking furnace after die cutting. After soaking in 1300 ℃ 25
Slab rolling on 0x2300x2600 billets.

しかるのち更に圧板圧延にて複合鋼片用の鋼板にそれぞ
れ圧延した。
Then, it was further rolled into a steel plate for composite billet by plate rolling.

鋼種B−5を除く他はいずれも連続鋳造法 鋼片厚み200mm,巾1800mm,引抜速度0.4m/
分にて鋳造、その後複合鋼片用の厚みを持つ鋼板にそれ
それ圧延した。
Continuous casting method except for steel type B-5. Steel piece thickness 200 mm, width 1800 mm, drawing speed 0.4 m /
Min cast and then rolled to a steel plate with thickness for composite billets.

鋼種No.9,10,11については水冷後500℃で焼
戻しを行った。 5mmサブサイズシャルピー試験片使用 鋼種1〜8および12,13については、鋼片積層は真
空引き法にて実施 鋼片サイズ 巾1500mm,長さ2000mm 鋼種9〜11および14〜20については電子ビーム溶
接による小鋼片(巾400〜600mm、長さ1000m
m)の積層を行った。
Steel types Nos. 9, 10, and 11 were water-cooled and then tempered at 500 ° C. * Use of 5 mm subsize Charpy test pieces For steel grades 1 to 8 and 12, 13 stacking is performed by vacuum drawing method Steel strip size Width 1500 mm, length 2000 mm Electron beam for steel grades 9 to 11 and 14 to 20 Small steel piece by welding (width 400-600mm, length 1000m
m) was laminated.

5mmサブサイズシャルピー試験片使用 鋼種28〜34はいずれも所定の厚みに圧延後一旦冷却
し、後再加熱して800℃から水冷実施 鋼種21〜27および35〜40については電子ビーム
溶接による小鋼片(巾400〜600mm,長さ1000
mm)の積層を行った。
* Use of 5 mm subsize Charpy test pieces All steel types 28 to 34 are rolled to a predetermined thickness, then once cooled, then reheated and water-cooled from 800 ° C. Steel types 21 to 27 and 35 to 40 are small by electron beam welding. Steel slab (width 400-600mm, length 1000
mm) was laminated.

これらによると本発明法による鋼種1〜20はいずれも
構造用鋼および耐摩耗鋼として所定の目的の性質を有し
ており、本発明の効果が証明されている。
According to these, all of the steel types 1 to 20 according to the method of the present invention have the desired properties as structural steel and wear resistant steel, and the effect of the present invention has been proved.

これに対し、鋼21〜40はいずれも構造用鋼としての
性質に欠けるか耐摩耗鋼として所定の硬さを有するに至
っていないか、或いはその両方共欠落するかしており、
本発明の目的とする鋼材を製造することが出来ていない
ことがわかる。
On the other hand, each of the steels 21 to 40 lacks the properties as structural steel, does not have a predetermined hardness as wear resistant steel, or lacks both of them.
It can be seen that the steel material targeted by the present invention could not be manufactured.

(発明の効果) 以上の実施例からみても明らかな如く、本発明によれば
従来法により得られた鋼材に比して靭性が良好で且つ強
度もすぐれた構造用鋼としての機能を合わせ持つ耐摩耗
鋼材の製造が可能となるもので産業上の効果は顕著なも
のがある。
(Effects of the Invention) As is clear from the above examples, according to the present invention, the steel also has a function as a structural steel having good toughness and excellent strength as compared with the steel obtained by the conventional method. This makes it possible to manufacture wear-resistant steel materials and has a remarkable industrial effect.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】耐摩耗性のすぐれた化学成分を有する鋼と
重量%で C:0.02〜0.22%、 Si:0.5%以下、 Mn:0.3%〜2.0%、 Total Al:0.1%以下 をそれぞれ含有する鋼との積層により構成される複合鋼
片を熱間圧延し、圧延後いずれの鋼も組織がオーステナ
イト状態にある温度域から水冷を行うことを特徴とする
耐摩耗構造用鋼材の製造法。
1. A steel having a chemical composition with excellent wear resistance and a weight percentage of C: 0.02 to 0.22%, Si: 0.5% or less, Mn: 0.3% to 2.0%, and Total Al: 0.1% or less, respectively. A method for producing a wear-resistant structural steel material, which comprises hot rolling a composite steel slab composed of a laminated steel sheet, and performing water cooling from a temperature range where the structure of each steel is in an austenite state after rolling.
【請求項2】耐摩耗性のすぐれた化学成分を有する鋼と
重量%で C:0.02〜0.22%、 Si:0.5%以下、 Mn:0.3%〜2.0%、 Total Al:0.1%以下 および Nb:0.005〜0.05%、 V:0.005〜0.05% の1種または2種を含有する鋼との積層により構成され
る複合鋼片を熱間圧延し、圧延後いずれの鋼も組織がオ
ーステナイト状態にある温度域から水冷を行うことを特
徴とする耐摩耗構造用鋼材の製造法。
2. A steel having a chemical composition with excellent wear resistance, and C: 0.02 to 0.22%, Si: 0.5% or less, Mn: 0.3% to 2.0%, Total Al: 0.1% or less and Nb: Hot rolling of composite steel slabs made by laminating with steel containing one or two of 0.005 to 0.05% and V: 0.005 to 0.05%, and the temperature at which any steel has an austenitic structure after rolling. A method for manufacturing a wear-resistant structural steel material, which is characterized by performing water cooling from a region.
【請求項3】耐摩耗性のすぐれた化学成分を有する鋼と
重量%で C:0.02〜0.22%、 Si:0.5%以下、 Mn:0.3%〜2.0%、 Total Al:0.1%以下 を含有し、さらに Cr:0.6%以下、 Ni:1.3%以下、 Cu:0.3%以下、 Mo:0.5%以下 の1種または2種以上を含み且つ Cr,Ni,Cu,Moの合計が0.2〜2.5%となる鋼との積層によ
り構成される複合鋼片を熱間圧延し、圧延後いずれの鋼
も組織がオーステナイト状態にある温度域から水冷を行
うことを特徴とする耐摩耗構造用鋼材の製造法。
3. A steel having a chemical composition with excellent wear resistance and, in weight%, C: 0.02 to 0.22%, Si: 0.5% or less, Mn: 0.3% to 2.0%, and Total Al: 0.1% or less. , 1% or more of Cr: 0.6% or less, Ni: 1.3% or less, Cu: 0.3% or less, Mo: 0.5% or less, and the total of Cr, Ni, Cu, Mo is 0.2 to 2.5%. A method for producing a wear-resistant structural steel material, which comprises hot rolling a composite steel slab composed of a laminated steel, and performing water cooling from a temperature range where the structure of each steel is in an austenite state after rolling.
【請求項4】耐摩耗性のすぐれた化学成分を有する鋼と
重量%で C:0.02〜0.22%、 Si:0.5%以下、 Mn:0.3%〜2.0%、 Total Al:0.1%以下、 B:0.0005〜0.012% を含有する鋼との積層により構成される複合鋼片を熱間
圧延し、圧延後いずれの鋼も組織がオーステナイト状態
にある温度域から水冷を行うことを特徴とする耐摩耗構
造用鋼材の製造法。
4. A steel having a chemical composition with excellent wear resistance, and C: 0.02 to 0.22%, Si: 0.5% or less, Mn: 0.3% to 2.0%, Total Al: 0.1% or less, and B: A wear-resistant structure characterized by hot rolling a composite steel slab composed of a stack of steel containing 0.0005 to 0.012% and performing water cooling from the temperature range where the structure of each steel is austenite after rolling. Steel material manufacturing method.
【請求項5】耐摩耗性のすぐれた化学成分を有する鋼と
重量%で C:0.02〜0.22%、 Si:0.5%以下、 Mn:0.3%〜2.0%、 Total Al:0.1%以下、 B:0.0005〜0.012%、 Ti:0.005〜0.03% を含有する鋼との積層により構成される複合鋼片を熱間
圧延し、圧延後いずれの鋼も組織がオーステナイト状態
にある温度域から水冷を行うことを特徴とする耐摩耗構
造用鋼材の製造法。
5. A steel having a chemical composition with excellent wear resistance and, in weight%, C: 0.02 to 0.22%, Si: 0.5% or less, Mn: 0.3% to 2.0%, Total Al: 0.1% or less, B: Hot rolling a composite billet composed of a stack of steel containing 0.0005 to 0.012% and Ti: 0.005 to 0.03%, and water cooling from the temperature range where the structure of each steel is austenite after rolling. A method for producing a wear-resistant structural steel material characterized by:
【請求項6】耐摩耗性のすぐれた化学成分を有する鋼と
重量%で C:0.02〜0.22%、 Si:0.5%以下、 Mn:0.3%〜2.0%、 Total Al:0.1%以下、 Ca:0.005%以下 を含有する鋼との積層により構成される複合鋼片を熱間
圧延し、圧延後いずれの鋼も組織がオーステナイト状態
にある温度域から水冷を行うことを特徴とする耐摩耗構
造用鋼材の製造法。
6. A steel having a chemical composition with excellent wear resistance and, in weight%, C: 0.02 to 0.22%, Si: 0.5% or less, Mn: 0.3% to 2.0%, Total Al: 0.1% or less, Ca: For wear-resistant structures characterized by hot rolling a composite billet composed of a stack of steel containing 0.005% or less, and performing water cooling from the temperature range where the structure of each steel is austenite after rolling. Steel manufacturing method.
【請求項7】耐摩耗性のすぐれた化学成分を有する鋼と
重量%で C:0.02〜0.22%、 Si:0.5%以下、 Mn:0.3%〜2.0%、 Total Al:0.1%以下 および Nb:0.005〜0.05%、 V:0.005〜0.05% の1種または2種以上を含有しさらに Cr:0.6%以下、 Ni:1.3%以下、 Cu:0.3%以下、 Mo:0.5%以下 の1種または2種以上を含み且つ Cr,Ni,Cu,Moの合計が0.2〜2.5%となる鋼との積層によ
り構成される複合鋼片を熱間圧延し、圧延後いずれの鋼
も組織がオーステナイト状態にある温度域から水冷を行
うことを特徴とする耐摩耗構造用鋼材の製造法。
7. A steel having a chemical composition with excellent wear resistance and, by weight%, C: 0.02 to 0.22%, Si: 0.5% or less, Mn: 0.3% to 2.0%, Total Al: 0.1% or less and Nb: One or two containing 0.005 to 0.05%, V: 0.005 to 0.05%, one or more, and Cr: 0.6% or less, Ni: 1.3% or less, Cu: 0.3% or less, Mo: 0.5% or less. Hot rolling a composite billet composed of a stack of steels containing more than one kind and having a total of Cr, Ni, Cu, Mo of 0.2 to 2.5%, and after rolling, the structure of each steel is in the austenitic state A method for producing a wear-resistant structural steel material, which comprises performing water cooling from a temperature range.
【請求項8】耐摩耗性のすぐれた化学成分を有する鋼と
重量%で C:0.02〜0.22%、 Si:0.5%以下、 Mn:0.3%〜2.0%、 Total Al:0.1%以下、 B:0.0005〜0.012% さらに Nb:0.005〜0.05%、 V:0.005〜0.05% の1種または2種を含有する鋼との積層により構成され
る複合鋼片を熱間圧延し、圧延後いずれの鋼も組織がオ
ーステナイト状態にある温度域から水冷を行うことを特
徴とする耐摩耗構造用鋼材の製造法。
8. A steel having a chemical composition with excellent wear resistance and C: 0.02 to 0.22%, Si: 0.5% or less, Mn: 0.3% to 2.0%, Total Al: 0.1% or less, and B: 0.0005 to 0.012% Nb: 0.005 to 0.05%, V: 0.005 to 0.05% V: 0.005 to 0.05% Composite steel slabs made by laminating with steel containing one or two kinds are hot-rolled. A method for producing a wear-resistant structural steel material, which comprises performing water cooling from a temperature range in which a structure is in an austenite state.
【請求項9】耐摩耗性のすぐれた化学成分を有する鋼と
重量%で C:0.02〜0.22%、 Si:0.5%以下、 Mn:0.3%〜2.0%、 Total Al:0.1%以下、 B:0.0005〜0.012% および Nb:0.005〜0.05%、 V:0.005〜0.05% の1種または2種を含有しさらに Cr:0.6%以下、 Ni:1.3%以下、 Cu:0.3%以下、 Mo:0.5%以下 の1種または2種以上を含み且つ Cr,Ni,Cu,Moの合計が0.2〜2.5%となる鋼との積層によ
り構成される複合鋼片を熱間圧延し、圧延後いずれの鋼
も組織がオーステナイト状態にある温度域から水冷を行
うことを特徴とする耐摩耗構造用鋼材の製造法。
9. A steel having a chemical composition with excellent wear resistance, and C: 0.02 to 0.22%, Si: 0.5% or less, Mn: 0.3% to 2.0%, Total Al: 0.1% or less, and B: Contains one or two of 0.0005 to 0.012%, Nb: 0.005 to 0.05%, V: 0.005 to 0.05%, Cr: 0.6% or less, Ni: 1.3% or less, Cu: 0.3% or less, Mo: 0.5% Hot rolling a composite steel slab containing one or more of the following and laminating with a steel in which the total of Cr, Ni, Cu, Mo is 0.2 to 2.5%, and after rolling any steel A method for producing a wear-resistant structural steel material, which comprises performing water cooling from a temperature range in which a structure is in an austenite state.
【請求項10】耐摩耗性のすぐれた化学成分を有する鋼
と重量%で C:0.02〜0.22%、 Si:0.5%以下、 Mn:0.3%〜2.0%、 Total Al:0.1%以下、 B:0.0005〜0.012%、 Ti:0.0005〜0.03% および Nb:0.005〜0.05%、 V:0.005〜0.05% の1種または2種を含有しさらに Cr:0.6%以下、 Ni:1.3%以下、 Cu:0.3%以下、 Mo:0.5%以下 の1種または2種以上を含み且つ Cr,Ni,Cu,Moの合計が0.2〜2.5%となる鋼との積層によ
り構成される複合鋼片を熱間圧延し、圧延後いずれの鋼
も組織がオーステナイト状態にある温度域から水冷を行
うことを特徴とする耐摩耗構造用鋼材の製造法。
10. A steel having a chemical composition with excellent wear resistance, and C: 0.02-0.22%, Si: 0.5% or less, Mn: 0.3% -2.0%, Total Al: 0.1% or less, and B: 0.0005 to 0.012%, Ti: 0.0005 to 0.03%, Nb: 0.005 to 0.05%, V: 0.005 to 0.05%, containing 1 or 2 kinds, and Cr: 0.6% or less, Ni: 1.3% or less, Cu: 0.3 %, Mo: 0.5% or less, and hot rolled a composite billet composed of a stack of steels containing one or two or more and having a total of Cr, Ni, Cu, Mo of 0.2 to 2.5%. A method for producing a wear-resistant structural steel material, characterized in that, after rolling, all steels are water-cooled from a temperature range where the structure is in an austenite state.
【請求項11】耐摩耗性のすぐれた化学成分を有する鋼
と重量%で C:0.02〜0.22%、 Si:0.5%以下、 Mn:0.3%〜2.0%、 Total Al:0.1%以下、 B:0.0005〜0.012%、 Ca:0.005%以下 さらに Cr:0.6%以下、 Ni:1.3%以下、 Cu:0.3%以下、 Mo:0.5%以下 の1種または2種以上を含み且つ Cr,Ni,Cu,Moの合計が0.2〜2.5%となる鋼との積層によ
り構成される複合鋼片を熱間圧延し、圧延後いずれの鋼
も組織がオーステナイト状態にある温度域から水冷を行
うことを特徴とする耐摩耗構造用鋼材の製造法。
11. A steel having a chemical composition with excellent wear resistance and, in weight%, C: 0.02 to 0.22%, Si: 0.5% or less, Mn: 0.3% to 2.0%, Total Al: 0.1% or less, B: 0.0005 to 0.012%, Ca: 0.005% or less, Cr: 0.6% or less, Ni: 1.3% or less, Cu: 0.3% or less, Mo: 0.5% or less, and contains one or more of Cr, Ni, Cu, and It is characterized in that a composite billet constituted by stacking with a steel having a total of Mo of 0.2 to 2.5% is hot-rolled, and after rolling, all steels are water-cooled from a temperature range where the structure is in an austenite state. Manufacturing method of wear-resistant structural steel.
【請求項12】耐摩耗性のすぐれた化学成分を有する鋼
と重量%で C:0.02〜0.22%、 Si:0.5%以下、 Mn:0.3%〜2.0%、 Total Al:0.1%以下、 B:0.0005〜0.012%、 Ca:0.005%以下 および Nb:0.005〜0.05%、 V:0.005〜0.05% の1種または2種を含有し さらに Cr:0.6%以下、 Ni:1.3%以下、 Cu:0.3%以下、 Mo:0.5%以下 の1種または2種以上を含み且つ Cr,Ni,Cu,Moの合計が0.2〜2.5%となる鋼との積層によ
り構成される複合鋼片を熱間圧延し、圧延後いずれの鋼
も組織がオーステナイト状態にある温度域から水冷を行
うことを特徴とする耐摩耗構造用鋼材の製造法。
12. A steel having a chemical composition with excellent wear resistance and, in weight%, C: 0.02 to 0.22%, Si: 0.5% or less, Mn: 0.3% to 2.0%, Total Al: 0.1% or less, B: Contains one or two of 0.0005 to 0.012%, Ca: 0.005% or less and Nb: 0.005 to 0.05%, V: 0.005 to 0.05%, and Cr: 0.6% or less, Ni: 1.3% or less, Cu: 0.3% Hereinafter, hot rolling is performed on a composite steel slab that is formed by laminating a steel containing Mo: 0.5% or less and one or two or more, and the total content of Cr, Ni, Cu, and Mo is 0.2 to 2.5%, A method for producing a wear-resistant structural steel material, characterized in that, after rolling, all steels are water-cooled from a temperature range where the structure is in an austenite state.
【請求項13】耐摩耗性のすぐれた化学成分を有する鋼
と重量%で C:0.02〜0.22%、 Si:0.5%以下、 Mn:0.3%〜2.0%、 Total Al:0.1%以下、 B:0.0005〜0.012%、 Ti:0.005〜0.03%、 Ca:0.005%以下 および Nb:0.005〜0.05%、 V:0.005〜0.05% の1種または2種を含有し さらに Cr:0.6%以下、 Ni:1.3%以下、 Cu:0.3%以下、 Mo:0.5%以下 の1種または2種以上を含み且つ Cr,Ni,Cu,Moの合計が0.2〜2.5%となる鋼との積層によ
り構成される複合鋼片を熱間圧延し、圧延後いずれの鋼
も組織がオーステナイト状態にある温度域から水冷を行
うことを特徴とする耐摩耗構造用鋼材の製造法。
13. A steel having a chemical composition excellent in wear resistance, and C: 0.02 to 0.22%, Si: 0.5% or less, Mn: 0.3% to 2.0%, Total Al: 0.1% or less, and B: 0.0005 to 0.012%, Ti: 0.005 to 0.03%, Ca: 0.005% or less and Nb: 0.005 to 0.05%, V: 0.005 to 0.05%, containing 1 or 2 kinds, and Cr: 0.6% or less, Ni: 1.3% or less. % Or less, Cu: 0.3% or less, Mo: 0.5% or less, one or two or more, and a composite steel formed by laminating with a steel in which the total of Cr, Ni, Cu, Mo is 0.2 to 2.5%. A method for producing a wear-resistant structural steel material, characterized in that hot rolling is performed on a piece, and after rolling, water cooling is performed from a temperature range in which the structure of each steel is in an austenite state.
JP4787285A 1985-03-11 1985-03-11 Manufacturing method of abrasion resistant structural steel Expired - Lifetime JPH0615686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4787285A JPH0615686B2 (en) 1985-03-11 1985-03-11 Manufacturing method of abrasion resistant structural steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4787285A JPH0615686B2 (en) 1985-03-11 1985-03-11 Manufacturing method of abrasion resistant structural steel

Publications (2)

Publication Number Publication Date
JPS61207511A JPS61207511A (en) 1986-09-13
JPH0615686B2 true JPH0615686B2 (en) 1994-03-02

Family

ID=12787470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4787285A Expired - Lifetime JPH0615686B2 (en) 1985-03-11 1985-03-11 Manufacturing method of abrasion resistant structural steel

Country Status (1)

Country Link
JP (1) JPH0615686B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431930A (en) * 1987-07-27 1989-02-02 Kobe Steel Ltd Production of hot rolled bar steel and bar-in coil having excellent cold forgeability
JPH05279738A (en) * 1992-04-02 1993-10-26 Nippon Steel Corp Manufacture of wear resistant steel pipe
JP2003171730A (en) * 1999-12-08 2003-06-20 Nkk Corp Wear resistant steel having delayed fracture resistance, and production method therefor
CN106011642B (en) * 2016-07-08 2017-11-14 首钢总公司 A kind of corrosion-resistant explosive clad plate base material Pipeline Steel Plate and preparation method thereof
CN106399838A (en) * 2016-08-31 2017-02-15 江苏省利金新材科技有限公司 Non-magnetic low nickel abrasion-resistant and corrosion-resistant high nitrogen stainless steel and processing method thereof
JP6816729B2 (en) * 2018-01-25 2021-01-20 Jfeスチール株式会社 Clad steel sheet and its manufacturing method
CN112831731A (en) * 2020-12-31 2021-05-25 邯郸钢铁集团有限责任公司 Online quenching complex phase structure hot-rolled wear-resistant steel and preparation method thereof

Also Published As

Publication number Publication date
JPS61207511A (en) 1986-09-13

Similar Documents

Publication Publication Date Title
KR101165654B1 (en) Abrasion-resistant steel sheet having excellent processability, and method for production thereof
KR100957970B1 (en) High-strength and high-toughness thick steel plate and method for producing the same
KR101388334B1 (en) High tensile steel products excellent in the resistance to delayed fracture and process for production of the same
JP4238832B2 (en) Abrasion-resistant steel plate and method for producing the same
WO2012002563A1 (en) Wear-resistant steel sheet having excellent welded part toughness and lagging destruction resistance properties
JP2007092155A (en) Wear resistant steel sheet having excellent low temperature toughness and its production method
JP2005256169A (en) Wear resistant steel sheet having excellent low temperature toughness and production method therefor
KR20070091368A (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP7226598B2 (en) Abrasion-resistant steel plate and manufacturing method thereof
JP2018204109A (en) Abrasion resistant thick steel plate
JP7211530B2 (en) WEAR RESISTANT STEEL AND METHOD FOR MANUFACTURING WEAR RESISTANT STEEL
KR100833035B1 (en) High-strength and high-toughness steel plate for linepipe excellent in deformability and method for manufacturing the same
JP4264177B2 (en) Method for producing a steel material having a coarse ferrite layer on the surface layer
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP2018204110A (en) Abrasion resistant thick steel plate
KR100361472B1 (en) Structural steel excellent in wear resistance and fatigue resistance property and method of producing the same
JPH0615686B2 (en) Manufacturing method of abrasion resistant structural steel
JP2004124113A (en) Non-water-cooled thin low yield ratio high tensile steel, and production method therefor
JP4286581B2 (en) Wear-resistant steel
JP2019127633A (en) Clad steel plate and method for producing the same
JP7088235B2 (en) Wear-resistant steel sheet and its manufacturing method
KR101439629B1 (en) Wear resistant steel having excellent wear-resistance and method for manufacturing the same
JP3336877B2 (en) Method for manufacturing thick high strength steel sheet with excellent brittle fracture arrestability and weldability
JP3244987B2 (en) High strength linepipe steel with low yield ratio
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability