JP4238832B2 - Abrasion-resistant steel plate and method for producing the same - Google Patents

Abrasion-resistant steel plate and method for producing the same Download PDF

Info

Publication number
JP4238832B2
JP4238832B2 JP2005034802A JP2005034802A JP4238832B2 JP 4238832 B2 JP4238832 B2 JP 4238832B2 JP 2005034802 A JP2005034802 A JP 2005034802A JP 2005034802 A JP2005034802 A JP 2005034802A JP 4238832 B2 JP4238832 B2 JP 4238832B2
Authority
JP
Japan
Prior art keywords
less
steel
wear
hardness
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005034802A
Other languages
Japanese (ja)
Other versions
JP2005179783A (en
Inventor
正幸 橋本
康宏 室田
隆 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005034802A priority Critical patent/JP4238832B2/en
Publication of JP2005179783A publication Critical patent/JP2005179783A/en
Application granted granted Critical
Publication of JP4238832B2 publication Critical patent/JP4238832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、産業機械および運搬機器等に用いられる耐摩耗鋼板及びその製造方法に関するものである。   The present invention relates to a wear-resistant steel plate used for industrial machines, transportation equipment, and the like, and a method for manufacturing the same.

近年、特にトラックをはじめとする輸送機器および土木、鉱山機械などの軽量化により、建産機用鋼板でも、これまで以上に高強度の耐摩耗性に優れた鋼板が要求されている。特に、建設、土木、鉱山等の分野で使用される産業機械、部品、運搬機器等(例えば、パワーショベル、ブルドーザー、ホッパー、バケット等)には、それらの寿命を確保するため、耐摩耗性に優れた鋼が用いられる。耐摩耗性を向上させるには、鋼板表面の硬さを向上させる必要があり、ブリネル難さ360程度以上を有することが好ましい。また、特に厳しい摩耗環境に使用される部材にはブリネル硬さ400程度以上の表面硬さが要求される場合がある。   In recent years, in particular, due to weight reduction of trucks and other transportation equipment, civil engineering, and mining machines, steel sheets for construction machinery have been required to have higher strength and higher wear resistance than ever before. In particular, industrial machinery, parts, and transportation equipment used in the fields of construction, civil engineering, mining, etc. (for example, excavators, bulldozers, hoppers, buckets, etc.) have high wear resistance in order to ensure their life. Excellent steel is used. In order to improve the wear resistance, it is necessary to improve the hardness of the steel sheet surface, and it is preferable to have a Brinell difficulty of about 360 or more. Further, a member used in a particularly severe wear environment may require a surface hardness of about Brinell hardness of about 400 or more.

しかし、硬さを高めると材質が脆くなったり、あるいはC量を増加させたことに起因して、低温靭性が劣化し、低温溶接割れ性が劣化するという問題がある。−40℃程度の低温域での作業を考えると、耐摩耗性は良くても低温靭性が低いと、脆性破壊を生じ作業に重大な支障をきたす。このため、ブリネル硬さ360程度以上であるとともに、低温靭性に優れている耐摩耗鋼板が望まれていた。   However, when the hardness is increased, the material becomes brittle or the amount of C is increased, so that there is a problem that low temperature toughness deteriorates and low temperature weld cracking properties deteriorate. Considering work in a low temperature range of about −40 ° C., if the wear resistance is good but the low temperature toughness is low, brittle fracture occurs and the work is seriously hindered. For this reason, a wear-resistant steel sheet having a Brinell hardness of about 360 or more and excellent in low temperature toughness has been desired.

このような要求に対して、いくつかの方法が検討されている。例えば、特開昭60-243250号公報には、溶接性に優れた耐摩耗鋼板が提案されている。この技術では、P量を0.010%以下と規定し、溶接性を改善している。また、特開昭63-307249号公報には、溶接用耐摩耗鋼板が提案されている。この技術では、炭素当量を0.35〜0.65%と規定し、溶接性を改善している。また、特開昭63-169359号公報には、寒冷地での使用に耐える溶接 性に優れた耐摩耗鋼板が提案されている。この技術では、溶接性確保のためにC量を0.1〜0.2%としている。 Several methods have been examined for such a requirement. For example, Japanese Patent Laid-Open No. 60-243250 proposes a wear-resistant steel plate having excellent weldability. In this technology, the P content is specified to be 0.010% or less to improve weldability. Further, in JP-A-63-307249, welding abrasion steel plate has been proposed. In this technique, the carbon equivalent is defined as 0.35 to 0.65% to improve weldability. Japanese Patent Laid-Open No. 63-169359 proposes a wear-resistant steel plate with excellent weldability that can withstand use in cold regions. In this technique, the C content is set to 0.1 to 0.2% to ensure weldability.

特許文献1記載の技術では、C量が0.3〜0.5%と高く、靭性に関する考慮がされていない。また、そのため炭素当量もかなり高く(>0.5%)なるので、この鋼は溶接性に関してあまり期待できないと言える。   In the technique described in Patent Document 1, the C content is as high as 0.3 to 0.5%, and no consideration is given to toughness. Also, because of this, the carbon equivalent is considerably high (> 0.5%), so it can be said that this steel cannot be expected in terms of weldability.

特許文献2記載の技術では、炭素等量を0.35〜0.65%と規定しているものの、C量が0.2〜0.4%とかなり高目に設定されており、-40℃における靭性が不十分である。   In the technique described in Patent Document 2, although the carbon equivalent is defined as 0.35 to 0.65%, the C content is set to a very high value of 0.2 to 0.4%, and the toughness at -40 ° C is insufficient. .

特許文献3記載の技術では、溶接性の確保のためにC量を0.1〜0.2%としているが、窒素含有量を0.0025%以下に制限する必要があり、コスト高となる恐れがある。また、焼入れ性を考慮していないので、以下に述べるように板厚が20mm程度以上の厚鋼板の場合にブリネル硬さを360程度以上を安定して確保できない問題がある。   In the technique described in Patent Document 3, the C content is set to 0.1 to 0.2% in order to ensure weldability. However, it is necessary to limit the nitrogen content to 0.0025% or less, which may increase the cost. In addition, since hardenability is not taken into consideration, there is a problem that a Brinell hardness of about 360 or more cannot be stably secured in the case of a steel plate having a thickness of about 20 mm or more as described below.

すなわち、板厚が厚くなると表層部から板厚中央部にかけて硬さが低下する場合があり、耐摩耗部材としての寿命が確保できなくなる。耐摩耗部材の寿命を向上させるには、板厚方向の硬さを均一とすることが有効であるが、耐摩耗鋼の分野においては、このような観点からの技術は未だ例を見ない。   That is, when the plate thickness increases, the hardness may decrease from the surface layer portion to the center portion of the plate thickness, and the life as a wear-resistant member cannot be ensured. In order to improve the life of the wear-resistant member, it is effective to make the hardness in the plate thickness direction uniform. However, in the field of wear-resistant steel, there is no example from this viewpoint.

上述のように、-40℃程度の低温域での使用を考えた場合、高強度および耐摩耗性ばかりでなく、低温靭性が維持されることが望ましい。従来技術では、高強度および耐摩耗性を安定に確保しつつ、低温靭性および低温溶接割れ性を改善することは困難である。   As described above, when considering use in a low temperature range of about −40 ° C., it is desirable to maintain not only high strength and wear resistance but also low temperature toughness. In the prior art, it is difficult to improve the low temperature toughness and the low temperature weld cracking property while stably ensuring high strength and wear resistance.

本発明の目的は、これらの問題を解決し、強度および耐摩耗性を安定に確保した上で、低温靭性および低温溶接割れ性に優れた耐摩耗鋼板及びその製造方法を提供することである。   An object of the present invention is to solve these problems and provide a wear-resistant steel sheet excellent in low-temperature toughness and low-temperature weld cracking properties and a method for producing the same while ensuring strength and wear resistance stably.

また本発明の他の目的は、板厚方向の硬さの差が小さい耐摩耗鋼板及びその製造方法を提供することにある。   Another object of the present invention is to provide a wear-resistant steel sheet having a small difference in hardness in the thickness direction and a method for producing the same.

上記の課題は、次の発明により解決される。
(a)、化学成分としてmass%で、C:0.15〜0.30%、Si:0.1〜1.0%、Mn:0.1〜2.0%、Nb:0.005〜0.1%、P:0.02%以下、S:0.005%以下を含有し、残部が鉄および不可避的不純物からなる鋼であり、式(1)で示される焼入れ性指標Hが1.2以上、式(2)で示される炭素等量Ceqが0.50%以下、かつ、ブリネル硬さHBが400以上、鋼板表層部と板厚中央部とのビッカース硬さの差ΔHVが50以下、-40℃におけるシャルピー吸収エネルギーvE-40が27J以上であることを特徴とする板厚30mm以上の耐摩耗鋼板。
The above problems are solved by the following invention.
(A) Mass% as a chemical component, C: 0.15-0.30%, Si: 0.1-1.0%, Mn: 0.1-2.0%, Nb: 0.005-0.1%, P: 0.02% or less, S: 0.005% or less And the balance is steel composed of iron and inevitable impurities , the hardenability index H represented by the formula (1) is 1.2 or more, the carbon equivalent Ceq represented by the formula (2) is 0.50% or less, and Thickness characterized by Brinell hardness HB 400 or more, Vickers hardness difference ΔHV between steel plate surface layer and plate thickness center part 50 or less, Charpy absorbed energy vE-40 at -40 ° C is 27 J or more Wear-resistant steel plate of 30mm or more.

H=C×(1+0.5Si)×(1+3Mn)×(1+0.3Cu)×(1+0.5Ni)×(1+2Cr)×(1+3Mo)×(1+1.5V)×(1+5Nb)×(1+300B) (1)
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 (2)
但し、元素記号は各元素の含有量(mass%)を表す。
(b)、(a)記載の耐摩耗鋼板において、化学成分が、記載された化学成分に加えてmass%で、Cu:0.1〜2.0%、Ni:0.1〜2.0%、Cr:0.1〜1.5%、Mo:0.08〜2.0%、V:0.01〜0.5%、Ti:0.005〜0.05%、B:0.0005〜0.0025%の内1種以上を含有することを特徴とする板厚30mm以上の耐摩耗鋼板。
(c)、化学成分としてmass%で、C:0.15〜0.30%、Si:0.1〜1.0%、Mn:0.1〜2.0%、Nb:0.005〜0.1%、P:0.02%以下、S:0.005%以下を含有し、残部が鉄および不可避的不純物からなる鋼であり、式(1)で示される焼入れ性指標Hが1.2以上、式(2)で示される炭素等量Ceqが0.50%以下、かつ、ブリネル硬さHBが400以上、鋼板表層部と板厚中央部とのビッカース硬さの差ΔHVが14以下、-40℃におけるシャルピー吸収エネルギーvE-40が27J以上であることを特徴とする板厚30mm未満の耐摩耗鋼板。
H = C × (1 + 0.5Si) × (1 + 3Mn) × (1 + 0.3Cu) × (1 + 0.5Ni) × (1 + 2Cr) × (1 + 3Mo) × (1 + 1.5V) × (1 + 5Nb) × (1 + 300B) (1)
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (2)
However, the element symbol represents the content (mass%) of each element.
(B) In the wear-resistant steel sheet described in (a), the chemical component is mass% in addition to the described chemical component, Cu: 0.1 to 2.0%, Ni: 0.1 to 2.0%, Cr: 0.1 to 1.5% , Mo: 0.08 to 2.0%, V: 0.01 to 0.5%, Ti: 0.005 to 0.05%, B: 0.0005 to 0.0025%.
(C) Mass% as a chemical component, C: 0.15-0.30%, Si: 0.1-1.0%, Mn: 0.1-2.0%, Nb: 0.005-0.1%, P: 0.02% or less, S: 0.005% or less And the balance is steel composed of iron and inevitable impurities , the hardenability index H represented by the formula (1) is 1.2 or more, the carbon equivalent Ceq represented by the formula (2) is 0.50% or less, and Sheet thickness characterized by Brinell hardness HB of 400 or more, Vickers hardness difference ΔHV of steel sheet surface layer part and sheet thickness center part 14 or less, Charpy absorbed energy vE-40 at -40 ° C is 27 J or more Wear-resistant steel sheet of less than 30mm.

H=C×(1+0.5Si)×(1+3Mn)×(1+0.3Cu)×(1+0.5Ni)×(1+2Cr)×(1+3Mo)×(1+1.5V)×(1+5Nb)×(1+300B) (1)
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 (2)
但し、元素記号は各元素の含有量(mass%)を表す。
(d)、(c)に記載の耐摩耗鋼板において、化学成分が、記載された化学成分に加えてmass%で、Cu:0.1〜2.0%、Ni:0.1〜2.0%、Cr:0.1〜1.5%、Mo:0.08〜2.0%、V:0.01〜0.5%、Ti:0.005〜0.05%、B:0.0005〜0.0025%の内1種以上を含有することを特徴とする板厚30mm未満の耐摩耗鋼板。
(e)、(a)または(b)に記載の化学成分を有する鋼を、950〜1250℃に加熱し、900℃以下での圧下率を30%以上として熱間圧延し、焼入れすることを特徴とする鋼板表層部と板厚中央部とのビッカース硬さの差ΔHVが50以下であり、かつ、板厚30mm以上である耐摩耗鋼板の製造方法。
(f)、(c)または(d)に記載の化学成分を有する鋼を、950〜1250℃に加熱し、900℃以下での圧下率を30%以上として熱間圧延し、焼入れすることを特徴とする鋼板表層部と板厚中央部とのビッカース硬さの差ΔHVが14以下であり、かつ、板厚30mm未満である耐摩耗鋼板の製造方法。
H = C × (1 + 0.5Si) × (1 + 3Mn) × (1 + 0.3Cu) × (1 + 0.5Ni) × (1 + 2Cr) × (1 + 3Mo) × (1 + 1.5V) × (1 + 5Nb) × (1 + 300B) (1)
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (2)
However, the element symbol represents the content (mass%) of each element.
(D) In the wear-resistant steel sheet described in (c), the chemical component is mass% in addition to the described chemical component, Cu: 0.1 to 2.0%, Ni: 0.1 to 2.0%, Cr: 0.1 ~1 .5%, Mo: 0 .08~ 2.0%, V: 0.01~0.5%, Ti: 0.005~0.05%, B: 0.0005~0.0025% leaf you characterized by containing one or more of Wear- resistant steel sheet with a thickness of less than 30mm .
(E) Heating the steel having the chemical composition described in (a) or (b) to 950 to 1250 ° C, hot rolling the steel at a temperature of 900 ° C or less at 30% or more, and quenching. difference Vickers hardness of the steel sheet surface layer part and mid-thickness portion you characterized ΔHV is 50 or less, and method for producing a wear-resistant steel plate is the plate thickness 30mm or more.
Heating the steel having the chemical composition described in (f), (c) or (d) to 950 to 1250 ° C., hot rolling the steel at a temperature of 900 ° C. or less at 30% or more, and quenching. the difference ΔHV Vickers hardness of the steel sheet surface layer part and mid-thickness portion you wherein is 14 or less, and method for producing a wear-resistant steel plate is less than the thickness 30 mm.

本発明は、耐摩耗鋼板の炭素等量Ceqを低目に抑え、焼入後の組織と関係がある焼入れ性指標Hを所定の値に調整することにより、表面硬さおよび板厚中央部硬さを確保するとともに、低温靭性および低温溶接割れ性を向上させることができる。また、板厚方向の硬さの差が小さい耐摩耗鋼板を得ることができる。これにより、耐摩耗性、低温靭性、および耐溶接割れ性に優れ、特に低温域での使用に耐える厚鋼板等の鋼材が得られ、機械部品等の低温域での使用を可能とする効果がある。   The present invention suppresses the carbon equivalent Ceq of the wear-resistant steel sheet to a low level and adjusts the hardenability index H, which is related to the structure after quenching, to a predetermined value. In addition to ensuring the thickness, the low temperature toughness and the low temperature weld cracking property can be improved. In addition, it is possible to obtain a wear-resistant steel plate having a small difference in hardness in the thickness direction. As a result, steel materials such as thick steel plates that have excellent wear resistance, low-temperature toughness, and weld crack resistance, and that can withstand use in low-temperature regions, can be obtained. is there.

この発明は、溶接性、靭性を兼ね備えた耐摩耗鋼板を提供すべく鋭意検討を重ねて得られた知見に基づきなされたものである。それは、炭素等量Ceqを低目に抑える代わりに、焼入れ性指標Hを所定の値に調整することが、硬さと耐磨耗性を確保しつつ、溶接性と靭性を両立させる上で有効というものである。   The present invention has been made on the basis of knowledge obtained through extensive studies to provide a wear-resistant steel sheet having both weldability and toughness. It is said that adjusting the hardenability index H to a predetermined value instead of keeping the carbon equivalent Ceq low is effective in achieving both weldability and toughness while ensuring hardness and wear resistance. Is.

以下、本発明の化学成分の限定理由について述べる。以下の説明において%で示す単位は全てmass%である。   Hereinafter, the reasons for limiting the chemical components of the present invention will be described. In the following description, all units indicated by% are mass%.

C:0.10〜0.30%
Cは、鋼の硬さを高めるのに重要な元素であり、また、焼入れ性を確保するために0.10%以上必要である。しかし、Cを0.30%を超えて大量に添加すると、溶接性、靭性、および加工性を劣化させる。従って、C量を0.10〜0.30%と規定した。ブリネル硬さHBを400以上とする場合は、Cを0.15%以上とすることが好ましい。
C: 0.10 ~ 0.30%
C is an important element for increasing the hardness of steel, and is required to be 0.10% or more in order to ensure hardenability. However, when C is added in a large amount exceeding 0.30%, weldability, toughness, and workability deteriorate. Therefore, the C content is defined as 0.10 to 0.30%. When the Brinell hardness HB is 400 or more, C is preferably 0.15% or more.

Si:0.1〜1.0%
Siは、脱酸元素として有効な元素であり、0.1%以上の添加が必要である。また、固溶強化に対しても有効な元素であるが、1.0%を超える添加量では、延性や靭性が低下し、介在物が増加する等の問題が生じる。従って、Si量を0.1〜1.0%と規定した。
Si: 0.1-1.0%
Si is an effective element as a deoxidizing element and needs to be added in an amount of 0.1% or more. Further, although it is an element effective for solid solution strengthening, when it is added in an amount exceeding 1.0%, problems such as a decrease in ductility and toughness and an increase in inclusions occur. Therefore, the Si content is defined as 0.1 to 1.0%.

Mn:0.1〜2.0%
Mnは、焼入れ性確保の観点から有効な元素であり、0.1%以上の添加が必要である。一方、2.0%を超えて添加すると、溶接性が劣化する。このため、Mn量を0.1〜2.0%と規定した。
Mn: 0.1-2.0%
Mn is an effective element from the viewpoint of ensuring hardenability, and it is necessary to add 0.1% or more. On the other hand, when it exceeds 2.0%, weldability deteriorates. For this reason, the amount of Mn was specified as 0.1 to 2.0%.

P:0.02%以下
Pは、不純物元素で少ない方がよく、0.02%を超えて多量に含有すると靭性の劣化を招く。従って、P量を0.02%以下と規定した。
P: 0.02% or less
P is preferably a small impurity element, and if contained in a large amount exceeding 0.02%, toughness is deteriorated. Therefore, the P content is specified to be 0.02% or less.

S:0.005%以下
S は、不純物元素で少ない方がよく、0.005%を超えて多量に含有すると靭性の劣化を招く。従って、S 量を0.005%以下と規定した。
S: 0.005% or less
S is preferably a small amount of impurity elements, and if contained in a large amount exceeding 0.005%, toughness is deteriorated. Therefore, the S content is specified to be 0.005% or less.

以下、この発明では、必要に応じて次の元素の内1種または2種以上を含有することもできる。以下、それらの添加元素の限定理由について述べる。   Hereinafter, in the present invention, one or more of the following elements may be contained as required. Hereinafter, the reasons for limiting those additive elements will be described.

Cu:0.1〜2.0%
Cuは、焼入れ性を高める元素であるが、0.1%未満ではこの効果を発揮することができない。一方、2.0%を超える添加では、熱間加工性が低下するとともに、合金コストも上昇する。従って、Cuを添加する場合は0.1〜2.0%の範囲とする。
Cu: 0.1-2.0%
Cu is an element that enhances hardenability, but if it is less than 0.1%, this effect cannot be exhibited. On the other hand, addition over 2.0% reduces hot workability and increases alloy costs. Therefore, when adding Cu, it is taken as 0.1 to 2.0% of range.

Ni:0.1〜2.0%
Niは、焼入れ性を高めるとともに、低温靱性を向上させる元素であるが、0.1%未満ではこの効果を発揮することができない。一方、2.0%を超える添加では、合金コストが上昇する。従って、Niを添加する場合は0.1〜2.0%の範囲とする。
Ni: 0.1-2.0%
Ni is an element that enhances hardenability and improves low-temperature toughness, but if it is less than 0.1%, this effect cannot be exhibited. On the other hand, when the content exceeds 2.0%, the alloy cost increases. Therefore, when adding Ni, it is set as 0.1 to 2.0% of range.

Cr:0.1〜1.5%
Crは、焼入れ性を高める元素であるが、0.1%未満ではこの効果を発揮することができない。一方、1.5%を超える添加では、溶接性が劣化するとともに合金コストが上昇する。従って、Crを添加する場合は0.1〜1.5%の範囲とする。
Cr: 0.1-1.5%
Cr is an element that enhances hardenability, but if it is less than 0.1%, this effect cannot be exhibited. On the other hand, addition exceeding 1.5% degrades weldability and increases alloy costs. Therefore, when adding Cr, it is made 0.1 to 1.5% of range.

Mo:0.08〜2.0%
Moは、焼入れ性を高める元素であるが、0.08%未満ではこの効果を発揮することができない。一方、2.0%を超える添加では、溶接性が劣化するとともに合金コストが上昇する。従って、Moを添加する場合は0.08〜2.0%の範囲とする。特に好ましくは、0.1〜1.0%とする。
Mo: 0.08-2.0 %
Mo is an element that enhances hardenability, but if it is less than 0.08% , this effect cannot be exhibited. On the other hand, addition over 2.0% degrades weldability and increases alloy costs. Therefore, when adding Mo, it is made into the range of 0.08 to 2.0%. Particularly preferably, the content is 0.1 to 1.0%.

V:0.01〜0.5%
Vは、析出硬化に有効な元素であり、鋼の硬さを上昇させる効果を有している。この効果は0.01%未満では発揮されず、0.5%を超える添加では溶接性が劣化する。従って、Vを添加する場合は0.01〜0.5%の範囲とする。
V: 0.01-0.5%
V is an element effective for precipitation hardening and has the effect of increasing the hardness of steel. This effect is not exhibited when the content is less than 0.01%, and weldability deteriorates when the content exceeds 0.5%. Therefore, when V is added, the content is made 0.01 to 0.5%.

Nb:0.005〜0.1%
Nbは、析出強化に有効な元素であり、鋼の硬さを上昇させる効果を有し、また、組織の微細化により靭性を向上させる効果も有する。これらの効果は0.005%未満では発揮されず、0.1%を超える添加では、溶接性が劣化する。このため、Nbの添加は0.005〜0.1%の範囲とする。
Nb: 0.005-0.1%
Nb is an element effective for precipitation strengthening, has an effect of increasing the hardness of steel, and also has an effect of improving toughness by refinement of the structure. These effects are not exhibited when the content is less than 0.005%, and when the content exceeds 0.1%, the weldability deteriorates. For this reason, Nb is added in a range of 0.005 to 0.1%.

Ti:0.005〜0.05%
Tiは、靭性に有害な固溶NをTiNとして固定することにより靭性を向上させるとともに、焼入れ性の向上に有効である。この効果は0.005%未満では発揮されず、0.05%を超える添加では、かえって靭性が劣化する。従って、Tiを添加する場合は0.005〜0.05%の範囲とする。
Ti: 0.005-0.05%
Ti is effective for improving hardenability as well as improving toughness by fixing solute N harmful to toughness as TiN. This effect is not exhibited when the content is less than 0.005%, and when it exceeds 0.05%, the toughness deteriorates. Therefore, when adding Ti, it is set as 0.005 to 0.05% of range.

B:0.0005〜0.0025%
Bは、微量添加で焼入れ性を高める元素であるが、0.0005%未満ではこの効果を発揮することができない。一方、0.0025%を超える添加では、靭性が低下する。従って、Bを添加する場合は0.0005〜0.0025%の範囲とする。
B: 0.0005-0.0025%
B is an element that enhances hardenability by adding a small amount, but if less than 0.0005%, this effect cannot be exhibited. On the other hand, if it exceeds 0.0025%, the toughness decreases. Therefore, when adding B, it is set as 0.0005 to 0.0025% of range.

化学成分を上記の範囲とした上で、焼入れ性指標を以下の範囲に規定する。   With the chemical component in the above range, the hardenability index is defined in the following range.

焼入れ性指標H:1.0以上
焼入れ性指標Hは、下記(1)式で示され、焼入後の組織と関係があり、その結果、鋼の硬さに大きな影響を与える。焼入れ性指標Hが1.0未満であると、組織が完全な焼入れ組織とならず、あるいは表面の組織が完全な焼入れ組織となっていても、表層から板厚中央部にかけては完全な焼入れ組織とならず、ブリネル硬さ360未満に硬さが低下する。従って、焼入れ性指標Hを1.0以上に規定する。ブリネル硬さ400以上とする場合は、焼入れ性指標Hを1.2以上に規定することが好ましい。
Hardenability index H: 1.0 or more The hardenability index H is expressed by the following formula (1) and is related to the structure after quenching, and as a result, it has a great influence on the hardness of the steel. When the hardenability index H is less than 1.0, even if the structure is not completely hardened, or even if the surface structure is completely hardened, it must be completely hardened from the surface layer to the center of the plate thickness. However, the hardness decreases to a Brinell hardness of less than 360. Therefore, the hardenability index H is specified to be 1.0 or more. When the Brinell hardness is 400 or more, the hardenability index H is preferably specified to be 1.2 or more.

H=C×(1+0.5Si)×(1+3Mn)×(1+0.3Cu)×(1+0.5Ni)×(1+2Cr)×(1+3Mo)×(1+1.5V)×(1+5Nb)×(1+300B) ……(1)
炭素等量Ceq:0.50%以下
炭素等量Ceqは、下記(2)式で示され、靭性および溶接性に大きな影響を与える。炭素等量Ceqが0.50%を超えると、所定の低温靭性が得られず溶接性も劣化する。従って、炭素等量Ceqを0.50%以下に規定する。
H = C × (1 + 0.5Si) × (1 + 3Mn) × (1 + 0.3Cu) × (1 + 0.5Ni) × (1 + 2Cr) × (1 + 3Mo) × (1 + 1.5V) × (1 + 5Nb) × (1 + 300B) ...... (1)
Carbon equivalent Ceq: 0.50% or less The carbon equivalent Ceq is expressed by the following equation (2) and has a great influence on toughness and weldability. When the carbon equivalent Ceq exceeds 0.50%, the predetermined low temperature toughness cannot be obtained and the weldability is also deteriorated. Therefore, the carbon equivalent Ceq is specified to be 0.50% or less.

Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5……(2)
発明の実施に当たっては、前述のように化学成分を調整すればよいが、一部の化学成分については、さらに次のようにすることにより、特性を向上させることができる。
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 …… (2)
In carrying out the invention, the chemical components may be adjusted as described above. However, the characteristics of some chemical components can be improved by the following.

Cについては、添加量が多めになるとCeqの上限に近づき、他の合金元素、例えばMn等が十分に添加できなくなる。そこで、Cを0.25%以下とすることが好ましい。   As for C, when the addition amount is too large, the upper limit of Ceq is approached, and other alloy elements such as Mn cannot be sufficiently added. Therefore, C is preferably set to 0.25% or less.

Nbについては、添加量が多めになると組織微細化効果が小さくなり、靭性の向上が見込めなくなる場合がある。従って、Nbの添加量を0.05%以下とすることが好ましい。   With regard to Nb, when the addition amount is large, the effect of refining the structure becomes small, and the improvement of toughness may not be expected. Therefore, the Nb addition amount is preferably 0.05% or less.

Cu、Ni、Cr、Mo、Vについては、添加する場合には、焼入れ性を確保しつつ、合金コストの上昇を避けるために、それぞれ、0.5%、1.0%、1.0%、0.5%、0.1%以下とすることが好ましい。   For Cu, Ni, Cr, Mo, V, when added, 0.5%, 1.0%, 1.0%, 0.5%, 0.1%, respectively, in order to avoid the increase in alloy costs while ensuring hardenability The following is preferable.

炭素等量Ceqについては、靭性に及ぼす影響を図1に示す。図1に示すように、炭素等量Ceqが0.45%を超えると、-40℃における吸収エネルギーvE-40が顕著に低下し、さらにCeqが0.50%を超えると、vE-40≧27Jを安定に確保できなくなる。これより、炭素等量Ceqを少なくとも0.50%以下とする必要があるが、vE-40≧27Jを安定に確保しさらに高い靭性を得るには、炭素等量Ceqを0.45%以下とすることが望ましい。   Figure 1 shows the effect of carbon equivalent Ceq on toughness. As shown in Figure 1, when the carbon equivalent Ceq exceeds 0.45%, the absorbed energy vE-40 at -40 ° C decreases significantly, and when Ceq exceeds 0.50%, vE-40≥27J is stabilized. It cannot be secured. From this, the carbon equivalent Ceq needs to be at least 0.50% or less, but in order to stably secure vE-40 ≧ 27J and obtain higher toughness, the carbon equivalent Ceq is preferably 0.45% or less. .

また、溶接性を、JIS規格 Z 3153に準拠し、被覆アーク溶接でのy型溶接割れ試験により判断した。その結果、炭素等量Ceqが0.50%を超えると、溶接割れが生じやすくなることもわかった。   Further, the weldability was judged by a y-type weld cracking test in covering arc welding in accordance with JIS standard Z 3153. As a result, it was also found that when the carbon equivalent Ceq exceeds 0.50%, weld cracking is likely to occur.

焼入れ性指標Hについては、焼入後の硬さに及ぼす影響を図2に示す。図2に示すように、焼入れ性指標Hが1.0以上のとき、表面硬さ(ブリネル硬さ)が360以上となり、焼入れ性指標Hが1.2以上のとき、表面硬さ(ブリネル硬さ)が400以上となるが、Hが1.0未満になると、組織が完全な焼入れ組織とならず、硬さが大きく低下する。一方、板厚が30mm以上の場合は、焼入れ性指標Hが1.5未満では、鋼板表面の硬さがHB360以上となっていても、板厚中央部の組織が完全な焼入れ組織とならず、硬さが大きく低下する場合がある。従って、板厚が30mm以上の場合は、焼入れ性指標Hを1.5以上とすることが好ましい。板厚が30mm以上であり、鋼板表面の硬さをHB400以上とする場合で板厚中央部の組織まで完全な焼入れ組織とするためには、Hを2.0以上とすることが好ましい。板厚30mm以上の場合については鋼板製造時の圧下率も関係するので後述する。   As for the hardenability index H, the influence on the hardness after quenching is shown in FIG. As shown in FIG. 2, when the hardenability index H is 1.0 or more, the surface hardness (Brinell hardness) is 360 or more, and when the hardenability index H is 1.2 or more, the surface hardness (Brinell hardness) is 400. As described above, when H is less than 1.0, the structure is not a completely quenched structure, and the hardness is greatly reduced. On the other hand, when the plate thickness is 30 mm or more, the hardenability index H is less than 1.5, and even if the hardness of the steel plate surface is HB360 or more, the structure at the center of the plate thickness is not a completely quenched structure, May be greatly reduced. Therefore, when the plate thickness is 30 mm or more, the hardenability index H is preferably 1.5 or more. When the plate thickness is 30 mm or more and the hardness of the steel plate surface is HB400 or more, in order to obtain a completely quenched structure up to the structure at the center of the plate thickness, H is preferably set to 2.0 or more. The case of a plate thickness of 30 mm or more will be described later because it relates to the rolling reduction during the production of the steel plate.

このような知見をまとめると、焼入れままで溶接性、靭性が共に優れた耐摩耗鋼板を提供するには、少なくとも炭素等量Ceqを0.50%以下、焼入れ性指標Hを1.0以上にすることが必要であり、更にブリネル硬さ400以上の特性を安定に確保するためには、炭素等量Ceqを0.45%以下、焼入れ性指標Hを2.0以上にすることが望ましい。   Summarizing these findings, it is necessary to provide at least carbon equivalent Ceq of 0.50% or less and hardenability index H of 1.0 or more in order to provide a wear-resistant steel sheet with excellent weldability and toughness as-quenched. Further, in order to stably secure the characteristics of Brinell hardness of 400 or more, it is desirable that the carbon equivalent Ceq is 0.45% or less and the hardenability index H is 2.0 or more.

以上の化学成分を有する鋼を用いて耐摩耗鋼板を製造する。   A wear-resistant steel sheet is produced using steel having the above chemical components.

本発明では、上記の化学成分を有する鋼を熱間圧延することにより、鋳造ままの粗い組織を細粒化し、靭性の向上を可能としている。熱間圧延は、通常の製造条件で実施すればよく、鋼片を圧延可能な温度に加熱し、目標の板厚に圧延すればよい。   In the present invention, the steel having the above chemical components is hot-rolled to refine the coarse structure as cast and improve toughness. The hot rolling may be performed under normal manufacturing conditions, and the steel slab may be heated to a temperature at which rolling can be performed and rolled to a target plate thickness.

圧延後の厚鋼板は、本発明の化学成分であれば焼入れることにより、硬さと低温靭性を目標の範囲内に調整することができる。   If the steel plate after rolling is a chemical component of the present invention, the hardness and low temperature toughness can be adjusted within the target ranges by quenching.

熱間圧延については、加熱温度が高すぎると組織粒が粗大化して靭性が劣化し、鋼板表面に疵が生じる場合があるため、加熱温度を1250℃以下とすることが望ましい。一方、加熱温度が低すぎると、直接焼入れの場合、焼入れ開始温度が低下し、目的とする性能が得られなくなる場合があるため、少なくともAr3点以上の温度から焼入れを開始できるように、温度設定する必要がある。また加熱温度が低いと組織粒が混粒となり靭性が劣化する場合もあるので、950℃以上とすることが好ましい。   For hot rolling, if the heating temperature is too high, the texture grains become coarse and the toughness deteriorates, and wrinkles may occur on the surface of the steel sheet. Therefore, the heating temperature is preferably 1250 ° C. or lower. On the other hand, if the heating temperature is too low, in the case of direct quenching, the quenching start temperature may decrease and the desired performance may not be obtained, so the temperature setting should be such that quenching can be started at least from the Ar3 point or higher There is a need to. Further, if the heating temperature is low, the structure grains may be mixed and the toughness may be deteriorated.

また、熱間圧延では、オーステナイトの再結晶温度近傍において有効な圧下を加えることにより、鋼板表層から板厚中央部にかけて、硬さおよび靭性を高めることができる。その効果を得るためには、900℃以下の温度で圧下率15%以上となるように熱間圧延を施すことが望ましい。   In hot rolling, hardness and toughness can be increased from the steel sheet surface layer to the plate thickness central part by applying effective reduction near the recrystallization temperature of austenite. In order to obtain the effect, it is desirable to perform hot rolling at a temperature of 900 ° C. or less so that the reduction rate is 15% or more.

焼入れについては、熱間圧延終了後、鋼板をそのまま放冷せずにAr3点以上の温度から焼入れても良いし、あるいはAr1点以下の温度に冷却した鋼板をAr3点以上の温度に再加熱して焼入れても良い。再加熱後に焼入れる場合、再加熱温度が高すぎると鋼板の組織が粗大となり、靭性を劣化させる恐れがあるため、再加熱温度は1150℃以下とすることが望ましい。また、必要に応じて、焼入れ中にAr3点以下の温度で冷却を停止することができる。冷却後の組織はマルテンサイトが主体であることが好ましい。   For quenching, after the hot rolling is finished, the steel sheet may be quenched from the temperature above the Ar3 point without allowing to cool, or the steel plate cooled to a temperature below the Ar1 point is reheated to a temperature above the Ar3 point. It can be hardened. When quenching after reheating, if the reheating temperature is too high, the structure of the steel sheet becomes coarse and the toughness may be deteriorated. Therefore, the reheating temperature is preferably 1150 ° C. or less. If necessary, cooling can be stopped at a temperature below the Ar3 point during quenching. The cooled structure is preferably mainly composed of martensite.

例えば、上記の化学成分を有し、式(1)で示される焼入れ性指標Hが1.2以上、式(2)で示される炭素等量Ceqが0.50%以下である鋼を、熱間圧延し、その後焼入れることにより、ブリネル硬さHBを400以上、-40℃におけるシャルピー吸収エネルギーvE-40が27J以上とする耐摩耗鋼板を製造することができる。   For example, a steel having the above chemical components, a hardenability index H represented by the formula (1) of 1.2 or more, and a carbon equivalent Ceq represented by the formula (2) of 0.50% or less is hot-rolled, Then, by quenching, a wear-resistant steel plate having a Brinell hardness HB of 400 or more and a Charpy absorbed energy vE-40 at −40 ° C. of 27 J or more can be produced.

次に、焼入れ性が問題になる板厚の厚い鋼板を製造する場合について説明する。図3に本発明の耐摩耗鋼を1200℃に加熱し、900℃以下での圧下率を0〜45%として熱間圧延し、板厚30mm以上の鋼板を製造した際の、圧下率と焼き入れ指標Hに対するブリネル硬さHBとΔHV(鋼板表層部と板厚中央部とのビッカース硬さの差)の関係を示す。本発明の耐摩耗鋼板は板厚20mm程度までは特に問題なく上記の方法を用いて製造できるが、板厚30mm以上の場合には900℃以下での圧下率が低いと板厚中央部分まで焼きが入りにくくなり、鋼板表面と鋼板の板厚中央部での硬さの差が大きくなる。900℃以下での圧下率が高い場合は圧下による歪により板厚中央部のマルテンサイト変態が促進されて、鋼板表面と鋼板の板厚中央部での硬さの差が小さくなる。   Next, the case where a steel plate having a thick plate thickness that causes hardenability is a problem will be described. Fig. 3 shows the reduction ratio and the firing rate when the wear-resistant steel of the present invention is heated to 1200 ° C and hot-rolled at a reduction rate of 900 ° C or less to 0 to 45% to produce a steel plate with a thickness of 30 mm or more. The relationship between Brinell hardness HB and ΔHV (difference in Vickers hardness between the steel sheet surface layer portion and the plate thickness center portion) with respect to the insertion index H is shown. The wear-resistant steel sheet of the present invention can be produced using the above-mentioned method without any particular problem up to a plate thickness of about 20 mm. Is difficult to enter, and the difference in hardness between the steel plate surface and the central portion of the steel plate thickness increases. When the rolling reduction at 900 ° C. or lower is high, the martensitic transformation in the central portion of the sheet thickness is promoted by strain due to the rolling, and the difference in hardness between the steel plate surface and the central portion of the thickness of the steel sheet is reduced.

図3によれば、熱間圧延時の圧下率が30%以上であれば、焼入れ指標がH1.0以上でブリネル硬さ360以上、焼入れ指標Hが1.2以上でブリネル硬さ400以上の耐摩耗鋼板を得ることができる。また鋼板表層部と板厚中央部とのビッカース硬さの差であるΔHVは50以下であり、板厚中央部まで硬さが安定して確保されている。したがって、本発明の化学成分を有する鋼を950〜1250℃に加熱し、900℃以下での圧下率を30%以上として熱間圧延し、焼入れすることで板厚にかかわらずに本発明の耐摩耗鋼板を製造することができることが分かる。   According to FIG. 3, if the rolling reduction during hot rolling is 30% or more, the wear index is H1.0 or more and Brinell hardness 360 or more, and the quenching index H is 1.2 or more and Brinell hardness 400 or more wear resistance. A steel plate can be obtained. Moreover, (DELTA) HV which is a difference of the Vickers hardness of a steel plate surface layer part and plate | board thickness center part is 50 or less, and hardness is ensured stably to the plate | board thickness center part. Therefore, the steel having the chemical component of the present invention is heated to 950 to 1250 ° C., hot-rolled at a reduction rate of 900 ° C. or less at 30% or more, and quenched, regardless of the plate thickness. It can be seen that a worn steel plate can be produced.

また図3によれば、熱間圧延時の圧下率が30%未満の場合は、焼入れ性指標Hが1.0以上であってもΔHVが50超となり、板厚中央部の固さが低下してしまう場合がある。しかし、熱間圧延時の圧下率が30%未満の場合でも、焼入れ指標Hが1.5以上であればブリネル硬さHBが360以上かつΔHVが50以下、焼入れ指標Hが2.0以上であればブリネル硬さ400以上かつΔHVが50以下の耐摩耗鋼板を得ることができることが分かる。したがって、本発明の化学成分を有し、かつ焼入れ性指標Hが1.5以上である鋼を、950〜1250℃に加熱し、900℃以下での圧下率を30%未満として厚さ30mm以上に熱間圧延し、焼入れすることでブリネル硬さ360以上の板厚方向硬さの均一な耐摩耗鋼板を、また、焼入れ性指標Hが2.0以上である鋼を、950〜1250℃に加熱し、900℃以下での圧下率を30%未満として厚さ30mm以上に熱間圧延し、焼入れすることでブリネル硬さ400以上の板厚方向硬さの均一な耐摩耗鋼板を製造することが可能となる。   Further, according to FIG. 3, when the rolling reduction during hot rolling is less than 30%, even if the hardenability index H is 1.0 or more, ΔHV exceeds 50, and the hardness of the central portion of the plate thickness decreases. May end up. However, even when the rolling reduction during hot rolling is less than 30%, if the quenching index H is 1.5 or more, the Brinell hardness HB is 360 or more and ΔHV is 50 or less, and if the quenching index H is 2.0 or more, the Brinell hardness It can be seen that a wear-resistant steel sheet having a thickness of 400 or more and ΔHV of 50 or less can be obtained. Therefore, a steel having the chemical component of the present invention and a hardenability index H of 1.5 or more is heated to 950 to 1250 ° C. and heated to a thickness of 30 mm or more with a reduction rate of less than 30% at 900 ° C. or less. By rolling and quenching, a wear-resistant steel plate with a uniform thickness direction hardness of Brinell hardness of 360 or more, and a steel with a hardenability index H of 2.0 or more are heated to 950-1250 ° C, 900 It is possible to produce a wear-resistant steel sheet with a uniform thickness direction hardness of Brinell hardness of 400 or more by hot rolling to a thickness of 30 mm or more with a reduction rate of less than 30% below ℃ and quenching. .

したがって、焼入れ性指標H≧1.5である場合には圧下率にかかわり無くHB≧360であり板厚方向硬さを均一とすることができる。また、焼入れ性指標H≧2.0である場合には圧下率にかかわり無くHB≧400であり板厚方向硬さを均一とすることができる。しかし圧下率が高い方が板厚中央部と表層部との硬さの差が小さくなる点では好ましく、板厚が30mm未満の場合でも、900℃以下での圧下率を30%以上とすれば、板厚中央部と表層部との硬さの差が小さくなるのでより好ましい。   Therefore, when the hardenability index H ≧ 1.5, HB ≧ 360 regardless of the rolling reduction, and the sheet thickness direction hardness can be made uniform. Further, when the hardenability index H ≧ 2.0, HB ≧ 400 regardless of the rolling reduction, and the sheet thickness direction hardness can be made uniform. However, a higher rolling reduction is preferable in that the difference in hardness between the central portion of the plate thickness and the surface layer portion is small, and even when the plate thickness is less than 30 mm, if the rolling reduction at 900 ° C. or less is 30% or more, It is more preferable because the difference in hardness between the center portion of the plate thickness and the surface layer portion becomes small.

表1に示す成分組成を有する鋼A〜Qの鋼片を、1150℃に加熱し、900℃以下での圧下率を20%として板厚9〜50mmに熱間圧延した後、直接焼入れ、あるいは放冷後再加熱して焼入れした。鋼C、E、H、Kは本発明鋼であり、鋼L〜Qは比較鋼である。 Steel slabs of steels A to Q having the composition shown in Table 1 are heated to 1150 ° C. and hot-rolled to a sheet thickness of 9 to 50 mm with a reduction rate of 900 ° C. or less as 20%, and then directly quenched or After standing to cool, it was reheated and quenched. Steels C, E, H and K are invention steels, and steels L to Q are comparative steels.

Figure 0004238832
Figure 0004238832

得られた鋼板について、特性値として、硬さ、低温靭性、溶接性を調べた。表面硬さは、JIS規格Z2243に準拠し、黒皮を除去した鋼板表面においてランダムに選んで測定した5点の平均値を用い、HB400以上を特に好ましい範囲とした。板厚方向硬さは、JIS規格Z2244に準拠してビッカース硬さHVで評価した。鋼板表層下2mmおよび板厚中央部で測定した各5点のビッカース硬さHVの平均値を用い、板厚30mm以上では表層と板厚中央部との硬さの差ΔHV≦50を、板厚30mm未満では表層と板厚中央部との硬さの差ΔHV≦14を、板厚方向での硬さの差の小さい鋼板として評価した。 About the obtained steel plate, hardness, low temperature toughness, and weldability were investigated as characteristic values. The surface hardness was based on JIS standard Z2243, and an average value of 5 points randomly selected and measured on the steel sheet surface from which the black skin was removed was used , and H B400 or more was set as a particularly preferable range. The thickness direction hardness was evaluated by Vickers hardness HV according to JIS standard Z2244. Using the average value of Vickers hardness HV of the 5 points measured at the steel sheet surface under 2mm and mid-thickness portion, the difference Delta] HV ≦ 50 hardness of the front layer and the plate thickness central portion in the plate thickness 30mm or more, the plate the thickness less than 30mm the difference Delta] HV ≦ 14 hardness of the surface layer and mid-thickness portion was evaluated as a small steel plate difference in hardness at the plate thickness direction.

低温靭性は、JIS規格Z2242に準拠し、-40℃におけるシャルピー衝撃吸収エネルギーを測定し、vE-40≧27Jを合格とした。溶接性は、JIS規格Z3157に準拠し、予熱温度を125℃としたy型溶接割れ試験における割れの有無で評価した。得られた特性値を表2に製造法とともに示す。   The low temperature toughness was based on JIS standard Z2242, measured Charpy impact absorption energy at -40 ° C., and passed vE-40 ≧ 27J. Weldability was evaluated based on the presence or absence of cracks in a y-type weld cracking test in accordance with JIS standard Z3157 and a preheating temperature of 125 ° C. The obtained characteristic values are shown in Table 2 together with the production method.

Figure 0004238832
Figure 0004238832

表2に示すように、本発明鋼は、耐摩耗鋼板として有効な高い表面硬さ、板厚中央部硬さとともに、十分な低温靭性、および良好な溶接割れ性を有している。   As shown in Table 2, the steel according to the present invention has sufficient low-temperature toughness and good weld cracking properties as well as high surface hardness and thickness center hardness effective as a wear-resistant steel plate.

これに対して、比較鋼Lは、C量が本発明の範囲外であり、良好な溶接割れ性が得られていない。比較鋼Nは、炭素当量Ceqが本発明の範囲外であり、十分な低温靭性と良好な溶接割れ性が得られていない。比較鋼P、Qは、それぞれP量、S量が本発明の範囲を超えており、十分な低温靭性が得られていない。   On the other hand, the comparative steel L has a C content outside the range of the present invention, and good weld cracking properties are not obtained. The comparative steel N has a carbon equivalent Ceq outside the range of the present invention, and sufficient low temperature toughness and good weld cracking properties are not obtained. Comparative steels P and Q have P and S amounts exceeding the range of the present invention, respectively, and sufficient low temperature toughness is not obtained.

比較鋼Oは、化学成分が本発明の範囲外であり、ブリネル硬さHBは400以上であるが、板厚30mmに対して焼入れ性指標Hが1.5未満であり、板厚中央部において硬さが低下し、ΔHV>50であった。従って、板厚が厚い場合は、板厚中央部において十分な硬さを得るため、焼入れ性指標Hを1.5以上に調整することが好ましい。 Comparative Steel O is outside the scope of the chemical components present invention, although Brinell hardness HB is 400 or more, the hardenability index H relative thickness 30mm is less than 1.5, the hardness in the plate thickness central portion And ΔHV> 50. Therefore, when the plate thickness is large, it is preferable to adjust the hardenability index H to 1.5 or more in order to obtain sufficient hardness in the central portion of the plate thickness.

表3に示す成分組成を有する鋼A〜Qの鋼片を、表4に示す製造方法を用いて板厚9〜50mmに熱間圧延した後、直接焼入れしてNo.1〜17の鋼板を製造した。鋼F、Kは本発明鋼であり、鋼A、B、L〜Qは比較鋼である。 Steel pieces A to Q having the composition shown in Table 3 were hot-rolled to a thickness of 9 to 50 mm using the manufacturing method shown in Table 4, and then directly quenched to obtain No. 1 to 17 steel plates. Manufactured. Steels F and K are steels of the present invention, and steels A, B, and L to Q are comparative steels.

Figure 0004238832
Figure 0004238832

得られた鋼板について、特性値として、硬さ、低温靭性、溶接性を調べた。表面硬さは、JIS規格Z2243に準拠し、黒皮を除去した鋼板表面においてランダムに選んで測定した5点の平均値を用い、HB400以上を合格とした。板厚方向硬さは、JIS規格Z2244に準拠してビッカース硬さHVで評価した。鋼板表層下2mmおよび板厚中央部で測定した各5点のビッカース硬さHVの平均値を用い、板厚30mm以上では表層と板厚中央部との硬さの差ΔHV≦50を、板厚30mm未満では表層と板厚中央部との硬さの差ΔHV≦14を板厚方向での硬さの差の小さい鋼板として評価した。 About the obtained steel plate, hardness, low temperature toughness, and weldability were investigated as characteristic values. Surface hardness, according to JIS standard Z2243, using an average value of 5 points measured at randomly selected in the removed surface of the steel sheet black skin, was passed over H B 400. The thickness direction hardness was evaluated by Vickers hardness HV according to JIS standard Z2244. Using the average value of Vickers hardness HV of the 5 points measured at the steel sheet surface under 2mm and mid-thickness portion, the difference Delta] HV ≦ 50 hardness of the front layer and the plate thickness central portion in the plate thickness 30mm or more, the plate the thickness less than 30mm and rated the difference Delta] HV ≦ 14 hardness of the surface layer and mid-thickness portion as small steel sheet hardness difference in the thickness direction.

低温靭性は、JIS規格Z2242に準拠し、-40℃におけるシャルピー衝撃吸収エネルギーを測定し、vE-40≧27Jを合格とした。溶接性は、耐溶接低温割れ性で評価し、JIS規格Z3157に準拠し、予熱温度を125℃としたy型溶接割れ試験における割れの有無で評価した。得られた特性値を表4に併せて示す。   The low temperature toughness was based on JIS standard Z2242, measured Charpy impact absorption energy at -40 ° C., and passed vE-40 ≧ 27J. Weldability was evaluated by welding cold cracking resistance, and evaluated by the presence or absence of cracking in a y-type weld cracking test in accordance with JIS standard Z3157 and a preheating temperature of 125 ° C. The obtained characteristic values are also shown in Table 4.

Figure 0004238832
Figure 0004238832

表4に示すように、No.5、11の本発明鋼板は、耐摩耗鋼板として有効な高い表面硬さを有し板厚方向硬さが均一であるとともに、十分な低温靭性、および良好な溶接割れ性を有している。 As shown in Table 4, the steel sheets of the present invention No. 5 and 11 have high surface hardness effective as wear-resistant steel sheets, uniform thickness direction hardness, sufficient low temperature toughness, and good Has weld cracking properties.

これに対して、No.6の鋼板は加熱温度が1250℃超であり、粒粗大化により低温靭性が劣化している。比較鋼Lは、C量が本発明の範囲外であり、No.12の鋼板は良好な低温靭性と溶接割れ性が得られていない。比較鋼MはC量が低く、No.13の鋼板はHB360以上の硬度が得られていない。比較鋼Nは、炭素当量Ceqが本発明の範囲外であり、No.14の鋼板は十分な低温靭性が得られていない。比較鋼P、Qは、それぞれP量、S量が本発明の範囲を超えており、No.16、17の鋼板は十分な低温靭性が得られていない。   On the other hand, the heating temperature of the No. 6 steel plate is over 1250 ° C., and the low temperature toughness deteriorates due to the coarsening of the grains. The comparative steel L has a C content outside the range of the present invention, and the No. 12 steel sheet does not have good low temperature toughness and weld cracking properties. The comparative steel M has a low C content, and the No. 13 steel sheet does not have a hardness higher than HB360. The comparative steel N has a carbon equivalent Ceq outside the range of the present invention, and the No. 14 steel sheet does not have sufficient low temperature toughness. The comparative steels P and Q have P and S amounts exceeding the range of the present invention, respectively, and the steel plates No. 16 and 17 do not have sufficient low temperature toughness.

比較鋼Oは、Hが1.0未満であり、化学成分が本発明の範囲外である。No.15の鋼板はブリネル硬さHBは360以上であるが、焼入れ性が低いので、板厚中央部において硬さが低下し、ΔHV>50であった。   In the comparative steel O, H is less than 1.0 and the chemical composition is outside the scope of the present invention. The No. 15 steel sheet had a Brinell hardness HB of 360 or more, but the hardenability was low, so the hardness decreased at the center of the sheet thickness and ΔHV> 50.

靭性に及ぼす炭素等量Ceqの影響を示す図。The figure which shows the influence of the carbon equivalent Ceq on toughness. 焼入後の硬さに及ぼす焼入れ性指標Hの影響を示す図。The figure which shows the influence of the hardenability parameter | index H which acts on the hardness after hardening. 圧下率と焼入れ性指標Hに対するHBとΔHVの関係を示すグラフ。The graph which shows the relationship between HB and (DELTA) HV with respect to a rolling reduction and the hardenability parameter | index H.

Claims (6)

化学成分としてmass%で、C:0.15〜0.30%、Si:0.1〜1.0%、Mn:0.1〜2.0%、Nb:0.005〜0.1%、P:0.02%以下、S:0.005%以下を含有し、残部が鉄および不可避的不純物からなる鋼であり、式(1)で示される焼入れ性指標Hが1.2以上、式(2)で示される炭素等量Ceqが0.50%以下、かつ、ブリネル硬さHBが400以上、鋼板表層部と板厚中央部とのビッカース硬さの差ΔHVが50以下、-40℃におけるシャルピー吸収エネルギーvE-40が27J以上であることを特徴とする板厚30mm以上の耐摩耗鋼板。
H=C×(1+0.5Si)×(1+3Mn)×(1+0.3Cu)×(1+0.5Ni)×(1+2Cr)×(1+3Mo)×(1+1.5V)×(1+5Nb)×(1+300B) (1)
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 (2)
但し、元素記号は各元素の含有量(mass%)を表す。
It contains mass% as a chemical component, C: 0.15-0.30%, Si: 0.1-1.0%, Mn: 0.1-2.0%, Nb: 0.005-0.1%, P: 0.02% or less, S: 0.005% or less, The balance is steel consisting of iron and inevitable impurities , the hardenability index H shown by formula (1) is 1.2 or more, the carbon equivalent Ceq shown by formula (2) is 0.50% or less, and the Brinell hardness HB Is not less than 400, the difference in Vickers hardness between the surface layer of the steel sheet and the center of the sheet thickness is 50 or less, and Charpy absorbed energy vE-40 at -40 ° C is 27 J or more. Wear steel plate.
H = C × (1 + 0.5Si) × (1 + 3Mn) × (1 + 0.3Cu) × (1 + 0.5Ni) × (1 + 2Cr) × (1 + 3Mo) × (1 + 1.5V) × (1 + 5Nb) × (1 + 300B) (1)
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (2)
However, the element symbol represents the content (mass%) of each element.
請求項1記載の耐摩耗鋼板において、化学成分が、記載された化学成分に加えてmass%で、Cu:0.1〜2.0%、Ni:0.1〜2.0%、Cr:0.1〜1.5%、Mo:0.08〜2.0%、V:0.01〜0.5%、Ti:0.005〜0.05%、B:0.0005〜0.0025%の内1種以上を含有することを特徴とする板厚30mm以上の耐摩耗鋼板。 In the wear steel according to claim 1 Symbol placement, chemical composition, in mass% in addition to the chemical components described, Cu:. 0.1 ~2 0% , Ni: 0.1~2.0%, Cr: 0.1~1 .5 %, Mo: 0 .08~ 2.0% , V: 0.01~0.5%, Ti: 0.005~0.05%, B: 0.0005~0.0025% of the above features and to RuitaAtsu 30mm that contain one or more Wear- resistant steel plate. 化学成分としてmass%で、C:0.15〜0.30%、Si:0.1〜1.0%、Mn:0.1〜2.0%、Nb:0.005〜0.1%、P:0.02%以下、S:0.005%以下を含有し、残部が鉄および不可避的不純物からなる鋼であり、式(1)で示される焼入れ性指標Hが1.2以上、式(2)で示される炭素等量Ceqが0.50%以下、かつ、ブリネル硬さHBが400以上、鋼板表層部と板厚中央部とのビッカース硬さの差ΔHVが14以下、-40℃におけるシャルピー吸収エネルギーvE-40が27J以上であることを特徴とする板厚30mm未満の耐摩耗鋼板。
H=C×(1+0.5Si)×(1+3Mn)×(1+0.3Cu)×(1+0.5Ni)×(1+2Cr)×(1+3Mo)×(1+1.5V)×(1+5Nb)×(1+300B) (1)
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 (2)
但し、元素記号は各元素の含有量(mass%)を表す。
It contains mass% as a chemical component, C: 0.15-0.30%, Si: 0.1-1.0%, Mn: 0.1-2.0%, Nb: 0.005-0.1%, P: 0.02% or less, S: 0.005% or less, The balance is steel consisting of iron and inevitable impurities , the hardenability index H shown by formula (1) is 1.2 or more, the carbon equivalent Ceq shown by formula (2) is 0.50% or less, and the Brinell hardness HB Is not less than 400 mm, the difference in Vickers hardness ΔHV between the steel sheet surface layer part and the sheet thickness center part is 14 or less, and Charpy absorbed energy vE-40 at −40 ° C. is 27 J or more. Wear steel plate.
H = C × (1 + 0.5Si) × (1 + 3Mn) × (1 + 0.3Cu) × (1 + 0.5Ni) × (1 + 2Cr) × (1 + 3Mo) × (1 + 1.5V) × (1 + 5Nb) × (1 + 300B) (1)
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (2)
However, the element symbol represents the content (mass%) of each element.
請求項3記載の耐摩耗鋼板において、化学成分が、記載された化学成分に加えてmass%で、Cu:0.1〜2.0%、Ni:0.1〜2.0%、Cr:0.1〜1.5%、Mo:0.08〜2.0%、V:0.01〜0.5%、Ti:0.005〜0.05%、B:0.0005〜0.0025%の内1種以上を含有することを特徴とする板厚30mm未満の耐摩耗鋼板。 The wear-resistant steel sheet according to claim 3, wherein the chemical component is in mass% in addition to the described chemical component, Cu: 0.1 to 2.0%, Ni: 0.1 to 2.0%, Cr: 0.1 to 1.5% , Mo: 0 .08~ 2.0%, V: 0.01~0.5%, Ti: 0.005~0.05%, B: 0.0005~0.0025% of resistance below features and to RuitaAtsu 30mm that contain one or more Wear steel plate. 請求項1または請求項2に記載の化学成分を有する鋼を、950〜1250℃に加熱し、900℃以下での圧下率を30%以上として熱間圧延し、焼入れすることを特徴とする鋼板表層部と板厚中央部とのビッカース硬さの差ΔHVが50以下であり、かつ、板厚30mm以上である耐摩耗鋼板の製造方法。 The steel having the chemical composition according to claim 1 or claim 2, heated to: 950 ° C., hot rolled at a reduction rate of at 900 ° C. or less as 30% or more, characterized in that quenching A method for producing a wear- resistant steel plate, wherein the difference ΔHV in Vickers hardness between the steel sheet surface layer portion and the plate thickness center portion is 50 or less and the plate thickness is 30 mm or more . 請求項3または請求項4に記載の化学成分を有する鋼を、950〜1250℃に加熱し、900℃以下での圧下率を30%以上として熱間圧延し、焼入れすることを特徴とする鋼板表層部と板厚中央部とのビッカース硬さの差ΔHVが14以下であり、かつ、板厚30mm未満である耐摩耗鋼板の製造方法。 The steel having the chemical components described in claim 3 or claim 4, heated to: 950 ° C., hot rolled at a reduction rate of at 900 ° C. or less as 30% or more, characterized in that quenching A method for producing a wear- resistant steel sheet, wherein a difference ΔHV in Vickers hardness between a steel sheet surface layer part and a sheet thickness center part is 14 or less and a sheet thickness is less than 30 mm .
JP2005034802A 2000-12-27 2005-02-10 Abrasion-resistant steel plate and method for producing the same Expired - Lifetime JP4238832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034802A JP4238832B2 (en) 2000-12-27 2005-02-10 Abrasion-resistant steel plate and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000396828 2000-12-27
JP2005034802A JP4238832B2 (en) 2000-12-27 2005-02-10 Abrasion-resistant steel plate and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001396577A Division JP2002256382A (en) 2000-12-27 2001-12-27 Wear resistant steel sheet and production method therefor

Publications (2)

Publication Number Publication Date
JP2005179783A JP2005179783A (en) 2005-07-07
JP4238832B2 true JP4238832B2 (en) 2009-03-18

Family

ID=34796996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034802A Expired - Lifetime JP4238832B2 (en) 2000-12-27 2005-02-10 Abrasion-resistant steel plate and method for producing the same

Country Status (1)

Country Link
JP (1) JP4238832B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020891A1 (en) 2012-07-30 2014-02-06 Jfeスチール株式会社 Abrasion-resistant steel plate and manufacturing process therefor
WO2014156079A1 (en) 2013-03-28 2014-10-02 Jfeスチール株式会社 Abrasion resistant steel plate having low-temperature toughness, and manufacturing method therefor
WO2014156078A1 (en) 2013-03-28 2014-10-02 Jfeスチール株式会社 Abrasion resistant steel plate having low-temperature toughness and hydrogen embrittlement resistance, and manufacturing method therefor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4846308B2 (en) 2005-09-09 2011-12-28 新日本製鐵株式会社 High tough wear-resistant steel with little change in hardness during use and method for producing the same
JP4735191B2 (en) * 2005-10-27 2011-07-27 Jfeスチール株式会社 Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
KR101353838B1 (en) 2011-12-28 2014-01-20 주식회사 포스코 Wear resistant steel having excellent toughness and weldability
JP6283588B2 (en) 2014-09-11 2018-02-21 株式会社神戸製鋼所 High strength steel plate
CN110042307B (en) * 2019-04-22 2020-07-28 贝斯山钢(山东)钢板有限公司 Super-thick high-hardenability HB 500-grade wear-resistant steel plate and manufacturing method thereof
CN110157987B (en) * 2019-06-18 2020-10-09 贝斯山钢(山东)钢板有限公司 NQT-process-based large-thickness wear-resistant steel plate with good-40-DEG C low-temperature toughness and preparation method thereof
KR102498142B1 (en) * 2020-12-18 2023-02-08 주식회사 포스코 Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
KR102498141B1 (en) * 2020-12-18 2023-02-08 주식회사 포스코 Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
CN114150210B (en) * 2021-11-24 2022-06-28 北京科技大学 Preparation method of multi-element small-amount low-alloying ledge steel casting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020891A1 (en) 2012-07-30 2014-02-06 Jfeスチール株式会社 Abrasion-resistant steel plate and manufacturing process therefor
US9738957B2 (en) 2012-07-30 2017-08-22 Jfe Steel Corporation Wear resistant steel plate and manufacturing process therefor
WO2014156079A1 (en) 2013-03-28 2014-10-02 Jfeスチール株式会社 Abrasion resistant steel plate having low-temperature toughness, and manufacturing method therefor
WO2014156078A1 (en) 2013-03-28 2014-10-02 Jfeスチール株式会社 Abrasion resistant steel plate having low-temperature toughness and hydrogen embrittlement resistance, and manufacturing method therefor

Also Published As

Publication number Publication date
JP2005179783A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP4238832B2 (en) Abrasion-resistant steel plate and method for producing the same
EP2154262B1 (en) Abrasion-resistant steel sheet having excellent processability, and method for production thereof
JP5833751B2 (en) Ultra-high strength wear-resistant steel sheet and method for producing the same
JP4650013B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP4735167B2 (en) Method for producing wear-resistant steel sheet with excellent low-temperature toughness
JP5186809B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
WO2012002567A1 (en) Abrasion-resistant steel plate or sheet with excellent weld toughness and delayed fracture resistance
KR100920536B1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
KR101033711B1 (en) Wear-resistant steel sheet having excellent wear resistance at high temperatures and excellent bending workability and method for manufacturing the same
WO2012002563A1 (en) Wear-resistant steel sheet having excellent welded part toughness and lagging destruction resistance properties
JP7471417B2 (en) High-hardness wear-resistant steel with excellent low-temperature impact toughness and manufacturing method thereof
JP2002256382A (en) Wear resistant steel sheet and production method therefor
JP3543619B2 (en) High toughness wear-resistant steel and method of manufacturing the same
JP2008169443A (en) Wear-resistant steel sheet superior in workability and manufacturing method therefor
JP2011179122A (en) Wear-resistant steel sheet excellent in low temperature toughness
JP5458624B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
KR20080042518A (en) Steel plate for linepipe having ultra-high strength and excellent crack propagation resistance and manufacturing method of the same
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JP2002020837A (en) Wear resistant steel excellent in toughness and its production method
JP3981615B2 (en) Non-water-cooled thin low yield ratio high-tensile steel and method for producing the same
JP3698082B2 (en) Wear resistant steel
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
JP2008214736A (en) Wear resistant steel sheet having excellent workability, and method for producing the same
JP3536687B2 (en) Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the same
KR101439629B1 (en) Wear resistant steel having excellent wear-resistance and method for manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050519

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4238832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term