JPH1171631A - Highly toughened and wear resistant steel and its production - Google Patents

Highly toughened and wear resistant steel and its production

Info

Publication number
JPH1171631A
JPH1171631A JP15604798A JP15604798A JPH1171631A JP H1171631 A JPH1171631 A JP H1171631A JP 15604798 A JP15604798 A JP 15604798A JP 15604798 A JP15604798 A JP 15604798A JP H1171631 A JPH1171631 A JP H1171631A
Authority
JP
Japan
Prior art keywords
delayed fracture
resistance
content
toughness
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15604798A
Other languages
Japanese (ja)
Other versions
JP3543619B2 (en
Inventor
Tomoya Kawabata
友弥 川畑
Kazushi Onishi
一志 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15604798A priority Critical patent/JP3543619B2/en
Publication of JPH1171631A publication Critical patent/JPH1171631A/en
Application granted granted Critical
Publication of JP3543619B2 publication Critical patent/JP3543619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a steel having high toughness, furthermore excellent in wear resistance, moreover excellent in delayed fracture resistance and heat crack generating resistance and suitable for members constituting construction equipment, industrial equipment or the like. SOLUTION: This steel has a compsn. contg., by weight, 0.23 to 0.28%, C, >0.50 to 1.20% Si, 0.80 to 1.50% Mn, <=0.015% P, <=0.004% S, 0.20 to 1.20% Cr, 0.01 to 0.05% Nb, 0.0005 to 0.0025% B, 0.01 to 0.01% sol.Al, preferably, contg. one or >= two kinds selected from the groups of 0.05 to 1.00% Cu, 0.05 to 1.00% Ni, 0.05 to 1.00% Mo, 0.02 to 0.10% V, 0.005 to 0.05% Ti and <=0.05% Zr, and the balance Fe with inevitable impurities and furthermore satisfying Mn <=25.4×Nb/(C+0.64Si)+0.60.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば土木、鉱山
用の建設機械や大型の産業機械といった、耐摩耗性を要
求される機械の構成部材として用いるのに好適な、高靱
性耐摩耗鋼およびその製造方法に関する。
The present invention relates to a high-toughness wear-resistant steel suitable for use as a component of a machine requiring wear resistance, such as a construction machine for civil engineering, mining, or a large industrial machine. It relates to the manufacturing method.

【0002】[0002]

【従来の技術】周知のように、部材の耐摩耗性はその表
面硬度に強く支配されることから、例えば土木、鉱山用
の建設機械や大型の産業機械といった、耐摩耗性を要求
される機械の構成部材には、高硬度鋼が適用される。例
えば、これまでにも、HB450 以上の表面硬度を有する厚
鋼板が広く利用されてきた。
2. Description of the Related Art As is well known, the wear resistance of a member is strongly controlled by its surface hardness, and therefore, a machine requiring wear resistance such as a construction machine for civil engineering, mining, or a large industrial machine. High hardness steel is applied to the constituent member of (1). For example, thick steel plates having a surface hardness of HB450 or more have been widely used.

【0003】例えば、特開平1−31928 号公報には、そ
の実施例において、C:0.28〜0.33% (以下、本明細書
においては特にことわりがない限り「%」は「重量%」
を意味するものとする。) 、Si:0.29〜0.36%を含有す
るNb添加鋼に熱間圧延を行った後、直接焼入れを行うこ
とにより完全マルテンサイト組織化を図り、表面硬度を
HB 579〜590 程度に向上させる技術が提案されている。
[0003] For example, Japanese Patent Application Laid-Open No. 1-31928 discloses that, in the examples, C: 0.28 to 0.33% (hereinafter, unless otherwise specified, "%" means "% by weight"
Shall mean. ), Si: Nb-added steel containing 0.29-0.36% is hot-rolled and then directly quenched to achieve complete martensitic microstructure and increase surface hardness.
Techniques for improving HB to about 579 to 590 have been proposed.

【0004】ところで、近年では、このような高硬度鋼
には、表面硬度以外にも2つの別の特性が要求されるよ
うになってきた。その一方は耐遅れ破壊性であり、他方
は耐熱亀裂発生性である。
In recent years, such hardened steels have been required to have two other characteristics in addition to the surface hardness. One is delayed fracture resistance and the other is heat crack resistant.

【0005】耐遅れ破壊性を向上する技術として、例え
ば特開平5−51691 号公報には、耐遅れ破壊感受性を増
大させる元素であるMnを0.30〜0.60%に低減するととも
にMn低減による硬度低下をCr、Mo等を添加することによ
り補う技術が提案されている。また、特開昭63−317623
号公報には、Mn含有量を0.50〜0.80%に低減するととも
にTiを0.005 〜0.025 %添加することにより耐遅れ破壊
性を向上させ、Mn低減による硬度低下をNbを添加するこ
とにより補う技術が提案されている。
As a technique for improving delayed fracture resistance, for example, Japanese Patent Application Laid-Open No. 5-51691 discloses a technique of reducing Mn, which is an element that increases delayed fracture resistance, to 0.30 to 0.60% and reducing hardness due to reduction of Mn. A technique for supplementing by adding Cr, Mo, or the like has been proposed. Also, JP-A-63-317623
Japanese Patent Publication No. JP-A No. 7-127055 discloses a technique for reducing the Mn content to 0.50 to 0.80% and improving the delayed fracture resistance by adding 0.005 to 0.025% of Ti, and compensating for the hardness decrease due to the reduction of Mn by adding Nb. Proposed.

【0006】一方、過酷な摩耗環境下において発生する
熱亀裂に対する耐熱亀裂発生性を向上するには、摩擦が
発生する表層の塑性流動抵抗を小さくすること、すなわ
ち塑性流動部直下の靱性を確保することが有効であるこ
とが従来より知られている。つまり、耐熱亀裂発生性の
向上には母材の靱性確保がポイントである。
[0006] On the other hand, in order to improve the heat crack resistance against heat cracks generated in a severe wear environment, the plastic flow resistance of the surface layer where friction occurs is reduced, that is, the toughness immediately below the plastic flow portion is secured. Has been known to be effective. In other words, it is important to ensure the toughness of the base material to improve the heat cracking resistance.

【0007】例えば、特開平1−172514号公報には、鋼
組成および製造条件それぞれを特定することにより、得
られる鋼材の靱性を高めて耐熱亀裂発生性を向上させる
技術が提案されている。
[0007] For example, Japanese Patent Application Laid-Open No. 1-172514 proposes a technique for increasing the toughness of the obtained steel material and improving the heat crack resistance by specifying each of the steel composition and the manufacturing conditions.

【0008】さらに、特開平8−295990号公報には、残
留オーステナイト量を5%以上15%以上とすることによ
り硬度上昇を図った耐摩耗鋼が提案されている。
Further, Japanese Unexamined Patent Publication No. 8-295990 proposes a wear-resistant steel in which the hardness is increased by setting the amount of retained austenite to 5% or more and 15% or more.

【0009】[0009]

【発明が解決しようとする課題】しかし、これらの従来
のいずれの技術によっても、高い靱性を有するとともに
耐摩耗性に優れ、さらに耐遅れ破壊性および耐熱亀裂発
生性に優れた鋼を得ることはできない。
However, any of these conventional techniques cannot provide a steel having high toughness, excellent wear resistance, and excellent delayed fracture resistance and heat crack initiation resistance. Can not.

【0010】すなわち、特開平1−31928 号公報により
提案された技術は、表面硬度を確保するには確かに有効
であるものの、熱間圧延後に直接焼入れを行うため、靱
性低下により耐熱亀裂発生性が低下してしまう。また、
この技術では、その実施例に記載されているようにMn量
が1.00%程度と比較的高く、耐遅れ破壊性も所望のレベ
ルには達しない。
That is, although the technique proposed in Japanese Patent Application Laid-Open No. 1-31928 is certainly effective in securing the surface hardness, it is directly quenched after hot rolling, so that the heat cracking property is reduced due to a decrease in toughness. Will decrease. Also,
In this technique, as described in the example, the Mn content is relatively high at about 1.00%, and the delayed fracture resistance does not reach a desired level.

【0011】また、特開平5−51691 号公報、特開昭63
−317623号公報により提案された技術においても、熱間
圧延後に直接焼入れを行うため、靱性低下による耐熱亀
裂発生性の低下を生じてしまう。また、これらの技術で
は、耐遅れ破壊性向上のためのMn含有量低減による硬度
低下を補うために、Cr、MoやNbといった合金元素を添加
する必要があり、必然的にコスト上昇を生じてしまう。
Further, Japanese Patent Application Laid-Open Nos.
Also in the technique proposed in Japanese Patent Application No. 317623, since direct quenching is performed after hot rolling, a decrease in heat crack initiation due to a decrease in toughness occurs. In addition, in these technologies, it is necessary to add alloying elements such as Cr, Mo and Nb in order to compensate for the decrease in hardness due to the reduction of the Mn content for improving delayed fracture resistance, which inevitably increases costs. I will.

【0012】また、特開平1−172514号公報により提案
された技術では、その実施例にも記載されているように
Mn含有量が0.55〜1.05%程度と比較的高く、所望のレベ
ルの耐遅れ破壊性を得ることはできない。
Further, in the technique proposed in Japanese Patent Application Laid-Open No. 1-172514, as described in the embodiment,
The Mn content is relatively high, about 0.55 to 1.05%, and a desired level of delayed fracture resistance cannot be obtained.

【0013】さらに、特開平8−295990号公報により提
案された技術では、残留オーステナイトは母材靱性を著
しく劣化させてしまう。また、その実施例においても、
母材靱性や遅れ破壊抵抗性に関して、何ら開示していな
い。そのため、耐遅れ破壊性および耐熱亀裂発生性に優
れた高靱性耐摩耗鋼を提供することはできない。
Furthermore, in the technique proposed in Japanese Patent Application Laid-Open No. 8-295990, retained austenite significantly deteriorates the base material toughness. Also, in the embodiment,
No disclosure is made regarding base metal toughness or delayed fracture resistance. For this reason, it is not possible to provide a high-toughness wear-resistant steel excellent in delayed fracture resistance and heat crack initiation resistance.

【0014】ここに、本発明の目的は、高い靱性を有す
るとともに耐摩耗性に優れ、さらに耐遅れ破壊性および
耐熱亀裂発生性に優れた鋼を提供し、これにより、例え
ば土木、鉱山用の建設機械や大型の産業機械といった機
械の構成部材として用いるのに好適な、高靱性耐摩耗鋼
およびその製造方法を提供することにある。
Here, an object of the present invention is to provide a steel having high toughness, excellent wear resistance, and excellent delayed fracture resistance and heat crack initiation resistance. An object of the present invention is to provide a high-toughness wear-resistant steel suitable for use as a component of a machine such as a construction machine or a large-sized industrial machine, and a method for manufacturing the same.

【0015】[0015]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究を重ね、母材靱性 (すなわち
耐熱亀裂発生性) および耐遅れ破壊性をともに所望のレ
ベルに維持するには、C量を低減することが大きなポイ
ントとなることを、新規に知見した。
Means for Solving the Problems The present inventors have intensively studied to solve the above-mentioned problems, and maintain both the base material toughness (that is, heat crack initiation resistance) and delayed fracture resistance at desired levels. Newly found that reducing the amount of C is a major point.

【0016】また、本発明者らは、C量の低減には所望
の表面硬度を維持するために限度があり、表面硬度およ
び耐遅れ破壊性をともに高レベルで両立させるには、旧
オーステナイト粒微細化効果を有するNbの添加が有効で
あることを、新規に知見した。Nbは、ともに、オーステ
ナイト域へ再加熱するときにピンニング粒子としてオー
ステナイト粒の粗大化を抑制するため、母材靱性を著し
く向上させる。
Further, the present inventors have found that there is a limit in reducing the C content in order to maintain a desired surface hardness, and in order to achieve a high level of both surface hardness and delayed fracture resistance, it is necessary to use prior austenite grains. It was newly found that the addition of Nb having a miniaturization effect was effective. Nb both suppresses coarsening of austenite grains as pinning particles when reheating to the austenite region, and thus significantly improves the base material toughness.

【0017】また、本発明者らは、耐遅れ破壊性の向上
に関して、Si量を適正値まで増加させることが有効であ
ることを、新規に知見した。Siは、焼入れ性向上にも効
果があるため、多めに添加することによりC量低減によ
る表面硬度低下を補うことができる。
Further, the present inventors have newly found that it is effective to increase the Si content to an appropriate value with respect to the improvement in delayed fracture resistance. Since Si is also effective in improving hardenability, by adding a large amount, it is possible to compensate for a decrease in surface hardness due to a reduction in the amount of C.

【0018】さらに、一般的に、焼きが入り過ぎて表面
硬度が上昇した組織であるほど、耐遅れ破壊性が劣化す
ること、および耐遅れ破壊性の確保のためにはMn量を適
正値にまで低減することが有効であることが知られてい
るが、本発明者らは、上述した新規な知見とMn量低減と
をバランスさせること、具体的には、0.80〜1.50%の範
囲であってかつ、Mn≦25.4×Nb/(C+0.64Si)+0.60を満
足するMn量とすることにより、Mn量を極度に低減するこ
となく耐遅れ破壊性を所望のレベルに確保できること
を、新規に知見した。
Further, in general, as the structure becomes too hardened and the surface hardness is increased, the delayed fracture resistance is deteriorated, and the Mn content is set to an appropriate value in order to secure the delayed fracture resistance. It is known that the reduction is effective, but the present inventors balance the novel findings described above and the reduction of the Mn content, specifically, in the range of 0.80 to 1.50%. In addition, by setting the Mn amount to satisfy Mn ≦ 25.4 × Nb / (C + 0.64Si) +0.60, it is possible to secure delayed fracture resistance to a desired level without extremely reducing the Mn amount. Newly discovered.

【0019】本発明者らは、これらの新規な知見に基づ
いて鋭意検討を重ね、高価な合金元素の添加を可及的抑
制しながら、高い靱性を有して耐熱亀裂発生性および耐
遅れ破壊性に優れた、HB450 以上の高硬度耐摩耗鋼を、
直接焼入れを行うことなく、得ることが可能となること
を知見して、本発明を完成した。
The present inventors have conducted intensive studies on the basis of these new findings, and have a high toughness and a high heat cracking resistance and delayed fracture resistance while suppressing the addition of expensive alloy elements as much as possible. High hardness wear resistant steel of HB450 or more,
The present inventors have found that the present invention can be obtained without performing direct quenching, and have completed the present invention.

【0020】ここに、本発明の要旨とするところは、
C:0.23〜0.28%、Si:0.50%超〜1.20%、Mn:0.80〜
1.50%、P:0.015 %以下、S:0.004 %以下、Cr:0.
20〜1.20%、Nb:0.01〜0.05%、B:0.0005〜0.0025
%、sol.Al:0.01〜0.10%、望ましくはCu:0.05〜1.00
%、Ni:0.05〜1.00%、Mo:0.05〜1.00%、V:0.02〜
0.10%、Ti:0.005 〜0.05%およびZr:0.05%以下から
なる群から選ばれた1種または2種以上、残部Feおよび
不可避的不純物からなり、さらに、Mn≦25.4×Nb/(C+
0.64Si)+0.60を満足する鋼組成を有することを特徴と
する耐遅れ破壊性および耐熱亀裂発生性に優れた高靱性
耐摩耗鋼である。
Here, the gist of the present invention is as follows.
C: 0.23 to 0.28%, Si: more than 0.50% to 1.20%, Mn: 0.80 to
1.50%, P: 0.015% or less, S: 0.004% or less, Cr: 0.
20-1.20%, Nb: 0.01-0.05%, B: 0.0005-0.0025
%, Sol. Al: 0.01 to 0.10%, desirably Cu: 0.05 to 1.00
%, Ni: 0.05 to 1.00%, Mo: 0.05 to 1.00%, V: 0.02 to
One or more selected from the group consisting of 0.10%, Ti: 0.005 to 0.05% and Zr: 0.05% or less, the balance being Fe and unavoidable impurities, and further, Mn ≦ 25.4 × Nb / (C +
It is a high toughness wear-resistant steel having a steel composition satisfying 0.64Si) +0.60 and having excellent delayed fracture resistance and thermal crack initiation resistance.

【0021】上記の本発明では、Ca:0.001 〜0.008 %
を含有することが望ましい。さらに、上記の本発明で
は、残留オーステナイト量が5%未満であり、マルテン
サイトあるいはマルテンサイトベイナイト組織を呈する
ことが、望ましい。
In the present invention, Ca: 0.001 to 0.008%
It is desirable to contain Further, in the above-mentioned present invention, it is desirable that the retained austenite amount is less than 5% and that it exhibits a martensite or martensite bainite structure.

【0022】これらの本発明にかかる高靱性耐摩耗鋼
は、上記の鋼組成を有する鋼を、1000〜1200℃
に加熱および均熱してから熱間圧延を行って室温まで冷
却し、次いで加熱して Ac3点以上から焼入れることによ
り製造され、その後に必要に応じて、Ac1 点以下の温度
で焼き戻しを行ってもよい。
The high-toughness wear-resistant steel according to the present invention is a steel having the above-mentioned steel composition, which is prepared at a temperature of 1000-1200 ° C.
It is manufactured by heating and soaking, then hot rolling, cooling to room temperature, then heating and quenching from 3 points or more of Ac, and then, if necessary, tempering at a temperature of 1 point or less of Ac. May be performed.

【0023】[0023]

【発明の実施の形態】以下、本発明を詳細に説明する。
まず、本発明にかかる高靱性耐摩耗鋼の組成を上述した
ように、限定する理由を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
First, the reasons for limiting the composition of the high toughness wear-resistant steel according to the present invention as described above will be described in detail.

【0024】C:0.23〜0.28% Cは、表面硬度の向上に最も有効であり、かつ安価な元
素である。C含有量が0.23%未満であると多くの合金元
素を添加して硬度低下を補う必要が生じ、コスト増とな
り、一方、0.28%を超えると耐遅れ破壊性が著しく阻害
される。そこで、本発明では、C含有量は0.23%以上0.
28%以下に限定する。
C: 0.23-0.28% C is the most effective and inexpensive element for improving the surface hardness. If the C content is less than 0.23%, it is necessary to add a number of alloying elements to compensate for the decrease in hardness, resulting in an increase in cost. On the other hand, if the C content exceeds 0.28%, the delayed fracture resistance is significantly impaired. Therefore, in the present invention, the C content is 0.23% or more and 0.1%.
Limited to 28% or less.

【0025】Si:0.50%超〜1.20% Siは、表面硬度、耐遅れ破壊性それぞれの向上に寄与す
る。Si含有量が0.50%以下ではかかる効果が不十分であ
り、一方、1.20を超えると耐熱亀裂発生性に影響を与え
る靱性を劣化させる。そこで、本発明では、Si含有量は
0.50%超1.20%以下に限定する。
Si: more than 0.50% to 1.20% Si contributes to the improvement of each of surface hardness and delayed fracture resistance. When the Si content is 0.50% or less, such an effect is insufficient. On the other hand, when the Si content exceeds 1.20, the toughness which affects the heat crack initiation is deteriorated. Therefore, in the present invention, the Si content is
Limited to more than 0.50% and 1.20% or less.

【0026】Mn:0.80〜1.50% Mnは、焼入れ性向上を通じて表面硬度を向上させる。Mn
含有量が0.80%未満では、合金元素を添加して硬度を補
う必要が生じコスト増となり、一方、1.50%を超える
と、耐遅れ破壊性能を著しく損なう。そこで、本発明で
は、Mn含有量は0.80%以上1.50%以下に限定する。
Mn: 0.80-1.50% Mn improves surface hardness through improvement of hardenability. Mn
When the content is less than 0.80%, it is necessary to supplement the hardness by adding an alloying element, thereby increasing the cost. On the other hand, when the content exceeds 1.50%, the delayed fracture resistance is significantly impaired. Therefore, in the present invention, the Mn content is limited to 0.80% or more and 1.50% or less.

【0027】P:0.015 %以下 Pは、結晶粒界に偏析して鋼の耐遅れ破壊性および靱性
を劣化させるため、その含有量はできるだけ低いことが
望ましい。特に、P含有量が0.010 %を超えると劣化が
著しいため、P含有量は0.015 %以下に限定する。
P: 0.015% or less P segregates at the crystal grain boundaries and degrades the delayed fracture resistance and toughness of the steel. Therefore, the content of P is desirably as low as possible. In particular, if the P content exceeds 0.010%, the deterioration is remarkable, so the P content is limited to 0.015% or less.

【0028】S:0.004 %以下 Sは、鋼の延性や靱性を劣化させる不純物元素であり、
その含有量が0.004 %を超えるとこのような悪影響が顕
在化してくることから、S含有量は0.004 %以下に限定
する。
S: 0.004% or less S is an impurity element that deteriorates the ductility and toughness of steel.
If the content exceeds 0.004%, such an adverse effect becomes apparent, so the S content is limited to 0.004% or less.

【0029】Cr:0.20〜1.20% Crは、焼入れ性を高める働きを通じて、硬度および靱性
の向上にともに有効である。Cr含有量が0.20%未満では
かかる効果が充分ではなく、一方、1.20%を超えると靱
性を著しく劣化させる。そこで、本発明では、Cr含有量
は0.20%以上1.20%以下に限定する。
Cr: 0.20 to 1.20% Cr is effective in improving both hardness and toughness through a function of enhancing hardenability. If the Cr content is less than 0.20%, such an effect is not sufficient, while if it exceeds 1.20%, the toughness is significantly deteriorated. Therefore, in the present invention, the Cr content is limited to 0.20% or more and 1.20% or less.

【0030】Nb:0.01〜0.05% Nbは、スラブ加熱時に結晶粒粗大化を抑制する他、焼入
れ時にも同様の効果を発揮し、破面単位の微細な鋼材の
製造に有効である。Nb含有量が0.01%未満ではかかる効
果が充分ではなく、一方、0.05%を超えるとその効果が
飽和するだけでなく溶接性を著しく阻害する。そこで、
本発明では、Nb含有量は0.01%以上0.05%以下に限定す
る。
Nb: 0.01 to 0.05% Nb not only suppresses crystal grain coarsening during slab heating, but also exerts the same effect during quenching, and is effective in producing a fine steel material in units of fracture surface. If the Nb content is less than 0.01%, such effect is not sufficient, while if it exceeds 0.05%, the effect is not only saturated but also significantly impairs weldability. Therefore,
In the present invention, the Nb content is limited to 0.01% or more and 0.05% or less.

【0031】B:0.0005〜0.0025% Bは、0.0005%以上の添加により焼入れ性を著しく向上
させる極めて重要な元素であるが、0.0025%を超えて添
加すると、靱性を著しく劣化させる。そこで、本発明で
は、B含有量は、0.0005%以上0.0025%以下に限定す
る。
B: 0.0005% to 0.0025 % B is a very important element that significantly improves hardenability when added at 0.0005% or more, but when added over 0.0025%, the toughness is significantly deteriorated. Therefore, in the present invention, the B content is limited to 0.0005% or more and 0.0025% or less.

【0032】sol.Al:0.01〜0.10% Alは、0.01%以上含有することにより、スラブ加熱時に
AlNを生成することにより初期オーステナイト粒の過成
長を効果的に抑制する。しかし、0.10%超含有すると、
靱性が著しく劣化する。そこで、本発明では、sol.Alは
0.01%以上0.10%以下に限定する。
Sol.Al : 0.01 to 0.10 % Al is contained at 0.01% or more, so that when slab is heated,
By generating AlN, the overgrowth of the initial austenite grains is effectively suppressed. However, if it exceeds 0.10%,
The toughness is significantly deteriorated. Therefore, in the present invention, sol.Al is
Limit to 0.01% or more and 0.10% or less.

【0033】上記以外は、Feと不可避的不純物である。
さらに、本発明にかかる高靱性耐摩耗鋼では、Mn含有量
と、Nb含有量、V含有量、C含有量およびSi含有量との
間には、次の関係がある。すなわち、C:0.23〜0.28
%というC量低減による表面硬度の維持、Nb:0.01〜
0.05%による旧オーステナイト粒微細化による表面硬度
および耐遅れ破壊性の維持、およびSi:0.50%超〜1.
20%という耐遅れ破壊性および焼入れ性の向上と、Mn量
低減による耐遅れ破壊性向上とを、Mn:0.80〜1.50%の
範囲であって下式 Mn≦25.4×Nb/(C+0.64Si)+0.60 ・・・・・・・ を満足するMn量とすることにより、バランスさせる。こ
れにより、本発明によれば、Mn量を極度に低減すること
なく耐遅れ破壊性を所望のレベルに確保することができ
る。
Other than the above, Fe and inevitable impurities.
Furthermore, in the high toughness wear-resistant steel according to the present invention, the following relationship exists between the Mn content and the Nb, V, C, and Si contents. That is, C: 0.23 to 0.28
%, The surface hardness is maintained by reducing the amount of C, Nb: 0.01 to
Maintain surface hardness and delayed fracture resistance by refining old austenite grains by 0.05%, and Si: more than 0.50% to 1.
The improvement of delayed fracture resistance and quenching resistance of 20% and the improvement of delayed fracture resistance by reducing the amount of Mn are as follows: Mn: 0.80 to 1.50% and the following formula: Mn ≦ 25.4 × Nb / (C + 0.64Si ) +0.60 ·································· As a result, according to the present invention, it is possible to secure delayed fracture resistance to a desired level without extremely reducing the amount of Mn.

【0034】図1は、本発明の範囲を満足する鋼組成の
鋼片について、Mn含有量、Nb含有量、V含有量、C含有
量およびSi含有量を変化させた場合に、{25.4×Nb/(C
+0.64Si)+0.60−Mn} (%) と限界引張応力(MPa) との
関係の一例を示すグラフである。なお、限界引張応力と
は、図2に示す水素チャージ試験において 200時間負荷
したまま保持しても破断しない最大応力を意味する。
FIG. 1 shows that when the Mn content, Nb content, V content, C content and Si content of a steel slab satisfying the scope of the present invention were changed, the content was {25.4 × Nb / (C
12 is a graph showing an example of the relationship between + 0.64Si) + 0.60−Mn} (%) and the critical tensile stress (MPa). In addition, the critical tensile stress means the maximum stress that does not break even if the load is maintained for 200 hours in the hydrogen charge test shown in FIG.

【0035】このグラフに示すように、{25.4×Nb/(C
+0.64Si)+0.60−Mn}<0の範囲では、{25.4×Nb/(C
+0.64Si)+0.60−Mn}の値の増加により限界引張応力も
増加するが、{25.4×Nb/(C+0.64Si)+0.60−Mn}≧0
の範囲では、{25.4×Nb/(C+0.64Si)+0.60−Mn}の値
が増加しても、限界引張応力は略一定しており、良好な
耐遅れ破壊性が得られることがわかる。そこで、本発明
では、Mn含有量は、前述したように、0.80%以上1.50%
以下であって、Mn≦25.4×Nb/(C+0.64Si)+0.60の範囲
に限定する。
As shown in this graph, {25.4 × Nb / (C
+ 0.64Si) + 0.60−Mn} <0, {25.4 × Nb / (C
+ 0.64Si) + 0.60−Mn}, the critical tensile stress also increases, but {25.4 × Nb / (C + 0.64Si) + 0.60−Mn} ≧ 0
In the range, even if the value of {25.4 × Nb / (C + 0.64Si) + 0.60−Mn} increases, the critical tensile stress is almost constant, and good delayed fracture resistance can be obtained. Recognize. Therefore, in the present invention, the Mn content is, as described above, 0.80% or more and 1.50%
In the following, the range is limited to the range of Mn ≦ 25.4 × Nb / (C + 0.64Si) +0.60.

【0036】さらに、本発明にかかる高靱性耐摩耗鋼
は、任意添加元素として、Cu、Ni、Mo、V、Ti、Zr、Ca
を含有してもよい。以下、これらの任意添加元素につい
て説明する。
Further, the high-toughness wear-resistant steel according to the present invention comprises Cu, Ni, Mo, V, Ti, Zr, Ca
May be contained. Hereinafter, these optional elements will be described.

【0037】Cu:0.05〜1.00% Cuは、0.05%以上添加することにより硬度上昇に効果が
あるが、1.00%を超えて添加するとスケール発生により
鋼材の表面性状を著しく劣化させる。そこで、Cuを添加
する場合には、その含有量は0.05%以上1.00%以下に限
定することが望ましい。
Cu: 0.05 to 1.00 % When Cu is added in an amount of 0.05% or more, it has an effect on increasing the hardness, but when added in excess of 1.00%, the surface properties of the steel material are significantly deteriorated due to scale generation. Therefore, when Cu is added, its content is desirably limited to 0.05% or more and 1.00% or less.

【0038】Ni:0.05〜1.00% Niは、0.05%以上添加することにより硬度、靱性をそれ
ぞれ向上させるが、1.00%超添加するとコストの上昇を
招く。そこで、Niを添加する場合には、その含有量は0.
05%以上1.00%以下に限定することが望ましい。
Ni: 0.05 to 1.00% Ni improves hardness and toughness by adding 0.05% or more, but adding more than 1.00% causes an increase in cost. Therefore, when adding Ni, the content is 0.
It is desirable to limit it to at least 05% and at most 1.00%.

【0039】Mo:0.05〜1.00% Moは、0.05%以上添加することにより焼入れ性を高めて
硬度、靱性の向上に有効であるが、1.00%を超えて添加
すると靱性を損なう。そこで、Moを添加する場合には、
その含有量は0.05%以上1.00%以下に限定することが望
ましい。
Mo: 0.05 to 1.00% Mo is effective in improving the hardenability and improving the hardness and toughness by adding 0.05% or more, but when Mo exceeds 1.00%, the toughness is impaired. Therefore, when adding Mo,
It is desirable that the content is limited to 0.05% or more and 1.00% or less.

【0040】V:0.02〜0.10% Vは、焼入れ時にVCとしてピンニング効果を発揮し、オ
ーステナイト粒の過成長を抑制して、硬度、靱性をそれ
ぞれ向上させる。V含有量が0.02%未満ではかかる効果
が十分でなく、一方、0.10%を超えるとこの効果が飽和
するだけでなく、溶接性を著しく阻害する。そこで、V
を添加する場合には、その含有量は、0.02%以上0.10%
以下に限定することが望ましい。
V: 0.02 to 0.10% V exerts a pinning effect as VC during quenching, suppresses overgrowth of austenite grains, and improves hardness and toughness, respectively. If the V content is less than 0.02%, such an effect is not sufficient. On the other hand, if the V content exceeds 0.10%, this effect is not only saturated but also significantly impairs the weldability. Then, V
If added, its content should be 0.02% or more and 0.10%
It is desirable to limit to the following.

【0041】Ti:0.005 〜0.05% Tiは、0.005 %以上含有することにより、スラブ加熱時
にTiNを生成することにより初期オーステナイト粒の過
成長を抑制して、硬度、靱性をそれぞれ向上させる。一
方、0.05%超添加すると、TiCの粗大化により靱性が著
しく劣化する。そこで、Tiを添加する場合には、その含
有量は、0.005 %以上0.05%以下に限定することが望ま
しい。
Ti: 0.005% to 0.05% By containing 0.005% or more of Ti, TiN is generated at the time of slab heating, thereby suppressing the overgrowth of initial austenite grains and improving the hardness and toughness, respectively. On the other hand, if added over 0.05%, the toughness is significantly deteriorated due to coarsening of TiC. Therefore, when Ti is added, its content is desirably limited to 0.005% or more and 0.05% or less.

【0042】Zr:0.05%以下 Zrには、析出することにより強度や硬度を高める働きが
あるが、0.05%を超えて添加すると靱性を著しく損な
う。そこで、Zrを添加する場合には、その含有量は、0.
05%以下と限定することが望ましい。
Zr: 0.05% or less Zr has a function of increasing strength and hardness by precipitating, but when added in an amount exceeding 0.05%, toughness is significantly impaired. Therefore, when adding Zr, the content is 0.
It is desirable to limit it to 05% or less.

【0043】Ca:0.001 〜0.008 % Caは、0.001 %以上添加することにより硫化物系非金属
介在物の形態を制御して遅れ破壊進展抵抗を高めること
ができるとともに靱性を向上させるが、0.008%を超え
て添加すると非金属介在物の量が増加し、これらの製造
が損なわれる傾向が現れるようになる。そこで、Caを添
加する場合には、その含有量は0.001 %以上0.008 %以
下に限定することが望ましい。
Ca: 0.001% to 0.008% By adding 0.001% or more of Ca, the morphology of sulfide-based nonmetallic inclusions can be controlled to increase delayed fracture propagation resistance and improve toughness. If added in excess, the amount of non-metallic inclusions will increase and their production will tend to be impaired. Therefore, when Ca is added, its content is desirably limited to 0.001% or more and 0.008% or less.

【0044】さらに、好ましくは、母材靱性にとって大
きな阻害要因である残留オーステナイト量を体積率で5
%未満に限定することにより、耐熱亀裂抵抗特性の向上
を図ることができる。残留オーステナイトは一部が高炭
素濃度のマルテンサイト組織に変態し、そのマルテンサ
イトが非常に高い硬度値を示すことが知られている。し
かし、高硬度部はそれ自体あるいは、母材マトリックス
との界面に極めて脆い部分を持つことになり、ひいては
耐熱亀裂抵抗特性にとって大きな阻害要因となる。そこ
で、本発明では、残留オーステナイト以外の組織を靱
性、遅れ破壊特性の優れたマルテンサイトあるいはマル
テンサイトベイナイト組織とすることにより、製品全体
での耐熱亀裂特性および耐遅れ破壊特性の向上を図る。
Further, preferably, the amount of retained austenite, which is a major hindrance to the base material toughness, is reduced by 5% by volume.
%, The heat crack resistance can be improved. It is known that a part of retained austenite is transformed into a martensite structure having a high carbon concentration, and the martensite exhibits a very high hardness value. However, the high hardness portion has a very brittle portion by itself or at the interface with the matrix of the base material, and thus is a great obstacle to the heat crack resistance. Therefore, in the present invention, the structure other than the retained austenite is a martensite or a martensite bainite structure having excellent toughness and delayed fracture characteristics, thereby improving the heat crack resistance and the delayed fracture resistance of the entire product.

【0045】本発明にかかる高靱性耐摩耗鋼は、以上説
明した鋼組成を有しており、高い靱性を有するとともに
耐摩耗性に優れ、さらに耐遅れ破壊性および耐熱亀裂発
生性に優れる。
The high toughness wear-resistant steel according to the present invention has the above-described steel composition, has high toughness, is excellent in wear resistance, and is also excellent in delayed fracture resistance and heat crack initiation resistance.

【0046】次に、この本発明にかかる高靱性耐摩耗鋼
の製造方法を説明する。まず、上記の鋼組成を有する鋼
から連続鋳造法または鋼塊法等によりスラブを製造し、
このスラブに対して以下の工程(I) 〜工程(III) を順次
行う。 工程(I) :1000〜1200℃の温度域への加熱、均熱 工程(II) :所望の板厚への熱間圧延 工程(III):室温への冷却、再加熱およびAc3 点以上の温
度からの焼入れ。
Next, a method for producing the high toughness wear-resistant steel according to the present invention will be described. First, a slab is manufactured from a steel having the above steel composition by a continuous casting method or an ingot method,
The following steps (I) to (III) are sequentially performed on the slab. Step (I): Heating to a temperature range of 1000 to 1200 ° C, soaking Step (II): Hot rolling to desired sheet thickness Step (III): Cooling to room temperature, reheating and Ac 3 points or more Quenching from temperature.

【0047】工程(I) における加熱温度が1000℃未満で
あると、圧延時に析出して焼入れ時にピンニング粒子と
して作用するNbやVの固溶が不十分になり、一方、加熱
温度が1200℃を超えるとスケール付着量が多くなって圧
延中に疵を生成する原因になる可能性がある。そこで、
本発明では、加熱温度は、1000℃以上1200℃以下に限定
する。
If the heating temperature in the step (I) is less than 1000 ° C., the solid solution of Nb or V which precipitates during rolling and acts as pinning particles during quenching becomes insufficient. If it exceeds, there is a possibility that the scale adhesion amount increases and causes flaws during rolling. Therefore,
In the present invention, the heating temperature is limited to 1000 ° C or more and 1200 ° C or less.

【0048】工程(II)における熱間圧延については、特
に限定を要する事項はなく、所望の板厚へ適宜熱間圧延
を行えばよい。
There is no particular limitation on the hot rolling in the step (II), and the hot rolling may be appropriately performed to a desired thickness.

【0049】さらに、工程(III) における焼入れ温度
は、焼入れ組織を確保するために焼入れ前の全ての組織
がオーステナイト化している必要がある。そこで、工程
(II)における熱間圧延を行った後、一旦室温まで冷却
し、その後に加熱して Ac3点以上の温度域から、焼入れ
る。
Furthermore, the quenching temperature in the step (III) requires that all the structures before quenching are austenite in order to secure the quenched structure. So, the process
After performing the hot rolling in (II), the steel sheet is once cooled to room temperature, then heated and quenched from a temperature range of three or more Ac points.

【0050】さらに、必要に応じて、工程(III) を行っ
た後に、以下に示す工程(IV)を行ってもよい。 工程(IV):Ac1 点以下の温度での焼き戻し この焼き戻し処理により、靱性をさらに向上させること
ができる。このようにして、本発明にかかる高靱性耐摩
耗鋼を製造することができる。
Further, if necessary, after performing the step (III), the following step (IV) may be performed. Step (IV): Tempering at a temperature of 1 point or less of Ac By this tempering treatment, toughness can be further improved. Thus, the high toughness wear-resistant steel according to the present invention can be manufactured.

【0051】さらに、本発明にかかる高靱性耐摩耗鋼お
よびその製造方法をデータを参照しながらより具体的に
説明するが、これは本発明の例示であり、これにより本
発明が限定されるものではない。
Further, the high toughness wear-resistant steel according to the present invention and the method for producing the same will be described more specifically with reference to data. However, this is an exemplification of the present invention, and the present invention is not limited thereto. is not.

【0052】[0052]

【実施例】表1に示す組成を有する鋼塊に、表2に示す
試験条件で、加熱および均熱、熱間圧延、室温までの冷
却、再加熱および焼入れ行って、板厚が20mmの試料No.1
〜試料No.26 を得た。
EXAMPLE A steel ingot having the composition shown in Table 1 was subjected to heating and soaking, hot rolling, cooling to room temperature, reheating and quenching under the test conditions shown in Table 2 to obtain a sample having a thickness of 20 mm. No.1
~ Sample No. 26 was obtained.

【0053】[0053]

【表1】 [Table 1]

【0054】これらの試料について、ブリネル表面硬度
試験を行うとともに、1/4tの位置 (板厚方向1/4
の位置) においてシャルピー衝撃試験を行ってその遷移
温度を測定した。さらに、水素チャージ試験を行って限
界引張応力を求めることにより、耐遅れ破壊性を評価し
た。試験結果を表2に併せて示す。
A Brinell surface hardness test was performed on these samples, and a 1/4 t position (1/4 in the thickness direction) was used.
), A Charpy impact test was performed to measure the transition temperature. Further, a delayed fracture resistance was evaluated by obtaining a critical tensile stress by performing a hydrogen charge test. The test results are also shown in Table 2.

【0055】[0055]

【表2】 [Table 2]

【0056】試料No.1〜試料20の本発明例は、いずれも
良好な性能を示しており、この確認試験により、本発明
の範囲を満足することにより、高い靱性を有するととも
に耐摩耗性に優れ、さらに耐遅れ破壊性および耐熱亀裂
発生性に優れる鋼が得られたことがわかる。
All of the examples of the present invention of Sample Nos. 1 to 20 show good performance. By this confirmation test, by satisfying the range of the present invention, high toughness and abrasion resistance were obtained. It can be seen that a steel excellent in delayed fracture resistance and heat crack initiation resistance was obtained.

【0057】これに対し、試料No.21 は、C含有量が本
発明の範囲を上限を上回るとともに、Mn含有量が本発明
の範囲の下限を下回るため、シャルピー靱性値および耐
遅れ破壊特性がともに劣化した。
On the other hand, in sample No. 21, since the C content exceeded the upper limit of the range of the present invention and the Mn content was lower than the lower limit of the range of the present invention, the Charpy toughness and the delayed fracture resistance were low. Both deteriorated.

【0058】試料No.22 はB含有量が本発明の範囲を下
回り、試料No.24 はSi含有量が本発明の範囲を下回り、
さらに、試料No.25 はC含有量が本発明の範囲を下回る
ため、いずれも、焼入れ性が不足し、表面硬度が、目標
値である450(Hv) に達しなかった。
In Sample No. 22, the B content was below the range of the present invention, and in Sample No. 24, the Si content was below the range of the present invention.
Further, in Sample No. 25, since the C content was below the range of the present invention, the hardenability was insufficient and the surface hardness did not reach the target value of 450 (Hv).

【0059】試料No.23 は、P含有量、S含有量がとも
に本発明の範囲を上回るため、耐遅れ破壊特性が劣化し
た。さらに、試料No.26 は、C含有量が本発明の範囲を
上回るため、シャルピー靱性値および耐遅れ破壊特性が
ともに劣化した。
In sample No. 23, since the P content and the S content both exceeded the range of the present invention, the delayed fracture resistance deteriorated. Further, in sample No. 26, since the C content exceeded the range of the present invention, both the Charpy toughness value and the delayed fracture resistance deteriorated.

【0060】[0060]

【発明の効果】以上詳細に説明したように、本発明にか
かる高靱性耐摩耗鋼およびその製造方法により、靱性お
よび耐摩耗性がともに高く、耐遅れ破壊性および耐熱亀
裂発生性に優れた鋼を提供することが可能となった。こ
れにより、例えば土木、鉱山用の建設機械や大型の産業
機械といった、耐摩耗性を要求される機械の構成部材と
して用いるのに好適な高靱性耐摩耗鋼を提供することが
できる。かかる効果を有する本発明の意義は極めて著し
い。
As described in detail above, the high-toughness wear-resistant steel and the method for producing the same according to the present invention have high toughness and wear resistance, and are excellent in delayed fracture resistance and heat crack initiation resistance. It became possible to provide. This makes it possible to provide a high-toughness wear-resistant steel suitable for use as a component of a machine requiring wear resistance, such as a construction machine for civil engineering, mining, or a large industrial machine. The significance of the present invention having such an effect is extremely remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の範囲を満足する鋼組成の鋼片につい
て、Mn含有量、Nb含有量、V含有量、C含有量およびSi
含有量を変化させた場合に、{25.4×Nb/(C+0.64Si)+
0.60−Mn} (%) と限界引張応力(MPa) との関係の一例
を示すグラフである。
FIG. 1 shows a slab having a steel composition satisfying the range of the present invention, in which Mn content, Nb content, V content, C content and Si content.
When the content is changed, {25.4 × Nb / (C + 0.64Si) +
6 is a graph showing an example of a relationship between 0.60-Mn} (%) and a critical tensile stress (MPa).

【図2】水素チャージ試験の概要を示す説明図である。FIG. 2 is an explanatory diagram showing an outline of a hydrogen charge test.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/54 C22C 38/54 ──────────────────────────────────────────────────続 き Continued on front page (51) Int.Cl. 6 Identification code FI C22C 38/54 C22C 38/54

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.23〜0.28%、Si:0.50
%超〜1.20%、Mn:0.80〜1.50%、P:0.015 %以下、
S:0.004 %以下、Cr:0.20〜1.20%、Nb:0.01〜0.05
%、B:0.0005〜0.0025%、sol.Al:0.01〜0.10%、残
部Feおよび不可避的不純物からなり、さらに、Mn≦25.4
×Nb/(C+0.64Si)+0.60を満足する鋼組成を有すること
を特徴とする耐遅れ破壊性および耐熱亀裂発生性に優れ
た高靱性耐摩耗鋼。
C .: 0.23 to 0.28% by weight, Si: 0.50% by weight
% To 1.20%, Mn: 0.80 to 1.50%, P: 0.015% or less,
S: 0.004% or less, Cr: 0.20 to 1.20%, Nb: 0.01 to 0.05
%, B: 0.0005 to 0.0025%, sol. Al: 0.01 to 0.10%, the balance being Fe and unavoidable impurities, and Mn ≦ 25.4
× Nb / (C + 0.64Si) +0.60 High toughness wear-resistant steel excellent in delayed fracture resistance and heat crack initiation, characterized by having a steel composition satisfying:
【請求項2】 さらに、重量%で、Cu:0.05〜1.00%、
Ni:0.05〜1.00%、、Mo:0.05〜1.00%、V:0.02〜0.
10%、Ti:0.005 〜0.05%およびZr:0.05%以下からな
る群から選ばれた1種または2種以上を含有することを
特徴とする請求項1記載の耐遅れ破壊性および耐熱亀裂
発生性に優れた高靱性耐摩耗鋼。
2. In addition, Cu: 0.05-1.00% by weight,
Ni: 0.05 to 1.00%, Mo: 0.05 to 1.00%, V: 0.02 to 0.
2. The delayed fracture resistance and heat crack initiation resistance according to claim 1, further comprising one or more selected from the group consisting of 10%, Ti: 0.005 to 0.05% and Zr: 0.05% or less. High toughness and wear-resistant steel.
【請求項3】 さらに、重量%で、Ca:0.001 〜0.008
%を含有することを特徴とする請求項1または請求項2
記載の耐遅れ破壊性および耐熱亀裂発生性に優れた高靱
性耐摩耗鋼。
3. Ca: 0.001 to 0.008 by weight%
% Or more.
A high-toughness wear-resistant steel excellent in the described delayed fracture resistance and heat crack initiation resistance.
【請求項4】 さらに、残留オーステナイト量が体積率
で5%未満であり、マルテンサイトあるいはマルテンサ
イトベイナイト組織を呈する請求項1から請求項3まで
のいずれか1項に記載の耐遅れ破壊性および耐熱亀裂発
生性に優れた高靱性耐摩耗鋼。
4. The delayed fracture resistance according to claim 1, wherein the retained austenite content is less than 5% by volume and exhibits a martensite or martensite bainite structure. High toughness wear-resistant steel with excellent heat cracking resistance.
【請求項5】 請求項1から請求項3までのいずれか1
項に記載の鋼組成を有する鋼を、1000〜1200℃に加熱お
よび均熱してから熱間圧延を行って室温まで冷却し、次
いで加熱して Ac3点以上から焼入れることを特徴とする
耐遅れ破壊性および耐熱亀裂発生性に優れた高靱性耐摩
耗鋼の製造方法。
5. The method according to claim 1, wherein:
The steel having the steel composition described in the paragraph is heated and soaked at 1000 to 1200 ° C., then hot-rolled, cooled to room temperature, and then heated and quenched from three or more Ac points. A method for producing a high-toughness wear-resistant steel excellent in delayed fracture and heat crack initiation.
【請求項6】 さらに、Ac1 点以下の温度で焼き戻すこ
とを特徴とする請求項5記載の耐遅れ破壊性および耐熱
亀裂発生性に優れた高靱性耐摩耗鋼の製造方法。
6. The method for producing a high toughness wear-resistant steel excellent in delayed fracture resistance and heat crack initiation resistance according to claim 5, further comprising tempering at a temperature of 1 point or less of Ac.
JP15604798A 1997-06-26 1998-06-04 High toughness wear-resistant steel and method of manufacturing the same Expired - Fee Related JP3543619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15604798A JP3543619B2 (en) 1997-06-26 1998-06-04 High toughness wear-resistant steel and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-170303 1997-06-26
JP17030397 1997-06-26
JP15604798A JP3543619B2 (en) 1997-06-26 1998-06-04 High toughness wear-resistant steel and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH1171631A true JPH1171631A (en) 1999-03-16
JP3543619B2 JP3543619B2 (en) 2004-07-14

Family

ID=26483891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15604798A Expired - Fee Related JP3543619B2 (en) 1997-06-26 1998-06-04 High toughness wear-resistant steel and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3543619B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001042523A1 (en) * 1999-12-08 2001-06-14 Nkk Corporation Wear-resistant steel product and method for production thereof
JP2009030094A (en) * 2007-07-26 2009-02-12 Jfe Steel Kk Wear resistant steel sheet excellent in gas cut face property and low temperature tempering brittle crack resistance
WO2010032428A1 (en) * 2008-09-17 2010-03-25 新日本製鐵株式会社 High-strength steel plate and process for producing same
WO2012002567A1 (en) * 2010-06-30 2012-01-05 Jfeスチール株式会社 Abrasion-resistant steel plate or sheet with excellent weld toughness and delayed fracture resistance
US20120132322A1 (en) * 2010-11-30 2012-05-31 Kennametal Inc. Abrasion resistant steel, method of manufacturing an abrasion resistant steel and articles made therefrom
JP2012214891A (en) * 2011-03-29 2012-11-08 Jfe Steel Corp Wear resistant steel plate excellent in stress corrosion cracking resistance and method for manufacturing the same
CN103014519A (en) * 2012-12-01 2013-04-03 滁州恒昌机械制造有限公司 Excavator silicon-manganese alloy steel bucket tooth cast and processing process thereof
EP2592168A1 (en) * 2011-11-11 2013-05-15 Tata Steel UK Limited Abrasion resistant steel plate with excellent impact properties and method for producing said steel plate
US8500924B2 (en) 2008-11-11 2013-08-06 Nippon Steel & Sumitomo Metal Corporation High-strength steel plate and producing method therefor
EP2789699A1 (en) * 2013-08-30 2014-10-15 Rautaruukki Oy A high-hardness hot-rolled steel product, and a method of manufacturing the same
JP2014529355A (en) * 2012-07-31 2014-11-06 宝山鋼鉄股▲分▼有限公司 High hardness, high toughness, wear-resistant steel plate and its manufacturing method
JP2014529686A (en) * 2012-07-31 2014-11-13 宝山鋼鉄股▲分▼有限公司 High-strength, high-toughness, wear-resistant steel plate and its manufacturing method
JP2016125065A (en) * 2014-12-26 2016-07-11 新日鐵住金株式会社 Abrasion resistant steel plate and production method therefor
EP2589675A4 (en) * 2010-06-30 2018-01-03 JFE Steel Corporation Wear-resistant steel sheet having excellent welded part toughness and lagging destruction resistance properties
US9982331B2 (en) 2012-09-19 2018-05-29 Jfe Steel Corporation Abrasion resistant steel plate having excellent low-temperature toughness and excellent corrosive wear resistance
CN108411217A (en) * 2018-04-20 2018-08-17 安徽省宁国市亚晨碾磨铸件有限责任公司 A kind of wear-resisting excavator bucket teeth and preparation method thereof
JP2020007589A (en) * 2018-07-04 2020-01-16 日本製鉄株式会社 Corrosion resistant antifriction steel sheet
CN112981277A (en) * 2021-02-02 2021-06-18 北京科技大学 Preparation method of ultrahigh-strength medium-carbon nano bainite steel
JP2023506822A (en) * 2019-12-16 2023-02-20 ポスコホールディングス インコーポレーティッド High-hardness wear-resistant steel with excellent low-temperature impact toughness and method for producing the same

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001042523A1 (en) * 1999-12-08 2001-06-14 Nkk Corporation Wear-resistant steel product and method for production thereof
JP2009030094A (en) * 2007-07-26 2009-02-12 Jfe Steel Kk Wear resistant steel sheet excellent in gas cut face property and low temperature tempering brittle crack resistance
WO2010032428A1 (en) * 2008-09-17 2010-03-25 新日本製鐵株式会社 High-strength steel plate and process for producing same
JP4538094B2 (en) * 2008-09-17 2010-09-08 新日本製鐵株式会社 High strength thick steel plate and manufacturing method thereof
AU2009294126B2 (en) * 2008-09-17 2011-03-10 Nippon Steel Corporation High-strength steel plate and producing method thereof
JPWO2010032428A1 (en) * 2008-09-17 2012-02-02 新日本製鐵株式会社 High strength thick steel plate and manufacturing method thereof
US8216400B2 (en) 2008-09-17 2012-07-10 Nippon Steel Corporation High-strength steel plate and producing method therefor
US8500924B2 (en) 2008-11-11 2013-08-06 Nippon Steel & Sumitomo Metal Corporation High-strength steel plate and producing method therefor
WO2012002567A1 (en) * 2010-06-30 2012-01-05 Jfeスチール株式会社 Abrasion-resistant steel plate or sheet with excellent weld toughness and delayed fracture resistance
JP2012031510A (en) * 2010-06-30 2012-02-16 Jfe Steel Corp Abrasion-resistant steel sheet excellent in welded part toughness and delayed fracture resistance
EP2589675A4 (en) * 2010-06-30 2018-01-03 JFE Steel Corporation Wear-resistant steel sheet having excellent welded part toughness and lagging destruction resistance properties
EP2589676A4 (en) * 2010-06-30 2017-04-19 JFE Steel Corporation Abrasion-resistant steel plate or sheet with excellent weld toughness and delayed fracture resistance
US20120132322A1 (en) * 2010-11-30 2012-05-31 Kennametal Inc. Abrasion resistant steel, method of manufacturing an abrasion resistant steel and articles made therefrom
CN103228807A (en) * 2010-11-30 2013-07-31 钴碳化钨硬质合金公司 Abrasion resistant steel, method of manufacturing the abrasion resistant steel and articles made therefrom
WO2012074832A3 (en) * 2010-11-30 2013-01-03 Kennametal Inc. Abrasion resistant steel, method of manufacturing an abrasion resistant steel and articles made therefrom
JP2012214891A (en) * 2011-03-29 2012-11-08 Jfe Steel Corp Wear resistant steel plate excellent in stress corrosion cracking resistance and method for manufacturing the same
EP2692890A1 (en) * 2011-03-29 2014-02-05 JFE Steel Corporation Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same
EP2692890A4 (en) * 2011-03-29 2014-12-03 Jfe Steel Corp Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same
US9879334B2 (en) 2011-03-29 2018-01-30 Jfe Steel Corporation Abrasion resistant steel plate or steel sheet excellent in resistance to stress corrosion cracking and method for manufacturing the same
EP2592168A1 (en) * 2011-11-11 2013-05-15 Tata Steel UK Limited Abrasion resistant steel plate with excellent impact properties and method for producing said steel plate
JP2014529355A (en) * 2012-07-31 2014-11-06 宝山鋼鉄股▲分▼有限公司 High hardness, high toughness, wear-resistant steel plate and its manufacturing method
JP2014529686A (en) * 2012-07-31 2014-11-13 宝山鋼鉄股▲分▼有限公司 High-strength, high-toughness, wear-resistant steel plate and its manufacturing method
US9982331B2 (en) 2012-09-19 2018-05-29 Jfe Steel Corporation Abrasion resistant steel plate having excellent low-temperature toughness and excellent corrosive wear resistance
CN103014519A (en) * 2012-12-01 2013-04-03 滁州恒昌机械制造有限公司 Excavator silicon-manganese alloy steel bucket tooth cast and processing process thereof
EP2789699A1 (en) * 2013-08-30 2014-10-15 Rautaruukki Oy A high-hardness hot-rolled steel product, and a method of manufacturing the same
WO2015028557A1 (en) * 2013-08-30 2015-03-05 Rautaruukki Oyj A high-hardness hot-rolled steel product, and a method of manufacturing the same
US10577671B2 (en) 2013-08-30 2020-03-03 Rautaruukki Oyj High-hardness hot-rolled steel product, and a method of manufacturing the same
JP2016125065A (en) * 2014-12-26 2016-07-11 新日鐵住金株式会社 Abrasion resistant steel plate and production method therefor
CN108411217A (en) * 2018-04-20 2018-08-17 安徽省宁国市亚晨碾磨铸件有限责任公司 A kind of wear-resisting excavator bucket teeth and preparation method thereof
JP2020007589A (en) * 2018-07-04 2020-01-16 日本製鉄株式会社 Corrosion resistant antifriction steel sheet
JP2023506822A (en) * 2019-12-16 2023-02-20 ポスコホールディングス インコーポレーティッド High-hardness wear-resistant steel with excellent low-temperature impact toughness and method for producing the same
CN112981277A (en) * 2021-02-02 2021-06-18 北京科技大学 Preparation method of ultrahigh-strength medium-carbon nano bainite steel

Also Published As

Publication number Publication date
JP3543619B2 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
RU2674796C2 (en) High-hardness hot-rolled steel product and method of manufacturing same
JP3543619B2 (en) High toughness wear-resistant steel and method of manufacturing the same
JP4650013B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP3273404B2 (en) Manufacturing method of thick high hardness and high toughness wear resistant steel
JP5145803B2 (en) Wear-resistant steel plate with excellent low-temperature toughness and low-temperature tempering embrittlement cracking properties
JP4238832B2 (en) Abrasion-resistant steel plate and method for producing the same
JPH0841535A (en) Production of high hardness wear resistant steel excellent in low temperature toughness
JP4899874B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JP2002256382A (en) Wear resistant steel sheet and production method therefor
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP5458624B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JPH0748621A (en) Production of steel for pressure vessel excellent in ssc resistance and hic resistance
WO2001042523A1 (en) Wear-resistant steel product and method for production thereof
JPH0551691A (en) Wear resistant steel sheet excellent in delayed fracture resistance and its production
JP3474661B2 (en) Sour-resistant steel plate with excellent crack arrestability
JP2662409B2 (en) Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness
JP2000160300A (en) 655 Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH CORROSION RESISTANCE, AND ITS MANUFACTURE
JP2002161342A (en) Structural steel superior in strength, fatigue resistance and corrosion resistance
JPH09256037A (en) Production of thick high tensile strength steel plate for stress relieving annealing treatment
JP2002161330A (en) Wear resistant steel
JP4264296B2 (en) Low yield ratio 570 MPa class high strength steel with excellent weld toughness and slitting characteristics and method for producing the same
JP2004091916A (en) Wear-resisting steel
JP3536687B2 (en) Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the same
JP3211627B2 (en) Steel for nitriding and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees