JP2662409B2 - Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness - Google Patents

Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness

Info

Publication number
JP2662409B2
JP2662409B2 JP63043994A JP4399488A JP2662409B2 JP 2662409 B2 JP2662409 B2 JP 2662409B2 JP 63043994 A JP63043994 A JP 63043994A JP 4399488 A JP4399488 A JP 4399488A JP 2662409 B2 JP2662409 B2 JP 2662409B2
Authority
JP
Japan
Prior art keywords
toughness
range
temperature
steel sheet
temperature toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63043994A
Other languages
Japanese (ja)
Other versions
JPH01219121A (en
Inventor
俊永 長谷川
利昭 土師
周二 粟飯原
広一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63043994A priority Critical patent/JP2662409B2/en
Publication of JPH01219121A publication Critical patent/JPH01219121A/en
Application granted granted Critical
Publication of JP2662409B2 publication Critical patent/JP2662409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は焼入れ焼き戻し処理によって製造する低温靭
性の優れた引張り強さが80kgf/mm2以上の極厚調質高張
力鋼板の製造方法に関わるものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a high-quality tempered high-strength steel sheet having excellent low-temperature toughness and a tensile strength of 80 kgf / mm 2 or more produced by quenching and tempering. Is involved.

[従来の技術] 近年、海底石油資源の開発が活発に進められている
が、特に最近においては設置される海洋構造物は大型化
する傾向にある。そのため、使用鋼材は厚手化、且つ高
強度化への傾向が強まりつつある。さらに最近の開発海
域が寒冷域に移行しつつあることから、厚手高強度化を
達成した上で、低温靭性を確保することが要求されるよ
うになってきている。
[Related Art] In recent years, development of offshore petroleum resources has been actively promoted, but particularly recently, installed marine structures tend to be large. For this reason, the steel materials used are becoming thicker and more intensive. Further, since the recently developed sea area is shifting to a cold area, it is required to secure a low temperature toughness while achieving a thick high strength.

引張り強さが50〜60kgf/mm2程度の高張力鋼において
は、最近開発された加工熱処理法(TMCP)によりフェラ
イト〜上部ベイナイト組織を微細化し、Nb,Vなどの析出
強化元素を活用して強度を確保した上で、低温靭性の優
れた極厚材が開発されつつある。
In tensile strength of 50 to 60 kgf / mm 2 as high tensile steel, recently fine ferrite-upper bainite by developed thermomechanical treatment method (TMCP), Nb, by utilizing the precipitation strengthening elements such as V An extra-thick material having excellent low-temperature toughness is being developed while ensuring strength.

さらに強度が高くなると、引張り強さが80kgf/mm2
上の高張力鋼においては、強度を確保するためには熱間
圧延後の再加熱焼入れあるいは圧延後の直接焼入れによ
り、焼入れ組織を上部ベイナイトの生成を抑制した下部
ベイナイトないしはマルテンサイト主体組織にする必要
がある。
Further strength is high, in the tensile strength of 80 kgf / mm 2 or more high tensile steel by direct quenching after reheating quenching or rolling after hot rolling in order to ensure the strength, upper bainite a hardened structure It is necessary to form a lower bainite or martensite-based structure in which the formation of is suppressed.

一方、靭性の観点からは、下部ベイナイトあるいは下
部ベイナイトとマルテンサイトの混合組織が、上部ベイ
ナイト主体組織や100%マルテンサイト組織に比べて優
れていると従来から言われている。
On the other hand, from the viewpoint of toughness, it is conventionally said that lower bainite or a mixed structure of lower bainite and martensite is superior to upper bainite-based structure and 100% martensite structure.

しかし、これらの組織の混合割合が靭性に対して、望
ましくはどのようにあるべきかといった定量的な知見は
ほとんど得られておらず、また実際の製造条件下におい
て、どのようにしたらこのような靭性の優れた組織を得
ることができるかどうかについても、明確な指針が得ら
れていないのが現状である。
However, almost no quantitative knowledge has been obtained on how the mixing ratio of these structures should be desirable with respect to toughness, and under actual manufacturing conditions, how At present, there is no clear guideline as to whether or not a tough structure can be obtained.

板厚が薄い場合は板厚中心部まで焼入れ時の冷却速度
を高くすることが可能であるため、板厚中心部の組織制
御は容易である。むしろ表層部の冷却速度が早いため
に、表層部の組織が100%マルテンサイト化して靭性劣
化が大きいが、最近は直接焼入れのような加工熱処理法
等を用いることにより表層部の靭性を向上させ、板厚方
向全面にわたって靭性を確保する方法がいくつか提案さ
れている。
When the sheet thickness is small, the cooling rate during quenching can be increased to the center of the sheet thickness, so that the structure control of the center part of the sheet thickness is easy. Rather, since the cooling rate of the surface layer is high, the structure of the surface layer becomes 100% martensitic and the toughness deteriorates greatly. Recently, however, the toughness of the surface layer has been improved by using a working heat treatment method such as direct quenching. Several methods have been proposed for securing toughness over the entire surface in the thickness direction.

しかし、板厚が75〜200mm程度の極厚材においては、
たとえ可能な限りの強冷却により焼入れを行っても、板
厚中心部の冷却速度は高々数℃/secのオーダーであるた
め、冷却速度を大きく変化させることが困難であり、ま
た直接焼入れ法などによっても、板厚中心部までは熱間
圧延時の加工の影響が及びにくいため、薄手材における
様な靭性向上策はあまり有効でない。
However, for extremely thick materials with a thickness of about 75 to 200 mm,
Even if quenching is performed as hard as possible, the cooling rate at the center of the sheet thickness is at most several ° C / sec, so it is difficult to greatly change the cooling rate. In some cases, the influence of the processing during hot rolling is unlikely to reach the center of the sheet thickness, and therefore, measures for improving the toughness of thin materials are not very effective.

板厚表層部については最表層部を除けば薄手材ほどに
は冷却速度は大きくなく、また必要に応じて加工熱処理
の効果を用いた靭性向上策もとれるため、一定の靭性を
確保することはそれほど困難ではない。従って、極厚材
においては板厚中心部の組織をコントロールすることが
困難なことから、この部位の靭性向上が最も大きな課題
となる。
Except for the outermost layer, the cooling rate is not as high as that of thin materials except for the outermost layer, and if necessary, measures to improve toughness using the effects of thermomechanical treatment can be taken. Not so difficult. Therefore, it is difficult to control the structure at the center of the sheet thickness of an extremely thick material. Therefore, the most important issue is to improve the toughness of this part.

極厚調質高張力鋼の製造方法の従来技術としては、特
公昭56−52970号公報などに示されるようなものがある
が、最近は使用環境が苛酷化、多様化しつつあり、従っ
て低温靭性の要求がますますきびしくなると同時に、そ
れ以外の種々の特性も要求されるようになってきてお
り、一層の高靭性化をより低コストで、且つ幅広い成分
組成範囲の中で選択できる製造方法が必要となってい
る。
As a prior art of a method for manufacturing an ultra-thick tempered high-strength steel, there is a technique disclosed in Japanese Patent Publication No. 56-52970, etc., but recently the use environment has become severer and diversified. At the same time as the demands have become increasingly severe, various other properties have also been required, and there is a manufacturing method that can select higher toughness at lower cost and within a wide range of component composition. Is needed.

[発明が解決しようとする課題] 本発明は焼入れ焼き戻し処理によって製造される引張
り強さが80kgf/mm2以上で、板厚が75〜200mm程度の極厚
調質張力鋼板の板厚中心部の組織を制御することによ
り、優れた低温靭性を達成する製造方法を提供すること
を目的としている。
[Problems to be Solved by the Invention] The present invention relates to a central part of the thickness of a tempered steel sheet having a tensile strength of at least 80 kgf / mm 2 and a thickness of about 75 to 200 mm produced by quenching and tempering. It is an object of the present invention to provide a production method that achieves excellent low-temperature toughness by controlling the structure of the steel.

[課題を解決するための手段] 本発明者らは高強度鋼における組織と靭性の関係を詳
細に検討した結果、靭性に最も最適な組織は、ほぼ上部
ベイナイトの生成が抑制された(上部ベイナイトの割合
が約10%以下)下部ベイナイトとマルテンサイトの混合
組織であり、且つできるだけマルテンサイトの生成は少
ない方が好ましいという結論を得た。
[Means for Solving the Problems] As a result of a detailed study of the relationship between the structure and toughness of a high-strength steel, the present inventors found that the most optimal structure for toughness was substantially inhibited from forming upper bainite (upper bainite). Was determined to be a mixed structure of lower bainite and martensite, and that the formation of martensite should be as small as possible.

一方、焼入性向上には微量のB添加が有効であること
が知られており、Bを有効に使えば高価な合金元素の含
有量を低減することが可能となる。
On the other hand, it is known that the addition of a small amount of B is effective for improving hardenability. If B is used effectively, the content of expensive alloy elements can be reduced.

焼入れ時の冷却速度の早い薄手材ではBは焼入性に有
効に働き、その分合金元素量の低減が可能であるが、冷
却速度の遅い極厚材では有効に利用することができない
難点があった。
B works effectively on hardenability in thin materials with a high cooling rate during quenching, and the amount of alloying elements can be reduced by that amount. However, it is difficult to use effectively with extremely thick materials with a low cooling rate. there were.

そこで本発明者らは、優れた低温靭性を達成する最適
な組織を得るための鋼材の成分組成を明らかにし、これ
に高価な合金元素の含有量を極力減らすための手段とし
て、極厚材においてもBを有効に活用できる新しい熱処
理方法を組み合わせることにより、低温靭性の優れた極
厚調質高張力鋼板の製造方法の発明に成功した。
Therefore, the present inventors have clarified the composition of the steel material to obtain an optimal structure that achieves excellent low-temperature toughness, and as a means for minimizing the content of expensive alloy elements, Also, by combining a new heat treatment method that can effectively utilize B, the inventors succeeded in inventing a method for manufacturing a very thick tempered high-strength steel sheet having excellent low-temperature toughness.

以下、本発明の要旨を詳細に説明する。 Hereinafter, the gist of the present invention will be described in detail.

本発明において900〜1050℃の温度範囲に加熱した
後、800〜850℃まで空冷してから1℃/sec以上の冷却速
度で500℃以下まで強制冷却するのは、Bを焼入性に対
して有効に活用するためである。
In the present invention, after heating to a temperature range of 900 to 1050 ° C., air-cooling to 800 to 850 ° C. and then forcibly cooling to 500 ° C. or less at a cooling rate of 1 ° C./sec or more are necessary for improving the hardenability of B. This is for effective use.

即ち、後述するように本発明においてはN量を0.0040
%以下に限定している。また加熱時にNを固定すべく、
適量のAl,Tiを含有している。このような条件下では加
熱時、あるいは冷却途中において、Bが全部Nと結び付
いて完全に無効化することはない。
That is, as described later, in the present invention, the amount of N is 0.0040.
% Or less. Also, to fix N during heating,
Contains appropriate amounts of Al and Ti. Under such conditions, B is not completely inactivated by being linked to N during heating or during cooling.

しかし、含有量が少ないと加熱段階でオーステナイト
粒界に偏析して焼入性に寄与するB量も少なく、このま
ま直接強制冷却を行うと十分な焼入性が得られない。B
含有量を増やせば粒界偏析B量も増加するが、Bの含有
量が増えるとB析出物による靭性劣化が大きく、また溶
接熱影響部の硬化性を上げるので好ましくない。
However, if the content is small, the amount of B that segregates at the austenite grain boundary in the heating stage and contributes to hardenability is also small, and if direct forced cooling is performed as it is, sufficient hardenability cannot be obtained. B
Increasing the content also increases the amount of grain boundary segregation B, but increasing the B content is not preferred because the toughness of the B precipitates is greatly reduced and the hardening of the heat affected zone is increased.

従って、B含有量は焼入性が保たれる限り、できるだ
け少なくした上で最大限焼入性に有効に用いる必要があ
る。
Therefore, it is necessary to reduce the B content as much as possible as long as the hardenability is maintained, and to effectively use the B content for the maximum hardenability.

本発明において加熱温度から800〜850℃までを空冷す
るのは、この冷却段階において粒内に固溶しているBを
粒界に偏析させることにより、焼入性を向上せしめるた
めである。
In the present invention, the purpose of air cooling from the heating temperature to 800 to 850 ° C. is to improve the hardenability by segregating B in the grains in the cooling step at the grain boundaries.

強制冷却を開始する温度が850℃を超えると、冷却中
のBの粒界への偏析が十分でなく、また800℃より低下
すると偏析量が多くなりすぎて、Bの化合物が析出した
り、変態を開始したりして、いずれも焼入性向上に不適
であるので、強制冷却開始温度は800〜850℃の温度範囲
とする必要がある。
If the temperature at which the forced cooling is started exceeds 850 ° C., segregation of B at the grain boundary during cooling is not sufficient, and if it is lower than 800 ° C., the segregation amount becomes too large, and the compound of B precipitates, Since the transformation is started and any of them is not suitable for improving the hardenability, the forced cooling start temperature needs to be in a temperature range of 800 to 850 ° C.

加熱温度については、加熱温度が900℃より低いとオ
ーステナイト粒が非常に微細で焼入性が低く、上部ベイ
ナイトの生成を抑制することが難しいのと、場合によっ
ては完全に溶体化せず、未固溶の析出物が存在し、靭性
が劣化するため、また1050℃を超えるとオーステナイト
が粗大化して靭性劣化を生じ、さらにAlNが溶解してB
の有効性が失われるため加熱温度を900〜1050℃の範囲
とした。
Regarding the heating temperature, if the heating temperature is lower than 900 ° C., the austenite grains are extremely fine and hardenability is low, and it is difficult to suppress the formation of upper bainite. Solid precipitates are present and the toughness deteriorates. If the temperature exceeds 1050 ° C, austenite coarsens and the toughness deteriorates.
The heating temperature was in the range of 900 to 1,050 ° C. because the effectiveness of the method was lost.

強制冷却の終了温度を500℃以下としたのは、この温
度より高温で冷却を終了すると、場合によっては未変態
のオーステナイトが残っていて以降の放冷あるいは徐冷
により、靭性に悪影響を及ぼす上部ベイナイトが生成す
る可能性があるためである。
The reason why the end temperature of forced cooling is set to 500 ° C or lower is that if cooling is stopped at a temperature higher than this temperature, untransformed austenite may remain, and cooling or slow cooling after that may adversely affect toughness. This is because bainite may be generated.

以上の方法により厚手材の焼入れにおいて、Bを焼入
性向上に最も有効に活用できる。従って、この製造方法
を前提とした上で、最適な組織を得るための合金設計を
行うことが省合金の観点からも最も有利である。
By the above method, B can be most effectively utilized for improving hardenability in quenching thick materials. Accordingly, it is most advantageous from the viewpoint of saving alloys to design an alloy for obtaining an optimal structure on the premise of this manufacturing method.

そこで、本発明者らは第1表に示す成分範囲の供試鋼
を用いて、上記製造条件に適合した条件として、加熱温
度900℃、強制冷却前冷却速度を板厚100mm程度の厚手材
の板厚中心部の放冷条件に対応する0.2℃/sec、強制冷
却段階の冷却速度を、同様に実際の製造条件の冷却速度
に合わせて3℃/secとした熱処理を施した後、シャルピ
ー試験を行って50%破面遷移温度(vTrs)と合金成分量
の関係を調べ、靭性に最適な組織を得るための成分組成
の検討を行った。
Therefore, the present inventors used a test steel having a component range shown in Table 1 and set a heating temperature of 900 ° C. and a cooling rate before forced cooling of a thick steel sheet having a thickness of about 100 mm as conditions suitable for the above manufacturing conditions. After applying a heat treatment at 0.2 ° C / sec corresponding to the cooling condition at the center of the plate thickness and 3 ° C / sec in the forced cooling stage according to the cooling rate under the actual manufacturing conditions, the Charpy test was performed. The relationship between the 50% fracture surface transition temperature (vTrs) and the amount of alloy components was investigated, and the composition of the components for obtaining the optimal structure for toughness was examined.

結果を第1図に示すが、以下の式で示されるパラメタ
ーxにより、組織形態はほぼ整理されることが分かっ
た。
The results are shown in FIG. 1, and it was found that the tissue morphology was substantially organized by the parameter x represented by the following equation.

x=[C(%)]1/2×[1+0.64×Si(%)]×[1 +4.10×Mn(%)]×[1+0.27×Cu(%)]×[1 +0.52×Ni(%)]×[1+2.33×Cr(%)]×[1+
3.14×Mo(%)] 即ち、xの値が26から42の範囲にあれば、組織は上部
ベイナイトの生成がほぼ抑制され、且つ完全なマルテン
サイト組織とならず、最適組織である下部ベイナイトと
マルテンサイトの混合組織となる。そしてNi量一定で比
較すれば、このパラメター範囲で靭性は最も良好とな
る。
x = [C (%)] 1/2 x [1 + 0.64 x Si (%)] x [1 + 4.10 x Mn (%)] x [1 + 0.27 x Cu (%)] x [1 + 0. 52 × Ni (%)] × [1 + 2.33 × Cr (%)] × [1+
3.14 × Mo (%)] That is, when the value of x is in the range of 26 to 42, the formation of the upper bainite is almost suppressed, and the structure does not become a complete martensite structure. It becomes a mixed structure of martensite. When compared with a constant Ni content, the toughness is the best in this parameter range.

Ni含有量が多いほどパラメターxが大きい領域(x≧
26)ではより高靭性が達成できるが、パラメターxが42
を超えて100%マルテンサイト組織となると、焼入れま
まの靭性は良好でもその後の焼戻しや応力除去焼鈍によ
る脆化の感受性が極端に大きくなるので、x=42を上限
とした。
The region where the parameter x is large as the Ni content is large (x ≧
In 26), higher toughness can be achieved, but parameter x is 42
When it exceeds 100% and becomes a 100% martensite structure, the susceptibility of embrittlement due to subsequent tempering or stress relief annealing becomes extremely large even if the as-quenched toughness is good, so x = 42 was set as the upper limit.

加えて、このパラメター範囲にすることは、Ni含有量
一定条件下で最も優れた靭性を達成することであり、こ
のことは言い替えれば高価なNiの含有量を最も少なくし
て、高靭性を達成することで、経済上の観点から非常に
効果的である。
In addition, setting this parameter range is to achieve the highest toughness under the condition of constant Ni content, in other words, achieve the highest toughness by minimizing the expensive Ni content. This is very effective from an economic point of view.

Ni含有量が少なくなると靭性の良好なxの範囲がせば
まり、xの変化による靭性変化も急激なため問題があ
る。Ni含有量が1%以上なら、第1図に示すようにx≧
26の領域での靭性変化は小さく、そのレベルも良好であ
るのでNi含有量の下限は1%とした。
When the Ni content is small, the range of x having good toughness is narrowed, and there is a problem because the change in toughness due to a change in x is also rapid. If the Ni content is 1% or more, as shown in FIG.
Since the change in toughness in the region 26 is small and the level is good, the lower limit of the Ni content is set to 1%.

このような組成、焼入れにより製造した鋼を、Ac1
態点以下の適当な温度で焼き戻しを行って、強度を必要
に応じて調整して使用に供する。この際、焼き戻し温度
がAc1変態点を超えると、再変態して靭性に悪影響を及
ぼす組織が出現する恐れがあるので、焼き戻し温度はAc
1変態点以下とする。この条件下では焼き戻し温度を適
当に選べば、焼入れままより靭性は一層向上する。
The steel produced by such composition and quenching is tempered at an appropriate temperature equal to or lower than the Ac 1 transformation point, and the strength is adjusted as necessary before use. At this time, if the tempering temperature exceeds the Ac 1 transformation point, there is a possibility that a structure that re-transforms and adversely affects the toughness may appear.
It should be 1 transformation point or less. Under these conditions, if the tempering temperature is appropriately selected, the toughness is further improved as it is in the quenched state.

Bを焼入性に対して最大限活用するための方法、及び
最適な組織を得るための指標としてのパラメターxの限
定範囲は、以上に述べた理由によるが、各元素の含有範
囲は、それぞれ以下に列挙するような理由により限定さ
れる。
The method for maximizing the use of B for hardenability and the limited range of parameter x as an index for obtaining an optimal structure are based on the reasons described above. It is limited for the reasons listed below.

Cは極厚材で強度を確保するために0.03%以上必要で
あるが、0.20%超では組織によらず靭性を劣化せしめ、
パラメターxの値が限定範囲内にあっても、十分な靭性
確保が困難であるので0.03〜0.20%の範囲とした。
C is required to be 0.03% or more in order to secure the strength with extremely thick material, but if it exceeds 0.20%, the toughness is deteriorated regardless of the structure.
Even if the value of the parameter x is within the limited range, it is difficult to ensure sufficient toughness, so the range was 0.03 to 0.20%.

Siは島状マルテンサイトを作り易くする元素で、0.50
%超ではわずかな上部ベイナイトが存在しても、上部ベ
イナイト組織中の島状のマルテンサイトのために靭性が
劣化するので靭性に問題があり、一方、0.05%未満では
脱酸が不十分となり、鋼材の内部欠陥を増加せしめるた
め、0.05〜0.50%の範囲とした。
Si is an element that facilitates the formation of island martensite,
%, There is a problem in toughness because even if there is a small amount of upper bainite, the toughness deteriorates due to the island-like martensite in the upper bainite structure. On the other hand, if it is less than 0.05%, deoxidation becomes insufficient and In order to increase internal defects, the content is set in the range of 0.05 to 0.50%.

Mnは0.50%未満では強度、靭性確保に問題があり、3.
0%超では焼戻し脆化が顕著となるため、0.50〜3.0%の
範囲とした。
If Mn is less than 0.50%, there is a problem in securing strength and toughness.
If it exceeds 0%, tempering embrittlement becomes remarkable, so the range is 0.50 to 3.0%.

Pは本発明が対象としている高強度鋼では、焼戻し脆
化を抑制する必要性から0.010%以下とした。
P is set to 0.010% or less in the high-strength steel targeted by the present invention because of the need to suppress temper embrittlement.

SはMnSを形成して延性を低下せしめる元素であり、
特に高強度鋼においてその影響が大であるので0.010%
以下とした。
S is an element that forms MnS and reduces ductility,
Especially in high strength steel, the effect is large, so 0.010%
It was as follows.

AlはBの焼入性向上効果を阻害するNをAlNとして固
定して、Bの焼入性向上効果を高める効果があるが、0.
03%未満ではその効果が不十分であり、一方0.10%を超
えると粗大な析出物となって、靭性に悪影響を及ぼすの
で0.03〜0.10%の範囲とした。
Al fixes N, which inhibits the hardenability improvement effect of B, as AlN, and has the effect of increasing the hardenability improvement effect of B.
If the content is less than 03%, the effect is insufficient, while if it exceeds 0.10%, coarse precipitates are formed and the toughness is adversely affected. Therefore, the content is set in the range of 0.03 to 0.10%.

Niは前述した理由により下限を1.0%とした。またNi
はパラメターxを介した靭性向上効果の他に、マトリク
ス自体の靭性を改善する効果があるので、含有量が多い
ほど靭性は向上するが、10.0%超ではその効果が飽和す
るのと、微量元素による靭性劣化の感受性を高めるの
で、本発明では10.0%を上限とした。
The lower limit of Ni is set to 1.0% for the reason described above. Also Ni
Has the effect of improving the toughness of the matrix itself, in addition to the effect of improving the toughness via parameter x, so that the higher the content, the more the toughness is improved. In the present invention, the upper limit is set to 10.0% because the sensitivity of toughness deterioration due to the steel is increased.

Bは微量で焼入性向上に有効な元素であり、本発明の
製造方法によれば最大限焼入性を向上できるが、この条
件においても0.0005%未満では、固溶B量の絶対値が確
保できないので焼入性向上が不十分であり、逆に0.0030
%を超えると、焼入性に対する効果は飽和するかわずか
に低下する上に、Bの化合物の析出により靭性の劣化が
大となるので、0.0005〜0.0030%の範囲とした。
B is a trace amount and is an element effective for improving hardenability. According to the manufacturing method of the present invention, the hardenability can be improved to the maximum. The hardenability is not sufficiently improved because it cannot be secured.
%, The effect on hardenability saturates or slightly decreases, and the precipitation of the compound of B causes a large deterioration in toughness. Therefore, the range is 0.0005 to 0.0030%.

NはBの焼入性効果を阻害する元素であり、本発明の
成分組成、製造方法においては0.0040%以下とする必要
がある。
N is an element that inhibits the hardenability effect of B, and should be 0.0040% or less in the component composition and production method of the present invention.

Cu,Cr,Moは本発明においてはいずれもパラメーターx
の式に含まれ、最適組織を得るために一定量含有させる
必要があるが、いずれもその組織制御に対する影響の仕
方が同様であるので、どれか1種または2種、さらには
3種とも含有させることが可能である。いずれも0.01%
未満では含有せしめても組織改善効果が明確でなく、ま
た1.50%超になると析出脆化が顕著となるので0.01〜1.
50%の範囲とした。
In the present invention, Cu, Cr, and Mo are all parameters x.
In order to obtain an optimal tissue, it is necessary to contain a certain amount. However, since the influence on the tissue control is the same in any case, any one or two, and even all three, are contained. It is possible to do. 0.01% for all
If it is less than 1, the effect of improving the structure is not clear even if it is contained, and if it exceeds 1.50%, precipitation embrittlement becomes remarkable, so that it is 0.01 to 1.
The range was 50%.

以上が本発明の基本成分であるが、本発明においては
この他にTiを0.005〜0.020%の範囲で、またNb,VをNb+
V=0.01〜0.10%の範囲で含有させることができる。
The above are the basic components of the present invention. In the present invention, Ti is added in the range of 0.005 to 0.020%, and Nb and V are added to Nb +.
V can be contained in the range of 0.01 to 0.10%.

即ち、TiはAlと同様にNの固定に有効であり、また加
熱時のオーステナイトの粗大化防止に有効であるので、
成分組成、板厚に応じてTiを含有させる。ただし、0.00
5%未満では効果が十分でなく、0.020%超では粗大な析
出物を作りやすく逆に靭性を劣化させるので、0.005〜
0.020%の範囲に限定する。
That is, Ti is effective in fixing N as in Al, and is effective in preventing austenite from becoming coarse during heating.
Ti is contained according to the component composition and the plate thickness. However, 0.00
If it is less than 5%, the effect is not sufficient, and if it exceeds 0.020%, coarse precipitates are easily formed, and on the contrary, the toughness is deteriorated.
Limited to the range of 0.020%.

またNb,Vは微量で析出強化が可能で、強度上昇に有効
であるので必要な強度に応じて含有させることが出来
る。
In addition, Nb and V can be precipitated in a small amount and are effective in increasing the strength.

析出強化に対しては、両元素ともほぼ同等な効果を有
するので、どちらか1種または2種とも含有させること
が可能であるが、NbとVの含有量の合計が、0.01%未満
では強度上昇が明確でなく、逆に0.10%超では強度上昇
に見合う分以上に靭性劣化が大きくなるので、0.01〜0.
10%の範囲にする必要がある。
Since both elements have almost the same effect on precipitation strengthening, it is possible to include either one or two of them, but if the total content of Nb and V is less than 0.01%, the strength The rise is not clear, and if it exceeds 0.10%, the toughness deteriorates more than the strength increase.
Must be in the 10% range.

[実 施 例] 第2表に本発明により製造した鋼の板厚中心部のシャ
ルピー特性(vTrs)を、本発明の限定範囲外の組成、製
造法により製造した比較鋼の結果と対比して示す。
[Examples] Table 2 shows the Charpy characteristics (vTrs) at the center of the thickness of the steel manufactured according to the present invention in comparison with the results of comparative steel manufactured by a composition and manufacturing method outside the limited range of the present invention. Show.

シャルピー試験結果は、焼入れまま及び焼き戻しを行
った後の結果を合わせて示した。
The results of the Charpy test are shown together with the results after as-quenching and after tempering.

No.1〜No.10が本発明により製造した鋼である。板厚
は100mmと150mmであり、焼入れ時の平均冷却速度はおお
よそ1〜3℃/secの範囲内にある。さらに板厚が大きく
なっても、この程度の板厚では冷却速度はあまり差が無
くなる。
No. 1 to No. 10 are steels manufactured according to the present invention. The plate thicknesses are 100 mm and 150 mm, and the average cooling rate during quenching is approximately in the range of 1 to 3 ° C./sec. Even if the plate thickness is further increased, there is not much difference in the cooling rate at such a plate thickness.

本発明法に従ってパラメターxが26〜42に入るように
した上で、加熱温度、強制冷却開始温度を適切な範囲内
にして製造すれば、焼入れままでもシャルピー特性は良
好である。630℃で焼き戻しを行った後ではさらに靭性
は向上する。
If the parameter x is in the range of 26 to 42 in accordance with the method of the present invention and the heating temperature and the forced cooling start temperature are within the appropriate ranges, the Charpy characteristics are good even as-quenched. After tempering at 630 ° C., the toughness is further improved.

Ni含有量の高い鋼No.7は当然非常に高靭性を示すが、
Ni含有量の低い鋼でも、例えば、鋼No.1,9,10において
も他の合金元素の組成を調節して、パラメターxの値を
26〜42の範囲内とし、Bを焼入性に有効に利用すべく、
強制冷却開始温度を800〜850℃の範囲とすれば、焼入れ
ままのシャルピー特性はvTrsで−60℃以下が確保されて
いる。
Steel No. 7 with high Ni content naturally shows extremely high toughness,
Even in steels with a low Ni content, for example, in steel Nos. 1, 9, and 10, the composition of other alloying elements is adjusted to adjust the value of parameter x.
In the range of 26 to 42, in order to effectively use B for hardenability,
If the forced cooling start temperature is in the range of 800 to 850 ° C., the as-quenched Charpy characteristics are secured at −60 ° C. or less in vTrs.

一方、比較鋼No.11〜20は本発明の限定範囲を満足し
ていないものであり、いずれも本発明に従って製造した
鋼に比べて靭性が劣っている。
On the other hand, comparative steels Nos. 11 to 20 do not satisfy the limited range of the present invention, and all have inferior toughness as compared with steels manufactured according to the present invention.

例えば、No.11,12はパラメターxの値が限定範囲より
も低いために、板厚中心部の組織が粗い上部ベイナイト
主体組織となり、靭性が劣っている。No.12はNi含有量
が多いので、比較鋼の中では靭性は良好な方であるが、
例えば本発明による鋼No.8と比較して分るように、Ni含
有量の割にはそれほど靭性は良くない。
For example, in Nos. 11 and 12, since the value of the parameter x was lower than the limited range, the structure at the center of the plate thickness was a coarse upper bainite-based structure, and the toughness was poor. No. 12 has a higher Ni content, so the toughness is better among the comparative steels,
For example, as can be seen in comparison with steel No. 8 according to the present invention, the toughness is not so good for the Ni content.

鋼No.13,14はパラメターxの値は本発明の条件を満足
しているが、No.13はNi含有量が少ないため、またNo.14
はN含有量が多いために靭性はあまり良くない。鋼No.1
5,16はパラメーターxの値が限定範囲よりも高すぎた条
件となっている。xが低すぎる高No.11,12に比べれば焼
入れまま、あるいは焼き戻し後の靭性は良好であるが、
パラメターxがこのように高いと板厚中心部において
も、100%マルテンサイト組織となるため、焼き戻し脆
性や、応力除去焼鈍による脆化に対する感受性が高くな
るので好ましくない。
Steel Nos. 13 and 14 satisfy the conditions of the present invention for the value of parameter x, but No. 13 has a low Ni content, and
Has a high N content, so that the toughness is not so good. Steel No.1
Conditions 5 and 16 are conditions in which the value of the parameter x is too high than the limited range. Although the as-quenched or the toughness after tempering is better than high Nos. 11 and 12 where x is too low,
If the parameter x is such a high value, a 100% martensite structure will be formed even in the central portion of the sheet thickness, so that the temper embrittlement and the susceptibility to embrittlement due to stress relief annealing increase, which is not preferable.

また、鋼No.16のようにNi含有量が高くても靭性はそ
れほど向上せず、xの値の低い鋼No.12の場合と同様に
適切な成分組成、製造法とは言えない。鋼No.17〜20の
パラメターxの値は本発明の条件を満足しているもの
の、加熱温度あるいは、強制冷却開始温度が本発明の限
定範囲を満足していないため、パラメターxやNi含有量
から期待される靭性値が達成されていない。
Further, even if the Ni content is high as in steel No. 16, the toughness is not so improved, and it cannot be said that the composition and production method are appropriate as in steel No. 12 having a low x value. Although the value of parameter x of steel Nos. 17 to 20 satisfies the conditions of the present invention, the heating temperature or the forced cooling start temperature does not satisfy the limited range of the present invention. Does not achieve the expected toughness value.

以上の実施例から本発明範囲を満足しない場合は極厚
の板厚中心部において、優れた靭性を得ることができな
いことは明白である。
It is apparent from the above examples that when the range of the present invention is not satisfied, excellent toughness cannot be obtained at the center of the extremely thick plate.

[発明の効果] 低温靭性の優れた引張り強さが、80kgf/mm2以上の極
厚調質高張力鋼板を製造するためには、焼入れ時の冷却
速度の遅い板厚中心部における高靭性達成が必要で、そ
のためには、この部位の組織を靭性に最適な上部ベイナ
イトの割合が10%以下の下部ベイナイトとマルテンサイ
トの混合組織とする必要がある。
Low temperature toughness of high tensile strength [Effect of the invention] is, in order to produce 80 kgf / mm 2 or more extra-thick tempered high tensile steel sheet, high tenacity achieved in the slow thickness center portion of the cooling rate during quenching In order to achieve this, it is necessary that the structure at this site be a mixed structure of lower bainite and martensite with a ratio of upper bainite of 10% or less, which is optimal for toughness.

本発明はそのための適切な成分組成範囲、製造方法を
明確にしたもので、本発明によって合金元素及びBを最
も有効に活用でき、Niのような高価な合金元素の含有量
を適切に低減した上で、実施例からも明らかなように板
厚中心部において非常に優れた低温靭性を達成でき、産
業上の効果はきわめて顕著である。
The present invention clarifies an appropriate component composition range and a manufacturing method for the purpose, and the present invention makes the most effective use of alloying elements and B, and appropriately reduces the content of expensive alloying elements such as Ni. As is clear from the above examples, very excellent low-temperature toughness can be achieved in the center of the sheet thickness, and the industrial effect is extremely remarkable.

【図面の簡単な説明】[Brief description of the drawings]

第1図はパラメターxと本発明法による極厚材板厚中心
部の冷却条件をシミュレートした熱処理を付与した試験
材のシャルピー試験の50%破面温度(vTrs)及び組織と
の関係を示す図表である。
FIG. 1 shows the relationship between the parameter x and the 50% fracture surface temperature (vTrs) and microstructure in the Charpy test of a test material subjected to a heat treatment simulating the cooling condition of the center portion of a very thick plate according to the present invention. It is a chart.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 広一 神奈川県相模原市淵野辺5―10―1 新 日本製鐵株式会社第二技術研究所内 (56)参考文献 特開 昭57−126955(JP,A) 特開 昭62−177120(JP,A) 特開 昭49−63617(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Koichi Yamamoto 5-10-1 Fuchinobe, Sagamihara City, Kanagawa Prefecture New Nippon Steel Corporation Second Technical Research Institute (56) References JP-A-57-126955 (JP, A JP-A-62-177120 (JP, A) JP-A-49-63617 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、 C:0.03〜0.20%、 Si:0.05〜0.50%、 Mn:0.50〜3.0%、 P:0.010%以下、 S:0.010%以下、 Al:0.03〜0.10%、 Ni:1.0〜10.0%、 B:0.0005〜0.0030%、 N:0.0040%以下、 で且つCu,Cr,Moを Cu:0.01〜1.50%、 Cr:0.01〜1.50%、 Mo:0.01〜1.50%、 の範囲で1種または2種以上含み、残部が鉄及び不可避
不純物よりなり、且つ以下の式で示されるパラメターx
の値が26〜42である鋼片を熱間圧延により板厚75〜200m
mの鋼板とした後、900〜1050℃の温度範囲に加熱した
後、800〜850℃まで空冷し、引き続いて1℃/sec以上の
冷却速度で500℃以下まで強制冷却し、その後にAc1変態
点以下で焼き戻すことを特徴とする低温靭性の優れた引
張強度80kgf/mm2以上の極厚調質高張力鋼板の製造方
法。 x=[C(%)]1/2×[1+0.64×Si(%)]×[1 +4.10×Mn(%)]×[1+0.27×Cu(%)]×[1 +0.52×Ni(%)]×[1+2.33×Cr(%)]×[1 +3.14×Mo(%)]
[Claim 1] In terms of% by weight, C: 0.03 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.50 to 3.0%, P: 0.010% or less, S: 0.010% or less, Al: 0.03 to 0.10%, Ni : 1.0 to 10.0%, B: 0.0005 to 0.0030%, N: 0.0040% or less, and Cu, Cr, Mo for Cu: 0.01 to 1.50%, Cr: 0.01 to 1.50%, Mo: 0.01 to 1.50%, And one or more kinds, the balance being iron and unavoidable impurities, and a parameter x represented by the following formula:
The thickness of steel slab with a value of 26 to 42 is 75 to 200 m by hot rolling.
After heating to a temperature range of 900 to 1050 ° C., air cooling to 800 to 850 ° C., followed by forced cooling to 500 ° C. or less at a cooling rate of 1 ° C./sec or more, and then Ac 1 A method for producing a high-quality tempered high-strength steel sheet having a tensile strength of 80 kgf / mm 2 or more, which is excellent in low-temperature toughness and characterized by tempering at a temperature below the transformation point. x = [C (%)] 1/2 x [1 + 0.64 x Si (%)] x [1 + 4.10 x Mn (%)] x [1 + 0.27 x Cu (%)] x [1 + 0. 52 x Ni (%)] x [1 + 2.33 x Cr (%)] x [1 + 3.14 x Mo (%)]
【請求項2】Nb+V=0.01〜0.10%の範囲でNb,Vの1種
または2種を含むことを特徴とする請求項1記載の低温
靭性の優れた引張強度80kgf/mm2以上の極厚調質高張力
鋼板の製造方法。
2. The ultrathickness having an excellent low-temperature toughness having a tensile strength of 80 kgf / mm 2 or more according to claim 1, wherein one or two of Nb and V are contained in the range of Nb + V = 0.01 to 0.10%. Manufacturing method of tempered high strength steel sheet.
【請求項3】Ti:0.005〜0.020%を含むことを特徴とす
る請求項1記載の低温靭性の優れた引張強度80kgf/mm2
以上の極厚調質高張力鋼板の製造方法。
3. A tensile strength of 80 kgf / mm 2 with excellent low-temperature toughness according to claim 1, wherein Ti: 0.005 to 0.020% is contained.
The method for producing the above-mentioned extremely thick tempered high-tensile steel sheet.
【請求項4】Nb+V=0.01〜0.10%の範囲でNb,Vの1種
または2種を含み、且つTi:0.005〜0.020%を含むこと
を特徴とする請求項1記載の低温靭性の優れた引張強度
80kgf/mm2以上の極厚調質高張力鋼板の製造方法。
4. The excellent low-temperature toughness according to claim 1, wherein one or two of Nb and V are contained in the range of Nb + V = 0.01 to 0.10% and Ti is contained in the range of 0.005 to 0.020%. Tensile strength
A method for producing ultra-thick tempered high-strength steel sheets of 80 kgf / mm 2 or more.
JP63043994A 1988-02-26 1988-02-26 Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness Expired - Lifetime JP2662409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63043994A JP2662409B2 (en) 1988-02-26 1988-02-26 Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63043994A JP2662409B2 (en) 1988-02-26 1988-02-26 Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness

Publications (2)

Publication Number Publication Date
JPH01219121A JPH01219121A (en) 1989-09-01
JP2662409B2 true JP2662409B2 (en) 1997-10-15

Family

ID=12679271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63043994A Expired - Lifetime JP2662409B2 (en) 1988-02-26 1988-02-26 Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JP2662409B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208329A1 (en) 2016-05-31 2017-12-07 新日鐵住金株式会社 High-tensile steel plate having excellent low-temperature toughness

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447925B1 (en) * 1999-12-30 2004-09-08 주식회사 포스코 Method of manufacturing high strength steel with high toughness
JP5924058B2 (en) * 2011-10-03 2016-05-25 Jfeスチール株式会社 High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
EP2876180B1 (en) 2012-12-28 2017-09-13 Nippon Steel & Sumitomo Metal Corporation STEEL PLATE HAVING YIELD STRENGTH OF 670 TO 870 N/mm² AND TENSILE STRENGTH OF 780 TO 940 N/mm²
KR101838424B1 (en) 2014-03-20 2018-03-13 제이에프이 스틸 가부시키가이샤 High toughness and high tensile strength thick steel plate and production method therefor
CA2945439C (en) 2014-04-24 2020-03-10 Jfe Steel Corporation Steel plate and method of producing same
JP6242415B2 (en) * 2016-02-25 2017-12-06 株式会社日本製鋼所 Cu-containing low alloy steel excellent in strength-low temperature toughness balance and manufacturing method thereof
CN111394546B (en) * 2020-03-27 2022-04-05 舞阳钢铁有限责任公司 Heat treatment method of extra-thick, extra-wide and extra-long chromium-molybdenum steel plate
WO2024190920A1 (en) * 2023-03-16 2024-09-19 日本製鉄株式会社 Steel
WO2024190921A1 (en) * 2023-03-16 2024-09-19 日本製鉄株式会社 Steel material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963617A (en) * 1972-10-23 1974-06-20
JPS57126955A (en) * 1981-01-28 1982-08-06 Hitachi Zosen Corp Low temp. ni containing cast steel with improved toughness
JPH062899B2 (en) * 1986-01-30 1994-01-12 日本鋳鍛鋼株式会社 Manufacturing method of cast steel with excellent low temperature toughness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208329A1 (en) 2016-05-31 2017-12-07 新日鐵住金株式会社 High-tensile steel plate having excellent low-temperature toughness
KR20180096782A (en) 2016-05-31 2018-08-29 신닛테츠스미킨 카부시키카이샤 High tensile strength steel sheet excellent in low temperature toughness

Also Published As

Publication number Publication date
JPH01219121A (en) 1989-09-01

Similar Documents

Publication Publication Date Title
KR102044693B1 (en) High strength cold rolled steel sheet and method of producing such steel sheet
WO2019009410A1 (en) Hot-rolled steel sheet and method for manufacturing same
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JPH1060593A (en) High strength cold rolled steel sheet excellent in balance between strength and elongation-flanging formability, and its production
JP2662409B2 (en) Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness
KR102200227B1 (en) Cord rolled steel sheet, hot-dip galvanized steel sheet having good workability, and manufacturing method thereof
JP3851147B2 (en) Non-tempered high strength and high toughness forged product and its manufacturing method
JP2024512668A (en) Duplex steel with tensile strength ≧980MPa, hot-dip galvanized duplex steel and rapid heat treatment manufacturing method thereof
JP7508469B2 (en) Ultra-high strength steel plate with excellent shear workability and its manufacturing method
JP3327635B2 (en) Non-tempered steel for hot forging excellent in fatigue strength and method for producing non-heat-treated hot forged product using the steel
JP3474661B2 (en) Sour-resistant steel plate with excellent crack arrestability
CN115181885B (en) 590 MPa-level high-formability hot-dip aluminum zinc or hot-dip zinc aluminum magnesium dual-phase steel and rapid heat treatment manufacturing method
JPH0413406B2 (en)
JPH10237547A (en) Cold rolled steel sheet with high ductility and high strength, and its production
KR20000043762A (en) Method of manufacturing super high-strength cold-rolled steel sheet improved in ductility
KR100825650B1 (en) Low mo type wide and thick plate having excellent plate distortion property and method for manufacturing the same
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
JPH05117834A (en) Manufacture of hot dip galvannealed steel sheet having excellent stretch-flanging property using high strength hot-rolled original sheet
JPH11270531A (en) High strength bolt having good delayed fracture characteristic and manufacture thereof
JP2905639B2 (en) Method for producing 780 N / mm2 grade steel sheet with extremely low yield ratio
KR100311791B1 (en) METHOD FOR MANUFACTURING QUENCHED AND TEMPERED STEEL WITH SUPERIOR TENSILE STRENGTH OF AROUND 600MPa AND IMPROVED TOUGHNESS IN WELDED PART
JP2003147480A (en) Non-heatteated high strength and high toughness forging, and production method therefor
KR100368241B1 (en) A method for manufacturing hot rolled trip steels with excellent flange formability
JP3033459B2 (en) Manufacturing method of non-heat treated high strength steel
JPS6410565B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 11