KR100311791B1 - METHOD FOR MANUFACTURING QUENCHED AND TEMPERED STEEL WITH SUPERIOR TENSILE STRENGTH OF AROUND 600MPa AND IMPROVED TOUGHNESS IN WELDED PART - Google Patents

METHOD FOR MANUFACTURING QUENCHED AND TEMPERED STEEL WITH SUPERIOR TENSILE STRENGTH OF AROUND 600MPa AND IMPROVED TOUGHNESS IN WELDED PART Download PDF

Info

Publication number
KR100311791B1
KR100311791B1 KR1019970065355A KR19970065355A KR100311791B1 KR 100311791 B1 KR100311791 B1 KR 100311791B1 KR 1019970065355 A KR1019970065355 A KR 1019970065355A KR 19970065355 A KR19970065355 A KR 19970065355A KR 100311791 B1 KR100311791 B1 KR 100311791B1
Authority
KR
South Korea
Prior art keywords
less
steel
toughness
600mpa
tensile strength
Prior art date
Application number
KR1019970065355A
Other languages
Korean (ko)
Other versions
KR19990047106A (en
Inventor
이목영
장웅성
Original Assignee
이구택
포항종합제철 주식회사
신현준
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사, 신현준, 재단법인 포항산업과학연구원 filed Critical 이구택
Priority to KR1019970065355A priority Critical patent/KR100311791B1/en
Publication of KR19990047106A publication Critical patent/KR19990047106A/en
Application granted granted Critical
Publication of KR100311791B1 publication Critical patent/KR100311791B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Abstract

PURPOSE: Provided is a method for manufacturing quenched and tempered steel with superior tensile strength of around 600MPa and improved toughness in welded part. CONSTITUTION: The quenched and tempered steel is manufactured by (i) hot rolling of a steel slab comprising C 0.06-0.12wt.%, Si 0.1-0.5wt.%, Mn 1.0-1.6wt.%, Al 0.01-0.08wt.%, Ti 0.005-0.02wt.%, B 0.0003-0.003wt.%, N 0.002-0.008wt.% and two or more metals selected from Cu 0.5wt.% or less, Ni 1.0wt.% or less, Cr 0.5wt.% or less, Mo 0.5wt.% or less, Nb 0.1wt.% or less, V 0.1wt.% or less, Ti/N 1.5-2.5, a balance of Fe and other unavoidable impurities wherein carbon equivalent(Ceq) is 0.32-0.38wt.%; (ii) reheating the slab at a temperature range of Ac3 and 950deg.C followed by water-cooling; (iii) tempering at a temperature range of 500deg.C to Ac1.

Description

용접부 인성이 우수한 인장강도 600㎫급 소입소려강 및 그 제조방법Tensile strength 600 MPa hardened sheet steel with excellent weld toughness and manufacturing method

본 발명은 인장강도 600MPa급 소입·소려 강에 관한 것으로써, 보다 상세하게는 모재의 강도와 인성이 우수하고, 동시에 고능률용접부 인성이 우수한 인장강도 600MPa급 소입소려강 및 그 제조방법에 관한 것이다.The present invention relates to a tensile strength 600MPa grade hardened and polished steel, and more particularly, to a tensile strength 600MPa grade quenched toughened steel excellent in strength and toughness of a base material and excellent in high efficiency welded part toughness and a manufacturing method thereof. .

일반적으로 교량, 저장용기등 용접구조물에 널리 사용되고 있는 인장강도 600MPa급 이상의 고장력강은 용접시 가장 우선적으로 고려되어야 할 점은 용접부에서의 저온균열발생과 취화현상이다. 특히, 최근 들어 용접구조물 시공시 생산성 및 경제성 측면에서 자동화에 의한 고능률 용접적용비율이 점차 확대되고 있다. 이 경우 강재에 일시적으로 높은 용접에너지가 가해짐에 따라서 용접부에서는 결정립이 조대화되고 취약한 저온변태생성물이 다량으로 형성되어 용접부 성능이 저하되게 된다. 따라서, 고능률 용접시공의 경제적 이점에도 불구하고 용접부 취화가 발생되지 않도록 적용되는 용접입열량을 제한하지 않으면 안된다. 따라서, 통상재에 비해 용접능률을 2배이상 높여도 용접부 취화가 문제되지 않는 고장력강 제조기술의 개발이 용접구조물의 경제성, 신뢰성 측면에서 강력히 요청되고 있다. 인장강도 600MPa급 고장력강에서도 용접부 결정립 조대화나 저온변태생성물의 형성으로 인해 급격한 인성저하가 발생하므로 적용 가능한 용접입열량에 제한이 따르게 된다.In general, high tensile strength of 600MPa or more, which is widely used in welded structures such as bridges and storage containers, should be considered at the time of welding. In particular, the ratio of high efficiency welding by automation is gradually increasing in terms of productivity and economic efficiency in construction of welded structures. In this case, as high welding energy is temporarily applied to the steel, grains are coarsened in the weld zone, and a large amount of vulnerable low temperature transformation products are formed, thereby deteriorating the weld performance. Therefore, in spite of the economic advantages of high efficiency welding construction, the amount of welding heat input to be applied must be limited so that weld brittleness does not occur. Therefore, the development of a high-strength steel manufacturing technology that does not have a problem of weld embrittlement even if the welding efficiency is increased by more than two times compared to the ordinary material is strongly demanded in terms of economics and reliability of the welded structure. Tensile strength of 600MPa class high tensile strength steel is caused by rapid toughness deterioration due to coarsening of weld grains or formation of low-temperature transformation products, which is subject to the limitation of the applicable welding heat input.

용접부 취화방지를 위한 지금까지의 강 제조방법은 강재의 강도 수준에 따라서 크게 두 가지로 나누어진다. 먼저, 500MPa급 이하의 고장력강은 모재 및 용접부에 요구되는 강도 수준이 비교적 낮으므로 최근 개발된 가공열처리 기술을 적용하여 강도를 확보하고, 저탄소, 저탄소당량화와 동시에 Ti, REM, B 등의 석출물 형성원소를 활용하여 고능률 용접시 조직변태 및 결정립 미세화를 도모한다.Until now, steel manufacturing methods for preventing welded embrittlement are largely divided into two types according to the strength level of steel. First, the high strength steel below 500MPa grade has a relatively low level of strength required for the base metal and the welded part, thereby securing strength by applying the recently developed processing heat treatment technology, and forming precipitates such as Ti, REM, and B at the same time as low carbon and low carbon equivalent. Use element to promote tissue transformation and grain refinement during high efficiency welding.

이에 비해 800MPa급 이상의 고강도 강재의 경우 모재의 강도확보와 용접부 인성향상을 위해서 극미량 첨가된 B의 소입성을 극대화하고, 경화성원소를 일정수준 이상으로 첨가하여 소입(quenching)과 소려(tempering)에 의해 적절한 강도와 인성이 조화를 이루고 용접부 조직은 모재의 소입조직과 마찬가지로 마르텐사이트 또는 하부베이나이트와 같은 저온변태생성물로 형성되도록 설계한다.On the other hand, in case of high strength steel of 800MPa grade or more, the hardenability of the trace amount added B is maximized in order to secure the strength of the base metal and improve the toughness of the welded part, and by adding hardenable elements to a certain level or more, by quenching and tempering The proper strength and toughness are harmonized and the welded tissue is designed to be formed of low temperature transformation products such as martensite or lower bainite, just like the hardened structure of the base metal.

상기 두 강종에 비해 인장강도 600MPa급 고장력강의 경우 800MPa급 강재와 마찬가지로 소입과 소려를 통해 제조되므로 적절한 소입성이 모재 열처리시에 확보되어야 한다. 또한, 이 강재의 용접시 800MPa급 강재에서와 같이 경화성을 증대시켜 용접부 인성을 얻기 위해서는 지나친 합금성분의 첨가가 불가피해지므로 용접시 균열감수성이 급격히 높아지고, 동시에 강의 경제적 제조측면에서도 매우 불리해진다. 따라서, 이 경우 용접부 인성향상 대책은 오히려 500MPa급 강재에 적용되는 조직변태 및 결정립 미세화효과를 활용한다는 것이 효과적일 수 있다.Compared to the above two steel grades, the tensile strength of 600MPa class high tensile strength steel is manufactured through hardening and consideration as in the case of 800MPa grade steel. In addition, in order to increase the hardenability and obtain weld toughness as in the case of welding of 800 MPa grade steel, the addition of excessive alloying components is inevitable, and thus the crack susceptibility is sharply increased during welding, and at the same time, it is very disadvantageous in terms of economical manufacturing of steel. Therefore, in this case, it may be effective that measures to improve the toughness of the weld utilize a tissue transformation and grain refining effect applied to the 500 MPa grade steel.

본 발명은 상술한 종래문제를 해결하기 위해 안출된 것으로써, 모재의 강도와 인성이 우수하고, 동시에 고능률 용접부 인성이 우수한 인장강도 600MPa급 소입소려강 및 그 제조방법을 제공하는데, 그 목적이 있다.The present invention has been made to solve the above-described conventional problems, to provide a tensile strength 600MPa-class quenched hardened steel and a method of manufacturing the same, which is excellent in strength and toughness of the base material and at the same time excellent in high efficiency welded part toughness. have.

도 1은 본 발명강과 비교강의 재현용접부 조건에 따른 흡수에너지의 변화를 나타내는 그래프이다;1 is a graph showing the change in absorbed energy according to the re-weld condition of the inventive steel and the comparative steel;

도 2는 강중 Ti/N비의 변화에 다른 흡수에너지 값의 변화를 나타내는 그래프이다;2 is a graph showing a change in absorbed energy values depending on the change in Ti / N ratio in steel;

도 3은 탄소당량(Ceq) 변화에 따른 흡수에너지 값의 변화를 나타내는 그래프이다.3 is a graph showing a change in absorbed energy value according to a change in carbon equivalent (Ceq).

상기 목적을 달성하기 위한 본 발명의 소입·소려강은, 중량%로 C:0.06-0.12%, Si:0.1-0.5%, Mn:1.0-1.6%, Al:0.01-0.08%, Ti:0.005-0.02%, B:0.0003-0.003%, N:0.002-0.008%와 여기에 Cu:0.5%이하, Ni:1.0%이하, Cr:0.5%이하, Mo:0.5%이하, Nb:0.1%이하, V:0.1%이하중 선택된 1종 또는 2종 이상을 함유하며, Ti/N:1.5-2.5, 탄소당량(Ceq):0.32-0.38%을 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 것이다.In order to achieve the above object, the hardened and hardened steel of the present invention is C: 0.06-0.12%, Si: 0.1-0.5%, Mn: 1.0-1.6%, Al: 0.01-0.08%, Ti: 0.005- in weight%. 0.02%, B: 0.0003-0.003%, N: 0.002-0.008% and Cu: 0.5% or less, Ni: 1.0% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.1% or less, V It contains one or two selected from less than 0.1%, and satisfies Ti / N: 1.5-2.5, carbon equivalent (Ceq): 0.32-0.38%, and is composed of the remaining Fe and other unavoidable impurities.

또한, 본 발명의 소입·소려강의 제조방법은, 중량%로 C:0.06-0.12%, Si:0.1-0.5%, Mn:1.0-1.6%, Al:0.01-0.08%, Ti:0.005-0.02%, B:0.0003-0.003%, N:0.002-0.008%와 여기에 Cu:0.5%이하, Ni:1.0%이하, Cr:0.5%이하, Mo:0.5%이하, Nb:0.1%이하, V:0.1%이하중 선택된 1종 또는 2종 이상을 함유하며, Ti/N:1.5-2.5, 탄소당량(Ceq):0.32-0.38%을 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 슬래브를 통상의 열간압연한 다음 Ac3-950℃로 재가열한후 수냉하고, 이어 500-Ac1의 온도에서 소려처리하는 것을 포함하여 구성된다.In addition, the manufacturing method of the hardened and trimmed steel of this invention is C: 0.06-0.12%, Si: 0.1-0.5%, Mn: 1.0-1.6%, Al: 0.01-0.08%, Ti: 0.005-0.02% by weight%. , B: 0.0003-0.003%, N: 0.002-0.008% and Cu: 0.5% or less, Ni: 1.0% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.1% or less, V: 0.1 Slabs containing one or more selected one or less, satisfying Ti / N: 1.5-2.5, carbon equivalent (Ceq): 0.32-0.38%, and are composed of the remaining Fe and other unavoidable impurities. Rolling and reheating to Ac 3 -950 ° C. followed by water cooling followed by annealing at a temperature of 500-Ac 1 .

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 인장강도 600MPa급 강재의 모재 기계적성질과 용접부 인성을 동시에 확보하기 위해 모재의 경우 소입성 확보방안과 용접부의 경우 조직변태 및 미세화 방안이라는 서로 상반된 두 가지 목표를 동시에 달성하기 위해 Ti 및 B를 복합첨가하며, 이때 Ti/N비를 적정 범위로 관리하고 동시에 탄소당량을 제한하는데, 그 특징이 있다.In the present invention, Ti and B are simultaneously used to simultaneously achieve two opposing goals of securing the hardenability of the base material and the transformation and refinement of the welded part in order to secure the base material mechanical properties and the welded toughness of the 600MPa grade steel. To add a complex, at this time to manage the Ti / N ratio in an appropriate range and at the same time limit the carbon equivalent, there is a feature.

이를 위해 강 성분중 상기 C는 강의 강도를 증가시키는데 유효한 원소로서 600MPa급 인장강도를 얻기위해 최저 0.06%가 필요하지만, 과잉 C함량은 용접경화성 및 저온균열감수성을 높이고 고능률 용접시 저온변태생성물을 형성시켜 취화현상을 초래하므로 그 상한을 0.12%로 하는 것이 바람직하다.To this end, C is an effective element to increase the strength of steel, and at least 0.06% is required to obtain 600MPa tensile strength. However, the excess C content improves weld hardening and low temperature cracking susceptibility. It is preferable to make the upper limit 0.12% because it causes embrittlement by forming.

상기 Si는 본 발명에 있어서 탈산작용 및 강도확보에 유용한 원소이며 Si에 의한 강도증가에 따른 인성의 저하는 비교적 적지만 과잉첨가시 균열감수성을 높이므로 그 첨가량은 0.1-0.5%로 하는 것이 바람직하다.In the present invention, Si is an element useful for deoxidation and securing strength, and the toughness due to the increase in strength by Si is relatively small, but the addition amount is preferably 0.1-0.5% because it increases the cracking susceptibility upon excessive addition. .

상기 Mn은 첨가량이 1.0% 미만에서는 강도가 부족하고, 1.6%를 넘으면 강도상승효과도 포화되고 용접부 인성이 열화되어 용접경화성을 높이므로 1.0-1.6%의 범위로 첨가하는 것이 바람직하다.The amount of Mn is insufficient when the addition amount is less than 1.0%, and when it exceeds 1.6%, the strength increase effect is also saturated and the toughness of the weld is degraded to increase the weld hardenability, so it is preferable to add Mn in the range of 1.0-1.6%.

상기 Al은 탈산을 위해 반드시 첨가되어야 하며 질소와 결합하여 AlN을 형성함으로써 강의 조직을 미세화 시키고 고용질소를 저감시켜 인성을 향상시키며, B의 질소와의 결합을 방지시켜 B의 소입성 효과를 향상시키는 원소로서 0.01%미만에서는 그 효과가 없으며 0.08%를 초과하면 그 효과는 포화되고 개재물이 증가되어 인성을 해치므로 0.01-0.08%로 첨가하는 것이 바람직하다.The Al must be added for deoxidation and by combining with nitrogen to form AlN to refine the structure of the steel and reduce the solid solution nitrogen to improve toughness, and to prevent the binding of B to improve the quenching effect of B If it is less than 0.01% as an element, it is not effective. If it exceeds 0.08%, the effect is saturated, and inclusions are increased to impair toughness. Therefore, it is preferable to add it at 0.01-0.08%.

상기 Ti은 본 발명강의 필수원소로서 미량첨가에 의해 단독 혹은 복합석출물을 형성하여 모재의 열처리시에는 B과 N과의 결합을 억제하여 B의 소입성 증대효과 를 극대화시키고 고능률 용접시에는 조직미세화와 고용 질소저감 작용을 통해 용접부 인성저하를 방지하는 역할을 하는데, 그 함량이 0.005%이하에서는 효과가 없으며 0.02%를 초과하면 조대석출물의 형성, 고용 Ti의 증대로 인성저하를 초래함으로 0.005-0.02%의 범위로 첨가하는 것이 바람직하다.The Ti is an essential element of the present invention steel to form a single or complex precipitate by the addition of a small amount to inhibit the bonding of B and N during the heat treatment of the base material to maximize the effect of increasing the quenchability of B and microstructure in high efficiency welding And decreases the toughness of welded part by reducing nitrogen solubility, and its content is ineffective below 0.005%, and when it exceeds 0.02%, coarse precipitates are formed and the toughness decreases due to the increase of solid solution Ti. It is preferable to add in the range of%.

상기 B은 Ti과 함께 본 발명강의 필수원소로서 극미량 첨가로도 강의 소입성을 증가시켜 용접성에 해로운 강화원소인 첨가량을 감소시킬 수 있으며, 고능률 용접시 Ti와 함께 고온에서 안정한 복합석출물을 형성하여 조직변태작용 및 고용질소 저감을 통해 우수한 인성을 얻게 한다. 이러한 B의 효과는 0.0003%미만에서는 유효 B의 확보가 어려워 나타나지 않으며 0.003%를 초과하면 결정립계 및 입내에 조대한 B화합물이 형성되어 소입성 효과를 상실하고 인성을 저하시키므로 0.0003-0.003%의 범위로 첨가하는 것이 바람직하다.The B can increase the hardenability of the steel by adding a trace amount as an essential element of the present invention steel with Ti, and can reduce the amount of reinforcing element harmful to weldability, and forms a complex precipitate at high temperature with Ti during high efficiency welding. Excellent toughness is achieved through tissue metamorphosis and reduced nitrogen solution. When the effect of B is less than 0.0003%, it is difficult to secure effective B. If it exceeds 0.003%, coarse B compounds are formed in the grain boundary and in the mouth, which loses the quenching effect and reduces the toughness. It is preferable to add.

상기 N은 Al, Ti, B등과 결합하여 조직변태에 유효하게 작용하는 원소로서 0.002%이상이 필요하지만 0.008%를 넘으면 강 제조시 B과 결합하여 B의 소입성을 해치고 과잉의 고용질소는 용접부 인성을 저하시키므로 0.002-0.008%의 범위로 첨가하는 것이 바람직하다.N is an element that effectively works on tissue transformation by combining with Al, Ti, and B, but more than 0.002% is required, but when it exceeds 0.008%, N combines with B when manufacturing steel and impairs the hardenability of B. It is preferable to add it in the range of 0.002-0.008% since it lowers.

상기와 같은 성분계에 Cu:0.5%이하, Ni:1.0%이하, Cr:0.5%이하, Mo:0.5%이하, Nb:0.1%이하, V:0.1%이하의 그룹중 선택된 1종 또는 2종 이상을 첨가하면 강의 강도등 기계적성질이 향상되는데, 이를 설명하면 다음과 같다.Cu, 0.5% or less, Ni: 1.0% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.1% or less, V: 0.1% or less The addition of this improves the mechanical properties such as the strength of the steel.

먼저, 상기 Cu는 소입성 및 강도를 높이는데 유효한 원소이지만 0.5%를 넘으면 용접균열감수성이 증대되고 인성이 저하하므로 0.5%이하로 첨가하는 것이 바람직하다.First, Cu is an effective element to increase the hardenability and strength, but if it exceeds 0.5%, the weld cracking sensitivity is increased and the toughness is lowered, so it is preferably added below 0.5%.

상기 Ni은 강의 강도 및 인성을 개선시키는데 유효한 원소이지만 1.0%를 넘으면 강 제조원가가 높아지므로 1.0%이하로 첨가하는 것이 바람직하다.Ni is an effective element for improving the strength and toughness of the steel, but if it exceeds 1.0%, the steel manufacturing cost increases, so it is preferably added below 1.0%.

상기 Cr은 강의 강도확보에 유효한 원소이지만 0.5%를 넘으면 Cr탄화물이 다량 형성되어 강의 인성을 열화시키고 동시에 저온균열감수성을 높이므로 그 상한을 0.5%로 한다.The Cr is an effective element to secure the strength of the steel, but if it exceeds 0.5%, a large amount of Cr carbide is formed to deteriorate the toughness of the steel and at the same time increase the low temperature cracking sensitivity, so the upper limit thereof is 0.5%.

상기 Mo은 강도증가 및 소려취화저항능을 향상시키는 원소이지만 0.5%를 넘으면 용접부 균열발생의 위험이 증대되고 인성이 저하되므로 0.5%이하로 첨가하는 것이 바람직하다.Mo is an element that improves strength and improves brittle embrittlement resistance, but if it exceeds 0.5%, the risk of cracking of welds increases and toughness is lowered, so it is preferably added below 0.5%.

상기 Nb와 V은 모두 모재 및 용접부 강도증가에 유효한 원소이지만 그 함유-량이 0.1%를 초과하면 그 효과는 포화되고 오히려 용접성을 해치므로 0.1%이하로 첨가하는 것이 바람직하다.Nb and V are both effective elements for increasing the strength of the base metal and the welded part, but when the content-amount exceeds 0.1%, the effect is saturated and the welding property is impaired.

상기와 같이 조성되는 강 성분중 Ti/N의 비는 도 3에 나타난 바와 같이, 적정 Ti/N범위에서 우수한 성질을 나타내는데, Ti과 B의 복합첨가로 용접부 인성개선에 필요한 적정 Ti/N비가 통상 Ti단독 첨가에 의해 조직미세화를 도모하는 500MPa급 강재에 적용되는 적정 첨가범위인 3.4수준(Ti과 N의 화학양론적인 비)에 비해 훨씬 낮은 수준인 1.5-2.5로 한정한다.As shown in FIG. 3, the ratio of Ti / N in the steel component formed as described above shows excellent properties in the appropriate Ti / N range, and the proper Ti / N ratio required for improving the toughness of the weld is usually due to the complex addition of Ti and B. It is limited to 1.5-2.5, which is much lower than the 3.4 level (the stoichiometric ratio of Ti and N), which is an appropriate range for addition to 500MPa grade steels for the purpose of microstructure by adding Ti alone.

그리고, 고능률용접시 취화정도를 평가하는 용접부 인성은 C보다 강화원소들의 영향이 크게 반영된 강재의 탄소당량(이하, 'Ceq'라 함)값과 양호한 상관관계를 나타낸다. 참고로 탄소당량은 아래식 (1)과 같다.In addition, the weld toughness for evaluating the degree of embrittlement during high efficiency welding shows a good correlation with the carbon equivalent (hereinafter referred to as 'Ceq') value of the steel, in which the influence of the reinforcing elements is greater than that of C. For reference, the carbon equivalent is shown in Equation (1) below.

관계식 1Relationship 1

Figure 1019970065355_B1_M0001
Figure 1019970065355_B1_M0001

지금까지는 용접성 개선을 위해 Ceq값 상한만을 규제하여 왔으나 저온균열감수성과는 달리 용접부 인성은 도 3에 나타난 바와 같이, 적정 Ceq범위에서 우수한 성질을 나타낸다. 즉, Ceq가 0.32%미만이나 0.38%를 초과시 급격한 취화현상이 발생되므로 0.32-0.38%로 한정하는 것이 바람직하다. 이러한 Ceq수준은 통상의 인장강도 600MPa급 고장력강의 Ceq수준인 0.40-0.45%에 비해 매우 낮으므로 본 발명강의 경우 용접부 인성개선과 함께, 통상강에 비해 용접시 발생 가능한 저온균열에 대한 저항능이 훨씬 높아질 수 있음을 알 수 있다.Until now, only the upper limit of the Ceq value has been regulated to improve weldability, but unlike the low temperature cracking susceptibility, the weld toughness shows excellent properties in the appropriate Ceq range as shown in FIG. 3. That is, when Ceq is less than 0.32% or more than 0.38%, rapid embrittlement occurs, so it is preferable to limit it to 0.32-0.38%. Since the Ceq level is much lower than 0.40-0.45% of the Ceq level of 600MPa high tensile steel in general tensile strength, the steel of the present invention has improved weld toughness and resistance to cold cracking that can occur during welding compared to ordinary steel. It can be seen that.

본 발명은 전술한 바와 같이, Ti량을 0.005-0.002%, B량을 0.0003-0.003%로 한정하고, Ti/N비를 1.5-2.5범위로 한정하고, 동시에 Ceq를 0.32-0.38%로 제한하고, 각 첨가성분을 전술의 범위로 제한함에 의해 우수한 모재 및 용접부 특성을 얻는 것이다. 즉, Ti와 B을 복합첨가함으로써 Ti의 질소고정효과를 이용하여 B의 소입성을 향상시키고 고능률용접시에는 상기 원소들이 복합석출물을 형성하여 용접부 조직변태 및 조직미세화와 용접부 인성에 해로운 강중 고용질소량을 저감시켜 최종적으로 우수한 용접부 인성을 얻게 하는 것이다.As described above, the Ti content is limited to 0.005-0.002%, the B content is 0.0003-0.003%, the Ti / N ratio is limited to 1.5-2.5 range, and the Ceq is limited to 0.32-0.38%. By limiting each additive component to the above-mentioned range, excellent base material and weld part characteristics are obtained. That is, by adding Ti and B in combination, the quenchability of B is improved by using the nitrogen fixation effect of Ti, and in the case of high efficiency welding, the above elements form a complex precipitate, so that the solid solution of steel that is detrimental to the weld structure transformation and structure microstructure and the weld toughness The amount of nitrogen is reduced to finally obtain excellent weld toughness.

이상과 같은 성분조성의 강은 전로, 전기로 등에서 용제하여 필요에 따라서 진공탈가스처리를 거쳐 조괴, 분괴 혹은 연속주조에 의해 슬래브를 제조하고, 이렇게 제조된 슬래브는 통상의 열간압연한 다음 강의 강도를 증가시키기 위해 재가열소입하는데, 이때 재가열온도는 오스테나이트화 하기 위해 Ac3-950℃로 하는 것이 바람직하다. 그 이유는 재가열온도가 950℃를 넘는 경우 지나친 결정립 조대화로 인성이 떨어지기 때문이다. 상기와 재가열한 후 상온까지 수냉하면 된다.Steels of the above-described composition are manufactured in a converter, an electric furnace, etc., and then subjected to vacuum degassing, as necessary, to produce slabs by ingot, pulverization, or continuous casting.The slabs thus prepared are usually hot rolled and then the strength of the steel. In order to increase the reheating quenching, the reheating temperature is preferably Ac 3 -950 ℃ to austenitize. The reason for this is that toughness decreases due to excessive grain coarsening when the reheating temperature exceeds 950 ° C. What is necessary is just to cool to normal temperature after reheating with the above.

상기와 같이 소입한 후 취약해진 강에 적당한 인성을 부여하기 위해 소려처리하는데, 이때의 소려온도는 500℃-Ac1이 바람직하다. 만일 소려온도가 500℃미만의 경우 인성확보가 어려우며 Ac1을 넘으면 페라이트 변태가 일어나 강도가 저하된다.After quenching as described above, in order to impart proper toughness to the weakened steel, the soaking temperature is preferably 500 ° C-Ac 1 . If the soaking temperature is less than 500 ℃, toughness is difficult to secure, and if it exceeds Ac 1 , ferrite transformation occurs and strength decreases.

이하, 실시예를 통하여 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예 1]Example 1

하기 표 1과 같이 Ti과 B이 복합첨가된 본 발명강(1)과 Ti과 B이 첨가되지 않거나 단독첨가된 비교강(1-3)의 슬래브를 1150℃로 2시간 가열한 후 열간압연한 다음, 930℃로 재가열하여 소입하고, 650℃에서 소려처리한후 각각에 대하여 기계적성질을 측정하고 그 결과를 하기 표 2에 나타내었다.As shown in Table 1, after the slab of the present invention steel (1) to which Ti and B are complex added and the comparative steel (1-3) to which Ti and B were not added or added alone were heated to 1150 ° C. for 2 hours, hot rolled Next, after reheating and quenching at 930 ℃, annealing at 650 ℃ was measured for each of the mechanical properties and the results are shown in Table 2 below.

강종Steel grade 화학성분(중량%)Chemical composition (% by weight) CC SiSi MnMn AlAl TiTi BB NN CuCu NiNi CrCr MoMo VV Ti/NTi / N Ceq(%)Ceq (%) 비교강Comparative steel 1One 0.140.14 0.340.34 1.441.44 0.040.04 -- -- 0.0060.006 -- 0.120.12 -- 0.160.16 0.040.04 -- 0.440.44 22 0.090.09 0.300.30 1.381.38 0.040.04 -- 0.00170.0017 0.0050.005 -- -- 0.120.12 0.140.14 0.050.05 -- 0.400.40 33 0.110.11 0.280.28 1.381.38 0.040.04 0.0130.013 -- 0.0050.005 0.150.15 0.130.13 -- 0.150.15 0.040.04 2.62.6 0.400.40 발명강Invention steel 1One 0.090.09 0.240.24 1.401.40 0.040.04 0.010.01 0.00220.0022 0.0040.004 -- 0.210.21 -- -- 0.040.04 2.52.5 0.340.34

인장강도(Mpa)Tensile Strength (Mpa) 항복강도(Mpa)Yield strength (Mpa) 연신율(%)Elongation (%) 충격흡수에너지(J,at:-10℃)Impact absorption energy (J, at: -10 ℃) 파면천이온도(℃)Wave Transition Temperature (℃) 비교강Comparative steel 1One 670670 580580 2525 140140 -55-55 22 690690 600600 2828 200200 -80-80 33 630630 570570 2727 150150 -40-40 발명강Invention steel 1One 690690 600600 3232 230230 -90-90

상기 표 2에 나타난 바와 같이, 본 발명강(1)은 인장강도가 600MPa이상의 값을 가지고 있으며, 비교강(1-3)에 비하여 파면천이온도가 현저히 낮고 충격흡수에너지 값도 큰 값을 나타내었다. 따라서, 본 발명강(1)이 비교강(1-3)에 비하여 모재의 기계적성질이 우수함을 알 수 있다.As shown in Table 2, the present invention steel (1) has a value of 600MPa or more of tensile strength, the wavefront transition temperature is significantly lower than the comparative steel (1-3) and showed a value of impact absorption energy is also large. . Therefore, it can be seen that the inventive steel (1) is superior in mechanical properties of the base material as compared with the comparative steel (1-3).

한편, 발명강(1) 및 비교강(1-3)의 용접부 인성을 알아보기 위해 다양한 용접조건을 재현하여 800℃에서 500℃까지의 냉각속도에 따른 흡수에너지를 측정하고, 그 결과를 도 1에 나타내었다, 도 1에서 알 수 있듯이, B, Ti이 함유된 본 발명강(1)은 용접조건에 관계없이 200J이상의 우수한 흡수에너지를 보이는데, 반해 B과 Ti중 어느 하나만 함유되거나 아무것도 함유되지 않은 비교강(1-3)은 상대적으로 낮은 흡수에너지를 보이며 특히 용접입열량이 증대됨에 따라 흡수에너지가 급격히 감소하는 용접취화현상이 나타났다.On the other hand, in order to find out the weld toughness of the invention steel (1) and comparative steel (1-3) by reproducing various welding conditions to measure the absorbed energy according to the cooling rate from 800 ℃ to 500 ℃, the results are shown in Figure 1 As can be seen from Figure 1, the present invention steel (1) containing B and Ti shows an excellent absorption energy of 200J or more regardless of welding conditions, whereas only one or none of B and Ti is contained. Comparative steel (1-3) showed relatively low absorption energy, especially the welding embrittlement phenomenon in which the absorption energy rapidly decreased as the amount of heat input of welding increased.

[실시예 2]Example 2

하기 표 3과 같이 이루어진 슬래브를 1150℃로 2시간 가열한 후 열간압연한 다음, 930℃로 재가열하여 소입하고, 650℃에서 소려처리한 강재에 대해 고능률용접조건인 100kJ/cm상당의 용접부 재현인성 즉, 흡수에너지를 측정하여 도 2에 나타내었다.The slab made as shown in Table 3 was heated to 1150 ° C. for 2 hours and then hot rolled, then reheated to 930 ° C. for quenching, and reproduced at 100 kJ / cm equivalent weld, which is a high efficiency welding condition for steel treated at 650 ° C. Toughness, that is, absorption energy is measured and shown in FIG. 2.

강종Steel grade 화학성분(중량%)Chemical composition (% by weight) CC SiSi MnMn AlAl TiTi BB NN CuCu NiNi VV Ti/NTi / N Ceq(%)Ceq (%) 비교강Comparative steel 1One 0.100.10 0.330.33 1.331.33 0.040.04 0.0070.007 0.00130.0013 0.01120.0112 0.160.16 0.210.21 0.040.04 0.630.63 0.340.34 22 0.100.10 0.320.32 0.350.35 0.040.04 0.0110.011 0.00110.0011 0.01120.0112 0.160.16 0.210.21 0.040.04 1.01.0 0.340.34 33 0.100.10 0.320.32 1.341.34 0.040.04 0.0060.006 0.00110.0011 0.00490.0049 0.160.16 0.200.20 0.040.04 1.221.22 0.340.34 44 0.100.10 0.300.30 1.361.36 0.040.04 0.0140.014 0.00130.0013 0.00450.0045 0.160.16 0.200.20 0.040.04 3.163.16 0.340.34 55 0.100.10 0.320.32 1.331.33 0.040.04 0.0290.029 0.00120.0012 0.01090.0109 0.160.16 0.200.20 0.040.04 2.622.62 0.340.34 66 0.100.10 0.310.31 1.341.34 0.040.04 0.0360.036 0.00120.0012 0.01140.0114 0.150.15 0.200.20 0.040.04 3.153.15 0.340.34 77 0.100.10 0.340.34 1.351.35 0.040.04 0.0320.032 0.00120.0012 0.01070.0107 0.160.16 0.200.20 0.040.04 2.932.93 0.340.34 88 0.100.10 0.320.32 1.351.35 0.040.04 0.0200.020 0.00110.0011 0.00560.0056 0.160.16 0.200.20 0.040.04 3.603.60 0.340.34 99 0.100.10 0.300.30 1.351.35 0.040.04 0.0300.030 0.00160.0016 0.00770.0077 0.160.16 0.210.21 0.040.04 3.913.91 0.340.34 발명강Invention steel 1One 0.100.10 0.300.30 1.301.30 0.060.06 0.0060.006 0.00140.0014 0.00390.0039 0.150.15 0.200.20 0.040.04 1.551.55 0.340.34 22 0.100.10 0.310.31 1.291.29 0.050.05 0.0070.007 0.00130.0013 0.00430.0043 0.150.15 0.200.20 0.040.04 1.631.63 0.340.34 33 0.100.10 0.310.31 1.341.34 0.040.04 0.0110.011 0.00120.0012 0.00630.0063 0.150.15 0.200.20 0.040.04 1.751.75 0.340.34 44 0.100.10 0.340.34 1.341.34 0.040.04 0.0200.020 0.00120.0012 0.01090.0109 0.150.15 0.200.20 0.040.04 1.861.86 0.340.34 55 0.100.10 0.320.32 1.341.34 0.040.04 0.0170.017 0.00120.0012 0.00870.0087 0.150.15 0.200.20 0.040.04 1.951.95 0.340.34 66 0.100.10 0.320.32 1.301.30 0.040.04 0.0240.024 0.00110.0011 0.01120.0112 0.150.15 0.200.20 0.040.04 2.142.14 0.340.34 77 0.100.10 0.340.34 1.361.36 0.070.07 0.0160.016 0.00130.0013 0.00670.0067 0.150.15 0.200.20 0.040.04 2.402.40 0.340.34 88 0.100.10 0.330.33 1.351.35 0.060.06 0.0180.018 0.00150.0015 0.00730.0073 0.150.15 0.200.20 0.040.04 2.462.46 0.340.34

상기 표 3에 나타난 바와 같이, 본 발명의 조건을 벗어나 조성된 비교강(1-9)의 경우 Ti/N의 비가 1.5미만이고, 2.5초과한 값을 가지고 있는 것으로 도 2에서 확인할 수 있듯이, 용접부 재현인성인 충격에너지값이 100J이하의 값을 나타냈다. 이에 반해, 본 발명의 조건을 만족하는 강성분계로 이루어지고 특히, Ti/N의 비가 1.5-2.5를 만족하는 발명강(1-8)의 경우 도 2에서 확인할 수 있듯이, 150J이상의 충격에너지 값을 나타내어 고능률 용접부 재현인성이 우수하였다.As shown in Table 3, in the case of the comparative steel (1-9) formed out of the conditions of the present invention, the ratio of Ti / N is less than 1.5 and has a value exceeding 2.5, as shown in FIG. The impact energy value of reproducibility showed the value below 100J. On the contrary, in the case of the inventive steel (1-8) made of a steel component satisfying the conditions of the present invention, and particularly, the ratio of Ti / N satisfying 1.5-2.5, as shown in FIG. It was excellent in high efficiency weld reproducibility.

[실시예 3]Example 3

하기 표 4와 같이 이루어진 슬래브를 1150℃로 2시간 가열한 후 열간압연한 다음, 930℃로 재가열하여 소입하고, 650℃에서 소려처리한 강재에 대해 고능률용접조건인 100kJ/cm상당의 용접부 재현인성 즉, 흡수에너지를 측정하여 도 3에 나타내었다.The slab made as shown in Table 4 was heated to 1150 ° C. for 2 hours, then hot rolled, then reheated to 930 ° C. for quenching, and reproduced at 100 kJ / cm equivalent weld, which is a high efficiency welding condition for steel treated at 650 ° C. Toughness, that is, absorption energy is measured and shown in FIG. 3.

강종Steel grade 화학성분(중량%)Chemical composition (% by weight) CC SiSi MnMn AlAl TiTi BB NN CuCu NiNi MoMo VV NbNb Ti/NTi / N Ceq(%)Ceq (%) 비교강Comparative steel 1One 0.150.15 0.240.24 1.431.43 0.070.07 0.0140.014 0.00240.0024 0.00570.0057 -- -- 0.110.11 0.0440.044 -- 2.462.46 0.420.42 22 0.120.12 0.240.24 1.391.39 0.060.06 0.0130.013 0.00200.0020 0.00640.0064 -- -- 0.130.13 0.0450.045 -- 2.032.03 0.400.40 33 0.130.13 0.240.24 1.601.60 0.050.05 0.0130.013 0.00160.0016 0.00550.0055 -- -- 0.130.13 0.0440.044 -- 2.362.36 0.440.44 44 0.080.08 0.250.25 0.850.85 0.050.05 0.0120.012 0.00140.0014 0.00660.0066 -- -- 0.120.12 0.0400.040 -- 1.821.82 0.270.27 55 0.090.09 0.240.24 0.860.86 0.050.05 0.0130.013 0.00130.0013 0.00650.0065 -- -- 0.150.15 0.0400.040 -- 2.002.00 0.280.28 66 0.080.08 0.0250.025 1.201.20 0.050.05 0.0150.015 0.00200.0020 0.00620.0062 0.150.15 0.200.20 -- -- -- 2.422.42 0.300.30 77 0.100.10 0.230.23 1.171.17 0.060.06 0.0140.014 0.00170.0017 0.00660.0066 0.160.16 0.210.21 -- -- -- 2.122.12 0.310.31 발명강Invention steel 1One 0.070.07 0.240.24 1.411.41 0.060.06 0.0150.015 0.00230.0023 0.00620.0062 -- -- 0.130.13 0.0450.045 -- 2.422.42 0.350.35 22 0.110.11 0.230.23 1.171.17 0.060.06 0.0150.015 0.00170.0017 0.00660.0066 0.160.16 0.210.21 -- -- 0.030.03 2.272.27 0.320.32 33 0.110.11 0.240.24 1.461.46 0.030.03 0.0140.014 0.00180.0018 0.00660.0066 0.160.16 0.200.20 -- -- -- 2.122.12 0.370.37 44 0.110.11 0.230.23 1.541.54 0.040.04 0.0150.015 0.00200.0020 0.00640.0064 0.170.17 0.200.20 -- -- 0.030.03 2.342.34 0.380.38 55 0.100.10 0.230.23 1.341.34 0.050.05 0.0150.015 0.00230.0023 0.00690.0069 0.160.16 -- -- 0.0400.040 -- 2.032.03 0.330.33 66 0.090.09 0.240.24 1.361.36 0.020.02 0.0140.014 0.00230.0023 0.00660.0066 0.170.17 -- 0.120.12 -- -- 2.122.12 0.360.36 77 0.090.09 0.240.24 1.401.40 0.050.05 0.0140.014 0.00230.0023 0.00620.0062 -- 0.200.20 -- 0.0440.044 -- 2.262.26 0.340.34

상기 표 4에 나타난 바와 같이, 본 발명의 조건을 벗어나 조성된 비교강(1-7)의 경우 Ceq가 0.32%미만이고, 0.38%를 초과는 것으로 도 3에서 확인할 수 있듯이, 용접부 재현인성이 모재규격치(ve-10>47J)에 미치지 못하고 있다.As shown in Table 4, in the case of the comparative steel (1-7) prepared outside the conditions of the present invention, Ceq is less than 0.32%, and more than 0.38%, as can be seen in FIG. It does not meet the standard value (ve-10> 47J).

이에 반해, 본 발명의 조건을 만족하는 강성분계로 이루어지고 특히, Ceq가 0.32-0.38%를 만족하는 발명강(1-7)의 경우 도 3에서 확인할 수 있듯이, 100J이상의 충격에너지 값을 나타내어 고능률 용접부 재현인성이 우수하였다.On the contrary, in the case of the inventive steel (1-7) made of a steel component satisfying the conditions of the present invention, and especially Ceq satisfying 0.32-0.38%, as shown in FIG. Efficient weldability reproducibility.

상술한 바와 같이, 본 발명에 의해 제조된 강은 모재의 기계적성질이 우수하고 동시에 고능률용접 적용이 가능하므로 용접작업공수의 절감이나 비용절감에 상당히 기여할 수 있으며, 강 제조시 합금원소 첨가량을 줄일 수 있으므로 강의 경제적 제조측면에서도 유리한 효과가 있는 것이다.As described above, the steel produced by the present invention can contribute significantly to the reduction of welding labor and cost, and to reduce the amount of alloying elements in steel production, since the steel has excellent mechanical properties and at the same time high efficiency welding can be applied. It can be advantageous in terms of economical manufacturing of steel.

Claims (2)

중량%로 C:0.06-0.12%, Si:0.1-0.5%, Mn:1.0-1.6%, Al:0.01-0.08%, Ti:0.005-0.02%, B:0.0003-0.003%, N:0.002-0.008%와 여기에 Cu:0.5%이하, Ni:1.0%이하, Cr:0.5%이하, Mo:0.5%이하, Nb:0.1%이하, V:0.1%이하중 선택된 1종 또는 2종 이상을 함유하며, Ti/N:1.5-2.5, 탄소당량(Ceq):0.32-0.38%을 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 용접부 인성이 우수한 인장강도 600MPa급 소입·소려 강.By weight% C: 0.06-0.12%, Si: 0.1-0.5%, Mn: 1.0-1.6%, Al: 0.01-0.08%, Ti: 0.005-0.02%, B: 0.0003-0.003%, N: 0.002-0.008 % And Cu: 0.5% or less, Ni: 1.0% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.1% or less, V: 0.1% or less 600MPa-grade hardened and friable steel with excellent tensile strength of welded part, which satisfies Ti / N: 1.5-2.5, carbon equivalent (Ceq): 0.32-0.38% and is composed of the remaining Fe and other unavoidable impurities. 중량%로 C:0.06-0.12%, Si:0.1-0.5%, Mn:1.0-1.6%, Al:0.01-0.08%, Ti:0.005-0.02%, B:0.0003-0.003%, N:0.002-0.008%와 여기에 Cu:0.5%이하, Ni:1.0%이하, Cr:0.5%이하, Mo:0.5%이하, Nb:0.1%이하, V:0.1%이하중 선택된 1종 또는 2종 이상을 함유하며, Ti/N:1.5-2.5, 탄소당량(Ceq):0.32-0.38%을 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 슬래브를 통상의 열간압연한 다음 Ac3-950℃로 재가열한후 수냉하고, 이어 500-Ac1의 온도에서 소려처리하여 이루어짐을 특징으로 하는 용접부 인성이 우수한 인장강도 600MPa급 소입·소려 강판의 제조방법.By weight% C: 0.06-0.12%, Si: 0.1-0.5%, Mn: 1.0-1.6%, Al: 0.01-0.08%, Ti: 0.005-0.02%, B: 0.0003-0.003%, N: 0.002-0.008 % And Cu: 0.5% or less, Ni: 1.0% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.1% or less, V: 0.1% or less , Ti / N: 1.5-2.5, carbon equivalent (Ceq): 0.32-0.38%, the slab composed of the remaining Fe and other unavoidable impurities is hot-rolled, and then reheated to Ac 3 -950 ℃ water-cooled And then, the method of producing a 600MPa-grade quenched and polished steel sheet having excellent weld toughness, characterized in that it is made by a soaking treatment at a temperature of 500-Ac 1 .
KR1019970065355A 1997-12-02 1997-12-02 METHOD FOR MANUFACTURING QUENCHED AND TEMPERED STEEL WITH SUPERIOR TENSILE STRENGTH OF AROUND 600MPa AND IMPROVED TOUGHNESS IN WELDED PART KR100311791B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970065355A KR100311791B1 (en) 1997-12-02 1997-12-02 METHOD FOR MANUFACTURING QUENCHED AND TEMPERED STEEL WITH SUPERIOR TENSILE STRENGTH OF AROUND 600MPa AND IMPROVED TOUGHNESS IN WELDED PART

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970065355A KR100311791B1 (en) 1997-12-02 1997-12-02 METHOD FOR MANUFACTURING QUENCHED AND TEMPERED STEEL WITH SUPERIOR TENSILE STRENGTH OF AROUND 600MPa AND IMPROVED TOUGHNESS IN WELDED PART

Publications (2)

Publication Number Publication Date
KR19990047106A KR19990047106A (en) 1999-07-05
KR100311791B1 true KR100311791B1 (en) 2001-11-17

Family

ID=37531084

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970065355A KR100311791B1 (en) 1997-12-02 1997-12-02 METHOD FOR MANUFACTURING QUENCHED AND TEMPERED STEEL WITH SUPERIOR TENSILE STRENGTH OF AROUND 600MPa AND IMPROVED TOUGHNESS IN WELDED PART

Country Status (1)

Country Link
KR (1) KR100311791B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030018316A (en) * 2001-08-28 2003-03-06 주식회사 포스코 Manufacturing method of 50kg/㎟ grade steels for pressure vessels with excellent toughness and weldability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110499470B (en) * 2019-08-07 2021-08-20 邯郸钢铁集团有限责任公司 Low-cost light 600 MPa-grade automobile compartment body steel and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030018316A (en) * 2001-08-28 2003-03-06 주식회사 포스코 Manufacturing method of 50kg/㎟ grade steels for pressure vessels with excellent toughness and weldability

Also Published As

Publication number Publication date
KR19990047106A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
KR101657828B1 (en) Steel plate for pressure vessel having excellent strength and toughness after post weld heat treatment and method for manufacturing the same
KR100920536B1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
KR20160079166A (en) High strength structural steel having low yield ratio and good impact toughness and preparing method for the same
KR100699629B1 (en) Continuous casting slab suitable for the production of non-tempered high tensile steel material
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
JPH04285119A (en) Production of thick-walled high tensile strength steel plate excellent in toughness at low temperature
CN104099515A (en) Steel, formed heat treatment steel and production method thereof
KR100311791B1 (en) METHOD FOR MANUFACTURING QUENCHED AND TEMPERED STEEL WITH SUPERIOR TENSILE STRENGTH OF AROUND 600MPa AND IMPROVED TOUGHNESS IN WELDED PART
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
KR101382854B1 (en) Ultra high strength cold rolled steel sheets having high yield ratio, excellent weldability and bendability and method for manufacturing the same
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JP2671732B2 (en) Manufacturing method of high strength steel with excellent weldability
KR950007784B1 (en) Making method of cold rolling steel sheet
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
KR910003883B1 (en) Making process for high tension steel
KR100406365B1 (en) A METHOD OF MANUFACTURING 600MPa GRADE HIGH STRENGTH STEEL WITH LOW YIELD RATION
JPH02129317A (en) Production of 80kgf/mm2 class high tension steel having excellent weldability
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
JPS63190117A (en) Production of high tension steel plate having high toughness and less than 90% low yield ratio by direct quenching method
KR102493979B1 (en) High-strength steel plate for pressure vessels with excellent impact toughness and manufacturing method thereof
KR101009839B1 (en) Method for producing of steel sheet having high-strength and high-formability
JP2546888B2 (en) Manufacturing method of high-strength steel sheet with excellent weldability and toughness
US20240052467A1 (en) High-strength wire rod for cold heading with superior heat treatment characteristics and resistance of hydrogen-delayed fracture characteristics, heat-treated component, and method for manufacturing same
JPS62158817A (en) Manufacture of thick steel plate having high strength and high toughness

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120913

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20130926

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140925

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20150930

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20160913

Year of fee payment: 16

LAPS Lapse due to unpaid annual fee