JPH06128631A - Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness - Google Patents

Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness

Info

Publication number
JPH06128631A
JPH06128631A JP28157292A JP28157292A JPH06128631A JP H06128631 A JPH06128631 A JP H06128631A JP 28157292 A JP28157292 A JP 28157292A JP 28157292 A JP28157292 A JP 28157292A JP H06128631 A JPH06128631 A JP H06128631A
Authority
JP
Japan
Prior art keywords
toughness
less
temperature
steel
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28157292A
Other languages
Japanese (ja)
Inventor
Toshinaga Hasegawa
俊永 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28157292A priority Critical patent/JPH06128631A/en
Publication of JPH06128631A publication Critical patent/JPH06128631A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain high manganese ultrahigh tensile strength steel having low temp. toughness in the base metal and furthermore excellent in toughness in the weld zone by subjecting steel contg. specified C, Si, Mn, P, S, Al, B and N to hot rolling, heating and cooling under prescribed conditions. CONSTITUTION:Steel having a compsn. constituted of, by weight, 0.01 to 0.06% C, 0.01 to 1% Si, 6 to 15% Mn, <=0.005% P, <=0.01% S, 0.005 to 0.1% Al, 0.0003 to 0.01% B and <=0.01% N, and the balance Fe is refined. This steel is heated to >=1000 deg.C, is thereafter subjected to hot rolling and is successively reheated to the transformation point to 1000 deg.C. Next, it is cooled at >=0.1 deg.C/S average cooling rate in the temp. range of 700 to 300 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は引張り強さが100kg
f/mm2 以上で、良好な母材の低温靱性を有するとと
もに溶接部の靱性にも優れた高マンガン超高張力鋼の製
造方法にかかわるものである。
BACKGROUND OF THE INVENTION The present invention has a tensile strength of 100 kg.
It relates to a method for producing a high-manganese ultra-high-strength steel having f / mm 2 or more, which has good low temperature toughness of the base material and excellent toughness of the welded portion.

【0002】[0002]

【従来の技術】現在、溶接構造用鋼は種々の分野で用い
られ、強度レベルも引張り強さ40〜100kgf/m
2 程度の広い範囲で使用される。近年は構造物の大型
化、省エネルギー等の目的から強度の高い高張力鋼の使
用が増加している。高張力鋼の内でも引張り強さが70
〜80kgf/mm2 を超えるような高強度鋼は一般的
には焼入れ焼戻し処理によって製造される。圧延に引き
続いて焼入れを行う直接焼入れのような製造方法もある
が、これも焼入れの範疇に入る。焼入れ焼戻しにより製
造される、いわゆる調質高張力鋼は強度・靱性確保のた
めに板厚中心部まで十分焼きを入れる必要性から通常、
Ni,Cu,Cr,Mo等の合金元素を含有する。特に
厚手材であったり、−60℃以下といった厳しい低温靱
性が要求される場合には、焼入性確保、およびマトリク
スの強靱化をはかるために、さらにNiを主とした合金
元素の多量添加が必要となる。Ni,Cr,Mo等を多
く含む鋼は通常の鋼材に比べて不可避的に非常に高価と
なるため、構造物全般に広く使用できるものではない。
従って、厚手材やきびしい強度、低温靱性の要求のもと
でも廉価に製造でき、かつ様々な溶接条件においても優
れた溶接継手靱性を有する高張力鋼の製造技術の確立が
望まれる。
2. Description of the Related Art At present, welded structural steel is used in various fields and has a strength level of 40 to 100 kgf / m in tensile strength.
Used in a wide range of about m 2 . In recent years, the use of high-strength high-strength steel has been increasing in order to increase the size of structures and save energy. Tensile strength is 70 even among high strength steel
High-strength steels exceeding -80 kgf / mm 2 are generally manufactured by quenching and tempering. Although there is a manufacturing method such as direct quenching in which quenching is performed subsequent to rolling, this is also in the category of quenching. So-called tempered high-strength steel, which is manufactured by quenching and tempering, usually requires sufficient quenching to the center of the plate thickness to secure strength and toughness.
It contains alloy elements such as Ni, Cu, Cr and Mo. In particular, in the case of a thick material or when severe low temperature toughness of -60 ° C or less is required, in order to secure hardenability and toughen the matrix, a large amount of alloying elements mainly containing Ni should be added. Will be needed. Steel containing a large amount of Ni, Cr, Mo, etc. is inevitably very expensive as compared with ordinary steel materials, and therefore cannot be widely used for structures in general.
Therefore, it is desired to establish a manufacturing technique of a high-strength steel that can be manufactured inexpensively even under the requirements of thick materials, severe strength, and low temperature toughness, and that has excellent welded joint toughness under various welding conditions.

【0003】本発明者らは先に特願平3−144089
号においてMnを6〜15%含む鋼にBを微量添加する
ことにより粒界破壊を防止して優れた溶接熱影響部(H
AZ)靱性の得られる鋼を提案した(以降、特願平3−
144089号の請求範囲の成分を有する鋼をB添加高
Mn鋼と呼ぶ)。B添加高Mn鋼の強度靱性と製造条件
の関係を詳細に検討した結果、本鋼は特定の製造条件に
よって強度靱性が大幅に変化することが判明した。従っ
て、B添加高Mn鋼においても一層優れた母材特性を得
るための適正な製造技術が必要となる。
The present inventors have previously proposed Japanese Patent Application No. 3-144089.
No. 6 in the steel containing 6 to 15% of Mn, B is added in a trace amount to prevent intergranular fracture and to obtain an excellent weld heat affected zone (H
AZ) Proposed steel with toughness (hereinafter referred to as Japanese Patent Application No. 3-
A steel having a composition of claim 144089 is referred to as a B-added high Mn steel. As a result of detailed examination of the relationship between the strength and toughness of the B-added high Mn steel and the manufacturing conditions, it was found that the strength and toughness of the present steel significantly changed depending on the specific manufacturing conditions. Therefore, even in a B-added high Mn steel, an appropriate manufacturing technique is required to obtain more excellent base material characteristics.

【0004】[0004]

【発明が解決しようとする課題】B添加高Mn鋼のHA
Z靱性は化学成分により決まるため、特願平3−144
089号で示した成分範囲とすることにより広い入熱範
囲で優れたHAZ靱性を確保することが可能であるが、
母材の強度、靱性は製造履歴により変化し、場合によっ
てはHAZ靱性に比べて特性が大きく劣化する可能性が
あることが判明した。従って、廉価に製造可能な調質高
張力鋼としてB添加高Mn鋼を低温靱性要求の厳しい部
材として使用するためには、低温靱性確保のための適切
な母材製造条件を確立することが課題となる。
HA of B-added high Mn steel
Since Z toughness is determined by the chemical composition, Japanese Patent Application No. 3-144
It is possible to secure excellent HAZ toughness in a wide heat input range by setting the component range shown in No. 089,
It has been found that the strength and toughness of the base material change depending on the manufacturing history, and in some cases, the characteristics may be significantly deteriorated as compared with the HAZ toughness. Therefore, in order to use the B-added high Mn steel as a heat-treated high-strength steel that can be manufactured at a low price as a member with severe low-temperature toughness requirements, it is necessary to establish appropriate base material manufacturing conditions for ensuring low-temperature toughness. Becomes

【0005】[0005]

【課題を解決するための手段】本発明者らはB添加高M
n鋼を製造する場合、特定の焼戻し温度範囲において本
鋼は粒界破壊により大きな脆化を生じるため、靱性の劣
化を防止するためには、焼戻し温度の適正化と不純物元
素、特にP量の低減が特に重要であるとの結論を得、本
発明に至った。その要旨とするところは、重量%で、
C:0.01〜0.06%、Si:0.01〜1.0
%、Mn:6〜15%、P:0.005%以下、S:
0.01%以下、Al:0.005〜0.1%、B:
0.0003〜0.010%、N:0.010%以下、
必要に応じて適正量の、Cr、Mo、Ni、Cuを含有
し、残部はFe及び不可避不純物からなる鋼を、焼入れ
焼戻し処理で製造する場合は、1000℃以上に加熱し
た後熱間圧延し、続いてAc3 変態点〜1000℃の温
度域に再加熱した後、該温度から冷却するに際して70
0℃〜300℃の温度域の平均冷却速度が0.1℃/s
以上となるように冷却し、さらに必要に応じて450℃
〜Ac1 変態点+50℃の温度で焼き戻すことを特徴と
し、再加熱処理をせずに製造する場合は、950℃〜1
150℃に加熱し、900℃以下での圧下率が10〜5
0%で、仕上げ温度が750℃〜850℃である熱間圧
延を施し、圧延後の冷却に際して700℃〜300℃の
温度域の平均冷却速度が0.1℃/s以上となるように
冷却し、さらに必要に応じて450℃〜Ac1 変態点+
50℃の温度に焼き戻すことを特徴とする低温靱性の優
れた高マンガン超高張力鋼の製造方法にある。
[Means for Solving the Problems]
In the production of n steel, this steel causes large embrittlement due to intergranular fracture in a specific tempering temperature range. Therefore, in order to prevent deterioration of toughness, the tempering temperature should be optimized and impurity elements, particularly P content The present inventors came to the conclusion that reduction is particularly important. The gist is the percentage by weight,
C: 0.01 to 0.06%, Si: 0.01 to 1.0
%, Mn: 6 to 15%, P: 0.005% or less, S:
0.01% or less, Al: 0.005-0.1%, B:
0.0003 to 0.010%, N: 0.010% or less,
When a steel containing Cr, Mo, Ni, Cu in an appropriate amount as necessary and the balance being Fe and unavoidable impurities is manufactured by quenching and tempering, it is heated to 1000 ° C or higher and then hot rolled. Then, after reheating to a temperature range of Ac 3 transformation point to 1000 ° C. and then cooling from that temperature, 70
The average cooling rate in the temperature range of 0 ° C to 300 ° C is 0.1 ° C / s.
Cool to the above temperature and, if necessary, 450 ℃
~ Ac 1 transformation point +50 ° C, characterized by tempering, when manufacturing without reheating treatment, 950 ° C ~ 1
It is heated to 150 ° C and the rolling reduction at 900 ° C or less is 10-5.
At 0%, hot rolling with a finishing temperature of 750 ° C to 850 ° C is performed, and cooling is performed after cooling so that the average cooling rate in the temperature range of 700 ° C to 300 ° C is 0.1 ° C / s or more. And, if necessary, 450 ° C to Ac 1 transformation point +
It is a method for producing a high-manganese ultra-high-strength steel excellent in low-temperature toughness, which is characterized by tempering to a temperature of 50 ° C.

【0006】[0006]

【作用】先ず、化学成分の限定理由を以下に述べる。本
発明の目的とする特性を達成するためには各々の構成元
素量について適正範囲に限定する必要がある。Cは強度
を向上するために有効な成分であるが、本発明者らが詳
細に検討した結果によれば、本発明の如き高Mn鋼にお
いてはC量が増加するにつれて母材靱性、HAZ靱性が
劣化する。Cの悪影響は母材靱性においてより顕著であ
り、0.01%の添加あたりシャルピー試験のエネルギ
ー遷移温度が約10〜15℃上昇する。本発明では母材
強度を確保でき、母材靱性を極端に劣化させない範囲と
してCを0.01%〜0.06%とした。
First, the reasons for limiting the chemical components will be described below. In order to achieve the target characteristics of the present invention, it is necessary to limit the amount of each constituent element to an appropriate range. C is an effective component for improving the strength, but according to the results of a detailed study by the present inventors, in the high Mn steel according to the present invention, as the amount of C increases, the base metal toughness and HAZ toughness are increased. Deteriorates. The adverse effect of C is more remarkable in the toughness of the base material, and the energy transition temperature of the Charpy test increases by about 10 to 15 ° C. per addition of 0.01%. In the present invention, C is set to 0.01% to 0.06% as a range in which the strength of the base material can be secured and the toughness of the base material is not extremely deteriorated.

【0007】次に、Siは溶鋼の脱酸を行う上で有効な
元素であり、強度上昇にも効果があるが多量に添加した
場合、粗大な酸化物を生成しやすく、本発明のような強
度の高い鋼では延性や靱性を大きく損ねるため、0.0
1〜1.0%の範囲とした。Mnは本発明の最も重要な
構成元素のひとつである。本発明においては冷却速度の
広い範囲でほぼマルテンサイト単相組織となって、安定
して母材強度、HAZ靱性を確保するに必要な量として
下限を6%とした。さらにMn量を高めるとHAZ靱性
は向上するが、15%を超えると逆に靱性が劣化しはじ
める。母材靱性も同様に15%を超えるMn量では靱性
が劣化する傾向にあり、その劣化量はHAZ靱性におけ
るよりも顕著であるため、本発明においてはMn量の上
限を15%とした。
Next, Si is an element effective in deoxidizing molten steel, and it is also effective in increasing strength, but if added in a large amount, coarse oxides are likely to be formed, and as in the present invention. In high strength steel, ductility and toughness are greatly impaired, so 0.0
The range was 1 to 1.0%. Mn is one of the most important constituent elements of the present invention. In the present invention, the lower limit is set to 6% as the amount necessary to ensure a stable martensite strength and HAZ toughness with a substantially single-phase martensite structure in a wide cooling rate range. If the Mn content is further increased, the HAZ toughness is improved, but if it exceeds 15%, on the contrary, the toughness starts to deteriorate. Similarly, the toughness of the base metal tends to deteriorate with the Mn amount exceeding 15%, and the deterioration amount is more remarkable than with the HAZ toughness. Therefore, in the present invention, the upper limit of the Mn amount is set to 15%.

【0008】Pは粒界脆化を助長して母材、HAZとも
靱性を劣化させるため、極力低減することが好ましい。
特に焼入れ焼戻し処理を施す場合は粒界脆化感受性が高
くなるため、圧延ままで使用する場合よりも一層低減す
る必要があるため、許容できる量として0.005%以
下とした。SについてもMnSを形成したり粒界に偏析
して延性や靱性を劣化させるため、極力低減することが
好ましいが、許容できる量として0.01%以下とし
た。AlはSiと同様、脱酸元素として有効であるが、
過剰に添加すると、粗大な酸化物を形成して延性、靱性
の劣化要因となるため、0.005〜0.1%の範囲と
した。
Since P promotes grain boundary embrittlement and deteriorates the toughness of both the base material and HAZ, it is preferable to reduce P as much as possible.
In particular, when the quenching and tempering treatment is performed, the susceptibility to intergranular embrittlement becomes high, and therefore it is necessary to further reduce the value as compared with the case of using as-rolled. S also forms MnS and segregates at grain boundaries to deteriorate ductility and toughness, so it is preferable to reduce S as much as possible, but the allowable amount is 0.01% or less. Al, like Si, is effective as a deoxidizing element,
If added excessively, a coarse oxide is formed, which becomes a factor of deterioration of ductility and toughness, so it was made 0.005 to 0.1% in range.

【0009】Bは高Mn鋼における粒界脆化を抑制する
ために特に重要な元素であり、その効果を生じさせるた
めには0.0003%以上の添加が必要である。しか
し、0.010%を超える添加を行うと、析出物を生成
しやすくなり粒界脆化抑制効果が失われると共に、析出
物による靱性劣化を生じるため、0.0003〜0.0
10%の範囲とした。NはBNを形成してBの粒界脆化
抑制効果を減ずるため、含有量は少ない方が好ましい
が、許容できる範囲として、上限を0.010%とし
た。
B is a particularly important element for suppressing grain boundary embrittlement in high Mn steel, and 0.0003% or more must be added to bring about the effect. However, if the addition exceeds 0.010%, precipitates are easily generated, the grain boundary embrittlement suppressing effect is lost, and the toughness is deteriorated by the precipitates, so 0.0003 to 0.0
The range was 10%. Since N forms BN and reduces the grain boundary embrittlement suppression effect of B, it is preferable that the content is small, but the upper limit was made 0.010% as an allowable range.

【0010】以上が、本発明鋼の基本成分の各々の限定
理由であるが、母材及びHAZの特性向上の目的で、必
要に応じてCr、Moの内1種以上、あるいは、Ni、
Cuの内1種以上、さらに、Cr、Moの内1種以上、
および、Ni、Cuの内1種以上を含有することができ
る。Crは母材強度、特に降伏点を高めるのに有効であ
るが、2.0%を超えて添加すると、靱性を低下させる
ため、上限を2.0%とした。MoはCrと同様、降伏
点を高め、さらに粒界脆化抑制効果を有するため、有用
な元素であるが、2.0%を超えて過剰に添加した場合
は粒界脆化抑制効果が飽和し、一方で靱性を劣化させる
ため、好ましくない。従って、Moの上限は2.0%と
した。
The above are the reasons for limiting each of the basic components of the steel of the present invention. For the purpose of improving the properties of the base material and HAZ, one or more of Cr and Mo, or Ni, may be added, if necessary.
One or more of Cu, and one or more of Cr and Mo,
Also, one or more of Ni and Cu can be contained. Cr is effective in increasing the strength of the base material, particularly the yield point, but if it is added in an amount exceeding 2.0%, the toughness is lowered, so the upper limit was made 2.0%. Mo is a useful element because it raises the yield point and has the effect of suppressing grain boundary embrittlement, similar to Cr, but it is a useful element, but when added in excess of 2.0%, the effect of suppressing grain boundary embrittlement is saturated. On the other hand, it deteriorates the toughness, which is not preferable. Therefore, the upper limit of Mo is set to 2.0%.

【0011】Niは含有量が多いほど母材靱性、HAZ
靱性共に遷移温度としては改善されるが、一方で、シェ
ルフエネルギーが低下する傾向にあり、3.0%を超え
る添加をしても、靱性改善効果が飽和するため、経済性
も考慮して3.0%を上限とした。Cuの効果も定性的
にはNiとほぼ同様であるが、1.5%を超える多量の
添加は鋳片の割れや析出脆化の問題等が顕著になるた
め、上限を1.5%とした。
The higher the Ni content, the toughness of the base metal and the HAZ.
Both the toughness and the transition temperature are improved, but on the other hand, the shelf energy tends to decrease, and the toughness improving effect is saturated even if the addition amount exceeds 3.0%. The upper limit was 0.0%. The effect of Cu is qualitatively similar to that of Ni, but the addition of a large amount exceeding 1.5% causes problems such as cracking of the slab and precipitation embrittlement, so the upper limit is set to 1.5%. did.

【0012】以上が本発明の化学成分の限定理由である
が、B添加高Mn鋼において好ましい強度・靱性を得る
ためには上記成分組成範囲に転炉、電気炉等の溶解炉で
溶製され、造塊−分塊法や連続鋳造法等で製造した鋼片
を鋼板に製造する際、以下に示す適正な製造方法とする
必要がある。即ち、焼入れままあるいは焼入れ焼戻し処
理で製造する場合は、1000℃以上に加熱した後熱間
圧延し、続いてAc3 変態点〜1000℃の温度域に再
加熱した後、該温度から冷却するに際して700℃〜3
00℃の温度域の平均冷却速度が0.1℃/s以上とな
るように冷却する、あるいは冷却後さらに450℃〜A
1 変態点+50℃の温度で焼き戻す必要がある。ま
た、再加熱処理をせずに製造する場合は、950℃〜1
150℃に加熱し、900℃以下での圧下率が10〜5
0%で、仕上げ温度が750℃〜850℃である熱間圧
延を施し、圧延後の冷却に際して700℃〜300℃の
温度域の平均冷却速度が0.1℃/s以上となるように
冷却し、あるいは冷却後さらに450℃〜Ac1 変態点
+50℃の温度に焼き戻す必要がある。以下にその理由
を示す。
The above are the reasons for limiting the chemical composition of the present invention. In order to obtain preferable strength and toughness in the B-added high Mn steel, it is melted in a melting furnace such as a converter or an electric furnace within the above composition range. When manufacturing a steel slab manufactured by the ingot-casting method, continuous casting method, or the like into a steel sheet, it is necessary to use the following appropriate manufacturing method. That is, in the case of manufacturing as-quenched or by quenching and tempering treatment, after heating to 1000 ° C. or higher, hot rolling is performed, followed by reheating to a temperature range of Ac 3 transformation point to 1000 ° C. and then cooling from that temperature. 700 ° C-3
Cooling is performed so that the average cooling rate in the temperature range of 00 ° C is 0.1 ° C / s or more, or after cooling, 450 ° C to A
it is necessary to temper at a temperature of c 1 transformation point + 50 ° C.. In the case of manufacturing without reheating treatment, 950 ° C to 1
It is heated to 150 ° C and the rolling reduction at 900 ° C or less is 10-5.
At 0%, hot rolling with a finishing temperature of 750 ° C to 850 ° C is performed, and cooling is performed after cooling so that the average cooling rate in the temperature range of 700 ° C to 300 ° C is 0.1 ° C / s or more. Alternatively, after cooling, it is necessary to further temper to a temperature of 450 ° C. to Ac 1 transformation point + 50 ° C. The reason is shown below.

【0013】先ず、焼入れままあるいは焼入れ焼戻し処
理により製造する場合は、熱処理に先だつ熱間圧延によ
り、所望の板厚とする。この熱間圧延は形状を調整する
ことが主目的であるため、特に複雑な圧延条件とする必
要はなく、溶体化を十分図るために加熱温度が1000
℃以上となっていれば良い。従って、冷鋼片を1000
℃以上に再加熱しても、あるいは溶鋼を凝固させた後、
冷却途中1000℃以上で保持し、鋼片の温度分布を均
一化した後、熱間圧延を行っても何等効果は異ならな
い。また、熱間圧延後の冷却は空冷ままでも水冷あるい
は徐冷でも構わない。熱間圧延を行った後、Ac3 変態
点〜1000℃の温度範囲に再加熱する。
First, in the case of manufacturing as-quenched or by quenching and tempering treatment, hot rolling prior to heat treatment is performed to obtain a desired sheet thickness. Since the main purpose of this hot rolling is to adjust the shape, it is not necessary to use particularly complicated rolling conditions, and the heating temperature is 1000 ° C. in order to achieve sufficient solution treatment.
It should be above ℃. Therefore, 1000 cold steel pieces
After reheating above ℃, or after solidifying molten steel,
Even if the temperature distribution of the steel slabs is kept uniform at 1000 ° C. or more during cooling and then hot rolling is performed, the effect is not different. The cooling after hot rolling may be air cooling, water cooling or slow cooling. After hot rolling, it is reheated to a temperature range of Ac 3 transformation point to 1000 ° C.

【0014】これは、Ac3 点以下では完全にオーステ
ナイト化しないため、組織が不均一となって強度、靱性
が劣化し、1000℃を超えるとオーステナイト粒が混
粒化、粗大化して靱性が劣化するため、この温度範囲と
する必要がある。一般の調質高張力鋼では靱性に有害な
粗大なベイナイトの生成を抑制するために加熱後の冷却
は水冷等により可能な限り速い冷却速度で冷却すること
が必須条件となるが、本発明鋼ではMn量を高めて焼入
性を十分確保しているため、急冷する必要はない。
[0014] This is because if it is less than Ac 3 point, it is not completely austenitized, so that the structure becomes non-uniform and the strength and toughness are deteriorated, and when it exceeds 1000 ° C, the austenite grains are mixed and coarsened and the toughness is deteriorated. Therefore, it is necessary to set this temperature range. In general tempered high-strength steel, in order to suppress the formation of coarse bainite that is harmful to toughness, cooling after heating is an essential condition to cool with water cooling or the like at the highest possible cooling rate. However, since the amount of Mn is increased and the hardenability is sufficiently ensured, it is not necessary to perform rapid cooling.

【0015】ただし、強度確保のために確実にマルテン
サイト単相組織とするため、及び徐冷による不純物の粒
界偏析を避けるため、冷却するに際して700℃〜30
0℃の温度域の平均冷却速度が0.1℃/s以上となる
ように冷却することが好ましい。この条件を満足する限
りは必ずしも水冷等の焼入れ処理を施す必要はない。加
熱温度〜700℃、300℃以下については特に限定し
ないが、粒界脆化をできる限り助長しないという意味
で、炉冷のような徐冷は避ける方が好ましい。
However, in order to ensure the martensite single-phase structure for ensuring the strength and to avoid grain boundary segregation of impurities due to slow cooling, 700 ° C. to 30 ° C. at the time of cooling
Cooling is preferably performed so that the average cooling rate in the temperature range of 0 ° C. is 0.1 ° C./s or more. As long as this condition is satisfied, quenching treatment such as water cooling is not necessarily required. The heating temperature to 700 ° C. or less than 300 ° C. is not particularly limited, but it is preferable to avoid slow cooling such as furnace cooling in the sense that it does not promote grain boundary embrittlement as much as possible.

【0016】以上の製造方法により十分優れた強度、靱
性を得ることが可能であり、通常の調質高張力鋼のよう
に靱性向上のための比較的高温での焼戻し処理を行うこ
とは必須条件ではない。ただし、Ac3 変態点〜100
0℃の温度に再加熱、冷却ままでは降伏強度が低めにな
るため、さらに降伏強度を高める必要のある場合は45
0℃〜Ac1 変態点+50℃の温度範囲で焼き戻せば引
張り強度、靱性の大幅な低下を伴わずに降伏点の上昇が
達成できる。即ち、図1はCを約0.02%、Siを約
0.1%、Bを約0.001%含み、Mnを約8%〜1
0%含む鋼を850℃に再加熱し、水焼入れした後、種
々の温度で焼戻したときの焼戻し温度と強度、靱性(シ
ャルピー試験において、吸収エネルギーが7.0kgf
mとなる温度:vTr7.0 )の関係を調べた図である
が、B添加高Mn鋼は焼戻し温度が400℃以下の焼戻
し温度範囲において顕著な靱性劣化を示すため該温度域
を避けて焼戻しを施す必要がある。この靱性劣化は粒界
破壊に起因するものである。
By the above manufacturing method, it is possible to obtain sufficiently excellent strength and toughness, and it is an essential condition to carry out tempering treatment at a relatively high temperature for improving toughness like ordinary tempered high strength steel. is not. However, Ac 3 transformation point to 100
The yield strength becomes lower if it is reheated to 0 ° C or left to cool. If it is necessary to further increase the yield strength, 45
If tempered in the temperature range of 0 ° C. to Ac 1 transformation point + 50 ° C., the yield point can be increased without significantly lowering the tensile strength and the toughness. That is, FIG. 1 contains about 0.02% C, about 0.1% Si, about 0.001% B, and about 8% to 1% Mn.
Steel containing 0% is reheated to 850 ° C, water-quenched, and then tempered at various temperatures, strength and toughness (absorption energy of 7.0 kgf in Charpy test).
It is a diagram in which the relationship between the temperature at which m is reached: vTr 7.0 ) was investigated. However, the B-added high Mn steel shows remarkable toughness deterioration in the tempering temperature range of 400 ° C. or less, so tempering is avoided in this temperature range. Need to give. This deterioration of toughness is due to grain boundary fracture.

【0017】焼入れまま(as Q)ではB添加により
粒界破壊を抑制しているため、靱性は良好であり、焼入
れままで用いることが可能である。ただし、焼入れまま
では若干降伏強度(0.2%耐力)が低めとなる傾向が
あるため、高降伏強度を必要とする場合は焼戻しを施す
必要がある。図1で明らかなように焼戻し温度が450
℃〜550℃の範囲では引張り強さの大幅な低下を生ず
ることなく、0.2%耐力の上昇が可能であり、この温
度範囲ならば靱性の劣化も生じない。600℃以上で
0.2%耐力の大きな低下が生じるが、これはAc1
態点を超えて焼戻したため、オーステナイトが析出した
ことによる。低降伏点鋼あるいは低降伏比鋼を目的とす
る場合はこのようなAc1 変態点を超えて焼戻せば靱性
や引張り強さに支障なく、降伏点の低下が可能である。
In the as-quenched state (as Q), the addition of B suppresses the intergranular fracture, so that the toughness is good and the as-quenched state can be used. However, since the yield strength (0.2% proof stress) tends to be slightly lower if it is quenched, it is necessary to temper it if high yield strength is required. As is clear from FIG. 1, the tempering temperature is 450.
In the range of 0 ° C to 550 ° C, 0.2% proof stress can be increased without causing a significant decrease in tensile strength, and within this temperature range, deterioration of toughness does not occur. A large decrease in 0.2% proof stress occurs at 600 ° C. or higher, but this is due to the precipitation of austenite due to tempering beyond the Ac 1 transformation point. In the case of aiming at a low yield point steel or a low yield ratio steel, it is possible to lower the yield point without hindering the toughness and tensile strength by tempering beyond the Ac 1 transformation point.

【0018】ただし、例えば図1の10〜12%Mn鋼
を650℃に焼戻した場合のようにAc1 変態点を大き
く超えて焼き戻すと靱性が劣化する。実験結果に基づい
た検討から、Ac1 変態点+50℃を焼戻し温度の上限
とすることが好ましい。従って、用途により焼戻しを行
う場合の焼戻し温度は靱性劣化を許容できる範囲として
450℃〜Ac1 変態点+50℃の範囲とする。焼戻し
温度に加熱した後の冷却条件は問わないが、炉冷のよう
な徐冷は粒界脆化が助長されるため避けるべきである。
However, for example, when the 10 to 12% Mn steel in FIG. 1 is tempered to 650 ° C. and tempered largely beyond the Ac 1 transformation point, the toughness deteriorates. From the examination based on the experimental results, it is preferable to set the Ac 1 transformation point + 50 ° C. as the upper limit of the tempering temperature. Therefore, the tempering temperature in the case of tempering is set to a range of 450 ° C. to Ac 1 transformation point + 50 ° C. as an allowable range for deterioration of toughness depending on the application. Cooling conditions after heating to the tempering temperature are not critical, but slow cooling such as furnace cooling should be avoided because it promotes grain boundary embrittlement.

【0019】さらに、本発明鋼は上記のような再加熱処
理を施さずに製造することも可能である。この場合は、
加熱時のオーステナイト粒径の細粒化と溶体化を両立さ
せて強度、靱性を向上させるために、加熱温度は950
℃〜1150℃の範囲が好ましい。加えて、圧延条件を
規制せずに圧延を行うと細粒化が不十分で靱性の低下の
懸念があり、また、0.2%耐力が極端に低下する問題
を生じるため、オーステナイトを細粒化し、かつ、伸長
粒とすることにより、靱性改善と0.2%耐力の上昇を
はかる目的で、900℃以下での圧下率が10〜50%
で、仕上げ温度が750℃〜850℃の条件内で熱間圧
延を施す必要がある。900℃以下の圧下率が10%未
満では効果が明確でなく、50%を超えると材質の異方
性が顕著となる。また、仕上げ温度が750℃未満では
セパレーションが顕著となり、シャルピー試験のシェル
フエネルギーが低下し、材質の異方性も大きくなるので
好ましくなく、逆に850℃を超える高温で圧延を終了
すると、0.2%耐力の上昇が望めない。圧延後の冷却
速度の限定理由は焼入れ焼戻し処理における焼入れ時の
冷却速度の限定理由と同じである。
Further, the steel of the present invention can be manufactured without the above-mentioned reheating treatment. in this case,
The heating temperature is 950 in order to improve the strength and toughness by achieving both fine graining of the austenite grain size during heating and solution treatment.
The range from ℃ to 1150 ℃ is preferable. In addition, if rolling is performed without restricting the rolling conditions, grain refinement may be insufficient and there is a concern that toughness may be reduced. Further, 0.2% proof stress may be extremely reduced. In order to improve the toughness and increase the 0.2% proof stress, the reduction ratio at 900 ° C or lower is 10 to 50%
Therefore, it is necessary to perform hot rolling within the condition that the finishing temperature is 750 ° C to 850 ° C. If the rolling reduction at 900 ° C. or less is less than 10%, the effect is not clear, and if it exceeds 50%, the anisotropy of the material becomes remarkable. Further, when the finishing temperature is less than 750 ° C., the separation becomes remarkable, the shelf energy of the Charpy test decreases, and the anisotropy of the material also increases, which is not preferable, and conversely, when the rolling is finished at a high temperature exceeding 850 ° C., We cannot expect an increase in 2% proof stress. The reason for limiting the cooling rate after rolling is the same as the reason for limiting the cooling rate during quenching in the quenching and tempering process.

【0020】圧延ままでも上記製造条件によれば十分優
れた強度、靱性を得ることが可能であるが、強度の調整
あるいは一層の高降伏応力化を必要とする場合はさらに
焼戻し処理を施すが、この場合も焼入れ焼戻し処理にお
ける焼戻し条件の限定理由と同様の理由により、焼戻し
温度の範囲は450℃〜Ac1 変態点+50℃とする必
要がある。
Under the above-mentioned manufacturing conditions, it is possible to obtain sufficiently excellent strength and toughness even as it is rolled, but if it is necessary to adjust the strength or further increase the yield stress, tempering is further performed. In this case as well, for the same reason as the reason for limiting the tempering conditions in the quenching and tempering treatment, it is necessary to set the tempering temperature range to 450 ° C to the Ac 1 transformation point + 50 ° C.

【0021】[0021]

【実施例】表1、表2及び表3に本発明に従って試作し
た鋼板及び比較鋼板の化学成分、母材製造履歴、母材強
度靱性、HAZの靱性等を示す。表1の本発明鋼は特許
請求の範囲第1項、第2項の方法に従って製造したもの
である。ここで、No.1〜No.14が本発明鋼であ
り、No.15〜No.25が比較鋼である。また、表
3は表1の本発明鋼No.7を用いて、再加熱処理をせ
ずに、熱間圧延ままか、圧延後焼戻し処理を施したとき
の母材製造履歴、母材強度靱性と圧延条件、焼戻し条件
の関係を検討した結果である。試験片はいずれも板厚中
心部より圧延方向に平行な方向で採取した。母材の強度
は丸棒引張り試験の0.2%耐力及び引張り強さで評価
した。一方、母材靱性はシャルピー衝撃試験における−
60℃での吸収エネルギーで評価した。また、HAZ靱
性は最高加熱温度1400℃、800℃から500℃ま
での冷却時間が160秒である溶接再現熱サイクルを付
与したときのシャルピー衝撃試験の−60℃での吸収エ
ネルギーで評価した。ちなみに本熱サイクル条件は概略
板厚20mmの鋼板を入熱量約100kJ/cmでサブ
マージアーク溶接したときのFLでの熱履歴に相当す
る。
EXAMPLES Tables 1, 2 and 3 show the chemical composition, base material manufacturing history, base material strength and toughness, HAZ toughness, etc. of the steel plates and comparative steel plates manufactured according to the present invention. The steels of the present invention shown in Table 1 are manufactured according to the methods of claims 1 and 2. Here, No. 1-No. No. 14 is the steel of the present invention. 15-No. 25 is a comparative steel. Further, Table 3 shows the steel No. of the present invention of Table 1. No. 7 was used, the results of studying the relationship between the base material manufacturing history, the base material strength toughness and the rolling conditions, and the tempering conditions without hot-rolling or after hot rolling or tempering after rolling. is there. All the test pieces were taken in the direction parallel to the rolling direction from the center part of the plate thickness. The strength of the base material was evaluated by the 0.2% proof stress and tensile strength of the round bar tensile test. On the other hand, the base metal toughness is −
The absorption energy at 60 ° C was used for evaluation. Further, the HAZ toughness was evaluated by the absorbed energy at -60 ° C of the Charpy impact test when the welding reproduction heat cycle in which the maximum heating temperature was 1400 ° C and the cooling time from 800 ° C to 500 ° C was 160 seconds was applied. By the way, this heat cycle condition corresponds to the heat history in FL when submerged arc welding is performed on a steel sheet having a thickness of about 20 mm with a heat input of about 100 kJ / cm.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】表2から明らかなように、No.1〜N
o.14の本発明により製造した鋼は比較鋼に比べて優
れた母材強度、靱性及びHAZ靱性を有し、−60℃の
低温でも構造物の安全性確保に十分なシャルピー試験の
吸収エネルギーを示すことが分かる。また、母材の引張
り強さは100kgf/mm2 以上である。即ち、本発
明によれば非常に高い強度と優れた母材、HAZ靱性を
兼ね備えた鋼が得られることが明らかである。
As is clear from Table 2, No. 1 to N
o. 14 of the steels manufactured according to the present invention have superior base metal strength, toughness and HAZ toughness as compared with the comparative steels, and exhibit sufficient absorbed energy in the Charpy test for ensuring the safety of the structure even at a low temperature of -60 ° C. I understand. Further, the tensile strength of the base material is 100 kgf / mm 2 or more. That is, according to the present invention, it is apparent that a steel having extremely high strength, excellent base material and HAZ toughness can be obtained.

【0025】一方、No.15〜No.25の比較鋼は
本発明の要件を満足しておらず、そのため、母材強度、
靱性あるいはHAZ靱性が本発明鋼に比べて劣ることが
同様に表2から明白である。即ち、比較鋼No.15、
16はBを含有していないためHAZ靱性が著しく劣
る。No.17はP量が過剰なため、母材靱性HAZ靱
性ともに劣る。No.18〜No.21は成分範囲は本
発明範囲内であるが、焼戻し温度が適正範囲をはずれて
いるため、十分な母材靱性が得られない。また、No.
22、23は再加熱温度が1200℃と高く、オーステ
ナイトが粗大なため、母材靱性が劣る。No.24、2
5は再加熱後の冷却を炉冷としたため、冷却速度が本発
明範囲外であり、本発明に比べて強度が若干低く母材靱
性も劣化する。
On the other hand, No. 15-No. 25 comparative steels did not meet the requirements of the invention, and therefore the base metal strength,
It is also clear from Table 2 that the toughness or HAZ toughness is inferior to the steel of the present invention. That is, comparative steel No. 15,
Since No. 16 does not contain B, the HAZ toughness is extremely poor. No. Since No. 17 has an excessive amount of P, the base material toughness and HAZ toughness are poor. No. 18-No. No. 21, the component range is within the range of the present invention, but since the tempering temperature is out of the proper range, sufficient base material toughness cannot be obtained. In addition, No.
22 and 23 have a high reheating temperature of 1200 ° C. and coarse austenite, so that the base material toughness is poor. No. 24, 2
In No. 5, since the cooling after reheating was done by furnace cooling, the cooling rate was outside the range of the present invention, and the strength was slightly lower than that of the present invention, and the toughness of the base material was deteriorated.

【0026】[0026]

【表3】 [Table 3]

【0027】また、表3において、再加熱処理を行わな
い場合の熱間圧延条件と母材の強度、靱性の関係を示
す。本発明の要件を満足する条件A〜Hで製造した鋼は
比較鋼に比べて優れた母材靱性を示すとともに0.2%
耐力も高くなっている。これに対して本発明の範囲を逸
脱している条件I〜Nで製造した鋼は、化学成分は本発
明範囲内にもかかわらず、靱性が劣り、0.2%耐力も
低い。即ち、比較鋼I、Jは加熱温度が高すぎるため、
靱性が劣る。加えて比較鋼Iは900℃以下の圧下率、
仕上げ温度が本発明範囲外のため、0.2%耐力も低
い。比較鋼K〜Mは加熱温度は本発明の範囲であるが、
900℃以下の圧下率あるいは仕上げ温度が本発明範囲
をはずれているため、十分な特性が得られない。比較鋼
Nは熱間圧延の諸条件が本発明の要件を満足していても
その後の焼戻し条件が適正範囲をはずれると靱性が大き
く劣化することを示している。以上の実施例から、本発
明によれば引張り強さが100kgf/mm2 以上で、
かつ−60℃程度の低温においても安全な使用に耐える
優れた母材及びHAZ靱性を有する超高張力鋼が得られ
ることが明白である。
Table 3 shows the relationship between the hot rolling conditions and the strength and toughness of the base material when the reheating treatment is not performed. The steels manufactured under the conditions A to H satisfying the requirements of the present invention show excellent base metal toughness as compared with the comparative steel and have a 0.2% content.
The yield strength is also high. On the other hand, the steels manufactured under the conditions I to N that deviate from the scope of the present invention have poor toughness and low 0.2% proof stress, although the chemical composition is within the scope of the present invention. That is, since the heating temperatures of Comparative Steels I and J are too high,
Inferior toughness. In addition, Comparative Steel I has a reduction rate of 900 ° C. or less,
Since the finishing temperature is out of the range of the present invention, 0.2% proof stress is also low. Although the heating temperatures of the comparative steels K to M are within the range of the present invention,
Since the rolling reduction of 900 ° C. or less or the finishing temperature is out of the range of the present invention, sufficient characteristics cannot be obtained. Comparative steel N shows that even if the hot rolling conditions satisfy the requirements of the present invention, the toughness deteriorates significantly if the subsequent tempering conditions deviate from the proper range. From the above examples, according to the present invention, the tensile strength is 100 kgf / mm 2 or more,
It is also clear that an ultra-high tensile steel having an excellent base material and HAZ toughness that can withstand safe use even at a low temperature of about -60 ° C can be obtained.

【0028】[0028]

【発明の効果】本発明は高価なNiなどの合金元素を多
量に含有することなく、非常に高い引張り強さと優れた
母材靱性、及び広い入熱範囲で優れたHAZ靱性を有す
る超高張力鋼を可能としたものであり、本発明による鋼
を用いれば過酷な使用条件に対しても高強度で、かつ安
全性の高い溶接構造物を製造することが可能となり、そ
の効果は極めて顕著である。
INDUSTRIAL APPLICABILITY The present invention does not contain a large amount of expensive alloying elements such as Ni, but has extremely high tensile strength, excellent base metal toughness, and super high tensile strength having excellent HAZ toughness in a wide heat input range. It is possible to manufacture steel, and by using the steel according to the present invention, it becomes possible to manufacture a welded structure having high strength and high safety even under severe use conditions, and the effect is extremely remarkable. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】Mn量を変えた鋼について、母材靱性と焼戻し
温度の関係を示す図、
FIG. 1 is a diagram showing the relationship between base material toughness and tempering temperature for steels with different Mn contents,

【図2】Mn量を変えた鋼について、母材強度と焼戻し
温度の関係を示す図である。
FIG. 2 is a diagram showing a relationship between base material strength and tempering temperature for steels having different Mn amounts.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/58 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication C22C 38/58

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C :0.01〜0.06% Si:0.01〜1.0% Mn:6〜15% P :0.005%以下 S :0.01%以下 Al:0.005〜0.1% B :0.0003〜0.010% N :0.010%以下 を含有し、残部はFe及び不可避不純物からなる鋼を、
1000℃以上に加熱した後熱間圧延し、続いてAc3
変態点〜1000℃の温度域に再加熱した後、該温度か
ら冷却するに際して700℃〜300℃の温度域の平均
冷却速度が0.1℃/s以上となるように冷却すること
を特徴とする低温靱性の優れた高マンガン超高張力鋼の
製造方法。
1. By weight%, C: 0.01 to 0.06% Si: 0.01 to 1.0% Mn: 6 to 15% P: 0.005% or less S: 0.01% or less Al: Steel containing 0.005 to 0.1% B: 0.0003 to 0.010% N: 0.010% or less, and the balance being Fe and inevitable impurities,
After heating to 1000 ° C or higher, hot rolling is performed, followed by Ac 3
After being reheated to a temperature range of transformation point to 1000 ° C., when cooling from the temperature, cooling is performed so that the average cooling rate in the temperature range of 700 ° C. to 300 ° C. is 0.1 ° C./s or more. Of high-manganese ultra-high-strength steel with excellent low-temperature toughness.
【請求項2】 重量%で C :0.01〜0.06% Si:0.01〜1.0% Mn:6〜15% P :0.005%以下 S :0.01%以下 Al:0.005〜0.1% B :0.0003〜0.010% N :0.010%以下 を含有し、残部はFe及び不可避不純物からなる鋼を、
1000℃以上に加熱した後熱間圧延し、続いてAc3
変態点〜1000℃の温度域に再加熱した後該温度から
冷却するに際して700℃〜300℃の温度域の平均冷
却速度が0.1℃/s以上となるように冷却し、次いで
450℃〜Ac1 変態点+50℃の温度で焼き戻すこと
を特徴とする低温靱性の優れた高マンガン超高張力鋼の
製造方法。
2. By weight%, C: 0.01 to 0.06% Si: 0.01 to 1.0% Mn: 6 to 15% P: 0.005% or less S: 0.01% or less Al: Steel containing 0.005 to 0.1% B: 0.0003 to 0.010% N: 0.010% or less, and the balance being Fe and inevitable impurities,
After heating to 1000 ° C or higher, hot rolling is performed, followed by Ac 3
After reheating to the temperature range of the transformation point to 1000 ° C. and then cooling from the temperature range, cooling is performed so that the average cooling rate in the temperature range of 700 ° C. to 300 ° C. is 0.1 ° C./s or more, and then 450 ° C. A method for producing a high-manganese ultra-high-strength steel excellent in low-temperature toughness, which comprises tempering at a temperature of Ac 1 transformation point + 50 ° C.
【請求項3】 重量%で C :0.01〜0.06% Si:0.01〜1.0% Mn:6〜15% P :0.005%以下 S :0.01%以下 Al:0.005〜0.1% B :0.0003〜0.010% N :0.010%以下 を含有し、残部はFe及び不可避不純物からなる鋼を、
950℃〜1150℃に加熱し、900℃以下での圧下
率が10〜50%で、仕上げ温度が750℃〜850℃
である熱間圧延を施し、圧延後の冷却に際して700℃
〜300℃の温度域の平均冷却速度が0.1℃/s以上
となるように冷却することを特徴とする低温靱性の優れ
た高マンガン超高張力鋼の製造方法。
3. C: 0.01 to 0.06% Si: 0.01 to 1.0% Mn: 6 to 15% P: 0.005% or less S: 0.01% or less Al: Steel containing 0.005 to 0.1% B: 0.0003 to 0.010% N: 0.010% or less, and the balance being Fe and inevitable impurities,
It is heated to 950 ° C to 1150 ° C, the rolling reduction at 900 ° C or lower is 10 to 50%, and the finishing temperature is 750 to 850 ° C.
Hot rolling, which is 700 ℃ at the time of cooling after rolling
A method for producing a high-manganese ultra-high-strength steel having excellent low-temperature toughness, which comprises cooling so that an average cooling rate in a temperature range of to 300 ° C is 0.1 ° C / s or more.
【請求項4】 重量%で C :0.01〜0.06% Si:0.01〜1.0% Mn:6〜15% P :0.005%以下 S :0.01%以下 Al:0.005〜0.1% B :0.0003〜0.010% N :0.010%以下 を含有し、残部はFe及び不可避不純物からなる鋼を、
950℃〜1150℃に加熱し、900℃以下での圧下
率が10〜50%で、仕上げ温度が750℃〜850℃
である熱間圧延を施し、圧延後の冷却に際して700℃
〜300℃の温度域の平均冷却速度が0.1℃/s以上
となるように冷却し、次いで450℃〜Ac1 変態点+
50℃の温度に焼き戻すことを特徴とする低温靱性の優
れた高マンガン超高張力鋼の製造方法。
4. C: 0.01 to 0.06% Si: 0.01 to 1.0% Mn: 6 to 15% P: 0.005% or less S: 0.01% or less Al: Steel containing 0.005 to 0.1% B: 0.0003 to 0.010% N: 0.010% or less, and the balance being Fe and inevitable impurities,
It is heated to 950 ° C to 1150 ° C, the rolling reduction at 900 ° C or lower is 10 to 50%, and the finishing temperature is 750 to 850 ° C.
Hot rolling, which is 700 ℃ at the time of cooling after rolling
Cooling is performed so that the average cooling rate in the temperature range of ˜300 ° C. is 0.1 ° C./s or more, and then 450 ° C. to Ac 1 transformation point +
A method for producing high-manganese ultra-high-strength steel excellent in low-temperature toughness, characterized by tempering to a temperature of 50 ° C.
【請求項5】 さらに重量%で、 Cr:2.0%以下 Mo:2.0%以下 の1種または2種を含有することを特徴とする請求項第
1項〜第4項記載の低温靱性の優れた高マンガン超高張
力鋼の製造方法。
5. The low temperature according to claim 1, further comprising one or two of Cr: 2.0% or less and Mo: 2.0% or less by weight. A method for producing a high-manganese ultra-high-strength steel having excellent toughness.
【請求項6】 さらに重量%で、 Ni:3.0%以下 Cu:1.5%以下 の1種または2種を含有することを特徴とする請求項第
1項〜第4項記載の低温靱性の優れた高マンガン超高張
力鋼の製造方法。
6. The low temperature according to any one of claims 1 to 4, further containing one or two of Ni: 3.0% or less and Cu: 1.5% or less by weight. A method for producing a high-manganese ultra-high-strength steel having excellent toughness.
【請求項7】 さらに重量%で、 Cr:2.0%以下 Mo:2.0%以下 の1種または2種および、 Ni:3.0%以下 Cu:1.5%以下 の1種または2種を含有することを特徴とする請求項第
1項〜第4項記載の低温靱性の優れた高マンガン超高張
力鋼の製造方法。
7. Further, by weight, one or two of Cr: 2.0% or less, Mo: 2.0% or less, and one of Ni: 3.0% or less and Cu: 1.5% or less, or Two types are contained, The manufacturing method of the high manganese super high strength steel excellent in the low temperature toughness of Claim 1 characterized by the above-mentioned.
JP28157292A 1992-10-20 1992-10-20 Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness Withdrawn JPH06128631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28157292A JPH06128631A (en) 1992-10-20 1992-10-20 Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28157292A JPH06128631A (en) 1992-10-20 1992-10-20 Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness

Publications (1)

Publication Number Publication Date
JPH06128631A true JPH06128631A (en) 1994-05-10

Family

ID=17641055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28157292A Withdrawn JPH06128631A (en) 1992-10-20 1992-10-20 Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness

Country Status (1)

Country Link
JP (1) JPH06128631A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024092A1 (en) * 2005-08-23 2007-03-01 Posco High strength hot rolled steel sheet containing high mn content with excellent workability and method for manufacturing the same
KR101271926B1 (en) * 2010-12-23 2013-06-05 주식회사 포스코 HIGH STRENGTH HIGH-Mn STEEL HAVING EXCELLENT CORROSION RESISTANCE
WO2016187577A1 (en) * 2015-05-21 2016-11-24 Ak Steel Properties, Inc. High manganese 3rd generation advanced high strength steels
CN109957731A (en) * 2017-12-14 2019-07-02 鞍钢股份有限公司 High-manganese medium-thickness steel plate for ocean engineering and production method thereof
US10472692B2 (en) 2014-07-03 2019-11-12 Arcelormittal Method for manufacturing a high strength steel sheet having improved formability and ductility and sheet obtained
US10844455B2 (en) 2014-07-03 2020-11-24 Arcelormittal Method for manufacturing a high strength steel sheet and sheet obtained by the method
JP2020204085A (en) * 2019-06-19 2020-12-24 日本製鉄株式会社 Steel sheet
JP2020204084A (en) * 2019-06-19 2020-12-24 日本製鉄株式会社 Steel sheet
US11566308B2 (en) 2016-12-23 2023-01-31 Posco Co., Ltd Austenitic steel material having excellent abrasion resistance and toughness and manufacturing method the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024092A1 (en) * 2005-08-23 2007-03-01 Posco High strength hot rolled steel sheet containing high mn content with excellent workability and method for manufacturing the same
KR100711361B1 (en) * 2005-08-23 2007-04-27 주식회사 포스코 High strength hot rolled steel sheet containing high Mn with excellent formability, and method for manufacturing the same
KR101271926B1 (en) * 2010-12-23 2013-06-05 주식회사 포스코 HIGH STRENGTH HIGH-Mn STEEL HAVING EXCELLENT CORROSION RESISTANCE
US10472692B2 (en) 2014-07-03 2019-11-12 Arcelormittal Method for manufacturing a high strength steel sheet having improved formability and ductility and sheet obtained
US10844455B2 (en) 2014-07-03 2020-11-24 Arcelormittal Method for manufacturing a high strength steel sheet and sheet obtained by the method
US11692235B2 (en) 2014-07-03 2023-07-04 Arcelormittal Method for manufacturing a high-strength steel sheet and sheet obtained by the method
WO2016187577A1 (en) * 2015-05-21 2016-11-24 Ak Steel Properties, Inc. High manganese 3rd generation advanced high strength steels
US11136656B2 (en) 2015-05-21 2021-10-05 Cleveland-Cliffs Steel Properties Inc. High manganese 3rd generation advanced high strength steels
US11566308B2 (en) 2016-12-23 2023-01-31 Posco Co., Ltd Austenitic steel material having excellent abrasion resistance and toughness and manufacturing method the same
CN109957731A (en) * 2017-12-14 2019-07-02 鞍钢股份有限公司 High-manganese medium-thickness steel plate for ocean engineering and production method thereof
JP2020204085A (en) * 2019-06-19 2020-12-24 日本製鉄株式会社 Steel sheet
JP2020204084A (en) * 2019-06-19 2020-12-24 日本製鉄株式会社 Steel sheet

Similar Documents

Publication Publication Date Title
US4776900A (en) Process for producing nickel steels with high crack-arresting capability
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JPH08176659A (en) Production of high tensile strength steel with low yield ratio
JPH04268016A (en) Production of high tensile strength steel sheet for door guide bar having excellent crushing characteristic
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JPH09143557A (en) Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JPS625216B2 (en)
JPS60121228A (en) Manufacture of tempered high tension steel plate
JP3335651B2 (en) Method for producing thick 9% Ni steel with excellent CTOD characteristics of base metal and weld heat affected zone
JPH0693332A (en) Production of high tensile strength and high toughness fine bainitic steel
JPH05195156A (en) High-manganese ultrahigh tensile strength steel excellent in toughness in heat affected zone and its production
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JP2671732B2 (en) Manufacturing method of high strength steel with excellent weldability
JPH07173534A (en) Production of ni-containing steel sheet excellent in toughness and workability
JPH0247525B2 (en)
JPH0670249B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
JP3297107B2 (en) Method for producing low temperature steel with excellent weldability
JPS63145711A (en) Production of high tension steel plate having excellent low temperature toughness
JPH10168518A (en) Manufacture of high tensile strength steel plate with tapered thickness
JP2626421B2 (en) Manufacturing method of high strength steel with excellent weldability
JPH0215122A (en) Production of high strength and high toughness thick steel plate having excellent weldability
JPH0920921A (en) Production of high toughness steel plate by means of separation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104