JPH09143557A - Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength - Google Patents

Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength

Info

Publication number
JPH09143557A
JPH09143557A JP30412595A JP30412595A JPH09143557A JP H09143557 A JPH09143557 A JP H09143557A JP 30412595 A JP30412595 A JP 30412595A JP 30412595 A JP30412595 A JP 30412595A JP H09143557 A JPH09143557 A JP H09143557A
Authority
JP
Japan
Prior art keywords
toughness
steel plate
steel
strength
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30412595A
Other languages
Japanese (ja)
Inventor
Takahiro Kubo
高宏 久保
Akio Omori
章夫 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30412595A priority Critical patent/JPH09143557A/en
Publication of JPH09143557A publication Critical patent/JPH09143557A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a thick Ni-containing steel plate excellent in toughness at low temp. and having high strength by subjecting a steel slab, containing specific amounts of C, Si, Mn, Ni, Al, Nb, N, P, S, Ca, and REM, to respectively specified rolling, hardening, and tempering. SOLUTION: A slab of a steel, which has a composition containing, by weight, 0.03-0.06% C, <=0.20% Si, 0.30-0.70% Mn, 7.5-12.0% Ni, 0.01-0.05% Al, 0.005-0.030% Nb, <=0.005% N, <=0.005% P, <=0.002% S, and one or more kinds among 0.0005-0.005% Ca and 0.001-0.03% each REM and further containing, if necessary, prescribed amounts of V, Cu, Mo, and Cr, is heated to 1100-1300 deg.C and hot-rolled into thick steel plate. At this time, the cumulative draft at 700 to 850 deg.C is regulated to 30-80%. Then, the steel plate is heated to a temp. between Ac3 and 850 deg.C and cooled to undergo primary hardening treatment and further heated to a temp. between the Ac1 and the Ac3 point and cooled to undergo secondary hardening treatment. After hardening, the steel plate is tempered at a temp. not higher than (Ac1 +50) deg.C and cooled at a rate of >=2 deg.C/sec.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、板厚30mmを超え
る、低温靱性に優れた高強度含Ni厚鋼板の製造方法に関
し、とくに板厚40mm以上で、液化天然ガスの貯蔵用タン
クにおけるような、−160 ℃以下の極低温での使用にお
いてもなお靱性を失うことのない、低温靱性に優れた高
強度含Ni厚鋼板の有利な製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength, Ni-containing steel sheet having a plate thickness of more than 30 mm and excellent in low-temperature toughness, and particularly in a tank for storing liquefied natural gas having a plate thickness of 40 mm or more. , An advantageous method for producing a high-strength Ni-containing thick steel sheet excellent in low-temperature toughness, which does not lose toughness even when used at extremely low temperatures of −160 ° C. or lower.

【0002】[0002]

【従来の技術】近年のエネルギー需要の増大、あるいは
原子力発電の安全性に対する危惧などを背景として、ク
リーンなエネルギー源である液化天然ガス(以下LNG
と示す)の需要が急増している。これに伴って、LNG
を貯蔵するためのタンクの建設が促進されている。この
LNG貯蔵用タンクには、当然圧力容器用鋼板を使用す
るが、タンク内は極低温雰囲気に晒されるため、とくに
低温靱性に優れた材料が推奨される。従って、LNG貯
蔵用タンクには、Ni鋼、中でも9wt%Ni鋼鋼板が多用さ
れている。
BACKGROUND OF THE INVENTION Liquefied natural gas (hereinafter referred to as LNG), which is a clean energy source, against the backdrop of the recent increase in energy demand and fear of safety of nuclear power generation.
Demand) is rapidly increasing. Along with this, LNG
Construction of tanks for storing water is being promoted. A steel plate for a pressure vessel is naturally used for this LNG storage tank, but since the inside of the tank is exposed to an extremely low temperature atmosphere, a material particularly excellent in low temperature toughness is recommended. Therefore, Ni steel, especially 9 wt% Ni steel plate, is frequently used for the LNG storage tank.

【0003】また、LNGの貯蔵効率を高めるためにタ
ンクの容量を増大させる傾向にあり、LNG貯蔵タンク
用材に供する9wt%Ni鋼鋼板には、その板厚が在来鋼板
の上限である30mmを超える、とりわけ40mm以上の厚みを
有するものが必要になってきている。低温靱性の優れた
9wt%Ni鋼鋼板の製造方法に関しては、多くの提案がな
されている。例えば特公昭47−23317 号公報や特公平4
−40411 号公報には、Ac1〜Ac3変態点間の二相域に加
熱焼入れした後Ac1変態点以下で焼戻す低温靱性の改善
方法が提案されている。
In addition, there is a tendency to increase the capacity of the tank in order to increase the storage efficiency of LNG, and the thickness of the 9 wt% Ni steel sheet used for LNG storage tank material is 30 mm, which is the upper limit of the conventional steel sheet. There is a need for a material having a thickness exceeding 40 mm, particularly 40 mm or more. Many proposals have been made regarding a method for producing a 9 wt% Ni steel sheet having excellent low temperature toughness. For example, Japanese Patent Publication No. 47-23317 and Japanese Patent Publication No. 4
JP-A-40411 proposes a method of improving low temperature toughness in which the material is heated and quenched in the two-phase region between the Ac 1 to Ac 3 transformation points and then tempered below the Ac 1 transformation point.

【0004】しかしながらこれらの技術は、板厚が30mm
以下の鋼板には有効であるが、板厚が30mmを超えるよう
な厚鋼板に同様に適用することは難しい。すなわち、板
厚が30mmを超える厚さになると、圧延による結晶粒の微
細化が難しくなるとともに、焼入れ冷却時の冷却速度が
必然的に小さくなるなどの理由から、強度および靱性が
ともに低下するという問題がある。
However, these techniques have a plate thickness of 30 mm.
Although it is effective for the following steel plates, it is difficult to apply it similarly to thick steel plates having a plate thickness of more than 30 mm. That is, when the plate thickness is more than 30 mm, it is difficult to refine the crystal grains by rolling, and the cooling rate during quenching cooling is necessarily reduced, so that both strength and toughness decrease. There's a problem.

【0005】また、特開平3−264617号公報には、スラ
ブを 800〜1000℃の比較的低温に加熱後熱間圧延を施
し、次いで焼入れ、二相域加熱の中間焼入れを施したの
ちAc1点以下で焼戻し処理を施すことによって、高降伏
強さを有する9wt%Ni鋼厚鋼板を製造する方法が提案さ
れている。特公昭57−3739号公報には、Sを0.010 %以
下に下げ、CaまたはCa合金で処理し、Ca/S比を0.05〜
1.50の範囲とすることにより、高い低温靱性をもつ低温
用Ni鋼が提案されている。
Further, in Japanese Patent Laid-Open No. 3-264617, the slab is heated to a relatively low temperature of 800 to 1000 ° C., hot-rolled, then quenched, and then subjected to intermediate quenching of two-phase region heating, and then Ac 1 A method has been proposed for producing a 9 wt% Ni steel thick steel sheet having high yield strength by performing a tempering treatment at a temperature not higher than the point. Japanese Patent Publication No. 57-3739 discloses that S is reduced to 0.010% or less, treated with Ca or a Ca alloy, and the Ca / S ratio is 0.05 to
By setting the range to 1.50, a low temperature Ni steel having high low temperature toughness has been proposed.

【0006】特公昭62−1453号公報には、P:0.010 wt
%以下、S:0.005 wt%以下とし、あるいはさらにCa、
REM 等を含有させ、1050〜1200℃に加熱し制御圧延後急
冷し、焼戻す亀裂開口変位量の優れた含Ni低温用鋼の製
造方法が開示されている。特開昭58−73717 号公報に
は、低Ni鋼にCa、Laを添加し、二相域焼入れを含む二段
焼入れ・焼戻し処理による低温靱性を高める技術が提案
されている。
JP-B-62-1453 discloses that P: 0.010 wt.
% Or less, S: 0.005 wt% or less, or further Ca,
Disclosed is a method for producing a low-temperature steel containing Ni, which contains REM and the like, is heated to 1050 to 1200 ° C., is controlled-rolled, is then rapidly cooled, and is excellent in temper displacement of crack opening. Japanese Unexamined Patent Publication (Kokai) No. 58-73717 proposes a technique in which Ca and La are added to low Ni steel to enhance low temperature toughness by a two-step quenching / tempering treatment including quenching in the two-phase region.

【0007】特開平6−44597 号公報には、Tiを添加し
た含Ni鋼スラブを熱間圧延後直ちに焼入れ、しかるのち
にAc1〜Ac3間の二相域に加熱し焼入れ、Ac1点以下で
焼戻す、Ni鋼の低温靱性の改善方法が提案されている。
特開昭63−290246号公報には、Tiを添加した溶接部靱性
に優れた低温用鋼が提案されている。
In Japanese Patent Laid-Open No. 6-44597, a Ni-containing steel slab added with Ti is quenched immediately after hot rolling, and then heated to a two-phase region between Ac 1 and Ac 3 and quenched, and Ac 1 point A method for improving the low temperature toughness of Ni steel, which is tempered below, has been proposed.
Japanese Unexamined Patent Publication (Kokai) No. 63-290246 proposes a low temperature steel to which Ti is added and which has excellent toughness at the welded portion.

【0008】特開平6−240348号公報には、P、S量を
低減したスラブを熱間圧延により厚鋼板としたのち、 8
00〜900 ℃に加熱焼入れ後Ac3〜800 ℃に加熱したの
ち、再度焼入れし、Ac1点以上で焼戻すNi鋼の製造方法
が提案されている。しかしながら、上記した技術でも、
板厚が厚く高強度を必要とする場合には、低温靱性はま
だ不十分で安定して高靱性を得られないところに問題を
残していた。
In Japanese Unexamined Patent Publication No. 6-240348, a slab having a reduced amount of P and S is formed into a thick steel plate by hot rolling.
A method for producing Ni steel has been proposed in which after heating and quenching to 00 to 900 ° C., heating to Ac 3 to 800 ° C., quenching again, and tempering at Ac 1 point or more. However, even with the technology described above,
When the plate thickness is large and high strength is required, the low temperature toughness is still insufficient and a problem remains where stable and high toughness cannot be obtained.

【0009】[0009]

【発明が解決しようとする課題】本発明は、高い降伏強
さおよび優れた低温靱性を有する板厚30mmを超える含Ni
厚鋼板の製造方法を提案することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a Ni-containing sheet having a thickness of more than 30 mm, which has a high yield strength and excellent low temperature toughness.
The purpose is to propose a method for manufacturing thick steel plates.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記課題
を有利に解決するため、9%Ni鋼に種々の成分を添加
し、降伏強さおよび低温靱性に及ぼす影響を調査した結
果、C、Si含有量を低減し、Nbを添加することにより、
強度および靱性が従来より大幅に改善されるという新規
な知見を得た。
In order to advantageously solve the above problems, the present inventors have added various components to 9% Ni steel and investigated the effects on yield strength and low temperature toughness. By reducing the C and Si contents and adding Nb,
We have obtained a new finding that the strength and toughness are significantly improved from the conventional ones.

【0011】さらに、Sを著しく低減するとともにCaお
よび/または REMを添加し、あわせてスラブ高温加熱を
実施することにより、靱性に悪影響を及ぼすMnS の形成
を防ぎ、低温靱性が著しく向上することを知見した。本
発明は、このような新しい知見をもとに構成したもので
ある。すなわち本発明は、C:0.03〜0.06wt%、Si:0.
20wt%以下、Mn:0.30〜0.70wt%、Ni: 7.5〜12.0wt
%、Al:0.01〜0.05wt%、Nb: 0.005〜0.030 wt%、
N:0.005 wt%以下、P:0.005 wt%以下、S:0.002
wt%以下を含み、かつ、Ca:0.0005〜0.005 wt%および
REM: 0.001〜0.03wt%のうち1種または2種を含有
し、残部がFeおよび不可避的不純物からなる鋼スラブ
を、1100〜1300℃に加熱後、 700〜850 ℃における累積
圧下率が30〜80%となる熱間圧延を施し厚鋼板とし、次
いでAc3点〜850 ℃の温度域に加熱し冷却する1次焼入
れ処理を施し、さらにAc1点〜Ac3点の温度範囲に加熱
し冷却する2次焼入れ処理を施したのち、Ac1点+50℃
以下での焼戻し処理を行うことを特徴とする低温靱性に
優れた高強度含Ni厚鋼板の製造方法である。
Further, by significantly reducing S and adding Ca and / or REM, and simultaneously performing high temperature heating of the slab, formation of MnS which adversely affects toughness is prevented and low temperature toughness is remarkably improved. I found out. The present invention is constructed based on such new knowledge. That is, in the present invention, C: 0.03 to 0.06 wt%, Si: 0.
20 wt% or less, Mn: 0.30 to 0.70 wt%, Ni: 7.5 to 12.0 wt
%, Al: 0.01 to 0.05 wt%, Nb: 0.005 to 0.030 wt%,
N: 0.005 wt% or less, P: 0.005 wt% or less, S: 0.002
wt% or less, and Ca: 0.0005 to 0.005 wt% and
REM: A steel slab containing 1 or 2 of 0.001 to 0.03 wt% and the balance of Fe and unavoidable impurities is heated to 1100 to 1300 ° C and the cumulative rolling reduction at 700 to 850 ° C is 30 to Hot-rolled to 80% to make a thick steel plate, then subjected to primary quenching treatment by heating and cooling in the temperature range of Ac 3 points to 850 ° C, and further heating and cooling in the temperature range of Ac 1 point to Ac 3 points. After carrying out the secondary quenching treatment, Ac 1 point + 50 ° C
A method for producing a high-strength Ni-containing thick steel sheet excellent in low-temperature toughness, characterized by performing the following tempering treatment.

【0012】また本発明は、前記焼戻し処理後に冷却速
度2℃/sec 以上となる冷却処理を施すことを特徴とす
る低温靱性に優れた高強度含Ni厚鋼板の製造方法であ
る。また、前記鋼スラブは、さらにV: 0.005〜0.030
wt%を含有してもよく、またさらにCu:0.05〜0.30wt
%、Mo:0.02〜0.20wt%、Cr:0.05〜0.30wt%のうち少
なくとも1種以上を含有してもよい。
The present invention is also a method for producing a high-strength Ni-containing thick steel sheet having excellent low-temperature toughness, which is characterized by performing a cooling treatment at a cooling rate of 2 ° C./sec or more after the tempering treatment. Further, the steel slab further has V: 0.005 to 0.030.
wt% may be contained, and further Cu: 0.05 to 0.30 wt
%, Mo: 0.02 to 0.20 wt% and Cr: 0.05 to 0.30 wt%, at least one kind may be contained.

【0013】[0013]

【発明の実施の形態】以下、この発明について詳細に説
明する。まず、この発明においてスラブの成分組成を限
定した理由について述べる。 C:0.03〜0.06wt% Cは強度を確保するのに0.03wt%以上は必要であるが、
0.06wt%を超えると母材およびHAZの靱性低下をまね
くため、0.03〜0.06wt%の範囲とする。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. First, the reason for limiting the component composition of the slab in the present invention will be described. C: 0.03 to 0.06 wt% C requires 0.03 wt% or more to secure the strength,
If it exceeds 0.06 wt%, the toughness of the base material and HAZ will be deteriorated, so the range is 0.03 to 0.06 wt%.

【0014】Si:0.20wt%以下 Siは強度の上昇に寄与するため、好ましくは0.01wt%以
上は必要であるが、多量の含有は靱性の低下をもたらす
ため、0.20wt%以下とする。靱性の点からさらに好まし
くは、0.02〜0.15wt%である。 Mn:0.30〜0.70wt% Mnも強度の上昇に寄与する成分であり、強度確保の点か
ら0.30wt%以上の含有が必要であるが、0.70wt%を超え
ると靱性の低下をまねくため、0.30〜0.70wt%の範囲と
する。さらに好ましくは、0.50〜0.60wt%である。
Si: 0.20 wt% or less Si contributes to the increase in strength, so 0.01 wt% or more is preferable. However, since a large amount of content causes a decrease in toughness, it is 0.20 wt% or less. From the viewpoint of toughness, it is more preferably 0.02 to 0.15 wt%. Mn: 0.30 to 0.70 wt% Mn is also a component that contributes to the increase in strength, and it is necessary to contain 0.30 wt% or more from the viewpoint of securing strength, but if it exceeds 0.70 wt%, toughness decreases, so 0.30 The range is to 0.70wt%. More preferably, it is 0.50 to 0.60 wt%.

【0015】Ni: 7.5〜12.0wt% Niは鋼に低温靱性を付与すると同時に、焼入れ処理によ
りマルテンサイトを主体とする組織を得るために含有さ
せる成分であり、 7.5wt%以上の含有が必要であるが、
12.0wt%を超えて含有してもその効果は飽和するため、
12.0wt%を上限とする。
Ni: 7.5 to 12.0 wt% Ni is a component contained in order to impart low temperature toughness to steel and at the same time to obtain a structure mainly composed of martensite by quenching, and it is necessary to contain 7.5 wt% or more. But
Even if the content exceeds 12.0wt%, its effect will be saturated,
The upper limit is 12.0wt%.

【0016】Al:0.01〜0.05wt% Alは脱酸剤として含有され、また鋼中でAlN となって結
晶粒を微細化する効果を有し、この効果を得るためには
0.01wt%以上の含有が必要であるが、0.05wt%を超える
と靱性の低下をまねくため、0.01〜0.05wt%の範囲とす
る。 Nb: 0.005〜0.030 wt% Nbは本発明において最も重要な成分であって、強度およ
び低温靱性のいずれをも上昇する効果があり、とくに溶
接熱影響部(HAZ)の靱性向上に寄与するところが大
である。Nb含有量が 0.005〜0.030 wt%の範囲でHAZ
の靱性向上が顕著であることから、Nb含有量は 0.005〜
0.030 wt%の範囲に限定した。なお、さらに好ましくは
0.01〜0.025 wt%の範囲である。
Al: 0.01-0.05 wt% Al is contained as a deoxidizing agent and has the effect of becoming AlN in steel to refine the crystal grains. To obtain this effect,
The content is required to be 0.01 wt% or more, but if it exceeds 0.05 wt%, toughness may be deteriorated, so the content is made 0.01 to 0.05 wt%. Nb: 0.005 to 0.030 wt% Nb is the most important component in the present invention and has the effect of increasing both strength and low temperature toughness, and particularly contributes to the improvement of the toughness of the heat affected zone (HAZ). Is. HAZ in the Nb content range of 0.005 to 0.030 wt%
Nb content is 0.005〜
It was limited to the range of 0.030 wt%. Furthermore, more preferably
It is in the range of 0.01 to 0.025 wt%.

【0017】P:0.005 wt%以下 Pは靱性を、とくに溶接熱影響部の靱性を低下させる成
分であるためできるだけ低減するが、0.005 wt%以下ま
で許容できるため、P含有量は0.005 wt%以下とする。 S:0.002 wt%以下 SはMnS の形成により靱性を、とくに鋼板母材の靱性を
低下する成分であるためできるだけ低減する。本発明の
鋼板では、−196 ℃の衝撃試験においても延性破壊が支
配的となる。延性破壊エネルギーを高めるためには、介
在物の量の低減や形態制御が必要であることは知られて
いる。本発明ではSの低減によりMnS 量の低減をはか
り、低温靱性を向上させる。そのため、S含有量は0.00
2 wt%以下とする。
P: 0.005 wt% or less P reduces the toughness as much as possible because it is a component that lowers the toughness of the weld heat affected zone. However, since P is 0.005 wt% or less, the P content is 0.005 wt% or less. And S: 0.002 wt% or less S is a component that lowers the toughness due to the formation of MnS, especially the toughness of the steel sheet base material, and therefore reduces it as much as possible. In the steel sheet of the present invention, ductile fracture becomes dominant even in an impact test at -196 ° C. It is known that in order to increase the ductile fracture energy, it is necessary to reduce the amount of inclusions and control the morphology. In the present invention, the amount of MnS is reduced by reducing S, and the low temperature toughness is improved. Therefore, the S content is 0.00
2 wt% or less.

【0018】また、後述するように、スラブ加熱温度を
高温とし、MnS の溶解を促進するとともに、さらにCa、
REM の添加によりMnS の形成を防止している。 N:0.005 wt%以下 Nは固溶状態では靱性を、とくに溶接熱影響部の靱性を
低下させるが、AlN となり結晶粒を微細化する作用も有
している。したがって、Nは結晶粒が粗大しない範囲で
できるだけ低減する。 0.005wt%以下、好ましくは 0.0
05〜0.003 wt%であれば粒の粗大化は生じないため、N
含有量は 0.005wt%以下とした。
As will be described later, the slab heating temperature is set to a high temperature to accelerate the dissolution of MnS, and
The addition of REM prevents the formation of MnS. N: 0.005 wt% or less N reduces the toughness in the solid solution state, particularly the toughness of the weld heat affected zone, but also acts as AlN to refine the crystal grains. Therefore, N is reduced as much as possible within the range where the crystal grains are not coarse. 0.005 wt% or less, preferably 0.0
If it is 05 to 0.003 wt%, grain coarsening does not occur, so N
The content was 0.005 wt% or less.

【0019】Ca:0.0005〜0.005 wt%、 REM: 0.001〜
0.03wt%のうちから選ばれた1種または2種 これらの元素は本発明の特徴のひとつである。本発明で
はS含有量を0.002 wt%以下に低減するが、このような
微量のS含有量であってもMnS 系介在物は形成され、こ
れが鋼板の圧延方向に伸長して低温靱性低下の原因とな
る。本発明では、低温靱性向上のため、Caおよび/また
ははREM を添加する。REM はCa、La、Yのいずれか1種
又は2種以上として添加してよい。Ca、REM は鋼中に高
融点硫化物を形成し、微細で等軸状あるいは球状の介在
物となり、圧延時に伸長することがない。REM は硫化物
系介在物の形態制御に用いることが多く、Caは硫化物よ
りもむしろ酸化物系介在物に用いることが多い。本発明
におけるような低S材では、硫化物系介在物の量がわず
かになるため、アルミナのような酸化物系介在物の影響
度が増してくる。したがって本発明のように極めてSを
低減した場合にはCa添加の効果が大きい。
Ca: 0.0005 to 0.005 wt%, REM: 0.001 to
One or two selected from 0.03 wt% These elements are one of the features of the present invention. In the present invention, the S content is reduced to 0.002 wt% or less, but even with such a small amount of S content, MnS-based inclusions are formed, which extend in the rolling direction of the steel sheet and cause a decrease in low temperature toughness. Becomes In the present invention, Ca and / or REM are added to improve the low temperature toughness. REM may be added as any one kind or two or more kinds of Ca, La and Y. Ca and REM form high melting point sulfides in the steel and become fine, equiaxed or spherical inclusions, which do not elongate during rolling. REM is often used to control the morphology of sulfide inclusions, and Ca is often used for oxide inclusions rather than sulfides. In the low S material as in the present invention, the amount of sulfide inclusions is small, so that the degree of influence of oxide inclusions such as alumina increases. Therefore, when S is extremely reduced as in the present invention, the effect of Ca addition is great.

【0020】このような効果を得るためには、Caは0.00
05wt%以上、REM は0.001wt %以上の添加が必要とな
る。しかし、Caは0.005 wt%を超えると、又 REMは0.03
wt%を超えると介在物の数が増加するため、Caは0.005
wt%を、 REMは0.03wt%を上限とした。なお、好ましい
範囲は、Ca:0.0005〜0.003 wt%、REM :0.002 〜0.01
wt%である。
To obtain such an effect, Ca is 0.00
It is necessary to add more than 05wt% and 0.001wt% of REM. However, when Ca exceeds 0.005 wt%, REM is 0.03
Since the number of inclusions increases when wt% is exceeded, Ca is 0.005
The upper limit of wt% is 0.03 wt% for REM. The preferable ranges are: Ca: 0.0005 to 0.003 wt%, REM: 0.002 to 0.01
wt%.

【0021】本発明では、上記組成に加えて必要に応じ
下記元素を添加できる。 V: 0.005〜0.030 wt% Vは析出硬化による強度の上昇に有効な成分で、さら
に、靱性の向上にも効果を有している。Vは0.005 wt%
以上で有効であるが、0.030 wt%を超えると溶接部の靱
性が低下するため、0.030 wt%を上限とする。
In the present invention, the following elements can be added, if necessary, in addition to the above composition. V: 0.005 to 0.030 wt% V is a component effective in increasing the strength by precipitation hardening, and also has an effect in improving the toughness. V is 0.005 wt%
The above is effective, but if the content exceeds 0.030 wt%, the toughness of the welded part deteriorates, so 0.030 wt% is the upper limit.

【0022】Cu:0.05〜0.30wt%、Mo:0.02〜0.20wt
%、Cr:0.05〜0.30wt%のうちから選ばれた1種以上 Cu、MoおよびCrはおのおの固溶硬化により強度を上昇さ
せるのに有効な成分である。Cuでは0.05wt%、Moでは0.
02wt%、Crでは0.05wt%以上含有することにより効果が
認められる。しかし、Cuでは0.30wt%、Moでは0.20wt
%、Crでは0.30wt%を超えると靱性が低下するため、こ
れらの値を上限とする。
Cu: 0.05 to 0.30 wt%, Mo: 0.02 to 0.20 wt
%, Cr: One or more selected from 0.05 to 0.30 wt% Cu, Mo and Cr are effective components for increasing the strength by solid solution hardening. Cu is 0.05 wt% and Mo is 0.
The effect is recognized when the content of 02 wt% and Cr is 0.05 wt% or more. However, 0.30 wt% for Cu and 0.20 wt% for Mo
%, And Cr, if over 0.30 wt%, the toughness decreases, so these values are made upper limits.

【0023】次に、熱間圧延および熱処理条件の各限定
理由を述べる。上記の成分に調整した鋼スラブは、1100
〜1300℃に加熱するが、この温度域に限定したのは、ス
ラブ中のMnS を溶解させるためと、次工程の圧延工程に
おいて結晶粒を微細化するためであり、それには1100℃
以上の加熱が必要であり、一方1300℃を超えるとγ粒が
著しく粗大化し、圧延後の結晶粒が微細化しない。MnS
の固溶を十分に行うために、好ましくは1200〜1300℃に
加熱する。
Next, the reasons for limiting each of the hot rolling and heat treatment conditions will be described. The steel slab adjusted to the above composition is 1100
It is heated to ~ 1300 ℃, but the reason for limiting this temperature range is to dissolve MnS in the slab and to refine the crystal grains in the rolling process of the next process.
The above heating is required, while if it exceeds 1300 ° C., the γ grains are remarkably coarsened and the crystal grains after rolling are not refined. MnS
In order to sufficiently perform the solid solution of (1), it is preferably heated to 1200 to 1300 ° C.

【0024】S含有量の減少に伴い、MnS の固溶温度は
低下する。例えば、Mn: 0.6%、S: 0.001%では固溶
温度は約1200℃となる。したがって、1200℃以上に加熱
すれば、本発明のS含有量範囲であればほぼ完全にMnS
は固溶し、有害な粗大MnS はなくなる。また、Niなど合
金元素量が高くなると、凝固偏析に起因するNi、Mn等の
合金元素の偏析帯が存在し、圧延により延ばされ、層状
に積み重なった不均一な組織となる。とくに、厚肉化に
伴い圧下率が減少するため、上記した層の幅と各層間の
間隔が増大し、組織の不均一による悪影響が現れやすく
なる。スラブ加熱温度を高くすることは、拡散による偏
析帯の均質化を図り、靱性への悪影響を軽減できるとい
う効果もある。
The solid solution temperature of MnS decreases as the S content decreases. For example, when Mn: 0.6% and S: 0.001%, the solid solution temperature is about 1200 ° C. Therefore, if heated to 1200 ° C. or higher, the MnS content is almost completely within the S content range of the present invention.
Dissolves and eliminates harmful coarse MnS. In addition, when the amount of alloying elements such as Ni increases, segregation bands of alloying elements such as Ni and Mn due to solidification segregation are present, and they are elongated by rolling to form a non-uniform structure in which they are stacked in layers. In particular, since the rolling reduction decreases as the thickness increases, the width of the layers and the spacing between the layers increase, and the adverse effect due to the nonuniformity of the structure is likely to appear. Increasing the slab heating temperature also has the effect of homogenizing the segregation zone due to diffusion and reducing the adverse effect on toughness.

【0025】次に、スラブは熱間圧延を施され、板厚が
30mmを超える厚鋼板に仕上げられる。ここで、熱間圧延
は、 700〜850 ℃での累積圧下率を30〜80%で行う必要
がある。 700℃未満の温度域における圧延では靱性を阻
害する集合組織が発達し、また 850℃を超える温度域に
おける圧延ではγ粒の再結晶が瞬時に起こるため、圧延
による結晶粒の微細化が達成できない。なお、仕上げ温
度は、圧延生産性の観点から 700〜800 ℃とすることが
好ましい。
Next, the slab is subjected to hot rolling to reduce the plate thickness.
It is finished in thick steel plate over 30 mm. Here, the hot rolling needs to be carried out at a cumulative rolling reduction of 30 to 80% at 700 to 850 ° C. Rolling in the temperature range below 700 ° C develops a texture that hinders toughness, and in the temperature range above 850 ° C, recrystallization of γ grains occurs instantly, so grain refinement by rolling cannot be achieved. . The finishing temperature is preferably 700 to 800 ° C from the viewpoint of rolling productivity.

【0026】700〜850 ℃の範囲での累積圧下率が30%
未満では、結晶粒の微細化が達成できない。また、累積
圧下率が80%を超えると、異方性が強くなりすぎる。こ
のようなことから、 700〜850 ℃の累積圧下率を30〜80
%に限定した。上記の圧延を経た鋼板は、一旦冷却され
た後、Ac3点〜850 ℃の温度域に加熱した後冷却する1
次焼入れ処理を施したのち、さらにAc1点〜Ac3点の温
度域に加熱した後冷却する2次焼入れ処理を施し、次い
でAc1+50℃以下での焼戻し処理を行う。
Cumulative rolling reduction in the range of 700-850 ° C is 30%
If the amount is less than 1, the grain size cannot be reduced. If the cumulative rolling reduction exceeds 80%, the anisotropy becomes too strong. From this, the cumulative rolling reduction of 700 to 850 ℃ is 30 to 80
%. The steel sheet that has undergone the above rolling is once cooled, then heated to a temperature range of Ac 3 point to 850 ° C. and then cooled 1.
After the secondary quenching treatment is performed, the secondary quenching treatment is further performed in which the material is heated in the temperature range of Ac 1 point to Ac 3 point and then cooled, and then the tempering treatment at Ac 1 + 50 ° C. or less is performed.

【0027】ここで、1次焼入れ処理は、微細なマルテ
ンサイト組織を生成して、後工程の熱処理と組み合わせ
ることで優れた強度および靱性を得るために行われる。
従って、均一なオーステナイト組織から冷却する必要が
あり、Ac3点以上に加熱する必要があるが、 850℃を超
える温度ではオーステナイト粒の粗大化が生じて靱性が
低下するため、加熱温度をAc3点〜850 ℃の範囲に限定
する。なお、加熱後の冷却速度は、 1.0℃/sec 以上と
することが好ましい。
Here, the primary quenching treatment is carried out in order to form a fine martensite structure and to obtain excellent strength and toughness by combining it with a heat treatment in a subsequent step.
Therefore, it is necessary to cool from a uniform austenite structure, and it is necessary to heat it to the Ac 3 point or higher. However, at temperatures above 850 ° C, austenite grains become coarse and toughness decreases, so the heating temperature is set to Ac 3 Limit the temperature to 850 ℃. The cooling rate after heating is preferably 1.0 ° C./sec or more.

【0028】引き続いて行われる2次焼入れ処理は、焼
戻し処理後に安定な析出オーステナイトを多量に生成さ
せるために行うものである。すなわち、鋼板を二相域に
加熱することによって、フェライトとオーステナイトの
二相組織を生成させ、これを急冷することでフェライト
と高合金を含んだマルテンサイト組織を生成させるので
ある。そのため、加熱温度はAc1点〜Ac3点の温度域と
する必要がある。なお、加熱後の冷却速度は、 1.0℃/
sec 以上とすることが好ましい。
The subsequent secondary hardening treatment is carried out in order to generate a large amount of stable precipitated austenite after the tempering treatment. That is, by heating the steel sheet in the two-phase region, a two-phase structure of ferrite and austenite is generated, and by rapidly cooling this, a martensite structure containing ferrite and a high alloy is generated. Therefore, it is necessary to set the heating temperature in the temperature range of Ac 1 point to Ac 3 point. The cooling rate after heating is 1.0 ° C /
It is preferably set to sec or more.

【0029】その後の焼戻し処理は、上記したマルテン
サイト組織の転位密度を低下させると同時に、安定な析
出オーステナイトを生成するために行われるものであっ
て、微細なオーステナイトの析出を得るためにAc1+50
℃以下の温度域で行われる必要がある。なお、下限は焼
戻し効果を確保するため、Ac1−45℃以上とすることが
好ましい。
The subsequent tempering treatment is carried out in order to reduce the dislocation density of the above-mentioned martensite structure and at the same time to produce stable precipitated austenite. In order to obtain fine austenite precipitation, Ac 1 +50
It needs to be performed in a temperature range of ℃ or less. The lower limit is preferably Ac 1 -45 ° C or higher in order to secure the tempering effect.

【0030】また、上記の焼戻し処理後にその温度から
2℃/sec 以上の速度で冷却を行うと、さらなる靱性の
改善を図ることが可能である。冷却速度が遅いとPの粒
界偏析あるいはFeリン化物の生成を招いて、これらが靱
性に悪影響を及ぼすことになる。焼戻し後の冷却速度を
2℃/sec 以上にしたときの効果は、とくに板厚が40mm
以上の鋼板を対象とする場合に顕著であり、これは30mm
未満の鋼板に対して通常行われる焼戻し後の空冷処理で
は、冷却速度が 0.1℃/sec 以下と極端に小さくなり、
40mm以上の厚板では靱性の向上が望めないことによる。
Further, if the temperature is cooled at a rate of 2 ° C./sec or more after the above tempering treatment, the toughness can be further improved. If the cooling rate is slow, segregation of P grain boundaries or formation of Fe phosphide is caused, which adversely affects toughness. The effect when the cooling rate after tempering is 2 ℃ / sec or more, especially when the plate thickness is 40 mm
This is remarkable when using the above steel plates, which is 30 mm.
In the air-cooling process after tempering that is usually performed for steel sheets of less than 0.1%, the cooling rate is extremely low at 0.1 ° C / sec or less,
This is because improvement of toughness cannot be expected for thick plates of 40 mm or more.

【0031】なお、本発明のスラブは、造塊−分塊でも
連続鋳造いずれでも好適に製造できる。以上説明したよ
うに、本発明は、(イ)S含有量を著しく低減する、
(ロ)Ca、REM を添加する介在物形態制御を行い、
(ハ)スラブを高温加熱する3つの手段を合わせ用いる
ことにより、高い靱性を達成するもので、これら3つの
手段の複合効果によって、より顕著な効果が得られるも
のである。
The slab of the present invention can be suitably manufactured by either ingot-segmentation or continuous casting. As described above, the present invention (i) significantly reduces the S content,
(B) Control the inclusion morphology by adding Ca and REM,
(C) High toughness is achieved by using three means for heating the slab at a high temperature, and a more remarkable effect is obtained by the combined effect of these three means.

【0032】[0032]

【実施例】以下、実施例をもとに説明する。表1に示す
化学組成の連鋳製鋼スラブを、表2に示す熱間圧延条件
(スラブ加熱温度、累積圧下率、仕上げ温度)で、板厚
30〜60mmの厚鋼板とした。その後、表2に示す熱処理条
件で、第1次焼入れ、第2次焼入れおよび焼戻し処理を
行った。焼戻し後の冷却速度を15〜1℃/sec に変更し
冷却した。
EXAMPLES Examples will be described below. The continuous cast steel slabs having the chemical composition shown in Table 1 were subjected to hot rolling conditions (slab heating temperature, cumulative rolling reduction, finishing temperature) shown in Table 2 under the plate thickness.
A thick steel plate of 30 to 60 mm was used. Then, under the heat treatment conditions shown in Table 2, primary quenching, secondary quenching, and tempering were performed. The cooling rate after tempering was changed to 15 to 1 ° C / sec for cooling.

【0033】上記条件で処理した厚鋼板について、引張
特性(降伏強さ、引張強さ、伸び)およびシャルピー衝
撃試験の−196 ℃における吸収エネルギーを求め、さら
に図1に示す溶接熱サイクルを与え、再現溶接熱影響部
(HAZ)を作製し、−196℃におけるシャルピー吸収
エネルギーを求めた。これらの結果を表2に併記する。
The tensile properties (yield strength, tensile strength, elongation) and the absorbed energy at -196 ° C. of the Charpy impact test of the thick steel plate treated under the above conditions were determined, and the welding heat cycle shown in FIG. A reproduced welding heat affected zone (HAZ) was produced and the Charpy absorbed energy at -196 ° C was determined. Table 2 also shows these results.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】表2に示すように、鋼板No. 1〜14は、化
学組成ならびに圧延および熱処理条件のいずれもがこの
発明を満足するため、母材およびHAZともに優れた低
温靱性が得られた。なかでも焼戻し処理後の冷却速度を
2℃/sec 以上としたことにより、一層優れた低温靱性
が得られた。また、V、Cu、Mo、Crを含む鋼板No. 8〜
11は強度が上昇している。
As shown in Table 2, the steel sheets Nos. 1 to 14 have excellent low temperature toughness in both the base metal and the HAZ because both the chemical composition and the rolling and heat treatment conditions satisfy the present invention. Above all, by setting the cooling rate after the tempering treatment to 2 ° C./sec or more, more excellent low temperature toughness was obtained. In addition, steel plate No. 8 containing V, Cu, Mo, Cr
11 has increased strength.

【0038】これに対し、鋼板No.15 はCが少ないため
強度が不足し、鋼板No.16 および17はCあるいはSiが多
いために靱性が劣り、鋼板No. 18、21、22はNbが少ない
ため、焼戻し後の冷却速度を変化しても強度および靱性
が低く、鋼板No.19 および20はNbあるいはVが多いため
HAZの靱性が低い。鋼板No.26 〜28はCu、MoまたはCr
が多く、靱性が低下した。鋼板No.23 はCaまたはREM を
含まないため靱性が低く、鋼板No.24 および25はCaまた
はREM が多いため靱性が低い。鋼板No.33 はSが高いた
め靱性が低い。また、鋼板No.31 はスラブ加熱温度が低
いため靱性が低く、鋼板No.32 はスラブ加熱温度が高い
ため母材の靱性が低い。鋼板No.34 、35は焼入れ温度が
高すぎるため靱性が低い。鋼板No.36 は熱間圧延の累積
圧下率が低いため靱性が低下した。鋼No.29 、30はTiが
添加されているためHAZの靱性が低下した。
On the other hand, Steel plate No. 15 lacks strength because it has a small amount of C, and Steel plates No. 16 and 17 have poor toughness because they have a large amount of C or Si. Steel plates No. 18, 21, and 22 have Nb. Since the amount is small, the strength and toughness are low even if the cooling rate after tempering is changed, and the steel plates No. 19 and 20 have a large amount of Nb or V, so that the HAZ has low toughness. Steel sheets No. 26 to 28 are Cu, Mo or Cr
However, the toughness decreased. Steel plate No. 23 has low toughness because it does not contain Ca or REM, and steel plates No. 24 and 25 have low toughness because they contain much Ca or REM. Steel plate No. 33 has a high S and therefore has low toughness. Steel plate No. 31 has low toughness due to low slab heating temperature, and steel plate No. 32 has low toughness due to high slab heating temperature. Steel plates No. 34 and 35 have low toughness because the quenching temperature is too high. Steel plate No. 36 had low toughness due to low cumulative rolling reduction. Steels Nos. 29 and 30 contained Ti, so the HAZ toughness decreased.

【0039】[0039]

【発明の効果】この発明に従って製造された含Ni厚鋼板
は、優れた母材強度と低温靱性を有するばかりでなく、
HAZの低温靱性にも優れているため、板厚が30mmを超
える、とりわけ40mm以上の厚鋼板においても、実用に耐
える強度および低温靱性を保証し得る。
The Ni-containing thick steel plate produced according to the present invention not only has excellent base metal strength and low temperature toughness, but also
Since HAZ is also excellent in low-temperature toughness, strength and low-temperature toughness that can be practically used can be guaranteed even in a steel plate having a plate thickness of more than 30 mm, particularly 40 mm or more.

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶接熱サイクルを示す図である。FIG. 1 is a diagram showing a welding heat cycle.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 C:0.03〜0.06wt%、Si:0.20wt%以
下、Mn:0.30〜0.70wt%、Ni: 7.5〜12.0wt%、Al:0.
01〜0.05wt%、Nb: 0.005〜0.030 wt%、N:0.005 wt
%以下、P:0.005 wt%以下、S:0.002 wt%以下を含
み、かつ、Ca:0.0005〜0.005 wt%および REM: 0.001
〜0.03wt%のうち1種または2種を含有し、残部がFeお
よび不可避的不純物からなる鋼スラブを、1100〜1300℃
に加熱したのち、 700〜850 ℃における累積圧下率が30
〜80%となる熱間圧延を施し厚鋼板とし、次いでAc3
〜850 ℃の温度範囲に加熱し冷却する1次焼入れ処理を
施し、さらにAc1点〜Ac3点の温度範囲に加熱し冷却す
る2次焼入れ処理を施したのち、Ac1点+50℃以下での
焼戻し処理を行うことを特徴とする低温靱性に優れた高
強度含Ni厚鋼板の製造方法。
1. C: 0.03 to 0.06 wt%, Si: 0.20 wt% or less, Mn: 0.30 to 0.70 wt%, Ni: 7.5 to 12.0 wt%, Al: 0.
01 to 0.05 wt%, Nb: 0.005 to 0.030 wt%, N: 0.005 wt
% Or less, P: 0.005 wt% or less, S: 0.002 wt% or less, and Ca: 0.0005 to 0.005 wt% and REM: 0.001
Steel slabs containing 1 or 2 of 0.03 wt% and the balance of Fe and inevitable impurities at 1100-1300 ° C.
After heating to 70 ° C, the cumulative rolling reduction at 700 to 850 ℃ is 30
~ 80% hot-rolled into thick steel plate, then primary quenching treatment by heating and cooling to a temperature range of Ac 3 points to 850 ° C, and further heating to a temperature range of Ac 1 point to Ac 3 points A method for producing a high-strength Ni-containing steel sheet having excellent low-temperature toughness, which comprises performing a secondary quenching treatment for cooling and then performing a tempering treatment at Ac 1 point + 50 ° C or lower.
【請求項2】 前記焼戻し処理後に冷却速度2℃/sec
以上の冷却処理を施すことを特徴とする請求項1記載の
低温靱性に優れた高強度含Ni厚鋼板の製造方法。
2. A cooling rate of 2 ° C./sec after the tempering treatment.
The method for producing a high-strength Ni-containing thick steel sheet excellent in low-temperature toughness according to claim 1, wherein the above cooling treatment is performed.
【請求項3】 前記鋼スラブが、さらにV: 0.005〜0.
030 wt%を含有することを特徴とする請求項1または2
記載の低温靱性に優れた高強度含Ni厚鋼板の製造方法。
3. The steel slab further comprises V: 0.005-0.
030 wt% is contained, Claim 1 or 2 characterized by the above-mentioned.
A method for producing a high-strength Ni-containing steel sheet having excellent low-temperature toughness as described above.
【請求項4】 前記鋼スラブが、さらにCu:0.05〜0.30
wt%、Mo:0.02〜0.20wt%、Cr:0.05〜0.30wt%のうち
少なくとも1種以上を含有することを特徴とする請求項
1、2または3記載の低温靱性に優れた高強度含Ni厚鋼
板の製造方法。
4. The steel slab further comprises Cu: 0.05 to 0.30.
%, Mo: 0.02 to 0.20 wt%, Cr: 0.05 to 0.30 wt%, at least one or more of them being contained. Manufacturing method of thick steel plate.
JP30412595A 1995-11-22 1995-11-22 Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength Pending JPH09143557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30412595A JPH09143557A (en) 1995-11-22 1995-11-22 Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30412595A JPH09143557A (en) 1995-11-22 1995-11-22 Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength

Publications (1)

Publication Number Publication Date
JPH09143557A true JPH09143557A (en) 1997-06-03

Family

ID=17929345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30412595A Pending JPH09143557A (en) 1995-11-22 1995-11-22 Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength

Country Status (1)

Country Link
JP (1) JPH09143557A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081776A (en) * 2006-09-27 2008-04-10 Jfe Steel Kk METHOD FOR MANUFACTURING Ni-CONTAINING STEEL SHEET
WO2012005330A1 (en) 2010-07-09 2012-01-12 新日本製鐵株式会社 Ni-CONTAINING STEEL SHEET AND PROCESS FOR PRODUCING SAME
WO2013046357A1 (en) 2011-09-28 2013-04-04 新日鐵住金株式会社 Nickel steel plate and manufacturing process therefor
JP2013142197A (en) * 2012-01-13 2013-07-22 Nippon Steel & Sumitomo Metal Corp Ni-ADDED STEEL PLATE HAVING EXCELLENT TOUGHNESS SUCH THAT CHARPY TEST VALUES OF BOTH OF BASE MATERIAL AND WELDING JOINT AT -196°C ARE EACH 100 J OR MORE AND EXCELLENT PRODUCTIVITY, AND METHOD FOR MANUFACTURING THE SAME
KR101442400B1 (en) * 2012-03-09 2014-09-17 가부시키가이샤 고베 세이코쇼 Thick steel plate excellent in ultra low temperature toughness
JP2017197791A (en) * 2016-04-25 2017-11-02 新日鐵住金株式会社 Ni steel for liquid hydrogen
JP2017197793A (en) * 2016-04-25 2017-11-02 新日鐵住金株式会社 Ni steel for liquid hydrogen
KR20200033291A (en) * 2017-08-25 2020-03-27 가부시키가이샤 고베 세이코쇼 Manufacturing method of Ni-containing steel sheet
US11371126B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11371127B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11371121B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11384416B2 (en) 2017-10-26 2022-07-12 Nippon Steel Corporation Nickel-containing steel for low temperature

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081776A (en) * 2006-09-27 2008-04-10 Jfe Steel Kk METHOD FOR MANUFACTURING Ni-CONTAINING STEEL SHEET
US8882942B2 (en) 2010-07-09 2014-11-11 Nippon Steel & Sumitomo Metal Corporation Ni-added steel plate and method of manufacturing the same
WO2012005330A1 (en) 2010-07-09 2012-01-12 新日本製鐵株式会社 Ni-CONTAINING STEEL SHEET AND PROCESS FOR PRODUCING SAME
US9260771B2 (en) 2011-09-28 2016-02-16 Nippon Steel & Sumitomo Metal Corporation Ni-added steel plate and method of manufacturing the same
EP2743363A1 (en) * 2011-09-28 2014-06-18 Nippon Steel & Sumitomo Metal Corporation Nickel steel plate and manufacturing process therefor
EP2743363A4 (en) * 2011-09-28 2015-04-22 Nippon Steel & Sumitomo Metal Corp Nickel steel plate and manufacturing process therefor
WO2013046357A1 (en) 2011-09-28 2013-04-04 新日鐵住金株式会社 Nickel steel plate and manufacturing process therefor
JP2013142197A (en) * 2012-01-13 2013-07-22 Nippon Steel & Sumitomo Metal Corp Ni-ADDED STEEL PLATE HAVING EXCELLENT TOUGHNESS SUCH THAT CHARPY TEST VALUES OF BOTH OF BASE MATERIAL AND WELDING JOINT AT -196°C ARE EACH 100 J OR MORE AND EXCELLENT PRODUCTIVITY, AND METHOD FOR MANUFACTURING THE SAME
KR101442400B1 (en) * 2012-03-09 2014-09-17 가부시키가이샤 고베 세이코쇼 Thick steel plate excellent in ultra low temperature toughness
JP2017197793A (en) * 2016-04-25 2017-11-02 新日鐵住金株式会社 Ni steel for liquid hydrogen
JP2017197791A (en) * 2016-04-25 2017-11-02 新日鐵住金株式会社 Ni steel for liquid hydrogen
KR20200033291A (en) * 2017-08-25 2020-03-27 가부시키가이샤 고베 세이코쇼 Manufacturing method of Ni-containing steel sheet
US11371126B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11371127B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11371121B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11384416B2 (en) 2017-10-26 2022-07-12 Nippon Steel Corporation Nickel-containing steel for low temperature
US11578394B2 (en) 2017-10-26 2023-02-14 Nippon Steel Corporation Nickel-containing steel for low temperature
US11578391B2 (en) 2017-10-26 2023-02-14 Nippon Steel Corporation Nickel-containing steel for low temperature

Similar Documents

Publication Publication Date Title
EP1777315B1 (en) Steel for welded structure excellent in low temperature toughness of heat affected zone of welded part, and method for production thereof
JPH11140580A (en) Continuously cast slab for high strength steel excellent in toughness at low temperature, its production, and high strength steel excellent in toughness at low temperature
JPH09143557A (en) Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength
JP4134355B2 (en) Manufacturing method of continuous cast tempered high strength steel plate with excellent toughness
JP2913426B2 (en) Manufacturing method of thick high strength steel sheet with excellent low temperature toughness
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JPH09256039A (en) Production of high yield strength and high toughness nickel-containing thick steel plate
JPH0920922A (en) Production of high toughness steel plate for low temperature use
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPH05195058A (en) Production of thick steel plate having high toughness and high tensile strength
JPS625216B2 (en)
KR20000043762A (en) Method of manufacturing super high-strength cold-rolled steel sheet improved in ductility
JPH083635A (en) Production of steel plate excellent in toughness
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JPH0827517A (en) Heat treatment for 9%ni steel excellent in yield strength and toughness
JP2000104116A (en) Production of steel excellent in strength and toughness
JPH05195156A (en) High-manganese ultrahigh tensile strength steel excellent in toughness in heat affected zone and its production
JPH06240406A (en) Steel plate with high strength and high toughness
JPH09302445A (en) Nickel-containing steel for low temperature use and its production
JPH07173534A (en) Production of ni-containing steel sheet excellent in toughness and workability
JPH05148544A (en) Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction
JPH10183241A (en) Production of low yield ratio high tensile strength steel excellent in weldability and low temperature toughness
JP2532176B2 (en) Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JP3848415B2 (en) Method for producing low yield ratio high strength steel with excellent weldability and low temperature toughness