JPH05195058A - Production of thick steel plate having high toughness and high tensile strength - Google Patents

Production of thick steel plate having high toughness and high tensile strength

Info

Publication number
JPH05195058A
JPH05195058A JP496692A JP496692A JPH05195058A JP H05195058 A JPH05195058 A JP H05195058A JP 496692 A JP496692 A JP 496692A JP 496692 A JP496692 A JP 496692A JP H05195058 A JPH05195058 A JP H05195058A
Authority
JP
Japan
Prior art keywords
rolling
toughness
less
cooling
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP496692A
Other languages
Japanese (ja)
Inventor
Hisayoshi Jinno
久喜 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP496692A priority Critical patent/JPH05195058A/en
Publication of JPH05195058A publication Critical patent/JPH05195058A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a thick steel plate having high toughness and high tensile strength by subjecting a slab of a low carbon steel containing trace amounts of Nb, Ti, etc., to rolling at respectively specified heating temp. and draft, to cooling, and then to heat treatment. CONSTITUTION:A slab of a steel which has a composition containing, by weight, 0.04-0.20% C, 0.05-0.50% Si, 0.70-2.0% Mn, <0.020% P, <0.010% S, 0.01-0.08% Al, 0.005-0.05% Nb, 0.005-0.030% Ti, and 0.0015-0.0080% N or further containing one or >=2 kinds among specific amounts of Cu, Ni, Mo, V, B, and Ca is heated up to a temp. not lower than (the Ac, transformation point of this steel)+100 deg.C and then rolled while regulating the cumulative draft from <=920 deg.C to finished plate thickness to >=30%. At this time, at the point of time when the thickness of the steel slab becomes <=1.2 times the finished plate thickness, the outermost layer parts, each in the range within 1/6 from the surface or the rear surface of this steel slab, are subjected to forced cooling until a temp. lower than the surface temp. before cooling by >=10 deg.C is reached. Subsequently, rolling is done, without recuperation, to finished plate thickness and rolling is finished at 680-850 deg.C. Further, within 200sec, the steel plate is cooled down to 500-800 deg.C at (0.4 to 12) deg.C/sec cooling rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、船舶、海洋構造物等に
使用される板厚44mm以上の高張力鋼板に関し、詳しくは
高靱性厚肉高張力鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel plate having a plate thickness of 44 mm or more used for ships, marine structures and the like, and more particularly to a method for producing a high-toughness thick high-strength steel plate.

【0002】[0002]

【従来の技術】近年、船舶、特にコンテナ船等において
は積載量の増加を図るために、建造に厚肉高張力鋼板を
使用して、船幅を変えずに、船体設計の工夫により軽量
化が図られるようになってきた。しかし、厚肉高張力鋼
板の製造は、高強度および靱性の確保に加えて安価であ
ることが要求されるため、その製造方法には難しい点が
多い。
2. Description of the Related Art In recent years, in order to increase the loading capacity of ships, especially container ships, heavy-walled high-tensile steel plates are used for construction, and the weight is reduced by devising the hull design without changing the ship width. Has come to be planned. However, the production of thick-walled high-strength steel sheets is required to be inexpensive in addition to ensuring high strength and toughness, and therefore there are many difficulties in the production method.

【0003】従来、厚肉高張力鋼板の製造においては、
一般に焼入れ焼きもどし法が採用されてきたが、近年は
熱加工制御法が多用されるようになってきた。
Conventionally, in the manufacture of thick high-strength steel sheets,
Generally, the quenching and tempering method has been adopted, but in recent years, the thermal processing control method has been widely used.

【0004】例えば、特開昭60-169517 号公報記載の方
法のように2回焼入れ等により所定の特性を確保する方
法がある。また、特開昭59-80718号公報記載の方法のよ
うな加熱−圧延を繰り返したのち、焼入れ焼きもどし処
理を行う方法、さらに、特開昭60-169518 号および特公
平2-25968 号公報記載の方法のような熱加工制御方法に
より厚肉鋼板を製造する方法も提案されている。
For example, there is a method such as the method described in Japanese Patent Application Laid-Open No. 60-169517, in which predetermined characteristics are secured by quenching twice. Also, a method of repeating quenching and tempering after repeating heating-rolling as in the method described in JP-A-59-80718, and further described in JP-A-60-169518 and JP-B-2-25968. There is also proposed a method of manufacturing a thick steel plate by a heat processing control method such as the above method.

【0005】[0005]

【発明が解決しようとする課題】しかし、前記の特開昭
60-169517 号および特開昭59-80718号公報で提案されて
いる1回または2回焼入れ焼きもどし処理方法および加
熱−圧延を繰り返したのち焼入れ焼きもどし処理を行う
方法では、板厚50mmを超える厚肉鋼板に所定の強度を付
与することは困難であるとともに、熱処理費用が嵩み製
造原価の上昇は避けることができないという問題があ
る。
However, the above-mentioned Japanese Patent Laid-Open No.
In the method of quenching and tempering once or twice proposed in JP-A No. 60-169517 and JP-A-59-80718 and the method of performing quenching and tempering after repeating heating and rolling, the plate thickness exceeds 50 mm. It is difficult to impart a predetermined strength to a thick steel plate, and there is a problem that the heat treatment cost increases and an increase in manufacturing cost cannot be avoided.

【0006】また、特開昭60-169518 号公報で提案され
ている低温加熱−圧延−加速冷却の方法では、低温で高
靱性を要求される部材に採用する場合、要求特性を満足
しないなどの問題がある。
Further, in the method of low temperature heating-rolling-accelerated cooling proposed in Japanese Patent Laid-Open No. 60-169518, when adopted for a member which is required to have high toughness at low temperature, the required characteristics are not satisfied. There's a problem.

【0007】さらに、特公平2-25968 号公報で提案され
ている制御圧延−加速冷却の方法では、加速冷却の停止
温度が低いので焼入れが過多となり、強度上昇および靱
性の低下を招き、要求特性を満足しない。また、焼きも
どし処理温度が低く強度の調整および靱性の回復が困難
であるとともに、加速冷却によって生じた内在する残留
応力の低減も十分でないなどの問題がある。
Further, in the method of controlled rolling-accelerated cooling proposed in Japanese Examined Patent Publication No. 2-25968, quenching becomes excessive due to a low stop temperature of accelerated cooling, resulting in an increase in strength and a decrease in toughness. Not satisfied. In addition, there are problems that the tempering temperature is low and it is difficult to adjust the strength and recover the toughness, and the residual stress caused by accelerated cooling is not sufficiently reduced.

【0008】本発明は、このような問題を解決するため
になされたもので、化学成分を調整するとともに、鋼片
の加熱温度、圧下率、圧延仕上温度および冷却速度を制
御し、その後、熱処理を行うことによる高靱性厚肉高張
力鋼板の製造方法を提供することを目的とする。
The present invention has been made in order to solve such a problem, and adjusts the chemical composition and controls the heating temperature, reduction rate, rolling finishing temperature and cooling rate of the steel bill, and then heat treatment. It is an object of the present invention to provide a method for manufacturing a high-toughness thick-walled high-strength steel sheet by carrying out.

【0009】[0009]

【課題を解決するための手段】そこで、本発明者は上記
の問題点を解決するために、引張強さが高く、靱性が優
れた板厚44mm以上の厚肉高張力鋼の製造方法について鋭
意研究を重ねた結果、鋼に微量のNbを添加し、圧延時の
未再結晶域を拡大させ、圧延中において、再結晶域下部
から未再結晶域の累積圧下率を30%以上として、制御圧
延を行い、結晶粒を細粒化させて圧延を終了し、その
後、 200秒以内に冷却を開始し、 500℃を超える高温で
加速冷却を終了し、微細なベイナイト+パーライト+フ
ェライトあるいは少量のベイナイトを含むパーライト+
フェライトの組織を生成させ、制御圧延および加速冷却
によるそれぞれの強度上昇および靱性向上効果を厚肉鋼
板に付与することを見出して、本発明に至ったものであ
る。
In order to solve the above problems, the present inventor has earnestly studied about a method for producing a thick high-strength steel having a plate thickness of 44 mm or more, which has high tensile strength and excellent toughness. As a result of repeated research, a small amount of Nb was added to the steel to expand the unrecrystallized region during rolling, and during rolling, control was performed by setting the cumulative rolling reduction from the lower part of the recrystallized region to 30% or more. Rolling is performed to reduce the crystal grains to finish rolling, then cooling is started within 200 seconds, accelerated cooling is finished at a temperature higher than 500 ° C, and fine bainite + pearlite + ferrite or a small amount of Perlite including bainite +
The present invention has been accomplished by finding that a structure of ferrite is generated, and the effects of increasing strength and improving toughness by controlled rolling and accelerated cooling are imparted to a thick-walled steel sheet.

【0010】第1発明は、C:0.04〜0.20%、Si:0.05 〜
0.50%、Mn:0.70 〜2.0 %、P:0.020 以下、S:0.010 %
以下、Al:0.010〜0.080 %、Nb:0.005〜0.050 %、Ti:
0.005〜0.030 %、N:0.0015〜0.0080%を含有し、残部F
eおよび不可避的不純物からなる鋼片を、 Ac3変態点+1
00 ℃以上の温度に加熱し、 920℃以下から仕上板厚ま
での累積圧下率を30%以上として圧延する過程におい
て、この鋼片厚が仕上板厚の 1.2倍以下の時点で、厚さ
方向の表裏面から 1/6を越えない最表層部を、冷却まえ
の表面温度より10℃以上低い温度まで強制冷却した後、
復熱させることなく直ちに圧延を行い、 680〜850 ℃の
温度範囲内で圧延を終了し、圧延終了後200秒以内に加
速冷却を開始し、 0.4〜12℃/秒の冷却速度で 500℃超
え 800℃以下の温度範囲まで冷却する板厚44mm以上の高
靱性厚肉高張力鋼板の製造方法である。
The first invention is C: 0.04 to 0.20%, Si: 0.05 to
0.50%, Mn: 0.70 to 2.0%, P: 0.020 or less, S: 0.010%
Below, Al: 0.010 to 0.080%, Nb: 0.005 to 0.050%, Ti:
0.005 to 0.030%, N: 0.0015 to 0.0080%, balance F
Ac 3 transformation point + 1
In the process of heating to a temperature of 00 ℃ or higher and rolling with a cumulative reduction ratio of 920 ℃ or lower to the finished plate thickness of 30% or more, when this billet thickness is 1.2 times or less of the finished plate thickness, the thickness direction After forcibly cooling the outermost layer that does not exceed 1/6 from the front and back surfaces of, to a temperature 10 ° C or more lower than the surface temperature before cooling,
Rolling immediately without recuperating, finish rolling within the temperature range of 680 to 850 ℃, start accelerated cooling within 200 seconds after rolling, and exceed 500 ℃ at a cooling rate of 0.4 to 12 ℃ / sec. This is a method of manufacturing high-toughness, high-strength steel sheets with a plate thickness of 44 mm or more, which is cooled to a temperature range of 800 ° C or less.

【0011】第2発明は、化学成分として、さらに Cu:
0.90%以下、 Ni:1.20%以下、Mo:0.50 %以下、V:0.08
0 %以下、B:0.0004〜0.0030%、 Ca:0.0005〜0.0050%
のうちから選んだ1種または2種以上を含有する請求項
1の高靱性厚肉高張力鋼板の製造方法である。
The second invention further comprises Cu:
0.90% or less, Ni: 1.20% or less, Mo: 0.50% or less, V: 0.08
0% or less, B: 0.0004 to 0.0030%, Ca: 0.0005 to 0.0050%
The method for producing a high-toughness thick-walled high-strength steel sheet according to claim 1, containing one or more selected from the above.

【0012】第3発明は、加速冷却を行った後、 600℃
超え 760℃以下の温度範囲で1回または2回以上の焼き
もどしを行う請求項1または2の高靱性厚肉高張力鋼板
の製造方法である。
A third aspect of the invention is 600 ° C. after accelerated cooling.
The method for producing a high-toughness thick-walled high-strength steel sheet according to claim 1 or 2, wherein the tempering is performed once or twice or more in a temperature range of over 760 ° C.

【0013】[0013]

【作用】以下、本発明について詳述する。まず、本発明
における化学成分の限定理由について説明する。C は、
鋼の強度を確保するために必要かつ有用な元素であり、
このためには0.04%以上の添加が必要である。しかし、
添加量が0.20%を超えると鋼の靱性が劣化し、溶接性も
劣化する。したがって、C の添加量は0.04〜0.20%の範
囲とする。
The present invention will be described in detail below. First, the reasons for limiting the chemical components in the present invention will be described. C is
It is a necessary and useful element to secure the strength of steel,
For this purpose, it is necessary to add 0.04% or more. But,
If the addition amount exceeds 0.20%, the toughness of steel deteriorates and the weldability also deteriorates. Therefore, the amount of C added is in the range of 0.04 to 0.20%.

【0014】Siは、鋼の脱酸と強化に有用な元素であ
り、少なくとも0.05%以上の添加が必要であるが、0.50
%を超えて添加すると靱性が劣化する。このため、Siの
添加量は0.05〜0.50%の範囲とする。
Si is an element useful for deoxidizing and strengthening steel, and it is necessary to add at least 0.05%, but 0.50
If added in excess of%, the toughness deteriorates. Therefore, the addition amount of Si is set to the range of 0.05 to 0.50%.

【0015】Mnは、鋼の強度と靱性の確保とともに、溶
接熱影響部(HAZ)の軟化防止のために必要な元素で
あり、このためには0.70%以上の添加が必要である。し
かし、添加量が 2.0%を超えると溶接性およびHAZの
靱性が低下する。したがって、Mnの添加量は0.70〜2.0
%の範囲とする。
Mn is an element necessary for securing the strength and toughness of steel and for preventing softening of the weld heat affected zone (HAZ). For this purpose, 0.70% or more is required to be added. However, if the addition amount exceeds 2.0%, the weldability and HAZ toughness deteriorate. Therefore, the amount of Mn added is 0.70 to 2.0.
The range is%.

【0016】P および Sは、不純物として鋼中に含有さ
れているが、多量になると母材およびHAZの靱性を劣
化させるので好ましい元素ではない。このため、本発明
においてはそれぞれ 0.020%以下および0.010 %以下に
限定する。
[0016] P and S are contained in the steel as impurities, but if they are contained in large amounts, they deteriorate the toughness of the base material and HAZ, and are not preferable elements. Therefore, in the present invention, it is limited to 0.020% or less and 0.010% or less, respectively.

【0017】Alは、鋼の脱酸および結晶粒の微細化に必
要な元素であり、このためには、0.010 %以上の添加が
必要である。しかし、過多の添加はAl酸化物系非金属介
在物を生成し靱性を劣化させるため、その添加量の上限
を 0.080%とする。したがって、Alの添加量は 0.010〜
0.080 %の範囲とする。
Al is an element necessary for deoxidizing steel and refining crystal grains, and for this purpose, addition of 0.010% or more is necessary. However, excessive addition produces Al oxide-based non-metallic inclusions and deteriorates toughness, so the upper limit of the addition is made 0.080%. Therefore, the added amount of Al is 0.010 ~
The range is 0.080%.

【0018】Nbは、本発明の製造工程において、加熱時
のオーステナイト粒の粗大化防止、圧延時の細粒化、焼
きもどし処理時の析出硬化に加えて、特に、未再結晶温
度域の拡大効果があり、厚肉材の製造に欠くことのでき
ない重要な元素である。これらの効果を有効に発揮させ
るためには、 0.005%以上の添加が必要であるが、0.05
0 %を超える添加はHAZの靱性を損なうので、その上
限を 0.050%とする。したがって、Nbの添加量は 0.005
〜0.050 %の範囲とする。
In the manufacturing process of the present invention, Nb is effective in preventing coarsening of austenite grains during heating, grain refinement during rolling, precipitation hardening during tempering treatment, and particularly expansion of the non-recrystallization temperature range. It is an important element that is effective and indispensable for the production of thick materials. To exert these effects effectively, it is necessary to add 0.005% or more.
The addition of more than 0% impairs the toughness of HAZ, so its upper limit is made 0.050%. Therefore, the amount of Nb added is 0.005
The range is from ~ 0.050%.

【0019】Tiは、強い窒化物形成元素であり、微量の
添加で、TiN の微細析出による結晶粒の微細化およびH
AZの靱性向上に効果がある。この効果を得るには、0.
005%以上の添加が必要であるが、多量に添加するとH
AZの靱性を劣化させるため、上限を 0.030%とする。
したがって、Tiの添加量は 0.005〜0.030 %の範囲とす
る。
Ti is a strong nitride-forming element, and when added in a trace amount, TiN finely precipitates to form finer crystal grains and H.
It is effective in improving the toughness of AZ. 0 for this effect.
It is necessary to add more than 005%, but if a large amount is added, H
In order to deteriorate the toughness of AZ, the upper limit is made 0.030%.
Therefore, the amount of Ti added is in the range of 0.005 to 0.030%.

【0020】N は、一種の不純物であるが、適量含有さ
せることでTiとともに TiNを形成して、母材およびHA
Zの靱性を向上させる。HAZの靱性を確保するために
は、0.0015%以上の添加が必要であるが、0.0080%を超
えて添加すると鋼片製造中に割れが発生することがあ
り、後工程に支障をきたすことになる。したがって、 N
の添加量は0.0015〜0.0080%の範囲とする。
N is a kind of impurity, but when it is contained in an appropriate amount, TiN is formed together with Ti to form a base material and HA.
Improve the toughness of Z. In order to secure the toughness of HAZ, it is necessary to add 0.0015% or more, but if added in excess of 0.0080%, cracks may occur during the steel slab production, which will hinder the post-process. .. Therefore, N
The addition amount is 0.0015 to 0.0080%.

【0021】以上の各成分のほか、本発明においては、
必要に応じて以下に示す元素Cu、Ni、Mo、V 、B 、Caの
内から選んだ1種または2種以上を添加することができ
る。Cu、Niは、HAZの硬化性および靱性に悪影響を与
えることなく、母材の強度と靱性を著しく向上させる元
素であり、本発明に利用した場合極めて有効であるが、
過多に添加すると圧延終了後の加速冷却によって、ベイ
ナイト量が必要以上に生成して、フェライトの生成を妨
げ、必要以上の強度上昇による悪影響が現れることにな
る。また、Cuは圧延中にCuクラックが発生し、圧延が難
しくなるので制限が必要である。このため、Cuは0.90%
以下、Niは1.20%以下とする。
In addition to the above components, in the present invention,
If necessary, one or more selected from the elements Cu, Ni, Mo, V 2, B and Ca shown below can be added. Cu and Ni are elements that significantly improve the strength and toughness of the base material without adversely affecting the hardenability and toughness of the HAZ, and are extremely effective when used in the present invention,
If added excessively, the amount of bainite is excessively generated due to accelerated cooling after the end of rolling, which hinders the formation of ferrite, and an adverse effect due to an excessive increase in strength appears. Further, Cu needs to be limited because Cu cracks occur during rolling, which makes rolling difficult. Therefore, Cu is 0.90%
Below, Ni is 1.20% or less.

【0022】Moは、母材の強度と靱性を著しく向上させ
る元素であるが、過多に添加すると焼入れ性を増大さ
せ、母材強度が過大となり、母材靱性、HAZ靱性およ
び溶接性が劣化するので好ましくない。したがって、Mo
の添加量は0.50%以下とする。
Mo is an element that remarkably improves the strength and toughness of the base metal, but if added in excess, it increases the hardenability, the base metal strength becomes excessive, and the base material toughness, HAZ toughness and weldability deteriorate. It is not preferable. Therefore, Mo
The amount added is 0.50% or less.

【0023】V は、圧延後の組織の細粒化による靱性と
析出硬化による強度の確保に有効な元素であるが、高価
な元素であるため経済性の観点からその添加量は 0.080
%以下とする。
V is an element effective in securing toughness due to grain refinement of the structure after rolling and strength due to precipitation hardening, but since it is an expensive element, its addition amount is 0.080 from the viewpoint of economic efficiency.
% Or less.

【0024】B は、母材強度あるいはHAZ靱性の確保
に有効な元素であるが、0.0004%未満の添加では強度の
上昇効果がなく、0.0030%を超えると母材およびHAZ
の靱性に有害となる。したがって、B の添加量は0.0004
〜0.0030%の範囲とする。
B is an element effective in securing the base material strength or HAZ toughness, but if it is added less than 0.0004%, there is no effect of increasing the strength, and if it exceeds 0.0030%, the base material and HAZ toughness are increased.
Detrimental to the toughness of. Therefore, the amount of B added is 0.0004.
~ 0.0030% range.

【0025】Caは、硫化物形態制御に効果があり、圧延
方向に直角な方向の衝撃吸収エネルギおよびHAZ靱性
の向上に有効である。また、圧延終了後、加速冷却によ
って冷却された鋼板の水素性欠陥の軽減にも有効であ
る。しかし、添加量が0.0005%未満ではその効果が少な
く、0.0050%を超えると非金属介在物の増加や集積の原
因となる。したがって、Caの添加量は0.0005〜0.0050%
の範囲とする。
Ca is effective in controlling the sulfide morphology, and is effective in improving the impact absorption energy in the direction perpendicular to the rolling direction and the HAZ toughness. It is also effective in reducing hydrogen defects in the steel sheet cooled by accelerated cooling after the completion of rolling. However, if the addition amount is less than 0.0005%, its effect is small, and if it exceeds 0.0050%, it causes an increase or accumulation of nonmetallic inclusions. Therefore, the amount of Ca added is 0.0005 to 0.0050%.
The range is.

【0026】つぎに、熱間圧延条件の限定理由について
述べる。本発明は、常法で溶製した鋼片を Ac3変態点+
100 ℃以上の温度に加熱する。鋼片の加熱温度は、鋼片
を均一にオーステナイト化するとともに、オーステナイ
ト粒の粗大化防止、圧延時の細粒化、特に未再結晶域の
拡大効果に欠くことのできないNbの固溶を十分に行うた
めに必要な温度であり、 Ac3変態点+100 ℃未満では、
オーステナイト化前の残存した凝固時の粗大結晶粒を圧
延で細粒化することができず、所定の強度、靱性を確保
することができない。このため、鋼片の加熱温度は Ac3
変態点+100 ℃以上に限定する。
Next, the reasons for limiting the hot rolling conditions will be described. According to the present invention, a steel piece melted by a conventional method is converted into Ac 3 transformation point +
Heat to a temperature above 100 ° C. The heating temperature of the billet is sufficient to austenitize the billet uniformly, prevent coarsening of austenite grains, make grains fine during rolling, and especially make solid solution of Nb that is indispensable for the effect of expanding the unrecrystallized region. Temperature below the Ac 3 transformation point + 100 ℃,
The remaining coarse crystal grains at the time of solidification remaining before austenitization cannot be made finer by rolling, and it is impossible to secure predetermined strength and toughness. Therefore, the heating temperature of the billet is Ac 3
Limit the transformation point to + 100 ° C or higher.

【0027】累積圧下条件を 920℃以下で30%以上とし
た理由は以下の通りである。920℃を超える温度で圧下
を加えても再結晶によってオーステナイト粒(γ粒)の
著しい粗大化は阻止することができず、圧延による高強
度および高靱性が得られない。また、累積圧下率30%以
上はγ粒の微細化を行うために必要な圧下率であり、圧
下率30%未満の場合には、γ粒の微細化が不足し、所定
の強度および靱性を確保することができない。したがっ
て、累積圧下率は、 920℃以下の温度で30%以上加える
ことが必要である。
The reason why the cumulative rolling reduction condition is 920 ° C. or lower and 30% or higher is as follows. Even if reduction is applied at a temperature higher than 920 ° C., recrystallization cannot prevent the austenite grains (γ grains) from significantly coarsening, and high strength and high toughness due to rolling cannot be obtained. Further, a cumulative rolling reduction of 30% or more is a rolling reduction necessary for refining γ grains.If the rolling reduction is less than 30%, the γ grains will not be finely refined and the predetermined strength and toughness will not be obtained. Cannot be secured. Therefore, it is necessary to add a cumulative reduction of 30% or more at a temperature of 920 ° C or less.

【0028】本発明では、圧延過程において、鋼片厚が
仕上板厚の 1.2倍以下の時点で、この鋼片の表裏面から
1/6を超えない範囲の最表層部を、冷却まえの表面温度
より10℃以上低くなる温度まで強制冷却した後、復熱さ
せることなく仕上板厚まで圧延を行う。
In the present invention, in the rolling process, when the thickness of the billet is 1.2 times or less the finished plate thickness,
After forcibly cooling the outermost layer in the range not exceeding 1/6 to a temperature that is 10 ° C or more lower than the surface temperature before cooling, rolling is performed to the finished sheet thickness without reheating.

【0029】上記の強制冷却は、厚肉鋼板では表層部と
中心部との硬さの差が大きくなりやすいので、冷却と圧
延を組み合わせて鋼板の厚さ方向の硬さの差を少なく
し、強度および靱性の不均一を少なくするためのもので
ある。この強制冷却後の圧延によって、鋼片の表層部は
結晶粒が細粒となり、中心部より温度が低いので焼入れ
性が低下し、圧延終了後の加速冷却による硬化性が低下
して、厚肉にもかかわらず厚さ方向の硬さの差が少なく
材質が均一な鋼板を製造することができる。
In the above-mentioned forced cooling, the difference in hardness between the surface layer portion and the central portion of a thick steel plate is likely to be large. Therefore, cooling and rolling are combined to reduce the difference in hardness in the thickness direction of the steel plate. This is to reduce unevenness in strength and toughness. By rolling after this forced cooling, crystal grains become fine grains in the surface layer of the steel slab, and the temperature is lower than that in the center, so hardenability is reduced, and hardenability due to accelerated cooling after rolling is reduced, resulting in thick wall thickness. Nevertheless, it is possible to manufacture a steel sheet with a small difference in hardness in the thickness direction and a uniform material.

【0030】つぎに、圧延過程で行う強制冷却時の鋼片
厚、厚さ方向の冷却範囲および冷却温度の限定理由につ
いて述べる。鋼片厚が仕上板厚の 1.2倍を超えると強制
冷却後の圧延パス数が増加し、その結果、鋼片の表層部
が完全に復熱するので、圧延終了後の加速冷却によって
表層部が硬化するので、これを防止するために、鋼片厚
は仕上板厚の 1.2倍以下とする。
Next, the reasons for limiting the thickness of the billet during the forced cooling in the rolling process, the cooling range in the thickness direction, and the cooling temperature will be described. When the billet thickness exceeds 1.2 times the finished plate thickness, the number of rolling passes after forced cooling increases, and as a result, the surface layer of the billet is completely reheated. Since it hardens, in order to prevent this, the steel billet thickness should be 1.2 times or less of the finished plate thickness.

【0031】鋼板の表層部の硬さを低くするためには、
冷却効果が鋼片厚の内部まで過度になると材質の低下を
きたすことになるので、硬化が最も著しい表層部のみ冷
却すれば十分である。したがって、冷却範囲は鋼片厚の
表裏面から 1/6を超えない範囲に限定する。
In order to reduce the hardness of the surface layer of the steel sheet,
If the cooling effect becomes excessive to the inside of the thickness of the billet, the quality of the material will deteriorate, so it is sufficient to cool only the surface layer portion where the hardening is most remarkable. Therefore, the cooling range is limited to the range that does not exceed 1/6 from the front and back of the billet thickness.

【0032】冷却まえの表面温度より10℃以上低くなる
温度まで強制冷却することによって、上記の鋼板の表層
部の硬さを低くすることができ、鋼板の厚み方向の硬さ
の差を少なくすることができる。冷却温度が10℃未満で
は、強制冷却後の圧延で復熱がすすみ、加速冷却まえに
細粒化された結晶粒の成長および温度上昇により焼入れ
効果が大きくなって鋼板表層部の硬化が生じる。したが
って、鋼片の表面温度は、冷却まえより10℃以上低くす
ることに限定する。
By forcibly cooling to a temperature that is lower than the surface temperature before cooling by 10 ° C. or more, the hardness of the surface layer portion of the above steel sheet can be lowered and the difference in hardness in the thickness direction of the steel sheet can be reduced. be able to. If the cooling temperature is less than 10 ° C., recuperation progresses in rolling after forced cooling, the crystal grain refined before accelerated cooling grows and the temperature rises, so that the quenching effect increases and hardening of the steel sheet surface layer portion occurs. Therefore, the surface temperature of the steel slab is limited to 10 ° C or more lower than that before cooling.

【0033】強制冷却後、復熱させることなく直ちに圧
延を行う理由は、上記までに説明した強制冷却の効果を
確実にするためである。
The reason why the rolling is performed immediately after the forced cooling without reheating is to ensure the effect of the forced cooling described above.

【0034】圧延終了温度を 680〜850 ℃の範囲に限定
した理由は、未再結晶温度域での圧延を十分に行い、オ
ーステナイト粒の微細化と加速冷却で生成するベイナイ
ト+フェライトあるいは少量のベイナイトを含むパーラ
イト+フェライトの変態組織を微細かつ均一にするため
である。この微細な組織によって、靱性が大幅に向上す
るとともに引張強度を確保することができる。圧延終了
温度が 680℃未満であると、γ+α(フェライト)二相
域圧延が極度にすすみ、延靱性を劣化させ、伸長したα
粒の混在によって、シャルピ衝撃吸収エネルギが著しく
低下する。一方、圧延終了温度が高すぎると、圧延によ
るγ粒の微細化が不足し、所定の強度および靱性を得る
ことができない。したがって、圧延終了温度の上限は 8
50℃とする。
The reason why the rolling finishing temperature is limited to the range of 680 to 850 ° C. is that bainite + ferrite or a small amount of bainite produced by refining the austenite grains and accelerating cooling by sufficiently rolling in the non-recrystallization temperature range. This is to make the transformation structure of pearlite + ferrite containing a fine and uniform structure. Due to this fine structure, the toughness is significantly improved and the tensile strength can be secured. If the rolling end temperature is lower than 680 ° C, the γ + α (ferrite) two-phase rolling is excessively advanced, the ductility is deteriorated, and the α
Charpy impact absorption energy is significantly reduced due to the inclusion of particles. On the other hand, if the rolling end temperature is too high, the γ grains will not be refined by rolling, and the desired strength and toughness cannot be obtained. Therefore, the upper limit of the rolling end temperature is 8
Set to 50 ° C.

【0035】つぎに、加速冷却条件の限定理由について
説明する。本発明において重要な点は、上記の限定温度
域での制御圧延とそれに引き続く加速冷却によって、微
細なベイナイト+フェライトあるいは少量のベイナイト
+パーライト+フェライトなどの微細組織を得ることで
あり、これによって、所定の引張強度ならびに高靱性を
得ることにある。
Next, the reasons for limiting the accelerated cooling conditions will be described. An important point in the present invention is to obtain a fine structure such as fine bainite + ferrite or a small amount of bainite + pearlite + ferrite by the controlled rolling in the limited temperature range described above and the subsequent accelerated cooling. To obtain a predetermined tensile strength and high toughness.

【0036】圧延後、 200秒以内に加速冷却を開始する
理由は、微細化されたγ粒あるいはγ+α粒を上記時間
内に冷却することによって、上述の微細な変態組織を得
ることができるのであり、 200秒を超えると圧延終了温
度からの温度降下が著しく、圧延過程で行う強制冷却効
果も失われ、材質が不均一となり、引張強度も低下す
る。なお、加速冷却の媒体としては、通常、水が適当で
ある。
The reason why accelerated cooling is started within 200 seconds after rolling is that the above-mentioned fine transformation structure can be obtained by cooling the refined γ grains or γ + α grains within the above period. When it exceeds 200 seconds, the temperature drop from the rolling end temperature is remarkable, the effect of forced cooling performed in the rolling process is lost, the material becomes uneven, and the tensile strength also decreases. Water is usually a suitable medium for accelerated cooling.

【0037】加速冷却の冷却速度は、 0.4℃/秒未満で
はミクロ組織の変態が不十分で強度の向上が少なく、ま
た、12℃/秒を超えると厚肉材のため、表層部と中心部
の硬さの差が大きくなり、ひいては引張強度、靱性など
の材質の差が大きくなる。したがって、冷却速度は 0.4
〜12℃/秒の範囲に限定する。
If the cooling rate of accelerated cooling is less than 0.4 ° C./sec, the transformation of the microstructure is insufficient and the improvement in strength is small, and if it exceeds 12 ° C./sec, since it is a thick material, the surface layer part and the central part The difference in hardness between the two becomes large, and thus the difference in materials such as tensile strength and toughness becomes large. Therefore, the cooling rate is 0.4
Limit to ~ 12 ° C / sec.

【0038】加速冷却は、鋼板表面温度が 800℃を超え
る温度域で停止すると、冷却不足となり所定強度を確保
できず、材質の板面内のばらつきが大きくなる。一方、
500℃以下の温度域で停止すると、所定の強度以上にな
るとともに、表層部と中心部の強度が大きくなる。ま
た、強度の上昇に伴い靱性の低下が著しい。さらに、低
温域まで冷却すると、厚肉材特有の水素欠陥が発生しや
すくなるとともに、強度上昇効果としての十分な析出硬
化が得られない。そのうえ、溶接時に変形などの悪影響
をおよぼす残留応力が大きくなる。したがって、冷却停
止温度は、 500℃超え 800℃以下の範囲に限定する。
If accelerated cooling is stopped in a temperature range where the steel sheet surface temperature exceeds 800 ° C., the cooling will be insufficient and a predetermined strength cannot be ensured, resulting in a large variation in the material within the sheet surface. on the other hand,
When stopped in a temperature range of 500 ° C or lower, the strength becomes higher than a predetermined strength and the strengths of the surface layer portion and the central portion increase. Further, as the strength increases, the toughness significantly decreases. Further, when cooled to a low temperature range, hydrogen defects peculiar to thick-walled materials are likely to occur, and sufficient precipitation hardening as a strength increasing effect cannot be obtained. In addition, the residual stress, which has an adverse effect such as deformation during welding, becomes large. Therefore, the cooling stop temperature is limited to the range above 500 ℃ and below 800 ℃.

【0039】このようにして加速冷却された鋼板は、十
分な強度と靱性を有しており、使用目的や用途によって
は、このままでも使用可能であるが、所定の引張強度お
よび靱性を具備させるとともに、鋼板の板厚方向に対し
ても材質の均一性を付与し、さらに溶接時の変形の原因
となる内在する残留応力を除去する目的で、1回または
2回以上の焼きもどしを行う。
The steel sheet thus acceleratedly cooled has sufficient strength and toughness, and can be used as it is depending on the purpose of use and the intended use. The tempering is performed once or twice or more for the purpose of imparting the uniformity of the material to the thickness direction of the steel sheet and removing the residual residual stress that causes deformation during welding.

【0040】焼きもどし温度は 760℃を超える温度では
引張強度の低下が大きく所定の強度を確保することがで
きず、一方、 600℃以下の温度では焼きもどしの効果が
不十分で引張強度が高くなるとともに靱性を向上させる
ことができない。また、内在する残留応力の除去も不十
分となる。したがって、焼きもどし温度は 600℃超え76
0℃以下の温度範囲に限定する。
When the tempering temperature is higher than 760 ° C., the tensile strength is largely reduced and a predetermined strength cannot be secured, while at a temperature of 600 ° C. or lower, the tempering effect is insufficient and the tensile strength is high. However, the toughness cannot be improved. Further, the removal of the residual stress inherent therein is also insufficient. Therefore, the tempering temperature exceeds 600 ° C and is 76
Limited to a temperature range of 0 ° C or lower.

【0041】製造板厚については、44mm未満の鋼板は、
従来の技術で十分製造可能であり、本発明は44mm以上の
鋼板の製造に適用する。なお、 Ac3変態点の温度は次式
で定められる。 Ac3(℃)=908-223.7C+438.5P+30.5Si+37.9V-34.4Mn-23.0
Ni ただし、各合金元素は含有量(%)で表す。
Regarding the production plate thickness, a steel plate of less than 44 mm is
It can be sufficiently manufactured by a conventional technique, and the present invention is applied to manufacture a steel plate of 44 mm or more. The temperature of the Ac 3 transformation point is determined by the following equation. Ac 3 (℃) = 908-223.7C + 438.5P + 30.5Si + 37.9V-34.4Mn-23.0
Ni However, each alloying element is expressed by the content (%).

【0042】[0042]

【実施例】以下に、本発明の実施例について説明する。
供試鋼板は表1に示す化学成分を含有する低炭素低合金
鋼を常法により溶製、鋳造し、得られた鋼片を表2に示
す製造条件にしたがって、厚さ60〜120 mmの鋼板に仕上
げたものである。これらの鋼板から試験片を採取し、引
張試験およびシャルピ衝撃試験を行った。その結果を表
3に示す。
EXAMPLES Examples of the present invention will be described below.
The test steel sheet was produced by melting and casting a low-carbon low-alloy steel containing the chemical components shown in Table 1 by a conventional method, and the obtained steel slab having a thickness of 60 to 120 mm was manufactured according to the production conditions shown in Table 2. It is a finished steel plate. Test pieces were sampled from these steel plates and subjected to a tensile test and a Charpy impact test. The results are shown in Table 3.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

【0046】表2および表3の No.1、3、5、7、
9、11、13、15は本発明法で、 No.2、4、6、8、1
0、12、14、16は比較法である。以下、 No.順に実施例
について説明する。
Nos. 1, 3, 5, 7 of Tables 2 and 3
9, 11, 13, and 15 are the methods of the present invention, No. 2, 4, 6, 8, and 1
0, 12, 14, 16 are comparative methods. Examples will be described below in order of No.

【0047】本発明法による鋼板は表3に示すように、
いずれも高強度、高靱性を有し、かつ鋼板表面と中心部
の硬さの差も少なく、板厚方向の材質が均一な厚肉鋼板
であることがわかる。
The steel sheet according to the method of the present invention is as shown in Table 3 below.
It can be seen that each of them is a thick steel plate having high strength and high toughness, a small difference in hardness between the steel plate surface and the central portion, and having a uniform material in the plate thickness direction.

【0048】これに対して、比較法は圧延過程での強制
冷却を行っていないため、鋼板表面と中心部の硬さの差
が大きく、板厚方向の材質が均一な厚肉鋼板であるとは
いえない。
On the other hand, in the comparative method, since the forced cooling in the rolling process is not performed, the difference in hardness between the steel plate surface and the central portion is large, and it is considered that the steel plate is a thick steel plate having a uniform material in the plate thickness direction. I can't say.

【0049】さらに詳しくは、 No.2は、加速冷却の停
止温度が低く、焼きもどし温度も低いため、シャルピ衝
撃特性(靱性)が劣り、硬さの差も大きい。 No.4は、
圧延終了温度が高く、加速冷却速度が速いため、靱性が
劣り、硬さの差も大きい。 No.6は、圧延終了温度が高
く、加速冷却の停止温度が低いため、靱性が劣り、硬さ
の差も大きい。
More specifically, in No. 2, the accelerated cooling stop temperature is low and the tempering temperature is also low, so the Charpy impact characteristics (toughness) are poor and the difference in hardness is large. No.4 is
Since the rolling finish temperature is high and the accelerated cooling rate is high, the toughness is poor and the difference in hardness is large. No. 6 has a high rolling finish temperature and a low accelerating cooling stop temperature, and thus has poor toughness and a large difference in hardness.

【0050】No.8は、加熱温度が低く、加速冷却の停
止温度が低いため、靱性が劣る。 No.10は、 920℃以下
の累積圧下率が小さく、圧延終了温度および加速冷却の
停止温度が高いため、引張特性、靱性が劣る。 No.12
は、圧延終了後加速冷却開始までの時間が長いため、加
速冷却の停止温度が低いにもかかわらず引張特性が劣っ
ている。
No. 8 is inferior in toughness because the heating temperature is low and the accelerated cooling stop temperature is low. No. 10 has a small cumulative rolling reduction of 920 ° C or lower, and has a high rolling end temperature and a high stop temperature for accelerated cooling, and thus has poor tensile properties and toughness. No. 12
Since the time from the end of rolling to the start of accelerated cooling is long, the tensile properties are inferior despite the low stop temperature of accelerated cooling.

【0051】No.14は、加速冷却の停止温度が低く、焼
きもどし温度も低いため、引張強度が高すぎ、靱性が劣
り、硬さの差も大きい。 No.16は、2回焼入れ後、焼き
もどしを行っており、引張強度が高すぎ、靱性が劣り、
硬さの差も大きい。
No. 14 has a low stop temperature of accelerated cooling and a low tempering temperature, so that the tensile strength is too high, the toughness is poor, and the difference in hardness is large. No. 16 has been tempered twice and then tempered, resulting in too high tensile strength and poor toughness.
The difference in hardness is also large.

【0052】なお、加速冷却後の段積徐冷は、厚肉鋼板
を複数枚積み重ねて徐冷するもので、厚肉鋼板特有の水
素欠陥を防止するために行ったものである。
The stepwise gradual cooling after the accelerated cooling is one in which a plurality of thick steel plates are stacked and gradually cooled, and is performed in order to prevent hydrogen defects peculiar to the thick steel plates.

【0053】[0053]

【発明の効果】以上、説明したように本発明に係わる高
降伏強度高靱性厚肉高張力鋼板の製造方法は、微量のNb
を添加して圧延時の未再結晶域を拡大させ、再結晶域下
部から未再結晶域の累積圧下率を30%以上として制御圧
延を行い、この圧延過程において、鋼片表層部を強制冷
却して、表層部の結晶粒を細粒化させて圧延を終了し、
その後、直ちに加速冷却を行うことにより、微細なベイ
ナイト+パーライト+フェライトあるいは少量のベイナ
イトを含むパーライト+フェライトの組織を生成させる
ことによって、鋼板の表層部と中心部との硬さの差が少
ない高靱性厚肉高張力鋼板を提供するものであって、本
発明によれば、鋼板の表層部と中心部との硬さの差が少
なく、板厚方向に均一な材質を有する板厚44mm以上の高
靱性厚肉高張力鋼板の製造が可能である。
As described above, the method for producing a high yield strength, high toughness, thick wall and high strength steel sheet according to the present invention has a small amount of Nb.
Is added to expand the unrecrystallized region during rolling, and controlled rolling is performed with the cumulative rolling reduction from the lower part of the recrystallized region to 30% or more, and in this rolling process, the surface layer of the steel slab is forcibly cooled. Then, the crystal grains of the surface layer portion are made finer and the rolling is finished,
Immediately thereafter, accelerated cooling is performed to generate a fine bainite + pearlite + ferrite structure or a pearlite + ferrite structure containing a small amount of bainite, so that the difference in hardness between the surface layer portion and the center portion of the steel sheet is small. According to the present invention, which provides a tough and thick high-strength steel sheet, the difference in hardness between the surface layer portion and the central portion of the steel sheet is small, and the sheet thickness is 44 mm or more having a uniform material in the sheet thickness direction. It is possible to manufacture high-toughness, thick-walled, high-strength steel sheets.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 C:0.04〜0.20%、Si:0.05 〜0.50%、M
n:0.70 〜2.0 %、P:0.020 以下、S:0.010 %以下、Al:
0.010〜0.080 %、Nb:0.005〜0.050 %、Ti:0.005〜0.0
30 %、N:0.0015〜0.0080%を含有し、残部Feおよび不
可避的不純物からなる鋼片を、 Ac3変態点+100 ℃以上
の温度に加熱し、 920℃以下から仕上板厚までの累積圧
下率を30%以上として圧延する過程において、この鋼片
厚が仕上板厚の 1.2倍以下の時点で、厚さ方向の表裏面
から 1/6を越えない最表層部を、冷却まえの表面温度よ
り10℃以上低い温度まで強制冷却した後、復熱させるこ
となく直ちに圧延を行い、 680〜850 ℃の温度範囲内で
圧延を終了し、圧延終了後200 秒以内に加速冷却を開始
し、 0.4〜12℃/秒の冷却速度で 500℃超え 800℃以下
の温度範囲まで冷却する板厚44mm以上の高靱性厚肉高張
力鋼板の製造方法。
1. C: 0.04 to 0.20%, Si: 0.05 to 0.50%, M
n: 0.70 to 2.0%, P: 0.020 or less, S: 0.010% or less, Al:
0.010 to 0.080%, Nb: 0.005 to 0.050%, Ti: 0.005 to 0.0
A steel slab containing 30% and N: 0.0015 to 0.0080% and the balance Fe and unavoidable impurities is heated to a temperature of Ac 3 transformation point + 100 ℃ or more, and the cumulative reduction ratio from 920 ℃ or less to the finish plate thickness. When the billet thickness is 1.2 times or less of the finished plate thickness in the process of rolling with 30% or more, the outermost surface part that does not exceed 1/6 from the front and back in the thickness direction is more than the surface temperature before cooling. After forced cooling down to 10 ° C or lower, rolling is immediately performed without reheating, rolling is completed within the temperature range of 680 to 850 ° C, accelerated cooling is started within 200 seconds after rolling, and 0.4 to A method of manufacturing high-toughness, high-strength steel sheets with a plate thickness of 44 mm or more, which is cooled to a temperature range of more than 500 ° C and less than 800 ° C at a cooling rate of 12 ° C / sec.
【請求項2】 化学成分として、さらに Cu:0.90%以
下、 Ni:1.20%以下、Mo:0.50 %以下、V:0.080 %以
下、B:0.0004〜0.0030%、 Ca:0.0005〜0.0050%のうち
から選んだ1種または2種以上を含有する請求項1の高
靱性厚肉高張力鋼板の製造方法。
2. As chemical components, Cu: 0.90% or less, Ni: 1.20% or less, Mo: 0.50% or less, V: 0.080% or less, B: 0.0004 to 0.0030%, Ca: 0.0005 to 0.0050% The method for producing a high-toughness thick high-strength steel sheet according to claim 1, which contains one or more selected types.
【請求項3】 加速冷却を行った後、 600℃超え 760℃
以下の温度範囲で1回または2回以上の焼きもどしを行
う請求項1または2の高靱性厚肉高張力鋼板の製造方
法。
3. After accelerated cooling, the temperature exceeds 600 ° C. and 760 ° C.
The method for producing a high-toughness thick-walled high-strength steel sheet according to claim 1 or 2, wherein the tempering is performed once or twice or more within the following temperature range.
JP496692A 1992-01-14 1992-01-14 Production of thick steel plate having high toughness and high tensile strength Pending JPH05195058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP496692A JPH05195058A (en) 1992-01-14 1992-01-14 Production of thick steel plate having high toughness and high tensile strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP496692A JPH05195058A (en) 1992-01-14 1992-01-14 Production of thick steel plate having high toughness and high tensile strength

Publications (1)

Publication Number Publication Date
JPH05195058A true JPH05195058A (en) 1993-08-03

Family

ID=11598334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP496692A Pending JPH05195058A (en) 1992-01-14 1992-01-14 Production of thick steel plate having high toughness and high tensile strength

Country Status (1)

Country Link
JP (1) JPH05195058A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100711467B1 (en) * 2005-12-23 2007-04-24 주식회사 포스코 A method for manufacturing boron-added thick steel plate having excellent toughness at the surface region
KR100782761B1 (en) * 2006-12-20 2007-12-05 주식회사 포스코 Method for producing very thick steel plate having superior strength and toughness in the mid-thickness region
KR100825596B1 (en) * 2006-12-22 2008-04-25 주식회사 포스코 Method for manufacturing boron added high stregnth thick steel plate having less inhomogeneity in the thickness direction
JP2009228020A (en) * 2008-03-19 2009-10-08 Kobe Steel Ltd High-strength thick steel plate having excellent strain aging property, and method for producing the same
JP2013019049A (en) * 2011-06-15 2013-01-31 Jfe Steel Corp Corrosion-resistant steel material for ship ballast tank having excellent corrosion resistance and method for producing the same
JP2014074194A (en) * 2012-10-03 2014-04-24 Kobe Steel Ltd Thick steel plate having small change of toughness before and after strain ageing
WO2014132627A1 (en) * 2013-02-28 2014-09-04 Jfeスチール株式会社 Thick steel plate and production method for thick steel plate
EP2813596A4 (en) * 2011-02-15 2015-08-05 Jfe Steel Corp High tensile steel plate having excellent low-temperature toughness in weld heat-affected zones, and method for producing same
EP3561108A4 (en) * 2016-12-22 2019-11-20 Posco High-strength high-toughness thick steel sheet and manufacturing method therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100711467B1 (en) * 2005-12-23 2007-04-24 주식회사 포스코 A method for manufacturing boron-added thick steel plate having excellent toughness at the surface region
KR100782761B1 (en) * 2006-12-20 2007-12-05 주식회사 포스코 Method for producing very thick steel plate having superior strength and toughness in the mid-thickness region
KR100825596B1 (en) * 2006-12-22 2008-04-25 주식회사 포스코 Method for manufacturing boron added high stregnth thick steel plate having less inhomogeneity in the thickness direction
JP2009228020A (en) * 2008-03-19 2009-10-08 Kobe Steel Ltd High-strength thick steel plate having excellent strain aging property, and method for producing the same
US9790579B2 (en) 2011-02-15 2017-10-17 Jfe Steel Corporation High tensile strength steel plate having excellent weld heat-affected zone low-temperature toughness and method for producing same
EP2813596A4 (en) * 2011-02-15 2015-08-05 Jfe Steel Corp High tensile steel plate having excellent low-temperature toughness in weld heat-affected zones, and method for producing same
JP2013019049A (en) * 2011-06-15 2013-01-31 Jfe Steel Corp Corrosion-resistant steel material for ship ballast tank having excellent corrosion resistance and method for producing the same
JP2014074194A (en) * 2012-10-03 2014-04-24 Kobe Steel Ltd Thick steel plate having small change of toughness before and after strain ageing
WO2014132627A1 (en) * 2013-02-28 2014-09-04 Jfeスチール株式会社 Thick steel plate and production method for thick steel plate
JP5910792B2 (en) * 2013-02-28 2016-04-27 Jfeスチール株式会社 Thick steel plate and method for manufacturing thick steel plate
US10041159B2 (en) 2013-02-28 2018-08-07 Jfe Steel Corporation Thick steel plate and production method for thick steel plate
EP3561108A4 (en) * 2016-12-22 2019-11-20 Posco High-strength high-toughness thick steel sheet and manufacturing method therefor
JP2020509174A (en) * 2016-12-22 2020-03-26 ポスコPosco High strength and high toughness thick steel plate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH10509768A (en) High strength secondary hardened steel with excellent toughness and weldability
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JPS6155572B2 (en)
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JPH05195058A (en) Production of thick steel plate having high toughness and high tensile strength
JPH09143557A (en) Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength
JP3369435B2 (en) Manufacturing method of non-heat treated high strength steel excellent in low temperature toughness
JPS626730B2 (en)
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JP3264956B2 (en) Accelerated cooling type manufacturing method for thick steel plate
JPH07258788A (en) Production of thick steel plate excellent in brittle fracture propagation stop characteristic and low temperature toughness
JPH0225968B2 (en)
JPH05148544A (en) Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction
JPH0860239A (en) Production of thick steel plate excellent in low temperature toughness
JPH04180521A (en) Production of high tensile thick steel plate having high yield strength and high toughness
JPH06299237A (en) Manufacture of high tension steel sheet
JPH05295432A (en) Production of steel plate having high strength and high toughness by online thermomechanical treatment
JPH1088230A (en) Production of high tensile strength steel material excellent in toughness
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JPH1121625A (en) Production of thick steel plate excellent in strength and toughness
JP3212346B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent toughness
JPH06240405A (en) Steel plate excellent in brittle fracture arrest property and its production
JPH06100932A (en) Production of extra thick high tensile strength steel excellent in cold workability
JPH08157949A (en) Production of accelerated cooling type steel plate excellent in uniformity of quality in steel plate
JPH0920921A (en) Production of high toughness steel plate by means of separation