JP2014074194A - Thick steel plate having small change of toughness before and after strain ageing - Google Patents

Thick steel plate having small change of toughness before and after strain ageing Download PDF

Info

Publication number
JP2014074194A
JP2014074194A JP2012221137A JP2012221137A JP2014074194A JP 2014074194 A JP2014074194 A JP 2014074194A JP 2012221137 A JP2012221137 A JP 2012221137A JP 2012221137 A JP2012221137 A JP 2012221137A JP 2014074194 A JP2014074194 A JP 2014074194A
Authority
JP
Japan
Prior art keywords
toughness
less
steel plate
fraction
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012221137A
Other languages
Japanese (ja)
Other versions
JP5732017B2 (en
Inventor
Akira Ibano
朗 伊庭野
Eiichi Tamura
栄一 田村
yusuke Sandaiji
悠介 三大寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012221137A priority Critical patent/JP5732017B2/en
Priority to CN201310454903.2A priority patent/CN103710621B/en
Priority to KR1020130116202A priority patent/KR101553748B1/en
Publication of JP2014074194A publication Critical patent/JP2014074194A/en
Application granted granted Critical
Publication of JP5732017B2 publication Critical patent/JP5732017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thick steel plate having small change of toughness before and after strain ageing.SOLUTION: The thick steel plate satisfies a predetermined composition of chemical components, and satisfies ΔG/[Si]>0.4 and [Ti]×[N]≥4.0×10, and has a mixed structure having a ferrite fraction of 40 to 90 area% and a bainite fraction of 5 to 60 area%, has a sum of the ferrite fraction and the bainite fraction of 90 area% or more, contains a hard phase of 1 area% or more, has an effective crystal grain size of 3 to 25 μm and a solid solution C amount contained in a whole structure of 0.035 mass% or less.

Description

本発明は、海洋構造物などに好適に用いられる厚鋼板、特に歪時効前後の靭性変化が少ない厚鋼板に関するものである。   The present invention relates to a thick steel plate suitably used for offshore structures and the like, and more particularly to a thick steel plate with little change in toughness before and after strain aging.

鋼材は、歪時効によって降伏強度(YS)が上昇することが知られている。一方、降伏強度(YS)が上昇することにより靭性が低下することも知られている。すなわち、歪時効によって靭性が低下するということができる。この歪時効中に起こる現象は、圧延まま組織中に含まれている転位や歪付与によって導入された転位に、固溶C/Nが固着するためといわれている。これらのことから、歪時効による特性変化を小さくするためには、転位の状態を制御するか、もしくは固溶C/N量を低減することが有効であると考えられる。   It is known that the yield strength (YS) of steel materials increases due to strain aging. On the other hand, it is also known that the toughness decreases as the yield strength (YS) increases. That is, it can be said that the toughness is lowered by strain aging. The phenomenon that occurs during strain aging is said to be due to solid solution C / N fixing to dislocations that are included in the structure as it is rolled, or to dislocations that are introduced by imparting strain. From these facts, in order to reduce the change in characteristics due to strain aging, it is considered effective to control the dislocation state or reduce the amount of solid solution C / N.

このような鋼材の歪時効による靭性の変化に着目し、歪時効後であっても靭性の低下を抑制でき、優れた靭性を確保できる鋼材に関する技術について、従来から様々な提案がなされている。   Focusing on such changes in toughness due to strain aging of steel materials, various proposals have conventionally been made regarding techniques related to steel materials that can suppress a decrease in toughness even after strain aging and ensure excellent toughness.

特許文献1記載の技術は、固溶C/N量を低減することが、歪時効前後の靭性変化が少ない鋼板を得るのに有効であるとして提案された技術であり、固溶C量に着目し、鋼材中のCの含有量を低含有量(0.030wt%未満)とした上で、Ti、Nbのいずれか1種以上を添加し、固溶C量の低減と、靭性が低下しない範囲で高YR化しないよう析出炭化物の粗大化を図ることで、歪時効後(冷間成形後)の靭性を確保できるとした鋼板が提案されている。   The technique described in Patent Document 1 is a technique proposed to reduce the solid solution C / N amount as effective for obtaining a steel sheet with little change in toughness before and after strain aging. In addition, the content of C in the steel material is set to a low content (less than 0.030 wt%), and at least one of Ti and Nb is added to reduce the amount of dissolved C and toughness does not decrease. A steel sheet has been proposed in which the toughness after strain aging (after cold forming) can be ensured by coarsening the precipitated carbide so as not to increase the YR in the range.

しかしながら、特許文献1に記載された鋼板のCの含有量は0.030wt%未満であり、且つ、巻取り温度が550℃以上であるため、金属組織は、ポリゴナルフェライトが略100%で、ベイナイトや硬質相(マルテンサイト、MA)が殆ど含まれない組織となるため、歪時効前のYSが十分に高くならないことが予想される。   However, since the C content of the steel sheet described in Patent Document 1 is less than 0.030 wt% and the winding temperature is 550 ° C. or higher, the metal structure is approximately 100% polygonal ferrite, Since it becomes a structure containing almost no bainite or hard phase (martensite, MA), it is expected that YS before strain aging does not become sufficiently high.

一方、特許文献2により、固溶C/N量以外の因子に着目して、歪時効による靭性変化を抑制した鋼材に関する技術が提案されている。具体的には、歪付与により導入される転位の可動性を向上させることで、TSレベルが500−690MPaで、歪時効による靭性(vTrs:破面遷移温度)変化が小さい(ΔvTrs25℃以内)、板厚20−100mmの鋼板の製造を可能にしている。   On the other hand, Patent Document 2 proposes a technique related to a steel material that suppresses changes in toughness due to strain aging, focusing on factors other than the amount of solute C / N. Specifically, by improving the mobility of dislocations introduced by applying strain, the TS level is 500 to 690 MPa, and the change in toughness (vTrs: fracture surface transition temperature) due to strain aging is small (within ΔvTrs of 25 ° C.). This makes it possible to produce steel plates with a thickness of 20-100 mm.

しかしながら、この鋼板の製造においては、950℃以上で圧延を終了するか、或いは、950℃以下、Ar3点以上の温度域で圧下率40%以上の圧下を行うことが必要である。圧延終了温度を950℃以上の高い温度とする場合には、得られた鋼板のYSが不足するという問題が発生する。一方、950℃以下、Ar3点以上の温度域で圧下率40%以上の圧下を行うことは、仕上げ板厚75mm以上の厚鋼板を製造する際には十分なスラブ厚を確保する必要があり、スラブ製造が難しいという問題が存在する。   However, in the production of this steel sheet, it is necessary to finish the rolling at 950 ° C. or higher, or to perform rolling at a reduction rate of 40% or higher in a temperature range of 950 ° C. or lower and Ar 3 point or higher. When the rolling end temperature is set to a high temperature of 950 ° C. or higher, there arises a problem that YS of the obtained steel sheet is insufficient. On the other hand, it is necessary to ensure a sufficient slab thickness when producing a steel sheet having a finished sheet thickness of 75 mm or more, to perform a reduction of a reduction ratio of 40% or more in a temperature range of 950 ° C. or lower and an Ar3 point or higher, There is a problem that slab manufacturing is difficult.

更には、圧延後の冷却停止温度は600℃程度であり、特許文献1記載の技術と同様に、製造される鋼板の金属組織が、ポリゴナルフェライトが略100%で、ベイナイトや硬質相(マルテンサイト、MA)が殆ど含まれない組織となることが予想される。   Furthermore, the cooling stop temperature after rolling is about 600 ° C., and, like the technique described in Patent Document 1, the metallographic structure of the manufactured steel sheet is approximately 100% polygonal ferrite, and bainite or hard phase (martensite). Site, MA) is expected to become an organization that hardly includes.

また、Niが選択元素であり、ΔG/[Si]を制御しようという技術思想ではなく、成分組成のバランスが本願発明とは異なり、たとえ、この特許文献2記載の鋼材が歪時効前後の靭性変化が少ない鋼材であるとしても、強度(YS、TS)−靭性(vTrs:破面遷移温度)−歪時効による靭性変化バランスは本願発明とは異なる。   Further, Ni is a selective element, not the technical idea of controlling ΔG / [Si], and the balance of the component composition is different from that of the present invention. For example, the steel material described in Patent Document 2 has a change in toughness before and after strain aging. Even if it is a steel material with a small amount, the balance of toughness change due to strength (YS, TS) -toughness (vTrs: fracture surface transition temperature) -strain aging is different from the present invention.

また、歪時効による靭性変化に着目し、固溶C/N制御は行っていないものの、Cu、Niを添加した鋼材に関する技術が、特許文献3〜6として提案されている。   Further, while focusing on the change in toughness due to strain aging, solid solution C / N control is not performed, but technologies relating to steel materials to which Cu and Ni are added are proposed as Patent Documents 3 to 6.

特許文献3記載の技術は、建築用鋼材の表層付近の延性、大入熱HAZ靭性、および低降伏比改善を課題として開発された技術であり、その課題を達成するために、鋼材にCu、Niが添加された実施例が記載されている。しかし、実施例に記載された鋼材中の[Ti]×[N]は低レベルであり、本願発明と同様のプロセスで鋼板を作製すると、規定の組織が造り込めないと考えられる。   The technology described in Patent Document 3 is a technology developed with the objective of improving ductility in the vicinity of the surface layer of steel for construction, high heat input HAZ toughness, and low yield ratio improvement. An example with Ni added is described. However, [Ti] × [N] in the steel materials described in the examples is at a low level, and it is considered that when a steel plate is produced by a process similar to that of the present invention, a specified structure cannot be created.

特許文献4には、溶接継手のHAZ靭性を改善する技術が記載されており、特に母材の製造技術については詳細に記載されていないものの、母材にCu、Niが添加された実施例が記載されている。しかし、この母材にはBが10ppm以上含有されており、金属組織はベイナイト主体となり、且つ固溶C量が多くなるということができ、歪時効によるvTrsの変化が大きくなると考えられる。   Patent Document 4 describes a technique for improving the HAZ toughness of a welded joint, and in particular, although the manufacturing technique of the base material is not described in detail, there is an example in which Cu and Ni are added to the base material. Have been described. However, this base material contains 10 ppm or more of B, and it can be said that the metal structure is mainly bainite and the amount of solute C increases, and it is considered that the change in vTrs due to strain aging increases.

特許文献5記載には、発生した脆性亀裂の伝播を停止する特性を改善すると共に、板厚中央部の母材靭性にも優れた鋼板に関する技術が記載されており、その課題を達成するために、鋼板にCu、Niを添加することが記載されている。しかしながら、製造過程における圧延後の冷却停止温度が高温であるため、金属組織が規定の組織とならず、TS、もしくはTS−靭性クラスが十分とならないことが考えられる。   Patent Document 5 describes a technique relating to a steel sheet that improves the properties of stopping the propagation of the brittle cracks that have occurred and also has excellent base material toughness at the center of the plate thickness. In addition, it is described that Cu and Ni are added to a steel plate. However, since the cooling stop temperature after rolling in the production process is high, it is considered that the metal structure does not become a specified structure and the TS or TS-toughness class is not sufficient.

特許文献6には、表層付近の延性に優れ、耐震性を向上させた建築用鋼板に関する技術が記載されており、その課題を達成するために、鋼板にCu、Niを添加した実施例が記載されている。しかしながら、固溶C量制御にとって重要な要件である圧延後の冷却停止温度が280℃と低く、十分な靭性を得ること、或いは歪時効による靭性変化を少なくすることは難しいと考えられる。また、実施例には厚鋼板の靭性確保にとって重要なCaが添加されていないものが多く、介在物が靭性に悪影響することも考えられる。   Patent Document 6 describes a technique related to a steel sheet for building that has excellent ductility near the surface layer and improved earthquake resistance, and describes an example in which Cu and Ni are added to the steel sheet in order to achieve the problem. Has been. However, the cooling stop temperature after rolling, which is an important requirement for controlling the amount of solute C, is as low as 280 ° C., and it is considered difficult to obtain sufficient toughness or to reduce the change in toughness due to strain aging. In many of the examples, Ca, which is important for securing the toughness of the thick steel plate, is not added, and it is considered that inclusions adversely affect the toughness.

特開平9−41035号公報JP 9-41035 A 特開2003−13174号公報JP 2003-13174 A 特開2010−229442号公報JP 2010-229442 A 特開2009−068078号公報JP 2009-068078 A 特開2008−280600号公報JP 2008-280600 A 特開2003−328080号公報JP 2003-328080 A

本発明は、上記従来の問題を解決せんとしてなされたもので、歪時効前後の靭性変化が少ない厚鋼板、より詳しくは、強度で、YS(降伏強度):400MPa以上、TS(引張強さ):500−700MPa、歪時効後のvTrs(破面遷移温度)で、−60℃以下、歪時効によるvTrs変化で、30℃以内という優れた強度−靭性−歪時効による靭性変化バランスを有する厚鋼板を提供することを課題とするものである。   The present invention has been made as a solution to the above-described conventional problems, and is a thick steel plate with little change in toughness before and after strain aging. More specifically, the strength is YS (yield strength): 400 MPa or more, TS (tensile strength). : 500-700 MPa, vTrs (fracture surface transition temperature) after strain aging, −60 ° C. or less, vTrs change due to strain aging, within 30 ° C. Excellent strength-toughness—Tough steel plate having a toughness change balance due to strain aging It is a problem to provide.

請求項1記載の発明は、質量%で、C:0.03〜0.06%、Si:0.35%以下(0%を含まない)、Mn:1.25〜1.75%、P:0.010%以下(0%を含まない)、S:0.003%以下(0%を含まない)、Al:0.025〜0.035%、Cu:0.1〜0.4%、Ni:0.45〜0.75%、Nb:0.01〜0.05%、Ti:0.005〜0.025%、N:0.0030〜0.0060%、Ca:0.0010〜0.0025%を含有し、残部が鉄および不可避的不純物でなると共に、ΔG/[Si]>0.4、および、[Ti]×[N]≧4.0×10−5を満足し、且つ、フェライト分率が40〜90面積%、ベイナイト分率が5〜60面積%の混合組織を有し、フェライト分率+ベイナイト分率の合計が90面積%以上であると共に、硬質相が1面積%以上含まれており、有効結晶粒径が3〜25μmであって、更に、全組織に含まれる固溶C量が0.035質量%以下であることを特徴とする歪時効前後の靭性変化が少ない厚鋼板である。
但し、前式中、ΔG=(A3−Bs)/A3であり、A3=894.5−269.4[C]+37.4[Si]−31.6[Mn]−19.0[Cu]−29.2[Ni]−11.9[Cr]+19.5[Mo]+22.2[Nb])、Bs=830−270[C]−90[Mn]−37[Ni]−70[Cr]−83[Mo]である。尚、前記した各式中、[ ]は質量%を示す。
The invention according to claim 1 is mass%, C: 0.03 to 0.06%, Si: 0.35% or less (excluding 0%), Mn: 1.25 to 1.75%, P : 0.010% or less (not including 0%), S: 0.003% or less (not including 0%), Al: 0.025 to 0.035%, Cu: 0.1 to 0.4% , Ni: 0.45-0.75%, Nb: 0.01-0.05%, Ti: 0.005-0.025%, N: 0.0030-0.0060%, Ca: 0.0010 -0.0025%, the balance is iron and inevitable impurities, and ΔG / [Si]> 0.4 and [Ti] × [N] ≧ 4.0 × 10 −5 are satisfied. And having a mixed structure with a ferrite fraction of 40 to 90 area% and a bainite fraction of 5 to 60 area%, and the ratio of ferrite fraction + bainite fraction. The total is 90 area% or more, the hard phase is contained 1 area% or more, the effective crystal grain size is 3 to 25 μm, and the solid solution C amount contained in the whole structure is 0.035 mass. % Thick steel plate with little change in toughness before and after strain aging.
However, in the above formula, ΔG = (A3−Bs) / A3, and A3 = 894.5−269.4 [C] +37.4 [Si] −31.6 [Mn] −19.0 [Cu]. -29.2 [Ni] -11.9 [Cr] +19.5 [Mo] +22.2 [Nb]), Bs = 830-270 [C] -90 [Mn] -37 [Ni] -70 [Cr ] -83 [Mo]. In addition, in each above-mentioned formula, [] shows the mass%.

請求項2記載の発明は、更に、質量%で、Cr:0.5%以下(0%を含まない)、および/または、Mo:0.5%以下(0%を含まない)を含有する請求項1記載の歪時効前後の靭性変化が少ない厚鋼板である。   The invention according to claim 2 further contains, by mass%, Cr: 0.5% or less (excluding 0%) and / or Mo: 0.5% or less (excluding 0%). It is a thick steel plate with little toughness change before and after strain aging of Claim 1.

本発明の厚鋼板によると、歪時効前後の靭性変化が少ない厚鋼板、特に、強度で、YS(降伏強度):400MPa以上、TS(引張強さ):500−700MPa、歪時効後のvTrs(破面遷移温度):−60℃以下、歪時効によるvTrs変化:30℃以内という優れた強度−靭性−歪時効による靭性変化バランスを有する厚鋼板を得ることができる。   According to the thick steel plate of the present invention, a thick steel plate with little change in toughness before and after strain aging, particularly strength, YS (yield strength): 400 MPa or more, TS (tensile strength): 500-700 MPa, vTrs after strain aging ( Fracture surface transition temperature): −60 ° C. or less, vTrs change due to strain aging: within 30 ° C. An excellent strength-toughness—thick steel plate having a toughness change balance due to strain aging can be obtained.

本発明者らは、歪時効前後の靭性変化が少ない厚鋼板、特に、強度(YS、TS)−靭性(vTrs:破面遷移温度)−歪時効による靭性変化のバランスが優れた厚鋼板を得るために、成分組成、金属組織といった様々な角度から鋭意研究を行った。その結果、Cu、Niを必須添加元素として厚鋼板の成分組成を規定したうえで、ΔG/[S]および[Ti]×[N]を適切な範囲とし、また、金属組織中に占めるベイナイトとフェライト、および硬質相の割合(面積%)を適切に制御し、更に、有効結晶粒子径、および全組織に含まれる固溶C量を適正な範囲内に収めることで、所望の厚鋼板を得ることができることを見出し、本発明の完成に至った。尚、[ ]は各元素の質量%を示す。(以下の記載でも、同じ。)   The present inventors obtain a thick steel plate having a small toughness change before and after strain aging, in particular, a steel plate having an excellent balance of strength (YS, TS) -toughness (vTrs: fracture surface transition temperature) -toughness change due to strain aging. Therefore, earnest research was conducted from various angles such as component composition and metal structure. As a result, after defining the component composition of the thick steel plate with Cu and Ni as essential additive elements, ΔG / [S] and [Ti] × [N] are in an appropriate range, and bainite occupying the metal structure By appropriately controlling the ratio of ferrite and hard phase (area%), and further keeping the effective crystal particle diameter and the amount of solute C contained in the entire structure within an appropriate range, a desired thick steel plate is obtained. As a result, the present invention has been completed. In addition, [] shows the mass% of each element. (The same applies to the following descriptions.)

以下、本発明を実施形態に基づき詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments.

前記したように、本発明では、厚鋼板の成分組成と、成分組成から求められるΔG/[S]および[Ti]×[N]、金属組織中に占めるベイナイトとフェライト、および硬質相の割合(面積%)、有効結晶粒子径、全組織に含まれる固溶C量を規定するが、まず、成分組成について詳細に説明する。以下、各元素(化学成分)の含有率については単に%と記載するが、全て質量%を示す。   As described above, in the present invention, the component composition of the thick steel plate, ΔG / [S] and [Ti] × [N] obtained from the component composition, bainite and ferrite in the metal structure, and the ratio of the hard phase ( Area%), effective crystal particle diameter, and the amount of dissolved C contained in the entire structure are defined. First, the component composition will be described in detail. Hereinafter, the content of each element (chemical component) is simply described as%, but all indicate mass%.

(成分組成)
C:0.03〜0.06%
Cは、鋼板の強度を確保するための必須元素である。Cの含有量が0.03%未満の場合は、鋼板が必要とする強度を確保できなくなる。Cの含有量の好ましい下限は0.02%である。一方で、Cの含有量が過剰になると、固溶C量が増加し、また、ベイナイトが生成されなくなり、硬質な島状マルテンサイト(MA)が多く生成して靭性劣化を招くことになる。従って、Cの含有量は0.06%以下とする。Cの含有量の好ましい上限は0.05%である。
(Component composition)
C: 0.03-0.06%
C is an essential element for ensuring the strength of the steel sheet. If the C content is less than 0.03%, the strength required by the steel sheet cannot be secured. The minimum with preferable content of C is 0.02%. On the other hand, when the content of C is excessive, the amount of dissolved C increases, bainite is not generated, and a large amount of hard island martensite (MA) is generated, resulting in toughness deterioration. Therefore, the C content is 0.06% or less. The upper limit with preferable content of C is 0.05%.

Si:0.35%以下(0%を含まない)
Siは、Cと同様に鋼板の強度を確保するために有用な元素であるが、その含有量が過剰になると、固溶Cの炭化物への析出を促進し、また、硬質な島状マルテンサイト(MA)の生成を促し、鋼板の靭性劣化を招くことになる。従って、Siの含有量は0.35%以下とする。好ましい上限は0.20%、より好ましい上限は0.10%である。尚、Siの含有量の下限は特に規定しないが、好ましい下限は0.01%である。
Si: 0.35% or less (excluding 0%)
Si is an element useful for securing the strength of the steel sheet as in the case of C. However, when its content is excessive, precipitation of solute C into carbide is promoted, and hard martensite is hard. The production of (MA) is promoted and the toughness of the steel sheet is deteriorated. Therefore, the Si content is set to 0.35% or less. A preferable upper limit is 0.20%, and a more preferable upper limit is 0.10%. In addition, although the minimum of content of Si is not prescribed | regulated in particular, a preferable minimum is 0.01%.

Mn:1.25〜1.75%
Mnも、鋼板の強度を確保するのに有用な元素であり、こうした効果を有効に発揮させるには1.25%以上含有させる必要がある。Mnの含有量の好ましい下限は1.35%、より好ましい下限は1.45である。一方、1.75%を超えて過剰に含有させると偏析を抑制するため、Mnの含有量は1.75%以下とする。Mnの含有量の好ましい上限は1.65%、より好ましい上限は1.55%である。
Mn: 1.25 to 1.75%
Mn is also an element useful for securing the strength of the steel sheet, and it is necessary to contain Mn in an amount of 1.25% or more in order to effectively exhibit such effects. The minimum with preferable content of Mn is 1.35%, and a more preferable minimum is 1.45. On the other hand, in order to suppress segregation when it is contained excessively exceeding 1.75%, the Mn content is 1.75% or less. The upper limit with preferable content of Mn is 1.65%, and a more preferable upper limit is 1.55%.

P:0.010%以下(0%を含まない)
Pは、粒界破壊を起こし易く靭性に悪影響を及ぼす不純物元素であるので、その含有量はできるだけ少ないことが好ましい。靭性を確保するという観点からは、Pの含有量は0.010%以下に抑制する必要があり、好ましくは0.007%以下とする。Pの含有量の下限については特に規定しないが、工業的に鋼中のPを0%にすることは困難である。
P: 0.010% or less (excluding 0%)
Since P is an impurity element that easily causes grain boundary fracture and adversely affects toughness, its content is preferably as small as possible. From the viewpoint of ensuring toughness, the P content needs to be suppressed to 0.010% or less, preferably 0.007% or less. The lower limit of the P content is not particularly defined, but it is difficult to make P in steel 0% industrially.

S:0.003%以下(0%を含まない)
Sは、Mn硫化物を形成して靭性を劣化させる元素であるので、その含有量はできるだけ少ないことが好ましい。靭性を確保するという観点からは、Sの含有量は0.003%以下に抑制する必要がある。Sの含有量の下限については特に規定しないが、工業的に鋼中のSを0%にすることは困難である。
S: 0.003% or less (excluding 0%)
Since S is an element that forms Mn sulfide and deteriorates toughness, its content is preferably as small as possible. From the viewpoint of securing toughness, the S content needs to be suppressed to 0.003% or less. The lower limit of the S content is not particularly specified, but it is difficult to industrially make S in steel 0%.

Al:0.025〜0.035%
Alは、不純物Nを固定し、歪時効による靭性変化を低減するために有用な元素であり、こうした効果を有効に発揮させるには0.025%以上含有させる必要がある。一方、0.035%を超えて過剰に含有させると靭性を低下させるため、Alの含有量は0.035%以下とする。
Al: 0.025 to 0.035%
Al is an element useful for fixing the impurity N and reducing a change in toughness due to strain aging, and it is necessary to contain 0.025% or more in order to effectively exhibit such an effect. On the other hand, if the content exceeds 0.035%, the toughness is reduced, so the Al content is 0.035% or less.

Cu:0.1〜0.4%
Cuは、鋼板の強度確保、また、歪時効後の靭性確保のため有用な元素である。こうした効果を有効に発揮させるには0.1%以上含有させる必要があり、好ましくは0.2%以上とする。一方、偏析による脆化を抑制するため、また、添加Niに対して所定以上の割合とならないように0.4以下とする。好ましくは0.3%以下とする。特に、Ni−Cuの複合添加は、コスト増を低減し、歪時効後の靭性確保に効果的である。尚、確かではないが、Cuの添加が歪時効後の靭性確保に寄与するのは、Cu添加によって歪付与時に導入される転位分布が変化することに起因していると考えられる。
Cu: 0.1 to 0.4%
Cu is an element useful for ensuring the strength of a steel sheet and for ensuring toughness after strain aging. In order to exhibit such an effect effectively, it is necessary to contain 0.1% or more, preferably 0.2% or more. On the other hand, in order to suppress embrittlement due to segregation, it is set to 0.4 or less so as not to have a predetermined ratio or more with respect to the added Ni. Preferably it is 0.3% or less. In particular, the combined addition of Ni—Cu reduces the increase in cost and is effective in securing toughness after strain aging. Although not certain, it is considered that the addition of Cu contributes to securing the toughness after strain aging because the dislocation distribution introduced at the time of applying strain is changed by the addition of Cu.

Ni:0.45〜0.75
Niは、強度−靭性バランスの向上、また、歪時効後の靭性確保のため有用な元素である。こうした効果を有効に発揮させるには0.45%以上含有させる必要があり、好ましくは0.5%以下とする。一方でNiは高価な元素であるため、その含有量は0.75%以下、好ましくは0.65%以下とする。尚、確かではないが、Niの添加が歪時効後の靭性確保に寄与するのは、Ni添加によって歪付与時に導入される転位分布が変化することに起因していると考えられる。
Ni: 0.45-0.75
Ni is a useful element for improving the strength-toughness balance and securing toughness after strain aging. In order to exhibit such an effect effectively, it is necessary to contain 0.45% or more, preferably 0.5% or less. On the other hand, since Ni is an expensive element, its content is 0.75% or less, preferably 0.65% or less. Although not certain, it is considered that the addition of Ni contributes to securing the toughness after strain aging because the dislocation distribution introduced at the time of strain application is changed by the addition of Ni.

Nb:0.01〜0.05%
Nbは、鋼板の強度確保のため有用な元素であるため、0.01%以上含有させる必要がある。一方、Nbの過剰な添加はスラブ段階での粗大なNb晶出物形成を招き靭性を低下させるため、0.05%以下とする。尚、0.01〜0.05%の範囲内では、Nbの添加量は多い方が、固溶C量を低減することができ、且つ、TSレベルを向上させることができるので好ましい。好ましくは0.020%以上、より好ましくは0.023%以上、更に好ましくは0.025%以上である。
Nb: 0.01 to 0.05%
Nb is a useful element for securing the strength of the steel sheet, so it needs to be contained in an amount of 0.01% or more. On the other hand, excessive addition of Nb leads to the formation of coarse Nb crystals in the slab stage and lowers toughness. In addition, in the range of 0.01 to 0.05%, it is preferable that the amount of Nb added is large because the amount of dissolved C can be reduced and the TS level can be improved. Preferably it is 0.020% or more, More preferably, it is 0.023% or more, More preferably, it is 0.025% or more.

Ti:0.005〜0.025%
Tiは、不純物Nを固定する作用を有するため、0.005%以上含有させる必要がある。一方、破壊の起点となりうる粗大TiNを抑制し、靭性を確保するため、含有量を0.025%以下とする。尚、0.005〜0.025%の範囲内では、Tiの添加量は多い方が固溶C量を低減することができ、且つ、TSレベルを向上させることができるので好ましい。好ましくは0.015%以上、より好ましくは0.018%以上である。
Ti: 0.005-0.025%
Since Ti has an action of fixing the impurity N, it is necessary to contain 0.005% or more. On the other hand, the content is set to 0.025% or less in order to suppress coarse TiN that can be a starting point of fracture and to secure toughness. In addition, in the range of 0.005 to 0.025%, it is preferable that the amount of Ti added is large, because the amount of dissolved C can be reduced and the TS level can be improved. Preferably it is 0.015% or more, More preferably, it is 0.018% or more.

N:0.0030〜0.0060%
Nは、不可避的に混入する不純物元素であるが、AlN、TiN活用による旧γ粒粗大化抑制作用を有するため、0.0030%以上含有させる必要がある。一方、歪時効による靭性劣化を抑制するために0.0060%以下とする必要がある。
N: 0.0030 to 0.0060%
N is an impurity element inevitably mixed in, but it has an effect of suppressing the coarsening of old γ grains by utilizing AlN and TiN, so it is necessary to contain 0.0030% or more. On the other hand, in order to suppress toughness deterioration due to strain aging, it is necessary to be 0.0060% or less.

Ca:0.0010〜0.0025%
Caは、靭性を確保するために少量添加することが好ましく、MnSを無害化させる作用もある。こうした効果を有効に発揮させるためには、0.0010%以上含有させる必要がある。しかし、過剰に含有させると粗大な介在物を形成して靭性を低下させるため、0.0025%以下に抑える必要がある。
Ca: 0.0010 to 0.0025%
Ca is preferably added in a small amount to ensure toughness, and also has an effect of detoxifying MnS. In order to exhibit such an effect effectively, it is necessary to contain 0.0010% or more. However, if it is contained excessively, coarse inclusions are formed and the toughness is lowered, so it is necessary to keep it to 0.0025% or less.

以上が本発明で規定する必須の含有元素であって、残部は鉄および不可避的不純物である。不可避的不純物としては、原料、資材、製造設備等の状況によって持ち込まれるSn、As、Pb等の元素の混入が許容される。また、更に以下に示す元素を積極的に含有させることも有効であり、厚鋼板の特性が更に改善される。また、Bは積極的に添加しない。   The above are the essential elements specified in the present invention, and the balance is iron and inevitable impurities. As an inevitable impurity, mixing of elements such as Sn, As, and Pb brought in depending on the situation of raw materials, materials, manufacturing equipment, etc. is allowed. Further, it is effective to further contain the following elements, and the characteristics of the thick steel plate are further improved. Also, B is not actively added.

Cr:0.5%以下(0%を含まない)、および/または、Mo:0.5%以下(0%を含まない)
Cr、Moは、強度を向上させるのに有効な元素である。但し、過剰に添加すると、ベイナイト分率が過剰、および/または、固溶Cが過剰となるため、いずれも0.5%以下とする。
Cr: 0.5% or less (not including 0%) and / or Mo: 0.5% or less (not including 0%)
Cr and Mo are effective elements for improving the strength. However, if excessively added, the bainite fraction becomes excessive and / or the solid solution C becomes excessive.

B:添加しない
Bは、鋼中に含まれる不純物を除いて基本的には添加しない。Nbを0.01〜0.05%添加した鋼材に、更にBを添加するとフェライト変態の遅延が著しくなり、狙いとするフェライト分率が得られなくなる。
B: Not added Basically, B is not added except for impurities contained in the steel. If B is further added to a steel material to which Nb is added in an amount of 0.01 to 0.05%, the delay of ferrite transformation becomes significant, and the target ferrite fraction cannot be obtained.

ΔG/[Si]>0.4
本発明では、厚鋼板が含有する各元素の含有量に加えて、ΔG/[Si]>0.4を満足する必要がある。前式を満足することで、圧延後の冷却時の固溶Cの炭化物析出への反応を促進することができる。好ましくは、ΔG/[Si]≧0.5、より好ましくは、ΔG/[Si]≧1.5とする。尚、前式の分子:ΔGは反応の駆動力を近似しており、分母:[Si]は反応速度を近似している。
ΔG / [Si]> 0.4
In the present invention, in addition to the content of each element contained in the thick steel plate, it is necessary to satisfy ΔG / [Si]> 0.4. By satisfying the previous formula, it is possible to promote the reaction of the solid solution C to the precipitation of carbides during cooling after rolling. Preferably, ΔG / [Si] ≧ 0.5, and more preferably ΔG / [Si] ≧ 1.5. The numerator: ΔG in the previous equation approximates the reaction driving force, and the denominator: [Si] approximates the reaction rate.

前式のΔG=(A3−Bs)/A3に記載の、A3およびBsは、下記の式より求めることができる。つまり、ΔGは鋼中に含有される全成分により制御できる。尚、本発明の厚鋼板はベイナイト単相ではないが、各鋼種の変態点の比較に、Stevenらが求めたBsが有効と判断し参考とした。A3については、サーモカルクにより各成分のbcc析出開始温度を求め、回帰式を作成した。
A3=894.5−269.4[C]+37.4[Si]−31.6[Mn]−19.0[Cu]−29.2[Ni]−11.9[Cr]+19.5[Mo]+22.2[Nb])
Bs=830−270[C]−90[Mn]−37[Ni]−70[Cr]−83[Mo]
A3 and Bs described in ΔG = (A3−Bs) / A3 in the previous equation can be obtained from the following equation. That is, ΔG can be controlled by all components contained in the steel. In addition, although the steel plate of this invention is not a bainite single phase, it judged that Bs which Steven and others calculated | required was effective for the comparison of the transformation point of each steel type, and was used as a reference. About A3, the bcc precipitation start temperature of each component was calculated | required with the thermocalc, and the regression equation was created.
A3 = 894.5-269.4 [C] +37.4 [Si] -31.6 [Mn] -19.0 [Cu] -29.2 [Ni] -11.9 [Cr] +19.5 [ Mo] +22.2 [Nb])
Bs = 830-270 [C] -90 [Mn] -37 [Ni] -70 [Cr] -83 [Mo]

[Ti]×[N]≧4.0×10−5
また、[Ti]×[N]≧4.0×10−5を満足する必要がある。この式を満足しない場合、すなわち、[Ti]×[N]<4.0×10−5の場合は、粒成長を抑制する微細TiNの数密度が不足する。特に、高い圧下率が付与できない厚鋼板を対象とする本発明においては、この微細TiNによる細粒化効果の補助が重要である。
[Ti] × [N] ≧ 4.0 × 10 −5
Moreover, it is necessary to satisfy [Ti] × [N] ≧ 4.0 × 10 −5 . When this formula is not satisfied, that is, when [Ti] × [N] <4.0 × 10 −5 , the number density of fine TiN that suppresses grain growth is insufficient. In particular, in the present invention that targets thick steel plates to which a high rolling reduction cannot be imparted, it is important to assist the fine graining effect by the fine TiN.

(組織)
フェライト分率:40〜90%、ベイナイト分率:5〜60%等
本発明の厚鋼板が目標とする強度(YS、TS)を達成するためには、フェライト分率が40〜90面積%、ベイナイト分率が5〜60面積%の混合組織とし、フェライト分率+ベイナイト分率の合計が90面積%以上とすると共に、硬質相(マルテンサイト、MA)が1面積%以上含まれ金属組織としなければならない。
(Organization)
Ferrite fraction: 40 to 90%, bainite fraction: 5 to 60%, etc. In order to achieve the target strength (YS, TS) of the steel plate of the present invention, the ferrite fraction is 40 to 90 area%, A mixed structure having a bainite fraction of 5 to 60% by area, a total of ferrite fraction + bainite fraction being 90% by area or more, and a metal structure containing 1% by area or more of a hard phase (martensite, MA). There must be.

フェライト分率が90面積%を超えてしまうと、YS(降伏強度)、TS(引張強さ)の少なくとも一方が不足することになる。一方、フェライト分率が40面積%を下回った場合、或いはベイナイト分率が60面積%を超えた場合は、TS(引張強さ)が過剰となる。更には、ベイナイト分率が5面積%未満、或いは硬質相の割合が1面積%未満の場合には、YS(降伏強度)、TS(引張強さ)の少なくとも一方が不足することになる。また、フェライト分率+ベイナイト分率の合計が90面積%未満の場合は、残部に比較的硬質な第3相が形成されるため、靭性が低下する。   If the ferrite fraction exceeds 90 area%, at least one of YS (yield strength) and TS (tensile strength) will be insufficient. On the other hand, when the ferrite fraction falls below 40 area%, or when the bainite fraction exceeds 60 area%, TS (tensile strength) becomes excessive. Furthermore, when the bainite fraction is less than 5 area% or the hard phase ratio is less than 1 area%, at least one of YS (yield strength) and TS (tensile strength) is insufficient. Further, when the sum of the ferrite fraction and the bainite fraction is less than 90% by area, a relatively hard third phase is formed in the remainder, so that the toughness is lowered.

尚、本発明の厚鋼板の金属組織の大部分は、ベイナイト組織とフェライト組織が占めるが、残部は、硬質相のほか、パーライト、擬似パーライトを含む場合がある。   Incidentally, most of the metal structure of the thick steel plate of the present invention is occupied by a bainite structure and a ferrite structure, but the balance may include pearlite and pseudo-pearlite in addition to the hard phase.

有効結晶粒径:3〜25μm
本発明では有効結晶粒径も規定する。有効結晶粒径は、時効前の母材靭性を確保するために25μm以下としなければならない。一方、歪時効による靭性劣化量を所定以下にするため3μm以上とする。尚、有効結晶粒径の測定方法については、実施例の欄で説明する。
Effective crystal grain size: 3-25 μm
In the present invention, the effective crystal grain size is also defined. The effective crystal grain size must be 25 μm or less in order to ensure the base material toughness before aging. On the other hand, in order to reduce the toughness deterioration amount due to strain aging to a predetermined value or less, it is set to 3 μm or more. In addition, the measuring method of an effective crystal grain diameter is demonstrated in the column of an Example.

固溶C量:0.035質量%以下
本発明では、更に厚鋼板の全組織に含まれる固溶C量も規定する。歪時効によるvTrs変化を所定の温度差以内に収めるためには、固溶C量の上限を規定することが必要で、本発明ではvTrs変化を30℃以内とするため、固溶C量を0.035質量%以下とする。
Solid solution C amount: 0.035% by mass or less In the present invention, the amount of solid solution C contained in the entire structure of the thick steel plate is further defined. In order to keep the vTrs change due to strain aging within a predetermined temperature difference, it is necessary to define the upper limit of the solid solution C amount. In the present invention, the vTrs change is within 30 ° C. 0.035% by mass or less.

(製造要件)
本発明の厚鋼板は、前記成分組成を満足する鋼を用い、通常の溶製法により溶製し、スラブとした後、通常の加熱、熱間圧延(粗圧延、仕上げ圧延)、冷却という工程を経ることで得ることができるが、特に、スラブ加熱温度、スラブから仕上げまでのトータル圧下率、粗圧延時の圧下率、圧延終了温度(FRT)、圧延後の冷却開始までの時間、冷却開始温度、圧延後の冷却速度、冷却停止温度、停止後の冷却速度、調質を、夫々以下に説明する条件とすることで、確実に本発明の要件を満足する厚鋼板を製造することができる。
(Manufacturing requirements)
The steel plate of the present invention uses steel that satisfies the above-mentioned composition, and is melted by a normal melting method to form a slab, followed by normal heating, hot rolling (rough rolling, finish rolling), and cooling. In particular, the slab heating temperature, total rolling reduction from slab to finishing, rolling reduction during rough rolling, rolling end temperature (FRT), time to start cooling after rolling, cooling start temperature By setting the cooling rate after rolling, the cooling stop temperature, the cooling rate after stopping, and the tempering to the conditions described below, respectively, it is possible to reliably manufacture a thick steel plate that satisfies the requirements of the present invention.

スラブ加熱温度:1000〜1250℃
熱間圧延前のスラブの加熱温度を、1000〜1250℃とすることで固溶Nbの必要量を確保することができる。加熱温度が1000℃未満の場合は、固溶Nbを確保できず、その結果、後の冷却工程でベイナイト形成が不十分となる。一方、加熱温度が1250℃を超えた場合は、加熱中に旧γ粒径が粗大化し、靭性に悪影響をもたらす。
Slab heating temperature: 1000 to 1250 ° C
The required amount of solid solution Nb can be ensured by setting the heating temperature of the slab before hot rolling to 1000 to 1250 ° C. When heating temperature is less than 1000 degreeC, solid solution Nb cannot be ensured, As a result, bainite formation will become inadequate in a subsequent cooling process. On the other hand, when the heating temperature exceeds 1250 ° C., the old γ grain size becomes coarse during heating, which adversely affects toughness.

トータル圧下率:50%以上、粗圧延時の圧下率:20%以上
再結晶域で旧γ粒径を所定以下まで小さくするため、温度調節までに粗圧延で所定の圧下を行うことが必要である。本発明では粗圧延時の圧下率を20%以上とする。また、結晶粒径を粗大化させないためには、スラブから仕上げまでのトータル圧下率を50%以上として圧延を行う必要がある。粗圧延圧下率が20%未満、或いは、トータル圧下率が50%未満となる場合は、結晶粒径が粗大化してしまう。
Total reduction ratio: 50% or more, reduction ratio during rough rolling: 20% or more In order to reduce the old γ grain size to a predetermined value or less in the recrystallization region, it is necessary to perform a predetermined reduction by rough rolling before temperature adjustment. is there. In the present invention, the rolling reduction during rough rolling is 20% or more. Further, in order not to make the crystal grain size coarse, it is necessary to perform rolling at a total reduction ratio from slab to finish of 50% or more. When the rough rolling reduction is less than 20%, or the total reduction is less than 50%, the crystal grain size becomes coarse.

尚、未再結晶γに対して所定以上の歪を加えることで、所望の粒径を有する組織(ベイナイト+フェライト)を確保できる。特に、所定の全圧下率内での粗圧延および仕上げ圧延を行う場合の圧下率のバランスを考えると、75mm以上の板厚の厚鋼板であっても、温度調節後に圧下率が確保できるよう、粗圧延圧下率を40%以下とすることが好ましい。   In addition, the structure | tissue (bainite + ferrite) which has a desired particle size is securable by adding the distortion more than predetermined to unrecrystallized (gamma). In particular, considering the balance of the rolling reduction when performing rough rolling and finish rolling within a predetermined total rolling reduction, even if it is a thick steel plate having a thickness of 75 mm or more, the rolling reduction can be ensured after temperature adjustment. The rough rolling reduction is preferably 40% or less.

圧延終了温度(FRT):700〜900℃
圧延終了温度(FRT)は700〜900℃とする。下限を700℃以上としたのは、圧延負荷低減等のためであり、上限を900℃としたのは、未再結晶γ域で歪を導入し所望の変態組織(ベイナイト+フェライト)を得るためである。圧延終了温度(FRT)が900℃を超えると、後工程の冷却負荷が大きくなるばかりでなく、粗大なフェライトが多く生成してしまう。
Rolling end temperature (FRT): 700-900 ° C
The rolling end temperature (FRT) is 700 to 900 ° C. The reason why the lower limit is set to 700 ° C. or more is to reduce rolling load, and the upper limit is set to 900 ° C. in order to introduce a desired transformation structure (bainite + ferrite) by introducing strain in the non-recrystallized γ region. It is. When the rolling end temperature (FRT) exceeds 900 ° C., not only the cooling load in the subsequent process is increased, but a large amount of coarse ferrite is generated.

圧延後の冷却開始までの時間:120秒以内
圧延後の冷却開始までの時間は120秒以内とする。120秒とした理由は、高温域でのフェライト変態で形成される粗大なフェライトを抑制するためであり、冷却開始までの時間が120秒を超えると、結晶粒径が粗大化してしまう。
Time to start cooling after rolling: within 120 seconds Time to start cooling after rolling is within 120 seconds. The reason for setting it to 120 seconds is to suppress coarse ferrite formed by ferrite transformation in a high temperature region. When the time until the start of cooling exceeds 120 seconds, the crystal grain size becomes coarse.

冷却開始温度:650℃以上
冷却開始温度は650℃以上とする。650℃以上とした理由は、駆動力の観点から、高温域でのフェライト変態を抑制し粗大なフェライトを抑制するためである。
Cooling start temperature: 650 ° C. or higher The cooling start temperature is 650 ° C. or higher. The reason why the temperature is set to 650 ° C. or higher is to suppress ferrite transformation in a high temperature range and suppress coarse ferrite from the viewpoint of driving force.

圧延後の冷却速度:2〜30℃/s
圧延後の冷却は2〜30℃/sの冷却速度で実施する。冷却速度の下限を2℃/sとしたのは、必要以上のフェライトの生成を抑制するためであり、また、生産性を低下させないためである。一方、冷却速度の上限を30℃/sとしたのは、組織をフェライトとベイナイトの混合組織とし強度を確保するためである。
Cooling rate after rolling: 2-30 ° C./s
Cooling after rolling is performed at a cooling rate of 2 to 30 ° C./s. The lower limit of the cooling rate is set to 2 ° C./s in order to suppress generation of ferrite more than necessary and not to reduce productivity. On the other hand, the upper limit of the cooling rate is set to 30 ° C./s in order to secure the strength by making the structure a mixed structure of ferrite and bainite.

冷却停止温度:350〜450℃
組織をフェライトとベイナイトの混合組織とするためには、冷却停止温度を350〜450℃としなければならない。冷却停止温度が350℃を下回る場合は、全面ベイナイト、もしくはマルテンサイト組織となってしまう。また、固溶Cも多くなる。一方、冷却停止温度が450℃を超える場合は、ベイナイトが十分に得られない。また、結晶粒径が粗大化してしまう。
Cooling stop temperature: 350-450 ° C
In order to make the structure a mixed structure of ferrite and bainite, the cooling stop temperature must be 350 to 450 ° C. When the cooling stop temperature is lower than 350 ° C., the entire surface becomes bainite or a martensite structure. Moreover, the amount of solid solution C increases. On the other hand, when the cooling stop temperature exceeds 450 ° C., bainite cannot be obtained sufficiently. In addition, the crystal grain size becomes coarse.

停止後の冷却速度:1℃/s以下
冷却停止後の冷却速度を1℃/s以下とすることで、固溶Cの析出を促すことができる。
Cooling rate after stopping: 1 ° C./s or less By setting the cooling rate after stopping cooling to 1 ° C./s or less, precipitation of solute C can be promoted.

調質:なし
本発明の厚鋼板を製造するにあたり、生産性向上という観点から、焼戻しなどの調質は基本的に行わない。
Tempering: None In producing the thick steel plate of the present invention, tempering such as tempering is basically not performed from the viewpoint of improving productivity.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and the present invention is implemented with appropriate modifications within a range that can meet the gist of the present invention. These are all included in the technical scope of the present invention.

表1および表2に示す各成分組成の鋼を用い、通常の溶製法により溶製し、スラブとした後、加熱、熱間圧延(粗圧延、仕上げ圧延)、冷却という工程を経ることで仕上げ板厚:100mmの厚鋼板を得た。スラブ加熱温度、粗圧延時の圧下率、スラブから仕上げまでのトータル圧下率、圧延終了温度(FRT)、圧延後の冷却開始までの時間、冷却開始温度、圧延後の冷却速度、冷却停止温度、停止後の冷却速度は、表3および表4に示す条件とした。尚、粗圧延の圧下温度は900℃以上、仕上げ温度は720℃とした。   Using steel of each component composition shown in Table 1 and Table 2, it is melted by a normal melting method to form a slab, and then finished through steps of heating, hot rolling (rough rolling, finish rolling), and cooling. Plate thickness: A thick steel plate of 100 mm was obtained. Slab heating temperature, rolling reduction during rough rolling, total rolling reduction from slab to finishing, rolling finish temperature (FRT), time to start cooling after rolling, cooling start temperature, cooling rate after rolling, cooling stop temperature, The cooling rate after stopping was the conditions shown in Table 3 and Table 4. The rolling temperature for rough rolling was 900 ° C. or higher, and the finishing temperature was 720 ° C.

以上の要件で製造した各厚鋼板の、フェライト分率、ベイナイト分率、硬質相分率、有効結晶粒径、固溶C量、更に、YS(降伏強度)、TS(引張強さ)、歪時効によるvTrs変化、歪時効前のvTrs(破面遷移温度)を、測定等によって求めた。これらの測定結果を表5および表6に示す。   Each thick steel plate manufactured according to the above requirements has a ferrite fraction, a bainite fraction, a hard phase fraction, an effective crystal grain size, a solid solution C amount, YS (yield strength), TS (tensile strength), and strain. Changes in vTrs due to aging and vTrs (fracture surface transition temperature) before strain aging were determined by measurement or the like. These measurement results are shown in Tables 5 and 6.

Figure 2014074194
Figure 2014074194

Figure 2014074194
Figure 2014074194

Figure 2014074194
Figure 2014074194

Figure 2014074194
Figure 2014074194

Figure 2014074194
Figure 2014074194

Figure 2014074194
Figure 2014074194

(フェライト分率、ベイナイト分率、硬質相分率、有効結晶粒径)
各厚鋼板の表面から深さt/4(t:板厚)の位置から試験片を切り出し(試験片の軸心がt/4の位置を通るように採取)、圧延方向に平行な断面において、エッチングを行い、800μm×600μmの範囲を100倍で3視野以上を観察し、金属組織中に占めるフェライト分率(面積%)、ベイナイト分率(面積%)、および硬質相分率(面積%)を求めた。尚、本実施例では、ナイタール腐食後に、アスペクト比が2未満の結晶粒をフェライトと定義した。また、アスペクト比が2以上の結晶粒で、レペラ腐食後に白いコントラストではないものをベイナイト、白いコントラスト部を硬質相と定義した。有効結晶粒径およびアスペクト比は線分法により測定した。腐食によって周囲と比べてもえぐられるようになるため、光学顕微鏡観察では黒線コントラストで囲まれる領域を有効結晶粒径とし、各視野について100個以上の長軸と短軸を求め、それらの平均を有効結晶粒径とした。
(Ferrite fraction, bainite fraction, hard phase fraction, effective crystal grain size)
From the surface of each thick steel plate, a test piece is cut out from a position of depth t / 4 (t: thickness) (taken so that the axis of the test piece passes through the position of t / 4), and in a cross section parallel to the rolling direction. Etching and observing 3 fields or more in the range of 800 μm × 600 μm at 100 times, ferrite fraction (area%), bainite fraction (area%), and hard phase fraction (area%) in the metal structure ) In this example, crystal grains having an aspect ratio of less than 2 were defined as ferrite after nital corrosion. In addition, crystal grains having an aspect ratio of 2 or more, which are not white contrast after repeller corrosion, are defined as bainite, and a white contrast portion is defined as a hard phase. The effective crystal grain size and aspect ratio were measured by the line segment method. Since it becomes more detrimental than the surroundings due to corrosion, the area surrounded by the black line contrast is regarded as the effective crystal grain size in the optical microscope observation, and 100 or more major axes and minor axes are obtained for each field of view, and the average of these is obtained. Was the effective crystal grain size.

(固溶C量)
X線回析(XRD)により、炭化物(セメンタイト)量を測定した。測定後、炭化物量=析出C量として、下記式より固溶C量を算出した。尚、X線回折では一定以上小さい炭化物は検出できないため、炭化物量は少なめに測定される。よって、計算される固溶C量は、実際の固溶C量よりも大きい値と考えられる。一方で、実際の固溶C量と相関していると考えられ、下記式を採用した。
固溶C量=全C量−析出C量
(Solution C amount)
The amount of carbide (cementite) was measured by X-ray diffraction (XRD). After the measurement, the amount of solid solution C was calculated from the following formula, assuming that the amount of carbide = the amount of precipitated C. In addition, since the carbide | carbonized_material smaller than a fixed value cannot be detected by X-ray diffraction, the amount of carbide | carbonized_material is measured slightly. Therefore, the calculated solid solution C amount is considered to be a value larger than the actual solid solution C amount. On the other hand, it is thought that it is correlated with the actual amount of solute C, and the following formula was adopted.
Solid C amount = Total C amount-Precipitated C amount

(降伏強度および引張り強さの評価)
各厚鋼板の表面から深さt/4(t:板厚)の位置から、圧延方向に直角にJIS Z 2201の4号試験片を採取し、JIS Z 2241の引張り試験を実施して、試験片の圧延方向の降伏強度(YS)、および引張り強さ(TS)を測定により求めた。本実施例では、YSが400MPa以上、TSが500〜700MPaという条件を満たす厚鋼板を、合格条件を満足するものと評価した。
(Evaluation of yield strength and tensile strength)
From the surface of each thick steel plate, from the position of depth t / 4 (t: thickness), a JIS Z 2201 No. 4 test piece was sampled at right angles to the rolling direction, and a tensile test of JIS Z 2241 was conducted. The yield strength (YS) and tensile strength (TS) in the rolling direction of the piece were determined by measurement. In the present Example, the thick steel plate which satisfy | fills the conditions that YS is 400 Mpa or more and TS is 500-700 Mpa was evaluated as satisfying pass conditions.

(歪時効によるvTrs変化、歪時効前のvTrsの評価)
歪時効前後の各厚鋼板の表面から深さt/4(t:板厚)の位置から、シャルピー衝撃試験片(JIS Z 2242の4号試験片)を3本ずつ採取(試験片の軸心が前記t/4の位置を通るように採取)し、Vノッチシャルピー衝撃試験を行った。各試験片について、3温度以上の条件で脆性破面率を測定し、脆性破面率の平均値が50%となる温度を5℃刻みで求めた。本実施例では、歪時効によるvTrs変化が30℃以内、歪時効前のvTrsが−60℃以下のものを合格と評価した。
(VTrs change due to strain aging, evaluation of vTrs before strain aging)
Three Charpy impact test pieces (JIS Z 2242 No. 4 test piece) were collected from the position of depth t / 4 (t: plate thickness) from the surface of each thick steel plate before and after strain aging (the axis of the test piece) Was taken so as to pass through the t / 4 position), and a V-notch Charpy impact test was conducted. About each test piece, the brittle fracture surface ratio was measured on conditions more than 3 temperature, and the temperature from which the average value of a brittle fracture surface ratio will be 50% was calculated | required in increments of 5 degreeC. In this example, a change in vTrs due to strain aging was within 30 ° C., and a vTrs before strain aging was −60 ° C. or less was evaluated as acceptable.

(試験結果)
No.1〜20は、本発明の要件を満足する発明例であり、成分組成のほか、ΔG/[Si]>0.4、および、[Ti]×[N]≧4.0×10−5、ベイナイト分率、フェライト分率、硬質相分率、固溶C量が本発明の要件を満足している。その結果、降伏強度(YS)、引張り強さ(TS)、歪時効によるvTrs変化、歪時効前のvTrsが、全て本実施例の評価基準を満足する結果となった。
(Test results)
No. 1 to 20 are invention examples that satisfy the requirements of the present invention. In addition to the component composition, ΔG / [Si]> 0.4, and [Ti] × [N] ≧ 4.0 × 10 −5 , The bainite fraction, ferrite fraction, hard phase fraction, and solid solution C content satisfy the requirements of the present invention. As a result, the yield strength (YS), tensile strength (TS), vTrs change due to strain aging, and vTrs before strain aging all satisfied the evaluation criteria of this example.

これに対し、No.21〜30は、成分組成が本発明で規定する要件を外れる比較例(No.21〜24、27はベイナイト分率、フェライト分率、硬質相分率のいずれかで、No.21、23は固溶C量でも本発明の要件を満足しない。)である。その結果、降伏強度(YS)、引張り強さ(TS)、歪時効によるvTrs変化、歪時効前のvTrsの全ての評価基準を満足する結果となった。   In contrast, no. 21 to 30 are comparative examples in which the component composition deviates from the requirements defined in the present invention (No. 21 to 24 and 27 are any of bainite fraction, ferrite fraction, and hard phase fraction, Even the amount of solute C does not satisfy the requirements of the present invention.). As a result, yield strength (YS), tensile strength (TS), vTrs change due to strain aging, and all evaluation criteria for vTrs before strain aging were satisfied.

また、No.31〜37は、成分組成は本発明で規定する要件を満足するものの、ベイナイト分率、フェライト分率、硬質相分率、固溶C量のいずれか一つ以上で本発明で規定する要件を外れる比較例である。その結果、降伏強度(YS)、引張り強さ(TS)、歪時効によるvTrs変化、歪時効前のvTrsの何れか1項目以上で評価基準を満足しない結果となった。   No. 31-37, although the component composition satisfies the requirements specified in the present invention, the requirements specified in the present invention in any one or more of bainite fraction, ferrite fraction, hard phase fraction, and solid solution C amount. This is a comparative example that deviates. As a result, one or more items of yield strength (YS), tensile strength (TS), vTrs change due to strain aging, and vTrs before strain aging did not satisfy the evaluation criteria.

Claims (2)

質量%で、C:0.03〜0.06%、Si:0.35%以下(0%を含まない)、Mn:1.25〜1.75%、P:0.010%以下(0%を含まない)、S:0.003%以下(0%を含まない)、Al:0.025〜0.035%、Cu:0.1〜0.4%、Ni:0.45〜0.75%、Nb:0.01〜0.05%、Ti:0.005〜0.025%、N:0.0030〜0.0060%、Ca:0.0010〜0.0025%を含有し、残部が鉄および不可避的不純物でなると共に、
ΔG/[Si]>0.4、および、[Ti]×[N]≧4.0×10−5を満足し、
且つ、フェライト分率が40〜90面積%、ベイナイト分率が5〜60面積%の混合組織を有し、フェライト分率+ベイナイト分率の合計が90面積%以上であると共に、硬質相が1面積%以上含まれており、
有効結晶粒径が3〜25μmであって、
更に、全組織に含まれる固溶C量が0.035質量%以下であることを特徴とする歪時効前後の靭性変化が少ない厚鋼板。
但し、前式中、ΔG=(A3−Bs)/A3であり、
A3=894.5−269.4[C]+37.4[Si]−31.6[Mn]−19.0[Cu]−29.2[Ni]−11.9[Cr]+19.5[Mo]+22.2[Nb])、
Bs=830−270[C]−90[Mn]−37[Ni]−70[Cr]−83[Mo]である。
尚、前記した各式中、[ ]は質量%を示す。
In mass%, C: 0.03 to 0.06%, Si: 0.35% or less (excluding 0%), Mn: 1.25 to 1.75%, P: 0.010% or less (0 %), S: 0.003% or less (not including 0%), Al: 0.025 to 0.035%, Cu: 0.1 to 0.4%, Ni: 0.45 to 0 .75%, Nb: 0.01-0.05%, Ti: 0.005-0.025%, N: 0.0030-0.0060%, Ca: 0.0010-0.0025% The balance is iron and inevitable impurities,
ΔG / [Si]> 0.4 and [Ti] × [N] ≧ 4.0 × 10 −5 are satisfied,
And it has a mixed structure with a ferrite fraction of 40 to 90 area% and a bainite fraction of 5 to 60 area%, the total of the ferrite fraction and the bainite fraction is 90 area% or more, and the hard phase is 1 More than area%,
The effective crystal grain size is 3-25 μm,
Further, a thick steel plate having a small change in toughness before and after strain aging, wherein the amount of solute C contained in the entire structure is 0.035% by mass or less.
However, in the previous equation, ΔG = (A3−Bs) / A3,
A3 = 894.5-269.4 [C] +37.4 [Si] -31.6 [Mn] -19.0 [Cu] -29.2 [Ni] -11.9 [Cr] +19.5 [ Mo] +22.2 [Nb]),
Bs = 830-270 [C] -90 [Mn] -37 [Ni] -70 [Cr] -83 [Mo].
In addition, in each above-mentioned formula, [] shows the mass%.
更に、質量%で、Cr:0.5%以下(0%を含まない)、および/または、Mo:0.5%以下(0%を含まない)を含有する請求項1記載の歪時効前後の靭性変化が少ない厚鋼板。   Furthermore, before and after strain aging according to claim 1, containing, in mass%, Cr: 0.5% or less (not including 0%) and / or Mo: 0.5% or less (not including 0%) Steel plate with little toughness change.
JP2012221137A 2012-10-03 2012-10-03 Thick steel plate with little toughness change before and after strain aging Active JP5732017B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012221137A JP5732017B2 (en) 2012-10-03 2012-10-03 Thick steel plate with little toughness change before and after strain aging
CN201310454903.2A CN103710621B (en) 2012-10-03 2013-09-29 The Plate Steel that change in toughness before and after strain aging is little
KR1020130116202A KR101553748B1 (en) 2012-10-03 2013-09-30 Thick steel plate with little change in toughness before and after strain againg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012221137A JP5732017B2 (en) 2012-10-03 2012-10-03 Thick steel plate with little toughness change before and after strain aging

Publications (2)

Publication Number Publication Date
JP2014074194A true JP2014074194A (en) 2014-04-24
JP5732017B2 JP5732017B2 (en) 2015-06-10

Family

ID=50403965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012221137A Active JP5732017B2 (en) 2012-10-03 2012-10-03 Thick steel plate with little toughness change before and after strain aging

Country Status (3)

Country Link
JP (1) JP5732017B2 (en)
KR (1) KR101553748B1 (en)
CN (1) CN103710621B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101949036B1 (en) * 2017-10-11 2019-05-08 주식회사 포스코 Thick steel sheet having excellent low temperature strain aging impact properties and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195058A (en) * 1992-01-14 1993-08-03 Kobe Steel Ltd Production of thick steel plate having high toughness and high tensile strength
JPH08158006A (en) * 1994-12-06 1996-06-18 Kobe Steel Ltd High strength steel excellent in toughness in weld heat-affected zone
JP2009263777A (en) * 2008-03-31 2009-11-12 Jfe Steel Corp High-tensile strength steel and manufacturing method thereof
JP2010229528A (en) * 2009-03-30 2010-10-14 Jfe Steel Corp High tensile strength steel sheet having excellent ductility and method for producing the same
WO2011148755A1 (en) * 2010-05-27 2011-12-01 新日本製鐵株式会社 Process for producing high-strength steel plate for welded structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899874B2 (en) 2007-01-12 2012-03-21 Jfeスチール株式会社 Wear-resistant steel plate with excellent workability and method for producing the same
JP5354164B2 (en) * 2008-12-09 2013-11-27 Jfeスチール株式会社 Low yield ratio high strength thick steel plate and method for producing the same
WO2011040624A1 (en) * 2009-09-30 2011-04-07 Jfeスチール株式会社 Steel plate with low yield ratio, high strength, and high toughness and process for producing same
JP5423309B2 (en) * 2009-10-21 2014-02-19 新日鐵住金株式会社 Thick steel plate for offshore structures and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195058A (en) * 1992-01-14 1993-08-03 Kobe Steel Ltd Production of thick steel plate having high toughness and high tensile strength
JPH08158006A (en) * 1994-12-06 1996-06-18 Kobe Steel Ltd High strength steel excellent in toughness in weld heat-affected zone
JP2009263777A (en) * 2008-03-31 2009-11-12 Jfe Steel Corp High-tensile strength steel and manufacturing method thereof
JP2010229528A (en) * 2009-03-30 2010-10-14 Jfe Steel Corp High tensile strength steel sheet having excellent ductility and method for producing the same
WO2011148755A1 (en) * 2010-05-27 2011-12-01 新日本製鐵株式会社 Process for producing high-strength steel plate for welded structure

Also Published As

Publication number Publication date
CN103710621B (en) 2015-12-23
KR20140043868A (en) 2014-04-11
CN103710621A (en) 2014-04-09
KR101553748B1 (en) 2015-09-16
JP5732017B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5991450B1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP6327282B2 (en) High strength hot rolled steel sheet and method for producing the same
JP4767590B2 (en) Production method of low yield ratio high strength steel and low yield ratio high strength steel
KR101205144B1 (en) H-steel for building structure and method for producing the same
JP4676871B2 (en) Steel sheet with excellent fatigue crack growth control
CN110088346B (en) Steel material for welded steel pipe having excellent longitudinal uniform elongation, method for producing same, and steel pipe using same
JP6682967B2 (en) Steel plate and method of manufacturing the same
US10640843B2 (en) High strength electric resistance welded steel pipe and method for producing high strength electric resistance welded steel pipe
JP2018188675A (en) High strength hot-rolled steel sheet and production method thereof
US20200080167A1 (en) High strength multi-phase steel having excellent burring properties at low temperature, and method for producing same
CA3121217C (en) Steel plate having excellent heat affected zone toughness and method for manufacturing thereof
JP2021507989A (en) High-strength steel for polar environment with excellent fracture resistance at low temperature and its manufacturing method
KR102098482B1 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
JP6620575B2 (en) Thick steel plate and manufacturing method thereof
JP6847225B2 (en) Low yield ratio steel sheet with excellent low temperature toughness and its manufacturing method
JP4934505B2 (en) Steel sheet with excellent fatigue crack growth suppression characteristics and brittle fracture suppression characteristics
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP2009074111A (en) Thick high strength steel plate for high heat input welding having reduced variation in base metal low temperature toughness and excellent heat affected zone toughness, and method for producing the same
KR101143029B1 (en) High strength, toughness and deformability steel plate for pipeline and manufacturing metod of the same
WO2010143433A1 (en) High strength steel pipe and method for producing same
KR101406527B1 (en) Thick steel plate having excellent property in haz of large-heat-input welded joint and method for producing same
JP5732017B2 (en) Thick steel plate with little toughness change before and after strain aging
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
KR101069995B1 (en) High Strength Steel Sheet for Line-pipe and Manufacturing Method Thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150410

R150 Certificate of patent or registration of utility model

Ref document number: 5732017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150