JP4676871B2 - Steel sheet with excellent fatigue crack growth control - Google Patents

Steel sheet with excellent fatigue crack growth control Download PDF

Info

Publication number
JP4676871B2
JP4676871B2 JP2005365303A JP2005365303A JP4676871B2 JP 4676871 B2 JP4676871 B2 JP 4676871B2 JP 2005365303 A JP2005365303 A JP 2005365303A JP 2005365303 A JP2005365303 A JP 2005365303A JP 4676871 B2 JP4676871 B2 JP 4676871B2
Authority
JP
Japan
Prior art keywords
steel sheet
crack growth
less
fatigue crack
orientation difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005365303A
Other languages
Japanese (ja)
Other versions
JP2007169678A (en
Inventor
誠一 大垣
直宏 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005365303A priority Critical patent/JP4676871B2/en
Publication of JP2007169678A publication Critical patent/JP2007169678A/en
Application granted granted Critical
Publication of JP4676871B2 publication Critical patent/JP4676871B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、主として船舶や橋梁の構造材として用いられる鋼板に関するものであり、特に亀裂の進展速度を抑制して良好な疲労寿命を確保することのできる鋼板に関するものである。   The present invention relates to a steel plate used mainly as a structural material for ships and bridges, and more particularly to a steel plate capable of ensuring a good fatigue life by suppressing the crack growth rate.

造船や橋梁分野を始めとする各種構造材料では、繰り返し応力が加わるものが少なくないことから、構造材料の安全性を確保するためには、素材として用いられている鋼材には疲労特性が良好であることが設計上極めて重要である。   Many structural materials, such as shipbuilding and bridges, are subject to repeated stresses. Therefore, in order to ensure the safety of structural materials, the steel materials used have good fatigue characteristics. It is very important to design.

鋼材の疲労過程は、応力集中部での亀裂の発生と、一旦発生した亀裂の進展という2つの過程に大別して考えられる。そして、通常の機械部品では巨視的な亀裂の発生が、使用限界として考えられており、設計上亀裂の進展についてはそれほど考慮されていない。しかしながら、溶接構造物においては、疲労亀裂が発生しても直ちに破壊に至ることはなく、亀裂進展速度を遅くすることができれば、破壊に至るまでの寿命を短くすることができ、定期検査などで亀裂を発見することが可能であり、早期に取り替えずとも続けて使用することが可能である。   The fatigue process of steel materials can be broadly divided into two processes, namely, the generation of cracks in stress-concentrated portions and the progress of cracks once generated. In normal machine parts, the occurrence of macroscopic cracks is considered as a use limit, and the development of cracks is not considered much in terms of design. However, in welded structures, even if fatigue cracks occur, they do not immediately break, and if the crack growth rate can be slowed, the life until failure can be shortened. Cracks can be found and can be used continuously without early replacement.

ところで、溶接構造物では、応力集中部としての溶接止端部や欠陥部が多数存在しており、疲労亀裂の発生を完全に防止することは実際問題として不可能であり、こうした設計は経済的にも得策とはいえない。即ち、溶接構造物の疲労寿命を良好にするためには、亀裂の発生そのものを防止するよりも、亀裂が既に存在している状態からの亀裂進展寿命を大幅に延長することが有効であり、そのためには鋼材の亀裂の進展速度をできるだけ遅くするような設計が重要な事項となる。   By the way, in welded structures, there are many weld toes and defects as stress concentrated parts, and it is impossible as a practical matter to completely prevent the occurrence of fatigue cracks. Such a design is economical. However, it is not a good idea. That is, in order to improve the fatigue life of the welded structure, it is effective to significantly extend the crack propagation life from the state in which the crack already exists, rather than preventing the occurrence of the crack itself. For that purpose, the design which makes the progress rate of the crack of steel materials as slow as possible becomes an important matter.

疲労亀裂進展の速度を抑制する技術としてもこれまで様々なものが提案されており、例えば特許文献1には、鋼板表面の法線方向をNDとしたとき、α鉄の(100)面がNDと平行な方位{(100)//ND}を有する結晶粒と、α鉄の(111)面がNDと平行な方位{(111)//ND}を有する結晶粒との間の境界が亀裂の進展方向に沿って少なくとも30μmに1箇所以上横切ることや、鋼板表面に平行な測定面で鋼板内部のα(111)面強度比とα(100)面強度比の比が1.25〜2.0とすることによって疲労亀裂進展(伝播)特性に優れた鋼板とすることが提案されている。   Various techniques have been proposed so far for suppressing the rate of fatigue crack growth. For example, in Patent Document 1, when the normal direction of the steel sheet surface is ND, the (100) plane of α iron is ND. Is a boundary between a crystal grain having a parallel orientation {(100) // ND} and a crystal grain having an orientation {(111) // ND} in which the (111) plane of α iron is parallel to ND The ratio of the α (111) plane strength ratio to the α (100) plane strength ratio in the steel sheet is 1.25 to 2 at least one cross section at 30 μm along the progress direction of the steel sheet. It has been proposed that the steel sheet has excellent fatigue crack propagation (propagation) characteristics by being set to 0.0.

高い応力下で使用される鋼板であるほど疲労特性に対する関心は高くなるのであるが、上記技術でフェライトを主体(例えば、70面積%以上)とするものであるので、390〜490MPa程度の強度クラスにしか対応できず、特に疲労亀裂が問題となる部分には適用できないという問題がある。   Although the steel sheet used under higher stress is more interested in fatigue properties, the strength class of about 390 to 490 MPa is used because the above technique is mainly composed of ferrite (for example, 70 area% or more). There is a problem that it cannot be applied only to a portion where fatigue cracks are a problem.

また上記技術では、結晶方位を上記のように制御するために、フェライトを70面積%以上析出させたγ−α二相域の低温度温度領域またはα温度域で強加工をすることが示されている。こうしたフェライト組織に対して、ベイナイト相を主体とする組織(これを「単にベイナイト組織」と呼ぶことがある)では、オーステナイトと一定の方位関係を持って生成することが知られており、上記技術と同様の手段では、結晶方位を制御することはできない。   In the above technique, in order to control the crystal orientation as described above, it is shown that strong processing is performed in the low temperature temperature region or the α temperature region of the γ-α two-phase region in which 70% by area or more of ferrite is precipitated. ing. In contrast to such a ferrite structure, it is known that a structure mainly composed of a bainite phase (sometimes referred to simply as “bainite structure”) has a certain orientation relationship with austenite. The crystal orientation cannot be controlled by the same means.

一方、特許文献2では、ベイナイト組織またはマルテンサイト組織で、最大引張・圧縮歪で±0.012、繰り返し速度0.5Hz、最大歪までの波数12の漸増・漸減繰り返し負荷を15回与えたときの、1回の最大歪時の応力σと15回の最大歪時の応力σ15との比σ/σ15で示される繰り返し軟化パラメータが0.65以上0.95以下であるような疲労亀裂進展特性に優れた鋼材が提案されている。そして、この技術では、亀裂先端の転位の移動、消滅による軟化によって歪が緩和され、亀裂進展が抑制されることが示されている。この技術では、汎用鋼と類似の成分系において一般的な製法製造することによって、亀裂進展特性に優れた鋼板とすることができるとしているが、必ずしも一般材との区別が明確にされている訳ではなく、上記のような軟化パラメータを規定するだけで希望する特性が発揮されるとはいえない。更に、破面遷移温度vTrsが0℃を超える実施例が存在し、構造物としての特性を十分に満足できない可能性がある。
特開2000−17379号公報 特許請求の範囲等 特開2004−27355号公報 特許請求の範囲等
On the other hand, in Patent Document 2, when a bainite structure or martensite structure is applied, a maximum tensile / compressive strain of ± 0.012, a repetition rate of 0.5 Hz, and a wave number 12 gradually increasing / decreasing repeated load up to the maximum strain of 15 times The repetitive softening parameter indicated by the ratio σ 1 / σ 15 of the stress σ 1 at the time of one maximum strain and the stress σ 15 at the time of the maximum strain of 15 is 0.65 or more and 0.95 or less. Steel materials excellent in fatigue crack growth characteristics have been proposed. In this technique, it is shown that the strain is relaxed by softening due to the movement and disappearance of the dislocation at the crack tip, and the crack progress is suppressed. In this technology, it is said that a steel plate with excellent crack growth characteristics can be obtained by producing a general manufacturing method in a component system similar to that of general-purpose steel, but the distinction from general materials is not necessarily clearly defined. However, it cannot be said that desired characteristics are exhibited only by defining the softening parameters as described above. Furthermore, there is an example in which the fracture surface transition temperature vTrs exceeds 0 ° C., and the characteristics as a structure may not be sufficiently satisfied.
JP, 2000-17379, A Claims, etc. JP, 2004-27355, A Claims etc.

本発明は上記の様な事情に着目してなされたものであって、その目的は、ベイナイトを主体とする鋼板において、各結晶方位関係を適切に規定することによって、疲労亀裂進展抑制に優れたものとした鋼板を提供することにある。   The present invention has been made paying attention to the above-mentioned circumstances, and the purpose thereof is excellent in suppressing fatigue crack growth by appropriately defining each crystal orientation relationship in a steel sheet mainly composed of bainite. It is to provide an intended steel sheet.

上記目的を達成することのできた本発明の鋼板とは、ベイナイトを主体とする組織からなり、2つの結晶の方位差が15°以上の大角粒界で囲まれた領域を結晶粒としたとき、当該結晶粒の平均円相当径が15μm以下であって、且つ隣接する結晶粒同士の方位差が55〜60°である割合が0.3以上である点に要旨を有するものである。尚、本発明において、「ベイナイトを主体とする」とは、ベイナイト相が組織中に90面積%以上を占める状態を意味する。   The steel sheet of the present invention that was able to achieve the above-mentioned object consists of a structure mainly composed of bainite, and when the crystal grain is a region surrounded by a large-angle grain boundary where the orientation difference between two crystals is 15 ° or more, It has a gist in that the average equivalent circle diameter of the crystal grains is 15 μm or less and the ratio of the orientation difference between adjacent crystal grains is 55 to 60 ° is 0.3 or more. In the present invention, “mainly composed of bainite” means a state in which the bainite phase occupies 90 area% or more in the structure.

本発明の高張力鋼板においては、その化学成分組成については通常の鋼板としての成分組成であれば、その効果が発揮されるものであるが、好ましい化学成文組成としては、C:0.01〜0.10%(質量%の意味、以下同じ)、Si:0.01〜0.6%、Mn:0.6〜2.0%、Al:0.005〜0.10%を夫々含有する他、Cu:0.03〜3.0%、Cr:0.03〜3.0%、Ni:0.03〜3.0%、Mo:0.03〜1.0%、V:0.003〜0.1%、Nb:0.003〜0.1%、Ti:0.003〜0.1%およびB:0.0003〜0.003%よりなる群から選択される1種または2種以上を含み、残部が鉄および不可避不純物であるものが挙げられる。また不可避不純物中のPやSは、P:0.025%以下、S:0.02%以下に夫々抑制することが好ましい。   In the high-tensile steel plate of the present invention, the chemical component composition is effective as long as it is a component composition as a normal steel plate, but as a preferable chemical composition, C: 0.01 to 0.10% (meaning of mass%, the same applies hereinafter), Si: 0.01 to 0.6%, Mn: 0.6 to 2.0%, Al: 0.005 to 0.10%, respectively. Others: Cu: 0.03-3.0%, Cr: 0.03-3.0%, Ni: 0.03-3.0%, Mo: 0.03-1.0%, V: 0.00. One or two selected from the group consisting of 003 to 0.1%, Nb: 0.003 to 0.1%, Ti: 0.003 to 0.1% and B: 0.0003 to 0.003% Including those containing more than seeds, the balance being iron and inevitable impurities. In addition, P and S in the inevitable impurities are preferably suppressed to P: 0.025% or less and S: 0.02% or less, respectively.

本発明の鋼板においては、必要によって、下記(1)式で規定される炭素当量Ceqが0.40〜0.70であることや、更にCaを0.0005〜0.005%および/または希土類元素(REM):0.0005〜0.030%含有するものであることが好ましく、付加する要件に応じて鋼板の特性が更に改善される。
Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14…(1)
但し、[C],[Si],[Mn],[Ni],[Cr],[Mo]および[V]は、夫々C,Si,Mn,Ni,Cr,MoおよびVの含有量(質量%)を示す。
In the steel sheet of the present invention, if necessary, the carbon equivalent Ceq defined by the following formula (1) is 0.40 to 0.70, and further Ca is 0.0005 to 0.005% and / or rare earth. Element (REM): It is preferable to contain 0.0005 to 0.030%, and the characteristics of the steel sheet are further improved according to the requirements to be added.
Ceq = [C] + [Si] / 24 + [Mn] / 6 + [Ni] / 40 + [Cr] / 5 + [Mo] / 4 + [V] / 14 ... (1)
However, [C], [Si], [Mn], [Ni], [Cr], [Mo] and [V] are the contents (mass of C, Si, Mn, Ni, Cr, Mo and V, respectively). %).

本発明の鋼板においては、ベイナイトを主体とする組織を有する鋼板において、各結晶方位関係を適切に規定することによって、疲労亀裂進展抑制に優れた鋼板が実現でき、こうした鋼板は、造船や橋梁分野を始めとする各種構造材料の素材として有用である。   In the steel sheet of the present invention, in a steel sheet having a structure mainly composed of bainite, by appropriately defining each crystal orientation relationship, a steel sheet excellent in fatigue crack growth suppression can be realized, and such a steel sheet can be used in shipbuilding and bridge fields. It is useful as a material for various structural materials such as

本発明者らは、前記課題を解決するために、特にベイナイト組織である鋼板に着目し、その鋼板における疲労亀裂進展速度を抑制するための手段について様々な角度から検討した。その結果、次のような知見が得られた。即ち、上記のようなベイナイト組織ではオーステナイトに対して、何通りかの方位関係を持って生成することになるのであるが、鋼板の化学成分組成、組織の生成温度、その他の条件等によって選択される各結晶格子の方位関係が変化することになり、一定の結晶方位差を有する結晶粒界では、特に疲労亀裂進展が抑制されることが判明したのである。そして、結晶方位分布を適切に規定すれば、疲労亀裂進展の抑制を良好に実現できる鋼板が実現できることを見出し、本発明を完成した。以下、本発明が完成させた経緯に沿って、本発明の作用効果について説明する。   In order to solve the above-mentioned problems, the present inventors have focused on a steel sheet having a bainite structure, and studied means for suppressing the fatigue crack growth rate in the steel sheet from various angles. As a result, the following knowledge was obtained. That is, in the bainite structure as described above, it is generated with some orientation relationship with respect to austenite, but it is selected depending on the chemical composition of the steel sheet, the formation temperature of the structure, other conditions, etc. It has been found that the fatigue crack growth is suppressed particularly at the grain boundaries having a certain crystal orientation difference. And when the crystal orientation distribution was appropriately defined, it was found that a steel sheet capable of satisfactorily suppressing the progress of fatigue cracks could be realized, and the present invention was completed. Hereinafter, the effects of the present invention will be described along the background of the completion of the present invention.

ベイナイト相を主体とするような単相組織では、粒界が亀裂進展の抵抗となるものと考えられるが、亀裂進展の際に粒界と亀裂が衝突する頻度を高めれば、亀裂の進展が抑制できるものと考えられた。即ち、粒界を細かくすることによって、亀裂との衝突頻度を高めれば良いとの知見が得られた。但し、粒界を形成する両端の方位差が小さい(例えば、15°未満)小角粒界(小傾角境界)では、粒界エネルギーが小さくなってその効果が小さいので、前記方位差が15°以上の大角粒界(大傾角境界)を対象とする必要がある。また、大角粒界のうちでも、隣接する結晶粒同士の方位差が55〜60°である割合が高くなるほど、亀裂進展には有効であることも判明したのである(後記図1参照)。   In a single-phase structure mainly composed of bainite phase, it is considered that the grain boundary acts as a resistance to crack growth, but if the frequency of the collision between the grain boundary and the crack is increased during crack growth, the crack growth is suppressed. It was considered possible. That is, it was found that the frequency of collision with cracks should be increased by making the grain boundaries finer. However, at a small-angle grain boundary (small tilt boundary) where the orientation difference between both ends forming a grain boundary is small (for example, a small tilt boundary), the grain boundary energy is small and the effect is small, so the orientation difference is 15 ° or more. It is necessary to target a large-angle grain boundary (large tilt boundary). It has also been found that the larger the ratio of the orientation difference between adjacent crystal grains in the large-angle grain boundary is 55 to 60 °, the more effective the crack growth is (see FIG. 1 described later).

つまり、前記方位差が15°以上である大角粒界に囲まれた結晶粒で、同一面積の円に換算したときの直径(円相当直径)の平均値で15μm以下とした結晶粒であって、隣接する結晶粒の方位差の分布において、方位差が55〜60°である割合が0.3以上(30%以上)とすることによって、疲労亀裂進展抑制効果に優れた鋼板が実現できたのである。尚、前記「方位差」は、「ずれ角」若しくは「傾角」とも呼ばれているものであり、以下では「結晶方位差」と呼ぶことがある。またこうした結晶方位差を測定するには、EBSP法(Electoron Backscattering Pattern法)を採用すれば良い。   That is, a crystal grain surrounded by a large-angle grain boundary having an orientation difference of 15 ° or more, and having an average diameter (equivalent circle diameter) of 15 μm or less when converted into a circle of the same area, In the distribution of misorientation of adjacent crystal grains, the ratio of misorientation of 55 to 60 ° is 0.3 or more (30% or more), thereby realizing a steel plate having an excellent fatigue crack progress suppressing effect. It is. The “orientation difference” is also referred to as “shift angle” or “inclination angle”, and may be hereinafter referred to as “crystal orientation difference”. In order to measure such a crystal orientation difference, an EBSP method (Electoron Backscattering Pattern method) may be employed.

本発明の鋼板において、その化学成分組成については通常の鋼板としての成分組成であれば、その効果が発揮されるものであるが、好ましい化学成分組成としては、C:0.01〜0.10%、Si:0.01〜0.6%、Mn:0.6〜2.0%、Al:0.001〜0.10%を夫々含有する他、Cu:0.03〜3.0%、Cr:0.03〜3.0%、Ni:0.03〜3.0%、Mo:0.03〜1.0%、V:0.003〜0.1%、Nb:0.003〜0.1%、Ti:0.003〜0.1%およびB:0.0003〜0.003%よりなる群から選択される1種または2種以上を含み、残部が鉄および不可避不純物であるものが挙げられる。これらの成分の範囲限定理由は、次の通りである。   In the steel plate of the present invention, the chemical component composition is effective as long as it is a component composition as a normal steel plate, but a preferable chemical component composition is C: 0.01 to 0.10. %, Si: 0.01-0.6%, Mn: 0.6-2.0%, Al: 0.001-0.10%, Cu: 0.03-3.0% Cr: 0.03-3.0%, Ni: 0.03-3.0%, Mo: 0.03-1.0%, V: 0.003-0.1%, Nb: 0.003 -0.1%, Ti: 0.003-0.1% and B: One or more selected from the group consisting of 0.0003-0.003%, with the balance being iron and inevitable impurities Some are listed. The reasons for limiting the ranges of these components are as follows.

C:0.01〜0.10%
Cは、鋼板の強度確保のために必要な元素である。鋼板としての最低強度、即ち概ね490MPa程度(使用する鋼材の肉厚にもよるが)を得るためには、0.01%以上含有させるのが良い。しかし、0.10%を超えて過剰に含有させると溶接性が劣化すると共に、ブロックサイズが粗大化して小角粒界の割合が増加して、55〜60°の結晶方位差を有する大角粒界の割合が減少する傾向を示すことになる。こうしたことから、C含有量は0.01〜0.10%とした。尚、C含有量のより好ましい下限は0.03%であり、好ましい上限は0.08%である。
C: 0.01 to 0.10%
C is an element necessary for ensuring the strength of the steel sheet. In order to obtain the minimum strength as a steel sheet, that is, about 490 MPa (depending on the thickness of the steel material to be used), it is preferable to contain 0.01% or more. However, if the content exceeds 0.10% excessively, the weldability deteriorates, the block size becomes coarse, the proportion of small angle grain boundaries increases, and a large angle grain boundary having a crystal orientation difference of 55 to 60 °. This shows a tendency that the ratio of decreases. For these reasons, the C content is set to 0.01 to 0.10%. A more preferable lower limit of the C content is 0.03%, and a preferable upper limit is 0.08%.

Si:0.01〜0.6%
Siは脱酸と強度確保のための必要な元素であり、0.1%に満たないと構造部材としての最低強度を確保できない。しかし、0.6%を超えて過剰に含有させると溶接性が劣化する。尚、Si含有量のより好ましい上限は0.40%である。
Si: 0.01 to 0.6%
Si is a necessary element for deoxidation and securing strength, and if it is less than 0.1%, the minimum strength as a structural member cannot be secured. However, if the content exceeds 0.6%, weldability deteriorates. In addition, the upper limit with more preferable Si content is 0.40%.

Mn:0.6〜2.0%
Mnは鋼板の強度および靭性確保のために有効な元素であり、こうした効果を発揮させるためには0.6%以上含有させることが好ましい。しかし、2.0%を超えて過剰に含有させると溶接性、割れ感受性が劣化するので2.0%以下とするのが良い。尚、Mn含有量のより好ましい下限は0.8%である。
Mn: 0.6 to 2.0%
Mn is an element effective for securing the strength and toughness of the steel sheet, and in order to exert such effects, it is preferable to contain 0.6% or more. However, if over 2.0% is contained, the weldability and cracking susceptibility deteriorate, so the content is preferably made 2.0% or less. A more preferable lower limit of the Mn content is 0.8%.

Al:0.001〜0.10%
Alは脱酸のために有用な元素であり、0.001%に満たないと脱酸効果がない。しかし、0.10%を超えて含有させると溶接部の靭性を劣化させるので0.10%以下とするのが良い。
Al: 0.001 to 0.10%
Al is an element useful for deoxidation, and if less than 0.001%, there is no deoxidation effect. However, if the content exceeds 0.10%, the toughness of the welded portion deteriorates, so the content is preferably 0.10% or less.

Cu:0.03〜1.0%、Cr:0.03〜1.0%、Ni:0.03〜1.0%、Mo:0.03〜1.0%、V:0.003〜0.1%、Nb:0.003〜0.1%、Ti:0.003〜0.1%およびB:0.0003〜0.003%よりなる群から選択される1種または2種以上
これらの元素は、変態を抑制し、ベイナイト変態開始温度Bsを低下させることによって、組織単位を細かくする作用を発揮する。またベイナイトは、変態の際にK−S関係(Kurdjiumov-Sachsの関係)を持って変態するが、低温で変態することで、単一のバリアント(いわゆる兄弟晶)からなる微細なブロックが生成するようになる。こうした効果を発揮させるためには、上記した各下限値以上含有させることが好ましいが、多量に含有させると溶接性を損なうので各上限値以下とするのが良い。
Cu: 0.03-1.0%, Cr: 0.03-1.0%, Ni: 0.03-1.0%, Mo: 0.03-1.0%, V: 0.003- One or more selected from the group consisting of 0.1%, Nb: 0.003-0.1%, Ti: 0.003-0.1% and B: 0.0003-0.003% These elements exhibit an effect of making the texture unit fine by suppressing transformation and lowering the bainite transformation start temperature Bs. In addition, bainite transforms with a KS relationship (Kurdjiumov-Sachs relationship) during transformation, but by transforming at low temperature, fine blocks consisting of a single variant (so-called siblings) are generated. It becomes like this. In order to exert such an effect, it is preferable to contain the above lower limit values or more. However, if contained in a large amount, the weldability is impaired.

本発明の鋼板における基本成分は上記の通りであり、残部は鉄および不可避不純物(例えば、P,S,N,O等)からなるものであるが、この不可避不純物中のPやSは、下記の観点から夫々0.025%以下および0.02%以下に夫々抑制することが好ましい。また、ベイナイト組織を得るため、および溶接性を良好に維持するという観点からして、前記(1)式で示されるCeqを0.40〜0.70(%)の範囲に制御することが好ましい。   The basic components in the steel sheet of the present invention are as described above, and the balance is made of iron and inevitable impurities (for example, P, S, N, O, etc.). P and S in the inevitable impurities are as follows: In view of the above, it is preferable to suppress the content to 0.025% or less and 0.02% or less, respectively. Further, from the viewpoint of obtaining a bainite structure and maintaining good weldability, it is preferable to control Ceq represented by the above formula (1) within a range of 0.40 to 0.70 (%). .

P:0.025%以下およびS:0.02%以下
Pは結晶粒に偏析し、延性や靭性に有害に作用する不純物であるので、できるだけ少ない方が好ましいのであるが(0%を含む)、実用鋼の清浄度の程度を考慮して0.025%以下に抑制するのが良い。またSは、鋼板中の合金元素と化合して種々の介在物を形成し、鋼板の延性や靭性に有害に作用する不純物であるので、できるだけ少ない方が好ましいのであるが(0%を含む)、実用鋼の清浄度の程度を考慮して0.02%以下に抑制するのが良い。
P: 0.025% or less and S: 0.02% or less P is an impurity that segregates in the crystal grains and adversely affects the ductility and toughness, so it is preferable that the content be as small as possible (including 0%). In consideration of the degree of cleanliness of practical steel, it is preferable to suppress it to 0.025% or less. Further, S is an impurity which forms various inclusions by combining with alloy elements in the steel sheet and adversely affects the ductility and toughness of the steel sheet, so it is preferable that S be as small as possible (including 0%). In consideration of the degree of cleanliness of practical steel, it is preferable to suppress it to 0.02% or less.

また、本発明の鋼板には、上記成分の他必要によって、Ca:0.0005〜0.005%および/またはREM:0.0005〜0.0030%を含有させることも有効であり、これらの元素を含有させることによって鋼板の特性が更に改善されることになる。   In addition to the above components, it is also effective for the steel sheet of the present invention to contain Ca: 0.0005 to 0.005% and / or REM: 0.0005 to 0.0030%. By including the element, the properties of the steel sheet are further improved.

Ca:0.0005〜0.005%および/またはREM:0.0005〜0.030%
CaおよびREMは、Sの固定による靭性の向上に有効な元素であり、その効果を発揮させるためには、いずれも0.0005%以上含有させることが好ましい。しかしながら、過剰に含有させでもその効果が飽和するので、Caで0.005%以下、REMで0.030%以下とすることが好ましい。Caを含有させるときのより好ましい下限は0.001%である。
Ca: 0.0005 to 0.005% and / or REM: 0.0005 to 0.030%
Ca and REM are effective elements for improving the toughness by fixing S, and in order to exert the effect, it is preferable to contain both 0.0005% or more. However, since the effect is saturated even if it contains excessively, it is preferable to make it 0.005% or less by Ca and 0.030% or less by REM. A more preferable lower limit when Ca is contained is 0.001%.

本発明の鋼板は、ベイナイトを主体とする組織からなるものであるが、オーステナイト状態で冷却を行うことによって、過冷状態となり、Ar変態点を低下すると共にベイナイト組織とすることができる。こうしたベイナイト相は、オーステナイトと何通りかの一定の方向の方位関係をもって変態するが、特に低温で変態させると、選択できるバリアントが限定され、ある結晶方位差に大きなピークを持つようになる。変態点を低下させるには、合金元素の添加や冷却速度の増加等が有効である。 The steel sheet of the present invention is composed of a structure mainly composed of bainite. However, by cooling in the austenite state, the steel sheet becomes supercooled, lowers the Ar 3 transformation point, and can have a bainite structure. Such a bainite phase transforms with austenite in a certain orientation relationship, but when it is transformed at a particularly low temperature, the variants that can be selected are limited, and a large peak appears at a certain crystal orientation difference. In order to lower the transformation point, it is effective to add an alloying element or increase the cooling rate.

具体的な製造条件としては、950〜1250℃の温度範囲に加熱し、Ar変態点〜900℃の温度範囲で圧延を終了した後、加速冷却(例えば、水冷)を行なえば良い。このときの加熱温度が950℃未満になると、十分にオーステナイト状態とはならない。しかし、加熱温度が1250℃を超えると、オーステナイト粒が粗大化してしまい、変態後の大角粒界径も粗大化するので好ましくない。 As specific manufacturing conditions, after heating to a temperature range of 950 to 1250 ° C. and finishing rolling in a temperature range of Ar 3 transformation point to 900 ° C., accelerated cooling (for example, water cooling) may be performed. If the heating temperature at this time is less than 950 ° C., the austenite state is not sufficiently obtained. However, when the heating temperature exceeds 1250 ° C., the austenite grains are coarsened, and the large-angle grain boundary diameter after transformation is also coarsened.

圧延後の冷却については、10℃/秒以上の冷却速度で加速冷却を行なうことが好ましい。また加速冷却の停止温度については、組織がベイナイト主体となる温度まで冷却する必要があるので、450℃以下とする。   As for cooling after rolling, accelerated cooling is preferably performed at a cooling rate of 10 ° C./second or more. The accelerated cooling stop temperature is set to 450 ° C. or lower because the structure needs to be cooled to a temperature at which the structure is mainly bainite.

他の方法としては、950〜1250℃の温度範囲に加熱し、再結晶温度域で圧延を行なった後、1℃/秒以上の冷却速度で600〜700℃の温度域まで冷却を行ない、引き続きその温度で過冷オースナイトの状態で圧下率30%以上の圧延を行ない、その後再度加速冷却を行なう方法が挙げられる。この方法では、オーステナイトに低温で圧延を加えることによって、多くの変形帯を導入することができ、オースフォーム(加工熱処理)効果により核生成サイトが増加するので、組織を微細化し、疲労亀裂進展抑制効果を高めることができる。   As another method, after heating to a temperature range of 950 to 1250 ° C. and rolling in a recrystallization temperature range, cooling to a temperature range of 600 to 700 ° C. at a cooling rate of 1 ° C./second or more is continued. There is a method in which rolling at a reduction rate of 30% or more is performed in the state of supercooled austenite at that temperature, and then accelerated cooling is performed again. In this method, many deformation bands can be introduced by rolling austenite at a low temperature, and nucleation sites increase due to the effect of ausforming (processing heat treatment), so the structure is refined and fatigue crack growth is suppressed. The effect can be enhanced.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含されるものである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実施例1
下記表1に示す化学成分組成の鋼材を転炉で溶製し、種々の冷却、圧延条件によって鋼板を製造した。このときの製造条件を下記表2に示す。尚、下記表2中、「AcC」は加速冷却(水による冷却)、「AC」は空冷、「QT」は焼入れ・焼き戻し、を夫々意味する。
Example 1
Steel materials having the chemical composition shown in Table 1 below were melted in a converter, and steel sheets were produced under various cooling and rolling conditions. The manufacturing conditions at this time are shown in Table 2 below. In Table 2, “AcC” means accelerated cooling (cooling with water), “AC” means air cooling, and “QT” means quenching / tempering.

Figure 0004676871
Figure 0004676871

Figure 0004676871
Figure 0004676871

得られた各鋼板について、機械的特性(降伏点YP、引張り強さTS、伸びEl)を測定すると共に、大角粒界径(平均円相当径)、結晶方位差が55〜60°の割合、疲労亀裂進展速度、破面遷移温度vTrs等を下記の方法によって測定した。これらの結果を一括して、下記表3に示す。   About each obtained steel plate, while measuring mechanical characteristics (yield point YP, tensile strength TS, elongation El), a large-angle grain boundary diameter (average circle equivalent diameter), a ratio of crystal orientation difference of 55-60 °, Fatigue crack growth rate, fracture surface transition temperature vTrs, etc. were measured by the following methods. These results are collectively shown in Table 3 below.

[大角粒界径(平均円相当径)]
鋼板の圧延方向に平行な断面において、FE−SEM−EBSP(電子放出型走査電子顕微鏡を用いた電子後方散乱回折像法)によって測定した。具体的には、Tex SEM Laboratries社のEBSP装置(商品名:「OIM」)を、EF−SEMと組み合わせて用い、傾角(結晶方位差)が15°以上の境界を結晶粒界として、結晶粒径を測定した。このときの測定条件は、測定領域:200μm、測定ステップ:0.5μm間隔とし、測定方位の信頼性を示すコンフィテンス・インデックス(Confidence Index)が0.1よりも小さい測定点は解析対象から除外した。このようにして求められる結晶粒径の平均値を算出して、本発明における平均結晶粒径とした。尚、結晶粒径が2.0μm以下のものについては、測定ノイズと判断し、結晶粒径の平均値計算の対象から除外した。
[Large-angle grain boundary diameter (average equivalent circle diameter)]
The cross section parallel to the rolling direction of the steel sheet was measured by FE-SEM-EBSP (electron backscatter diffraction image method using an electron emission scanning electron microscope). Specifically, an EBSP apparatus (trade name: “OIM”) manufactured by Tex SEM Laboratories is used in combination with EF-SEM, and a crystal grain is formed with a boundary having an inclination (crystal orientation difference) of 15 ° or more as a grain boundary. The diameter was measured. The measurement conditions at this time are: measurement area: 200 μm, measurement step: 0.5 μm interval, and measurement points with a confidence index (Confidence Index) indicating the reliability of the measurement direction are excluded from the analysis target. did. The average value of the crystal grain sizes thus obtained was calculated and used as the average crystal grain size in the present invention. Incidentally, those having a crystal grain size of 2.0 μm or less were judged as measurement noise and excluded from the target of calculating the average value of the crystal grain size.

[結晶方位差が55〜60°の割合]
OIM自動分析ソフトにより、各粒界における方位差を測定することによって、結晶方位差が55〜60°の割合を求めた(計算した)。
[Proportion of crystal orientation difference of 55-60 °]
By measuring the orientation difference at each grain boundary with OIM automatic analysis software, the ratio of the crystal orientation difference of 55-60 ° was determined (calculated).

[疲労亀裂進展速度]
ASTM E647に準拠し、コンパクト型試験片を用いて、疲労亀裂進展試験を実施することによって、疲労亀裂進展速度を求めた。この際、下記(2)式によって規定されるパリス則が成り立つ安定成長領域ΔK=20(MPa・√m)での値を代表値として評価した。尚、疲労亀裂進展速度の評価、基準については、通常の鋼材が4〜6×10−5mm/cycle(ΔK=20のとき)程度の進展速度であることから、3.0×10−5mm/cycle以下を基準とした。
da/dn=C(ΔK)…(2)
但し、a:亀裂長さ,n:繰り返し数,C,m:材料、荷重等の条件で決まる定数を夫々示す。
[Fatigue crack growth rate]
In accordance with ASTM E647, a fatigue crack growth rate was determined by carrying out a fatigue crack growth test using a compact test piece. At this time, the value in the stable growth region ΔK = 20 (MPa · √m) where the Paris law defined by the following equation (2) is satisfied was evaluated as a representative value. Incidentally, the fatigue crack growth rate evaluation, for reference, since the conventional steel is an advance speed of about 4~6 × 10 -5 mm / cycle (when ΔK = 20), 3.0 × 10 -5 The standard was mm / cycle or less.
da / dn = C (ΔK) m (2)
Here, a: crack length, n: number of repetitions, C, m: constants determined by conditions such as material and load, respectively.

[破面遷移温度vTrs]
機械加工によって作製したJIS4号衝撃試験片を用い、JIS Z2242に準拠した試験方法で衝撃試験を行い、JISに準拠した方法で脆性破面率(若しくは「延性破面率」)を求め、(試験温度vs脆性破面率)の曲線から、脆性破面率が50%となる遷移温度vTrsを求めた。
[Fracture surface transition temperature vTrs]
Using a JIS No. 4 impact test piece produced by machining, an impact test is conducted by a test method in accordance with JIS Z2242, and a brittle fracture surface ratio (or “ductile fracture surface ratio”) is obtained by a method in accordance with JIS. The transition temperature vTrs at which the brittle fracture surface ratio becomes 50% was determined from the curve of (temperature vs. brittle fracture surface ratio).

Figure 0004676871
Figure 0004676871

表3の結果から次のように考察できる。ます試験No.1〜のものは、本発明で規定する要件を満足するものであり、十分な疲労亀裂進展抑制効果(進展速度で3.0×10-5mm/cycle以下)が発揮されていることが分かる。 From the results in Table 3, it can be considered as follows. Test No. Nos. 1 to 6 satisfy the requirements specified in the present invention, and exhibit a sufficient fatigue crack progress suppressing effect (3.0 × 10 −5 mm / cycle or less in progress rate). I understand.

これに対して、試験No.15のものでは、本発明で規定する要件のいずれかを欠くものであり、いずれも疲労進展抑制効果が発揮されていない。即ち、試験No.13のものでは、いずれも加速冷却を行なっていないので、結晶方位差が55〜60°である割合が低いので、疲労亀裂進展速度が速くなっている。また、試験No.14のものでは、結晶方位差が55〜60°である割合が高いものの、大角粒界径が大きくなっており、疲労亀裂進展速度が速くなっている。更に、試験No.15のものでは、(フェライト+パーライト)の組織になっており、結晶方位差が55〜60°である割合が低いので、疲労亀裂進展速度が速くなっている。 In contrast, test no. 7 to 15 lack any of the requirements defined in the present invention, and none of them exerts the effect of suppressing fatigue progress. That is, test no. In the case of Nos. 7 to 13 , since accelerated cooling is not performed, the rate of the crystal orientation difference being 55 to 60 ° is low, so the fatigue crack growth rate is high. In addition, Test No. In the case of No. 14 , the ratio of the crystal orientation difference is 55 to 60 ° is high, but the large-angle grain boundary diameter is large and the fatigue crack growth rate is high. Furthermore, test no. No. 15 has a structure of (ferrite + pearlite), and since the ratio of the crystal orientation difference of 55 to 60 ° is low, the fatigue crack growth rate is high.

表3の結果に基づき、結晶方位差が55〜60°の割合と疲労亀裂進展速度の関係を図1に示すが、粒径が粗大化したもの(試験No.14)を除いて、上記割合を0.3以上とすることで疲労亀裂進展速度が十分低くなっていることが分かる。   Based on the results in Table 3, the relationship between the crystal orientation difference of 55-60 ° and the fatigue crack growth rate is shown in FIG. 1 except for the above-mentioned ratio except for the coarsened grain size (Test No. 14). It can be seen that the fatigue crack growth rate is sufficiently low when the value is 0.3 or more.

実施例における結晶方位差が55〜60°の割合と疲労亀裂進展速度の関係を示すグラフである。It is a graph which shows the relationship between the ratio of the crystal orientation difference in an Example, and 55-60 degrees, and a fatigue crack growth rate.

Claims (2)

ベイナイト相を主体とする組織からなり、2つの結晶の方位差が15°以上の大角粒界で囲まれた領域を結晶粒としたとき、当該結晶粒の平均円相当径が15μm以下であって、且つ隣接する結晶粒同士の方位差が55〜60°である割合が0.311以上であり、
C:0.01〜0.10%(質量%の意味、以下同じ)、Si:0.01〜0.6%、Mn:0.6〜2.0%、Al:0.005〜0.10%、Cr:0.03〜3.0%、Mo:0.03〜1.0%、およびB:0.0003〜0.003%を含有し、更に
Ni:0.03〜3.0%、V:0.003〜0.1%、Nb:0.003〜0.1%、およびTi:0.003〜0.1%よりなる群から選択される1種または2種以上を含むか、または
Ni:0.03〜3.0%、V:0.003〜0.1%、Nb:0.003〜0.1%、およびTi:0.003〜0.1%よりなる群から選択される1種または2種以上を含むと共に、Ca:0.0005〜0.005%を含有し、
残部が鉄および不可避不純物であり、
下記(1)式で規定される炭素当量Ceqが0.52〜0.70であることを特徴とする
疲労亀裂進展抑制に優れた鋼板。
Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14…(1)
但し、[C],[Si],[Mn],[Ni],[Cr],[Mo]および[V]は、夫々C,Si,Mn,Ni,Cr,MoおよびVの含有量(質量%)を示す。
When a region composed of a structure mainly composed of a bainite phase and surrounded by a large-angle grain boundary where the orientation difference between two crystals is 15 ° or more is used as a crystal grain, the average equivalent circle diameter of the crystal grain is 15 μm or less. And the ratio that the orientation difference between adjacent crystal grains is 55 to 60 ° is 0.311 or more,
C: 0.01-0.10% (meaning of mass%, the same applies hereinafter), Si: 0.01-0.6%, Mn: 0.6-2.0%, Al: 0.005-0. 10%, C r: 0.03~3.0% , M o: 0.03~1.0%, and B: containing from 0.0003 to 0.003%, further
Selected from the group consisting of Ni: 0.03-3.0%, V: 0.003-0.1%, Nb: 0.003-0.1%, and Ti: 0.003-0.1% 1 type or 2 types or more
Selected from the group consisting of Ni: 0.03-3.0%, V: 0.003-0.1%, Nb: 0.003-0.1%, and Ti: 0.003-0.1% And containing Ca: 0.0005-0.005%,
The balance is iron and inevitable impurities,
A steel sheet excellent in fatigue crack growth suppression, characterized in that a carbon equivalent Ceq defined by the following formula (1) is 0.52 to 0.70.
Ceq = [C] + [Si] / 24 + [Mn] / 6 + [Ni] / 40 + [Cr] / 5 + [Mo] / 4 + [V] / 14 ... (1)
However, [C], [Si], [Mn], [Ni], [Cr], [Mo] and [V] are the contents (mass of C, Si, Mn, Ni, Cr, Mo and V, respectively). %).
不可避不純物中のPを0.025%以下、Sを0.02%以下に夫々抑制したものである請求項に記載の鋼板。 The steel plate according to claim 1 , wherein P in the inevitable impurities is suppressed to 0.025% or less and S is suppressed to 0.02% or less.
JP2005365303A 2005-12-19 2005-12-19 Steel sheet with excellent fatigue crack growth control Expired - Fee Related JP4676871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005365303A JP4676871B2 (en) 2005-12-19 2005-12-19 Steel sheet with excellent fatigue crack growth control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005365303A JP4676871B2 (en) 2005-12-19 2005-12-19 Steel sheet with excellent fatigue crack growth control

Publications (2)

Publication Number Publication Date
JP2007169678A JP2007169678A (en) 2007-07-05
JP4676871B2 true JP4676871B2 (en) 2011-04-27

Family

ID=38296628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005365303A Expired - Fee Related JP4676871B2 (en) 2005-12-19 2005-12-19 Steel sheet with excellent fatigue crack growth control

Country Status (1)

Country Link
JP (1) JP4676871B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4825025B2 (en) * 2006-03-09 2011-11-30 株式会社神戸製鋼所 High-yield ratio high-tensile steel sheet with excellent fatigue crack growth suppression and weld heat-affected zone toughness
JP4934505B2 (en) * 2007-05-29 2012-05-16 株式会社神戸製鋼所 Steel sheet with excellent fatigue crack growth suppression characteristics and brittle fracture suppression characteristics
JP5139015B2 (en) * 2007-09-18 2013-02-06 株式会社神戸製鋼所 Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same
JP5234921B2 (en) 2008-03-19 2013-07-10 株式会社神戸製鋼所 High-strength thick steel plate with excellent strain aging characteristics and manufacturing method thereof
JP5337412B2 (en) * 2008-06-19 2013-11-06 株式会社神戸製鋼所 Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same
JP5439889B2 (en) * 2009-03-25 2014-03-12 Jfeスチール株式会社 Thick steel plate for thick and high toughness steel pipe material and method for producing the same
JP5462069B2 (en) 2009-07-27 2014-04-02 株式会社神戸製鋼所 High-strength steel plate with excellent drop weight characteristics and base metal toughness
JP5729803B2 (en) * 2010-05-27 2015-06-03 株式会社神戸製鋼所 High-tensile steel plate and manufacturing method thereof
CN115349027B (en) * 2020-08-31 2023-08-04 日本制铁株式会社 Steel sheet and method for producing same
CN113201682B (en) * 2021-04-15 2022-05-24 华南理工大学 Bainite weathering steel and production method thereof
CN114959460B (en) * 2022-05-06 2023-10-20 鞍钢股份有限公司 Low-yield-ratio easy-welding weather-resistant bridge steel and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316756A (en) * 2000-05-11 2001-11-16 Sumitomo Metal Ind Ltd Thick steel plate excellent in fatigue crack propagating resistance and its producing method
JP2003342673A (en) * 2002-05-30 2003-12-03 Sumitomo Metal Ind Ltd Steel material having excellent resistance to fatigue crack propagation and its manufacturing method
JP2004027355A (en) * 2001-11-14 2004-01-29 Sumitomo Metal Ind Ltd Steel member having excellent fatigue crack propagation resistance and method of producing the same
JP2005187934A (en) * 2003-12-01 2005-07-14 Sumitomo Metal Ind Ltd Steel having excellent fatigue characteristics, and its production method
JP2005336514A (en) * 2004-05-24 2005-12-08 Sumitomo Metal Ind Ltd Steel sheet having excellent fatigue crack propagation resistance and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316756A (en) * 2000-05-11 2001-11-16 Sumitomo Metal Ind Ltd Thick steel plate excellent in fatigue crack propagating resistance and its producing method
JP2004027355A (en) * 2001-11-14 2004-01-29 Sumitomo Metal Ind Ltd Steel member having excellent fatigue crack propagation resistance and method of producing the same
JP2003342673A (en) * 2002-05-30 2003-12-03 Sumitomo Metal Ind Ltd Steel material having excellent resistance to fatigue crack propagation and its manufacturing method
JP2005187934A (en) * 2003-12-01 2005-07-14 Sumitomo Metal Ind Ltd Steel having excellent fatigue characteristics, and its production method
JP2005336514A (en) * 2004-05-24 2005-12-08 Sumitomo Metal Ind Ltd Steel sheet having excellent fatigue crack propagation resistance and its production method

Also Published As

Publication number Publication date
JP2007169678A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
JP4676871B2 (en) Steel sheet with excellent fatigue crack growth control
JP4825025B2 (en) High-yield ratio high-tensile steel sheet with excellent fatigue crack growth suppression and weld heat-affected zone toughness
US6183573B1 (en) High-toughness, high-tensile-strength steel and method of manufacturing the same
JP5070744B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance
JP2006089789A (en) Low yield ratio high tensile steel sheet having low acoustic anisotropy and having excellent weldability and its production method
JP2009068078A (en) Welded joint with excellent toughness and fatigue crack inhibiting property
JP2007327087A (en) Thick steel plate excellent in toughness and fatigue crack propagating property of base metal
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
JP2021507989A (en) High-strength steel for polar environment with excellent fracture resistance at low temperature and its manufacturing method
JP4934505B2 (en) Steel sheet with excellent fatigue crack growth suppression characteristics and brittle fracture suppression characteristics
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2006299365A (en) Thick steel plate having less acoustic anisotropy and excellent base-material toughness, and manufacturing method therefor
JP4857583B2 (en) Steel manufacturing method with excellent fatigue crack propagation characteristics with small strength difference in the thickness direction
JP2005314811A (en) Method for producing steel having excellent ductility and fatigue crack propagation resistance
JP2007191781A (en) Steel sheet having superior resistance to propagation of fatigue crack
JP2009074111A (en) Thick high strength steel plate for high heat input welding having reduced variation in base metal low temperature toughness and excellent heat affected zone toughness, and method for producing the same
JP2004292844A (en) High toughness steel plate with excellent low-temperature toughness
JP6981546B2 (en) Thick steel plate and its manufacturing method
JP5040086B2 (en) Structural high-strength steel with low strain embrittlement
JP4741715B2 (en) High strength steel pipe and manufacturing method thereof
KR101791324B1 (en) High-strength steel material having excellent fatigue properties, and method for producing same
JP2005015859A (en) High-strength steel sheet having excellent weldability, method for manufacturing the same, and welded steel structure
JP2007197776A (en) High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP2007197777A (en) High-strength steel material superior in ductile-crack initiation resistance and fatigue-crack propagation resistance, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4676871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees