JP5040086B2 - Structural high-strength steel with low strain embrittlement - Google Patents

Structural high-strength steel with low strain embrittlement Download PDF

Info

Publication number
JP5040086B2
JP5040086B2 JP2005250423A JP2005250423A JP5040086B2 JP 5040086 B2 JP5040086 B2 JP 5040086B2 JP 2005250423 A JP2005250423 A JP 2005250423A JP 2005250423 A JP2005250423 A JP 2005250423A JP 5040086 B2 JP5040086 B2 JP 5040086B2
Authority
JP
Japan
Prior art keywords
less
plane
temperature
strain
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005250423A
Other languages
Japanese (ja)
Other versions
JP2007063608A (en
Inventor
恒久 半田
高宏 久保
功一 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005250423A priority Critical patent/JP5040086B2/en
Publication of JP2007063608A publication Critical patent/JP2007063608A/en
Application granted granted Critical
Publication of JP5040086B2 publication Critical patent/JP5040086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、船舶、海洋構造物、低温貯蔵タンク、ラインパイプ、建築・土木構造物等の各種構造物に使用される鋼材およびその製造方法に関する。   The present invention relates to a steel material used for various structures such as ships, offshore structures, low-temperature storage tanks, line pipes, building / civil engineering structures, and a method for manufacturing the same.

船舶、海洋構造物、低温貯蔵タンク、ラインパイプ、建築・土木構造物等の大型構造物に使用される高張力鋼板は、高い靱性を具えていることが必要であり、これを確保することに努力が払われてきた。   High-tensile steel plates used for large structures such as ships, offshore structures, low-temperature storage tanks, line pipes, and construction / civil engineering structures must have high toughness. Efforts have been made.

一方、これらの構造物に使用される鋼材は、一旦塑性変形を受けた部分では、靱性が劣化する場合がしばしば生じていた。例えば、冷間加工による塑性変形もしくは衝突等による塑性変形により、劣化する場合がそれである。   On the other hand, the steel materials used in these structures often have toughness deterioration in the portions once subjected to plastic deformation. For example, it may deteriorate due to plastic deformation due to cold working or plastic deformation due to collision or the like.

歪脆化の抑制を図った鋼材、もしくはその製造方法としては、特許文献1には、VとNを添加した鋼にCaまたはMgを添加することにより、歪導入後のシャルピー吸収エネルギーの劣化を防止する技術が開示されている。また、特許文献2には、金属組織を延性に富んだフェライト主体の組織とすることにより、塑性変形後の(加工後の)靱性および延性の確保を図る技術が開示されている。   As a steel material that suppresses strain embrittlement or a manufacturing method thereof, Patent Document 1 discloses that Charpy absorbed energy after strain introduction is deteriorated by adding Ca or Mg to steel added with V and N. Techniques for preventing are disclosed. Patent Document 2 discloses a technique for ensuring toughness and ductility after plastic deformation (after processing) by making a metal structure a ferrite-based structure rich in ductility.

また、特許文献3、特許文献4には、直接焼き入れ時に、旧オーステナイト粒界に、数μm以下の膜状のフェライトを生成させ、実質的な粒界面積を増大させ、セメンタイトを微細化させることにより、低温靱性の脆化量を抑制する技術が開示されている。

特開昭56−127750号公報 特開2003−313632号公報 特開2001−59131号公報 特開2001−59132号公報
In Patent Documents 3 and 4, in direct quenching, a film-like ferrite of several μm or less is generated at the prior austenite grain boundaries, the substantial grain interface area is increased, and cementite is refined. Thus, a technique for suppressing the amount of embrittlement of low temperature toughness is disclosed.

JP 56-127750 A JP 2003-313632 A JP 2001-59131 A JP 2001-59132 A

しかしながら、特許文献1および特許文献2に開示されている技術は、ある一温度(使用温度)における特性を向上させるために、低温靱性(シャルピー破面遷移温度vTrs)を向上させたものであり、塑性歪による低温靱性の脆化量(シャルピー破面遷移温度vTrsの高温へのシフト量)を抑制したものではない。すなわち、真の意味で歪脆化を抑制した鋼材ではない。
また、特許文献3および4に開示されている技術は、強度レベルが60キロ級に限定されるものであり、60キロを超える強度レベルの鋼には適用が困難である。
However, the techniques disclosed in Patent Document 1 and Patent Document 2 are improved low-temperature toughness (Charpy fracture surface transition temperature vTrs) in order to improve characteristics at a certain temperature (use temperature), It does not suppress the embrittlement amount of low temperature toughness due to plastic strain (shift amount of Charpy fracture surface transition temperature vTrs to high temperature). That is, it is not a steel material that suppresses strain embrittlement in a true sense.
In addition, the techniques disclosed in Patent Documents 3 and 4 are limited to a strength level of 60 kg, and are difficult to apply to steel having a strength level exceeding 60 kg.

本発明は、上記問題を解決するため、歪脆化の少ない高張力鋼(60〜100キロクラス)を提供することを目的とする。   In order to solve the above problems, an object of the present invention is to provide a high-strength steel (60 to 100 kilo class) with less strain embrittlement.

本発明者等は、上述のような目的を達成するべく、適切な成分設計を行い、圧延面に(211)面と(100)面を同時に発達させることにより、60キロレベル以上では強度レベルに依らずに、塑性変形を受けた後の低温靱性の劣化(vTrsの高温側へのシフト量)を最小限に止めることができることを見いだし、本発明を完成するに至ったものである。その具体的手段は、以下の通りである。   In order to achieve the above-mentioned object, the present inventors perform an appropriate component design, and simultaneously develop the (211) plane and the (100) plane on the rolled surface, so that the strength level is reached at 60 kilometer level or more. Regardless, it has been found that the deterioration of the low temperature toughness after being subjected to plastic deformation (shift amount of vTrs to the high temperature side) can be minimized, and the present invention has been completed. The specific means is as follows.

1.第一の発明は、圧延面での(211)面のX線強度比が2.0以上であり、且つ(100)面のX線強度比が1.5以上の集合組織を有することを特徴とする歪脆化の少ない構造用高張力鋼材である。   1. The first invention is a strain brittleness characterized by having a texture where the X-ray intensity ratio of the (211) plane at the rolled surface is 2.0 or more and the X-ray intensity ratio of the (100) plane is 1.5 or more. It is a high-strength steel material for structural use that is less likely to be used.

2.第二の発明は、前記圧延面での(211)面のX線強度比が、(100)面のX線強度比よりも大きいことを特徴とする第一の発明に記載の歪脆化の少ない構造用高張力鋼材である。   2. The second invention is the strain embrittlement according to the first invention, wherein the X-ray intensity ratio of the (211) plane at the rolled surface is larger than the X-ray intensity ratio of the (100) plane. There are few structural high-tensile steel materials.

3.第三の発明は、前記鋼材が、質量%で,C:0.15%以下,Si:0.60%以下,Mn:0.80〜1.80%、B:0.0001〜0.0050%およびN:0.0050%以下を含有し、かつTi:0.005〜0.20%およびNb:0.001〜0.20%のうちから選択される1種または2種を含有し、さらにCu:0.1〜2.0%、V:0.005〜0.2%、Ni:2.0%以下、Cr:0.6%以下、Mo:0.6%以下、W:0.5%以下およびZr:0.5%以下のうちから選択される1種または2種以上を含有し、残部がFeおよび不可避的不純物からなることを特徴とする第一の発明または第二の発明に記載の歪脆化の少ない構造用高張力鋼材である。   3. According to a third invention, the steel material contains, by mass%, C: 0.15% or less, Si: 0.60% or less, Mn: 0.80 to 1.80%, B: 0.0001 to 0.0050%, and N: 0.0050% or less, and It contains one or two selected from Ti: 0.005-0.20% and Nb: 0.001-0.20%, Cu: 0.1-2.0%, V: 0.005-0.2%, Ni: 2.0% or less, Cr : 0.6% or less, Mo: 0.6% or less, W: 0.5% or less, and Zr: 0.5% or less, one or more selected from Fe, and the balance consisting of Fe and inevitable impurities The structural high-tensile steel material with less strain embrittlement described in the first or second invention.

4.第四の発明は、第三の発明に記載の鋼材を、950〜1350℃の温度に加熱し、次いで1000〜900℃の温度域における累積圧下率を15%以上、900未満〜600℃における累積圧下率を75%以上とし、圧延終了温度を850〜600℃とする熱間圧延をおこなうことを特徴とする歪脆化の少ない構造用高張力鋼材の製造方法である。   4). 4th invention heats the steel materials as described in 3rd invention to the temperature of 950-1350 degreeC, and then the cumulative reduction in the temperature range of 1000-900 degreeC is 15% or more, and the accumulation in less than 900-600 degreeC This is a method for producing a structural high-tensile steel material with less strain embrittlement characterized by performing hot rolling with a rolling reduction of 75% or more and a rolling end temperature of 850 to 600 ° C.

5.第五の発明は、熱間圧延終了後、5℃/s以上の冷却速度で、400℃まで冷却することを特徴とする第四の発明に記載の歪脆化の少ない構造用高張力鋼材の製造方法である。   5). According to a fifth aspect of the present invention, there is provided the structural high-tensile steel material with less strain embrittlement according to the fourth aspect of the present invention, which is cooled to 400 ° C. at a cooling rate of 5 ° C./s or more after completion of hot rolling. It is a manufacturing method.

本発明によれば、塑性歪による歪脆化の小さな鋼材を、広い強度レベルで提供することができる。本発明鋼材は、冷間加工もしくは鋼構造物が万一の衝突事故等により大きな塑性歪を受けた場合でも、脆性破壊の危険性を回避でき、鋼構造物の安全性を確保するうえで大きく寄与する。   According to the present invention, a steel material having small strain embrittlement due to plastic strain can be provided at a wide strength level. The steel material of the present invention can avoid the risk of brittle fracture even when cold working or the steel structure is subjected to a large plastic strain due to an accident such as a collision. Contribute.

本発明者等は、種々の鋼材を用いて板厚内部の集合組織と塑性変形前後の低温靱性(シャルピー破面遷移温度vTrs)との関係について詳細に調査した。その結果、圧延面に(211)面と(100)面を同時に発達させることにより、塑性変形による低温靱性の劣化を抑制できることがわかった。   The present inventors investigated in detail about the relationship between the texture inside a plate | board thickness and the low temperature toughness (Charpy fracture surface transition temperature vTrs) before and behind plastic deformation using various steel materials. As a result, it was found that deterioration of the low temperature toughness due to plastic deformation can be suppressed by simultaneously developing the (211) plane and the (100) plane on the rolled surface.

本調査において、板厚内部の集合組織の発達程度を示す、圧延面での(211)面のX線強度比が2.0以上で、且つ(100)面のX線強度比が1.5以上である場合に、引張予歪(〜10%)の塑性変形を付与した種々の鋼材の低温靱性劣化量(シャルピー破面遷移温度vTrsの高温側へのシフト量)が著しく小さくなることを知見したものである。   In this survey, when the X-ray intensity ratio of the (211) plane at the rolled surface is 2.0 or more and the X-ray intensity ratio of the (100) plane is 1.5 or more, indicating the degree of texture development inside the plate thickness Furthermore, it was found that the low temperature toughness deterioration amount (shift amount of Charpy fracture surface transition temperature vTrs to the high temperature side) of various steel materials subjected to plastic deformation with tensile pre-strain (up to 10%) was remarkably reduced. .

一般に、破面遷移温度は、引張予歪の付与により高温側へシフトすることが知られているが、本発明は、(211)面のX線強度比が2.0以上で、且つ(100)面のX線強度比が1.5以上である場合に、破面遷移温度の高温側への移行量は、小さくなるという新しい知見に基づくものである。この傾向は、(211)面のX線強度比が(100)面のX線強度比よりも大きい場合により一層顕著になる。なお、本発明でいう集合組織の測定個所は、基本的には板厚方向位置のいずれであっても良いが、最表面での測定値は鋼材全体の値を代表しない場合があるので、最表面を除く位置で測定するのが好ましい。   In general, it is known that the fracture surface transition temperature shifts to a higher temperature side by applying tensile prestrain, but the present invention has an X-ray intensity ratio of (211) plane of 2.0 or more and (100) plane. This is based on the new finding that when the X-ray intensity ratio is 1.5 or more, the amount of transition of the fracture surface transition temperature to the high temperature side becomes small. This tendency becomes more remarkable when the X-ray intensity ratio of the (211) plane is larger than the X-ray intensity ratio of the (100) plane. Note that the measurement site of the texture referred to in the present invention may basically be any position in the thickness direction, but the measured value on the outermost surface may not represent the value of the entire steel material. It is preferable to measure at a position excluding the surface.

(211)面と(100)面が同時に発達した集合組織を有する鋼材が、塑性変形による低温靱性の劣化が小さい理由は、必ずしも明確ではないが、本発明者等が行った試験片の破面観察結果および塑性変形前後での集合組織の測定結果から次のことが考えられる。すなわち、(211)面のX線強度比が2.0以上で、且つ(100)面のX線強度比が1.5以上である鋼材では、引張予歪により(211)面および(100)面のX線強度比が増加し、微細なサブクラックが発生しやすくなり、サブクラックによるき裂先端の応力緩和が起こる。その結果として、引張予歪によるマトリックスの靱性低下が補われ、破面遷移温度の上昇が抑制できたと考えられる。   The reason why the steel material having a texture in which the (211) plane and the (100) plane are developed simultaneously has a small deterioration in low-temperature toughness due to plastic deformation is not necessarily clear, but the fracture surface of the test piece performed by the present inventors. The following can be considered from the observation results and the measurement results of the texture before and after plastic deformation. That is, in the steel material in which the X-ray intensity ratio of the (211) plane is 2.0 or more and the X-ray intensity ratio of the (100) plane is 1.5 or more, X-rays on the (211) plane and the (100) plane are caused by tensile pre-strain. The strength ratio increases and fine subcracks are likely to occur, and stress relaxation at the crack tip due to the subcracks occurs. As a result, it is considered that the decrease in the toughness of the matrix due to the tensile pre-strain was compensated and the increase in the fracture surface transition temperature could be suppressed.

上記したように、歪脆化を小さくするためには、適正な集合組織に制御することが必要である。また、鋼材の組織はベイナイトもしくはマルテンサイトあるいは、それらの混合組織が好ましく、そのためには、鋼材の化学成分と製造条件を適切な範囲にするのがよい。
これらの限定理由について以下に説明する。
As described above, in order to reduce strain embrittlement, it is necessary to control to an appropriate texture. Moreover, the structure of the steel material is preferably bainite, martensite, or a mixed structure thereof. For that purpose, the chemical composition of the steel material and the production conditions are preferably set in an appropriate range.
The reasons for these limitations will be described below.

1.成分組成について
成分組成の限定理由について説明するが、各元素の含有量は、全て質量%を意味する。
1. Although the reason for limitation of the component composition will be described for the component composition, the content of each element means mass%.

C:0.15%以下
Cは、ベイナイト単相組織を形成させるためには、0.03%以下に制限することが好ましいが、マルテンサイト組織を得るにはそれ以上の含有が必要である。しかし0.15%を超えたC量では、マルテンサイトの硬さが上昇して溶接性および靱性の劣化を招く傾向がある。このため、C量は0.005〜0.15%とするのがよい。なお、C含有量を低くし過ぎても、前記効果が減少することはないが、製鋼上の容易さ、また後述するNb、V等の析出による材質向上効果を利用することを勘案して、その含有量を0.005%以上とすることが好ましい。
C: 0.15% or less In order to form a bainite single-phase structure, C is preferably limited to 0.03% or less, but in order to obtain a martensite structure, it is necessary to contain more than C. However, when the amount of C exceeds 0.15%, the hardness of martensite tends to increase, leading to deterioration of weldability and toughness. For this reason, the C content is preferably 0.005 to 0.15%. Note that, even if the C content is too low, the above effect does not decrease, but taking into account the ease of steelmaking and the use of the material improvement effect due to precipitation of Nb, V, etc., which will be described later, The content is preferably 0.005% or more.

Si:0.6%以下
Siは、脱酸のため添加するが、多すぎると靱性を劣化させる傾向があるので、上限を0.6%とするとよい。なお、脱酸および強度確保のうえから0.02%以上含有することが好ましい。
Si: 0.6% or less Si is added for deoxidation, but if it is too much, there is a tendency to deteriorate toughness, so the upper limit is preferably made 0.6%. In addition, it is preferable to contain 0.02% or more from the viewpoint of deoxidation and ensuring strength.

Mn:0.8〜2.0%
Mnは、ベイナイト組織およびマルテンサイト組織の生成を促進するほか、(211)面および(100)面が優勢な集合組織を形成して、歪脆化を抑制するのに有効な元素である。このような効果を得るには0.8%以上の含有量とするのがよい。2.0%を超えて含有すると、焼き入れ性が増して、マトリックスが硬化し、靱性が劣化する傾向がある。
Mn: 0.8 to 2.0%
Mn is an element effective for suppressing the formation of strain embrittlement by promoting the formation of a bainite structure and a martensite structure and forming a dominant texture in the (211) plane and the (100) plane. In order to obtain such an effect, the content is preferably 0.8% or more. When the content exceeds 2.0%, the hardenability increases, the matrix hardens, and the toughness tends to deteriorate.

B:0.0001〜0.0050%
Bは、広範な冷却速度で、オーステナイト粒界からのフェライト生成を抑制し、ベイナイト組織およびマルテンサイト組織を安定して得るのに好適な元素である。こうした効果を得るには0.0001%以上が好ましいが、0.0050%を超えて含有してもその効果が飽和して経済的に不利となる。
B: 0.0001 to 0.0050%
B is an element suitable for suppressing the formation of ferrite from austenite grain boundaries and stably obtaining a bainite structure and a martensite structure at a wide range of cooling rates. In order to obtain such an effect, 0.0001% or more is preferable. However, if the content exceeds 0.0050%, the effect is saturated and economically disadvantageous.

N:0.0050%以下
Nは、上記したBの効果を阻害して、ベイナイト組織およびマルテンサイト組織の安定形成に不利な元素であり、また溶接熱影響部(HAZ)では、固定Nの再固溶により靱性に悪影響をもたらす元素でもある。このため、N含有量は0.0050%以下に制限するのが好ましい。
N: 0.0050% or less N is an element that inhibits the above-described effect of B and is disadvantageous for stable formation of a bainite structure and a martensite structure. In addition, in the weld heat affected zone (HAZ), It is also an element that adversely affects toughness by solid solution. For this reason, the N content is preferably limited to 0.0050% or less.

Ti:0.005〜0.20%
Tiは、炭化物や窒化物の析出物を形成することにより、鋼材製造時の加熱工程におけるオーステナイト粒の成長を抑制して細粒化に寄与するとともに、HAZの結晶粒粗大化を抑制し、HAZ靱性を向上させる元素である。また、Tiは、Nを固定して上記のBによる添加効果を助長する。さらに、Tiは固溶状態でベイナイト変態およびマルテンサイト変態を促進する。これらの効果を発揮させるには、少なくとも0.005%の含有が好ましいが、過度の含有は靱性を劣化させる傾向があるので、0.20%を上限とするのがよい。
Ti: 0.005 to 0.20%
Ti forms carbide and nitride precipitates, thereby suppressing the growth of austenite grains in the heating process during the manufacture of steel materials and contributing to refinement, while suppressing HAZ crystal grain coarsening, and HAZ It is an element that improves toughness. Moreover, Ti fixes N and promotes the addition effect by said B. Further, Ti promotes bainite transformation and martensitic transformation in a solid solution state. In order to exert these effects, the content is preferably at least 0.005%, but excessive content tends to deteriorate the toughness, so the upper limit is preferably made 0.20%.

Nb:0.001〜0.20%
Nbは、ベイナイト変態およびマルテンサイト変態を促進して、ベイナイト組織およびマルテンサイト組織の安定性を高めるとともに、析出強化および靱性向上に有効な元素である。また、オーステナイトの再結晶を抑制し、後述する圧延による効果を促進する。これらの効果を得るためには、0.001%以上の含有が好ましいが、0.20%を超えて含有すると、靱性が劣化する傾向にあるため、0.20%を上限とするのがよい。
上述した各元素を基本成分として、必要に応じて以下に説明する元素を含有することができる。
Nb: 0.001 to 0.20%
Nb is an element that promotes bainite transformation and martensitic transformation to increase the stability of the bainite structure and martensite structure, and is effective for precipitation strengthening and toughness improvement. Moreover, the recrystallization of austenite is suppressed, and the effect by rolling described later is promoted. In order to obtain these effects, the content is preferably 0.001% or more, but if it exceeds 0.20%, the toughness tends to deteriorate, so 0.20% should be made the upper limit.
The elements described below can be contained as necessary using the above-described elements as basic components.

V:0.005〜0.20%
Vは、固溶と析出による強化作用を有する元素であるが、このような効果を得るためには、0.005%以上の含有が好ましい。一方、0.20%を超える含有は、ベイナイト変態およびマルテンサイト変態を阻害するため、0.20%を上限とする。
V: 0.005-0.20%
V is an element having a strengthening action by solid solution and precipitation, but in order to obtain such an effect, the content is preferably 0.005% or more. On the other hand, the content exceeding 0.20% inhibits bainite transformation and martensitic transformation, so the upper limit is made 0.20%.

Cu:0.1〜2.0%
Cuは、析出強化作用を有する元素であり、かかる効果を発現させるには0.1%以上の含有が好ましい。しかし、2.0%を超えて含有すると、析出強化が過多となり靱性が劣化する。
Cu: 0.1 to 2.0%
Cu is an element having a precipitation strengthening action, and is preferably contained in an amount of 0.1% or more in order to exhibit such an effect. However, if it exceeds 2.0%, precipitation strengthening becomes excessive and toughness deteriorates.

Ni:2.0%以下
Niは、強度および靱性を向上させ、またCuを添加材の熱間圧延時における割れを防止するのに有効な元素である。しかし、過剰に添加してもその効果が飽和するほか、高価な元素でもあるので、2.0%以下の範囲で含有させることが好ましい。なお、より好ましい含有量は0.05%以上である。
Ni: 2.0% or less
Ni is an element effective in improving strength and toughness and preventing cracking of Cu during hot rolling of the additive. However, even if added excessively, the effect is saturated, and since it is an expensive element, it is preferable to contain it in a range of 2.0% or less. A more preferable content is 0.05% or more.

Cr:0.6%以下
Crは、強度を上昇させる効果を有するが、0.6%を超えて含有すると溶接部靱性が劣化するため、Cr含有量は0.6%以下の範囲とすることが好ましい。なお、より好ましい含有量は0.05%以上である。
Cr: 0.6% or less
Cr has the effect of increasing the strength, but if it exceeds 0.6%, the toughness of the welded portion deteriorates, so the Cr content is preferably in the range of 0.6% or less. A more preferable content is 0.05% or more.

Mo:0.6%以下
Moは、常温および高温での強度を上昇させる効果を有するが、0.6%を超えて含有すると、溶接性が劣化するため、含有量は0.6%以下の範囲とするのが好ましい。なお、より好ましい含有量は0.05%以上である。
Mo: 0.6% or less
Mo has the effect of increasing the strength at normal temperature and high temperature, but if it exceeds 0.6%, weldability deteriorates, so the content is preferably in the range of 0.6% or less. A more preferable content is 0.05% or more.

W:0.5%以下
Wは、高温強度を上昇させる効果を有しているが、0.5%を超えると靱性を劣化させるだけでなく、高価であるので、0.5%以下の範囲で含有するのが好ましい。なお、より好ましい含有量は0.05%以上である。
W: 0.5% or less W has the effect of increasing the high-temperature strength, but if it exceeds 0.5%, it not only deteriorates toughness but is expensive, so it is contained in a range of 0.5% or less. Is preferred. A more preferable content is 0.05% or more.

Zr:0.5%以下
Zrは、強度を上昇させるほか、亜鉛めっき材の耐めっき割れ性を向上させる元素であるが、0.5%を超えて含有すると溶接部靱性が劣化するので、Zr含有量は0.5%を上限とするのが好ましい。なお、より好ましい含有量は0.05%以上である。
Zr: 0.5% or less Zr is an element that increases the strength and improves the plating cracking resistance of the galvanized material, but if it exceeds 0.5%, the toughness of the weld deteriorates, so the Zr content Preferably, the upper limit is 0.5%. A more preferable content is 0.05% or more.

2.製造条件について
上記成分組成と集合組織を有する鋼材は、製造条件を特に制限する必要はないが、一層優れた靱性、とりわけ塑性変形後の靱性を確保するには、次に示す製造工程が有利に適合する。
2. Manufacturing conditions Steel materials having the above component composition and texture do not need to be limited to specific manufacturing conditions. However, the following manufacturing process is advantageous to ensure even better toughness, especially toughness after plastic deformation. Fits.

加熱温度:950〜1350℃
加熱温度を950℃以上とするのは、材質の均質化と後述する制御圧延を行うために必要な加熱であり、1350℃以下とするのは、余りに高温になると表面酸化が顕著になり、また低Cに由来する急激な粒成長のために粗大化が避けられなくなるからである。なお、靱性の向上のためには、上限を1150℃とすることが好ましい。
Heating temperature: 950-1350 ° C
A heating temperature of 950 ° C. or higher is necessary for homogenization of the material and controlled rolling described later, and a temperature of 1350 ° C. or lower makes surface oxidation noticeable at excessively high temperatures. This is because coarsening is unavoidable due to rapid grain growth derived from low C. In order to improve toughness, the upper limit is preferably set to 1150 ° C.

1000〜900℃の温度域における累積圧下率:15%以上
1000〜900℃の温度域における累積圧下率が、15%以上となる熱間圧延を施す。この温度域で圧延することによって、オーステナイト粒が部分的に再結晶するため、組織が微細かつ均一になる。このような作用は、従来鋼においては、1000℃以上の温度域で圧延しないと発現しないのが通常であるが、この発明に適合する組成の鋼では、900〜1000℃においても効果が現れ、比較的低温で十分な圧延を行うことにより再結晶粒の成長を効果的に抑制できる。なお、1000℃を超える温度での圧延は、オーステナイト粒の成長を助長するので、細粒化のためには好ましくない。一方、900℃未満では未再結晶域に入るので、結晶粒の均一化のためには好ましくない。
Cumulative rolling reduction in the temperature range of 1000 to 900 ° C .: 15% or more
Hot rolling is performed so that the cumulative rolling reduction in the temperature range of 1000 to 900 ° C. is 15% or more. By rolling in this temperature range, the austenite grains are partially recrystallized, so that the structure becomes fine and uniform. In the conventional steel, such an action usually does not appear unless it is rolled in a temperature range of 1000 ° C. or higher, but in a steel having a composition suitable for the present invention, an effect appears even at 900 to 1000 ° C., By performing sufficient rolling at a relatively low temperature, the growth of recrystallized grains can be effectively suppressed. Note that rolling at a temperature exceeding 1000 ° C. promotes the growth of austenite grains, and therefore is not preferable for making fine grains. On the other hand, if it is less than 900 ° C., it enters the non-recrystallized region, which is not preferable for making the crystal grains uniform.

900未満〜600℃における累積圧下率:75%以上、圧延終了温度:850〜600℃
900未満〜600℃の温度域での圧延の機能は、再結晶していない残りのオーステナイト粒を圧延により加工して一層の細粒化を図るとともに、微細オーステナイト粒内に歪を導入しながら集合組織を形成し、ベイナイト変態時の強化とベイナイト変態後もしくはマルテンサイト変態後の集合組織の受け継ぎを達成することにある。600℃未満で圧延を行うと、二相域圧下量の比率が大きくなり、(100)面が過度に発達し、特に板厚方向の強度・靱性に悪影響を与える。一方、900℃以上の温度で圧延を行うと、未再結晶オーステナイト粒の圧延の加工を行うことにならなくなる。
Cumulative rolling reduction at less than 900 to 600 ° C .: 75% or more, rolling end temperature: 850 to 600 ° C.
The function of rolling in a temperature range of less than 900 to 600 ° C. is to collect the remaining austenite grains that have not been recrystallized by rolling to further refine the grains and introduce strain into the fine austenite grains. It is to form a structure and achieve strengthening during bainite transformation and inheritance of the texture after bainite transformation or after martensitic transformation. When the rolling is performed at a temperature lower than 600 ° C., the ratio of the two-phase region rolling amount increases, the (100) plane develops excessively, and particularly the strength and toughness in the thickness direction are adversely affected. On the other hand, if rolling is performed at a temperature of 900 ° C. or higher, rolling of non-recrystallized austenite grains is not performed.

また、前記温度域における累積圧下率が75%未満となるか、圧延終了温度が850 ℃を超える高い温度になると、十分な細粒化が行われず、(211)面および(100)面の多い集合組織が得られず、塑性変形による脆化が大きくなる。   Further, when the cumulative rolling reduction in the temperature range is less than 75% or the rolling end temperature is higher than 850 ° C., sufficient fine graining is not performed and there are many (211) planes and (100) planes. A texture cannot be obtained, and embrittlement due to plastic deformation increases.

冷却速度:5℃/s以上
5℃/s以上の冷却速度で冷却するのが望ましい。その理由は5℃/s以上の冷却速度で冷却すると、(211)面が優勢な集合組織の受け継ぎが促進され、歪脆化が小さくなるからである。かかる条件で冷却すると、(211)面のX線強度がより強くなり、サブクラックの発生がより一層促進され、歪脆化が起きにくくなる。なお上記冷却方法においては、より好ましい冷却開始温度は700℃以上である。
Cooling rate: 5 ° C./s or more It is desirable to cool at a cooling rate of 5 ° C./s or more. The reason is that when cooling is performed at a cooling rate of 5 ° C./s or more, inheritance of the texture having a dominant (211) plane is promoted, and strain embrittlement is reduced. When cooled under such conditions, the X-ray intensity of the (211) plane becomes stronger, the generation of subcracks is further promoted, and strain embrittlement is less likely to occur. In the cooling method, a more preferable cooling start temperature is 700 ° C. or higher.

表1に示す種々の化学組成に調整した鋼スラブを用いて、表2に示す条件に従って、厚鋼板を製造した。
得られた各厚鋼板について、(211)面と(100)面のX線強度比の測定、金属組織の観察を行うとともに、圧延のままと、これに10%の引張塑性歪を付与した後における、それぞれのシャルピー破面遷移温度を調査した。これらX線強度比は鋼板断面の板厚中心部における圧延面において、反転極点図法を用いて測定した。
その結果、本発明に従う発明例では、引張予歪による破面遷移温度vTrsの高温側への移行量が、小さいことがわかる。
Using steel slabs adjusted to various chemical compositions shown in Table 1, thick steel plates were produced according to the conditions shown in Table 2.
For each thick steel plate obtained, the X-ray intensity ratio between the (211) plane and the (100) plane was measured and the metal structure was observed, and as it was rolled, after applying 10% tensile plastic strain to it. The transition temperature of each Charpy fracture surface was investigated. These X-ray intensity ratios were measured using the inverted pole figure method on the rolling surface at the center of the thickness of the cross section of the steel sheet.
As a result, in the inventive example according to the present invention, it can be seen that the amount of transition to the high temperature side of the fracture surface transition temperature vTrs due to tensile pre-strain is small.

Figure 0005040086
Figure 0005040086

Figure 0005040086
Figure 0005040086

本発明によれば、塑性歪による歪脆化の小さい鋼材が得られるので、厚板、熱延鋼板等の高強度熱間圧延鋼板に幅広く適用できる。   According to the present invention, a steel material having small strain embrittlement due to plastic strain can be obtained, and therefore it can be widely applied to high-strength hot-rolled steel plates such as thick plates and hot-rolled steel plates.

Claims (2)

質量%で,C:0.057〜0.15%、Si:0.60%以下、Mn:0.80〜1.80%、B:0.0001〜0.0050%およびN:0.0050%以下を含有し、かつTi:0.005〜0.20%およびNb:0.001〜0.20%のうちから選択される1種または2種を含有し、さらにCu:0.1〜2.0%、V:0.005〜0.2%、Ni:2.0%以下、Cr:0.6%以下、Mo:0.6%以下、W:0.5%以下およびZr:0.5%以下のうちから選択される1種または2種以上を含有し、残部がFeおよび不可避的不純物からなり、圧延面での(211)面のX線強度比が2.0以上、(100)面のX線強度比が1.5以上で、且つ前記圧延面での(211)面のX線強度比が、(100)面のX線強度比よりも大きい集合組織を有し、引張強度が60キロ以上で、10%引張予歪による破面遷移温度vTrsが−65℃以下であることを特徴とする歪脆化の少ない構造用高張力鋼材。 In mass%, C: 0.057 to 0.15 %, Si: 0.60% or less, Mn: 0.80 to 1.80%, B: 0.0001 to 0.0050% and N: 0.0050 % Or less, and containing one or two selected from Ti: 0.005 to 0.20% and Nb: 0.001 to 0.20%, and Cu: 0.1 2.0%, V: 0.005 to 0.2%, Ni: 2.0% or less, Cr: 0.6% or less, Mo: 0.6% or less, W: 0.5% or less, and Zr: 1 type or 2 types or more selected from 0.5% or less are contained, the balance consists of Fe and inevitable impurities, and the X-ray intensity ratio of the (211) plane at the rolled surface is 2.0 or more, The X-ray intensity ratio of the (100) plane is 1.5 or more, and the X-ray intensity ratio of the (211) plane at the rolled surface is the X-ray of the (100) plane It has a texture larger than the strength ratio, has a tensile strength of 60 kg or more, and has a fracture surface transition temperature vTrs due to 10% tensile pre-strain of −65 ° C. or less. Tensile steel. 請求項1に記載の成分組成を有する鋼材を、950〜1350℃の温度に加熱し、次いで1000〜900℃の温度域における累積圧下率を15〜20%、900未満〜600℃における累積圧下率を75%以上とし、圧延終了温度を850〜600℃とする熱間圧延をおこない、熱間圧延終了後、5℃/s以上の冷却速度で、400℃まで冷却することを特徴とする請求項1に記載の歪脆化の少ない構造用高張力鋼材の製造方法。 The steel material having the component composition according to claim 1 is heated to a temperature of 950 to 1350 ° C, and the cumulative reduction rate in a temperature range of 1000 to 900 ° C is 15 to 20% , and the cumulative reduction rate in less than 900 to 600 ° C. The hot rolling is performed at a rolling end temperature of 850 to 600 ° C., and after the hot rolling is finished, the steel is cooled to 400 ° C. at a cooling rate of 5 ° C./s or more. 2. A method for producing a structural high-tensile steel material with less strain embrittlement according to 1.
JP2005250423A 2005-08-31 2005-08-31 Structural high-strength steel with low strain embrittlement Active JP5040086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005250423A JP5040086B2 (en) 2005-08-31 2005-08-31 Structural high-strength steel with low strain embrittlement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005250423A JP5040086B2 (en) 2005-08-31 2005-08-31 Structural high-strength steel with low strain embrittlement

Publications (2)

Publication Number Publication Date
JP2007063608A JP2007063608A (en) 2007-03-15
JP5040086B2 true JP5040086B2 (en) 2012-10-03

Family

ID=37926137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005250423A Active JP5040086B2 (en) 2005-08-31 2005-08-31 Structural high-strength steel with low strain embrittlement

Country Status (1)

Country Link
JP (1) JP5040086B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5201625B2 (en) * 2008-05-13 2013-06-05 株式会社日本製鋼所 High strength low alloy steel with excellent high pressure hydrogen environment embrittlement resistance and method for producing the same
JP5733425B2 (en) * 2011-12-27 2015-06-10 Jfeスチール株式会社 High-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5900312B2 (en) * 2011-12-27 2016-04-06 Jfeスチール株式会社 High-strength thick steel plate with excellent toughness and brittle crack propagation stopping characteristics for high heat input welds and its manufacturing method
JP6302161B2 (en) * 2012-02-08 2018-03-28 新日鐵住金株式会社 Steel sheet for hot-dip zinc bath equipment with excellent hot-zinc corrosion resistance and hot-zinc cracking resistance
JP7396322B2 (en) * 2020-06-24 2023-12-12 Jfeスチール株式会社 steel plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3775279B2 (en) * 2000-12-15 2006-05-17 Jfeスチール株式会社 Structural steel with excellent brittle crack propagation stoppage and fatigue crack propagation after plastic deformation and its manufacturing method

Also Published As

Publication number Publication date
JP2007063608A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP5162382B2 (en) Low yield ratio high toughness steel plate
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP4721956B2 (en) Thick steel plate with excellent base metal toughness and fatigue crack growth characteristics
JP4283757B2 (en) Thick steel plate and manufacturing method thereof
JP4676871B2 (en) Steel sheet with excellent fatigue crack growth control
JP4311740B2 (en) Thick steel plate with high heat input welded joint toughness
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2011246768A (en) High-tensile steel sheet and production method therefor
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP3736320B2 (en) Abrasion-resistant steel with excellent toughness and delayed fracture resistance and method for producing the same
JP5040086B2 (en) Structural high-strength steel with low strain embrittlement
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP2008214654A (en) THICK STEEL PLATE OF >=50 mm THICKNESS HAVING EXCELLENT BRITTLE CRACK ARREST PROPERTY
JP3775279B2 (en) Structural steel with excellent brittle crack propagation stoppage and fatigue crack propagation after plastic deformation and its manufacturing method
JP4645461B2 (en) High-strength steel material excellent in ductile crack initiation characteristics and fatigue crack propagation characteristics and method for producing the same
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP2007197776A (en) High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor
JP4497009B2 (en) Thick steel plate with excellent fatigue crack propagation characteristics and toughness and method for producing the same
JP2013129885A (en) Method of producing high-strength thick steel plate excellent in brittle crack propagation arrest property
JP2013049894A (en) High toughness steel for heavy heat input welding and method for manufacturing the same
JP2005097694A (en) Method for manufacturing non-heat-treated high-strength thick steel plate superior in brittle crack arrestability
JP4363321B2 (en) Welded joint with excellent fatigue characteristics
JP3828666B2 (en) H-section steel for tunnel support with good bending workability and tensile strength of 490 N square mm or more
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120207

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5040086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250