JP2007197776A - High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor - Google Patents

High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor Download PDF

Info

Publication number
JP2007197776A
JP2007197776A JP2006018328A JP2006018328A JP2007197776A JP 2007197776 A JP2007197776 A JP 2007197776A JP 2006018328 A JP2006018328 A JP 2006018328A JP 2006018328 A JP2006018328 A JP 2006018328A JP 2007197776 A JP2007197776 A JP 2007197776A
Authority
JP
Japan
Prior art keywords
less
delayed fracture
crack propagation
resistance
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006018328A
Other languages
Japanese (ja)
Inventor
Teruki Sadasue
照輝 貞末
Satoshi Iki
聡 伊木
Takahiro Kubo
高宏 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006018328A priority Critical patent/JP2007197776A/en
Publication of JP2007197776A publication Critical patent/JP2007197776A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength steel material for a construction, which is used in various welded structures and is superior in fatigue-crack propagation resistance and delayed fracture resistance even when having repeatedly received a load, and to provide a manufacturing method therefor. <P>SOLUTION: This steel material comprises, by mass%, 0.05-0.35% C, 0.01-0.50% Si, 0.5-2.0% Mn, 0.05% or less P, 0.02% or less S, one or more of 1.0% or less Cu, 2.0% or less Ni, 1.0% or less Cr, 1.0% or less Mo, 0.1% or less Nb, 0.1% or less V, 0.1% or less Ti and 0.005% or less B, as needed, and the balance Fe with unavoidable impurities; and has a metallographic structure that is a bainitic structure, a martensitic structure or a structure mixed thereof, which includes carbides, nitrides or carbonitrides with a maximum size of 0.5 μm or smaller in lath, and that includes ferrite with a grain size of 4 μm to 50 μm in an amount of 3% to 20% by an area fraction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐疲労き裂伝ぱ特性に優れ、かつ耐遅れ破壊性を有する引張強度700MPa以上の高強度鋼材およびその製造方法に関し、船舶、海洋構造物、橋梁、建設機械、建築物、タンクなど各種溶接構造物に好適な、繰返し荷重を受けた場合に良好な耐疲労き裂伝ぱ特性を示す、耐遅れ破壊性に優れた引張強度700MPa以上の構造用鋼材ならびにその製造方法に関する。   The present invention relates to a high-strength steel material having a tensile strength of 700 MPa or more that has excellent fatigue crack propagation resistance and delayed fracture resistance, and a manufacturing method thereof, such as ships, marine structures, bridges, construction machines, buildings, tanks, etc. The present invention relates to a structural steel material excellent in delayed fracture resistance and having a tensile strength of 700 MPa or more, which is suitable for various welded structures and exhibits good fatigue crack resistance when subjected to repeated loads, and a method for producing the same.

近年、船舶、海洋構造物、橋梁、建設機械、建築物、タンクなどの構造物においては設計の合理化や鋼材重量の低減、薄肉化や溶接の省力化を目的として引張強度で高強度鋼材が適用される事例が多くなってきている。   In recent years, high strength steel materials with tensile strength have been applied to structures such as ships, offshore structures, bridges, construction machinery, buildings, tanks, etc. for the purpose of streamlining design, reducing the weight of steel materials, and reducing the thickness and labor of welding. There are an increasing number of cases.

それらに用いられる引張強度が700MPa以上の高強度鋼材では、靭性や溶接性に優れていること、構造安全性を確保するため耐疲労特性や耐遅れ破壊性に優れていることが要求される。   High-strength steel materials having a tensile strength of 700 MPa or more used for them are required to have excellent toughness and weldability and to have excellent fatigue resistance and delayed fracture resistance in order to ensure structural safety.

溶接構造物において、疲労破壊は、溶接止端部から疲労き裂が発生し、鋼材中を伝ぱして破壊するケースが多い。これは、溶接止端部がその形状から応力集中部となりやすいこと、加えて溶接後に引張の残留応力が生じることなどに起因するとされている。   In welded structures, fatigue fracture often occurs when a fatigue crack is generated from the weld toe and propagates through the steel material. This is attributed to the fact that the weld toe portion tends to be a stress concentration portion due to its shape, and in addition, tensile residual stress is generated after welding.

このため、溶接止端部からのき裂発生を抑制させる手段として、付加溶接を施すなどして形状を改善し応力集中を低減させる技術、ショットピーニングなどで圧縮の残留応力を導入する技術などが広く知られている。   For this reason, as a means to suppress the generation of cracks from the weld toe, techniques such as additional welding to improve the shape and reduce stress concentration, techniques to introduce compressive residual stress by shot peening, etc. Widely known.

しかし、多数存在する溶接止端部にこのような処理を工業的規模で施すことは不可能に近く、コストの面でも現実的とは言いがたい。   However, it is almost impossible to apply such treatment to a large number of weld toes on an industrial scale, and it is not practical in terms of cost.

そこで、仮に疲労き裂が発生したとしてもその後の鋼材中の伝播速度を低減させることで疲労寿命を延命させることが重要であり、鋼材自身の疲労き裂伝ぱ特性を向上させることが産業界から強く要望されている。   Therefore, even if a fatigue crack occurs, it is important to extend the fatigue life by reducing the propagation speed in the steel material after that. There is a strong demand.

高強度鋼材の疲労き裂伝ぱ特性の向上手法として、例えば、特許文献1には組織がフェライト、パーライト、ベイナイトの1種または2種以上で主に構成され、さらに平均存在間隔20μm以下でかつ平均扁平比5以上の島状マルテンサイトが0.5〜5%の割合で存在する耐疲労き裂伝ぱ特性に優れた鋼板ならびにその製造方法が記載されている。   As a technique for improving the fatigue crack propagation characteristics of high-strength steel materials, for example, Patent Document 1 discloses that the structure is mainly composed of one or more of ferrite, pearlite, and bainite, and has an average existence interval of 20 μm or less. A steel sheet excellent in fatigue crack propagation resistance in which island-shaped martensite having an aspect ratio of 5 or more is present at a ratio of 0.5 to 5% and a method for producing the same are described.

特許文献2には主としてベイナイト/マルテンサイトからなり、ラス状組織の最小短辺長が1.3μm以下、かつ、ベイナイトを含む場合にはその組織中にアスペクト比が5以上である島状マルテンサイトを面積率で5%未満含む鋼材ならびにその製造方法が開示されている。   Patent Document 2 is mainly composed of bainite / martensite, and the lath-like structure has a minimum short side length of 1.3 μm or less, and when bainite is included, the island-like martensite having an aspect ratio of 5 or more in the structure. Steel material containing less than 5% by area ratio and a method for producing the same are disclosed.

特許文献3には熱間圧延後に鋼板を500℃以下まで水冷後、Ac点+50℃〜Ac点−10℃の二相域に再加熱して圧延することで、組織を細粒フェライトとベイナイトもしくはマルテンサイトの混合組織とし、疲労強度を向上させる技術が記載されている。
特開平6−271985号公報 特開2003−342672号公報 特開平10−168542号公報
In Patent Document 3, after hot rolling, the steel sheet is water-cooled to 500 ° C. or less, and then heated and rolled in a two-phase region of Ac 1 point + 50 ° C. to Ac 3 points−10 ° C. A technique for improving fatigue strength by using a mixed structure of bainite or martensite is described.
JP-A-6-271985 JP 2003-342672 A Japanese Patent Laid-Open No. 10-168542

しかしながら、上記技術には、種々の問題点が指摘され、例えば、特許文献1の場合、島状マルテンサイトを多量に含むため、これを起点とした脆性破壊が生じやすいことや耐遅れ破壊性に劣ることが懸念される。   However, various problems are pointed out in the above-described technology. For example, in the case of Patent Document 1, since a large amount of island martensite is included, brittle fracture is likely to occur, and delayed fracture resistance is improved. There is concern about inferiority.

特許文献2の場合、基本的にフェライトを含まない硬質層(ベイナイト/マルテンサイト)のみの鋼材であるため軟質相/硬質層を有する鋼材と比べて疲労き裂伝播速度に劣ることや焼戻し処理を行わない場合には遅れ破壊が生じることなどが懸念される。   In the case of Patent Document 2, since the steel material is basically only a hard layer (bainite / martensite) not containing ferrite, the fatigue crack propagation rate is inferior to that of a steel material having a soft phase / hard layer and tempering treatment is performed. If not, there is a concern that delayed destruction will occur.

また、特許文献3の場合、冷却後に再加熱し圧延する製造工程が煩雑であることから、製造コストが上昇し、生産能率が低下する。   Moreover, in the case of patent document 3, since the manufacturing process reheated and rolled after cooling is complicated, a manufacturing cost rises and production efficiency falls.

そこで、本発明はこのような従来技術の課題を解決し、耐疲労き裂伝ぱ特性に優れ、かつ耐遅れ破壊性に優れた高靭性な鋼材、及び高能率で製造する技術を提供することを目的とする。   Accordingly, the present invention solves such problems of the prior art, and provides a tough steel material having excellent fatigue crack propagation characteristics and delayed fracture resistance, and a technique for manufacturing with high efficiency. Objective.

本発明者らは、上記課題を解決すべく実験と検討を重ねた。その結果、ラス内に微細な炭化物を有するベイナイトもしくはマルテンサイトあるいはそれらの混合組織中にフェライトを分散させ、かつ、フェライト粒径と面積率を特定の範囲内とすることで優れた疲労き裂伝播特性を示し、かつ耐遅れ破壊性と靭性にも優れた鋼材が得られることを見出した。   The present inventors have repeated experiments and studies to solve the above problems. As a result, excellent fatigue crack propagation is achieved by dispersing ferrite in bainite or martensite with fine carbides in the lath or mixed structure of them, and keeping the ferrite grain size and area ratio within a specified range. It was found that a steel material exhibiting properties and excellent delayed fracture resistance and toughness can be obtained.

またそのような組織を有する鋼材は圧延、制御冷却、熱処理の各工程を高精度に制御し、かつ各工程を連続させて造りこむことによって高能率に生産できることを見出した。本発明は得られた知見を基に更に検討を加えてなされたもので、
1.質量%で、C:0.05〜0.35%、Si:0.01〜0.50%、Mn:0.5〜2.0%、P:0.05%以下、S:0.02%以下、残部Fe及び不可避的不純物の鋼で、金属組織が、最大サイズが0.5μm以下のラス内炭化物もしくは窒化物または炭窒化物が存在する、ベイナイトもしくはマルテンサイトまたはそれらの混合組織で、前記金属組織中には粒径:50μm以下4μm以上のフェライトが面積分率:3%以上20%以下で存在することを特徴とする耐遅れ破壊特性と耐疲労き裂伝ぱ特性に優れた引張強度700MPa以上の高強度鋼材。
2.更に、質量%でCu:1.0%以下、Ni:2.0%以下、Cr:1.0%以下、Mo:1.0%以下、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下、B:0.005%以下の一種または二種以上を含有する1に記載の耐遅れ破壊特性と耐疲労き裂伝ぱ特性に優れた引張強度700MPa以上の高強度鋼材。
3.1または2に記載の成分の鋼を、1000℃以上、1300℃以下に加熱し、Ar点以上で累積圧下率50%以上の圧延を行い、Ar点からAr−200℃の温度範囲を冷却速度4℃/s未満で3s以上、200s以下に冷却後、Ms点以下までを5℃/s以上の冷却速度で直接焼入れし、その後1℃/s以上の昇温速度でAc点未満まで再加熱することを特徴とする耐遅れ破壊特性と耐疲労き裂伝ぱ特性に優れた引張強度700MPa以上の高強度鋼材の製造方法。
It has also been found that a steel material having such a structure can be produced with high efficiency by controlling each process of rolling, controlled cooling, and heat treatment with high precision and by forming each process continuously. The present invention was made by further study based on the obtained knowledge,
1. In mass%, C: 0.05 to 0.35%, Si: 0.01 to 0.50%, Mn: 0.5 to 2.0%, P: 0.05% or less, S: 0.02 % Or less, the balance Fe and inevitable impurities steel, the metallographic structure is bainite or martensite or a mixed structure in which lath carbide or nitride or carbonitride having a maximum size of 0.5 μm or less exists, Tensile strength with excellent delayed fracture resistance and fatigue crack resistance, characterized in that ferrite having a particle size of 50 μm or less and 4 μm or more is present in the metal structure at an area fraction of 3% or more and 20% or less. High-strength steel material of 700 MPa or more.
2. Furthermore, Cu: 1.0% or less, Ni: 2.0% or less, Cr: 1.0% or less, Mo: 1.0% or less, Nb: 0.1% or less, V: 0.1 in mass% %, Ti: 0.1% or less, B: 0.005% or less, containing 1 type or two or more types, with excellent delayed fracture resistance and fatigue crack propagation characteristics according to 1. High strength steel.
The steel having the components described in 3.1 or 2 is heated to 1000 ° C. or higher and 1300 ° C. or lower, rolled at an Ar 3 point or higher and a cumulative reduction ratio of 50% or higher, and from Ar 3 point to Ar 3 -200 ° C. After cooling the temperature range to 3 s or more and 200 s or less at a cooling rate of less than 4 ° C./s, directly quench at a cooling rate of 5 ° C./s or less to the Ms point or less, and then increase the temperature at a rate of 1 ° C./s or more. A method for producing a high-strength steel material having a tensile strength of 700 MPa or more and excellent in delayed fracture resistance and fatigue crack propagation characteristics, characterized by reheating to less than one point.

本発明によれば、特殊な工程や多量の合金元素の添加を必要とせずに、耐疲労き裂伝ぱ特性を高め、かつ、耐遅れ破壊性と靭性にも優れた鋼材の製造が可能で、船舶、橋梁、建築物に代表されるような溶接構造物の主要部材に対し遅れ破壊や脆性破壊のみならず疲労破壊の安全裕度を拡大できる鋼材が提供可能である。   According to the present invention, it is possible to produce a steel material having improved fatigue crack propagation characteristics and having excellent delayed fracture resistance and toughness without requiring a special process or addition of a large amount of alloying elements. It is possible to provide a steel material that can increase the safety margin of fatigue failure as well as delayed fracture and brittle fracture for main members of welded structures such as ships, bridges, and buildings.

また、圧延、冷却、再加熱を組み合わせた一連の加工熱処理により製造できるため、上記のような諸特性に優れる鋼材を短納期で、安価に提供することが可能で、産業上極めて有用である。   Further, since it can be manufactured by a series of thermomechanical processing combined with rolling, cooling, and reheating, it is possible to provide a steel material having excellent characteristics as described above at a short delivery time and at a low cost, which is extremely useful industrially.

本発明に係る鋼材は化学成分、金属組織を規定する。
[化学成分]以下の説明での%は全て質量%である。
C:0.05〜0.35%
Cは強度確保のために0.05%以上の添加が必要である。しかし、0.35%超えの添加は溶接性を阻害する。したがって0.05%以上0.35%以下に限定する。好ましくは0.05%以上0.30%以下とする。
The steel material according to the present invention defines the chemical composition and the metal structure.
[Chemical component] In the following description, all percentages are by mass.
C: 0.05 to 0.35%
C needs to be added in an amount of 0.05% or more to ensure strength. However, addition exceeding 0.35% inhibits weldability. Therefore, it is limited to 0.05% or more and 0.35% or less. Preferably, the content is 0.05% or more and 0.30% or less.

Si:0.01〜0.50%
Siは脱酸剤として有効であるとともに高強度化のためには0.01%以上必要であるが、0.50%を越えて添加すると溶接性、靭性を劣化させる。従って0.01%以上0.50%以下に限定する。好ましくは0.05%以上0.40%以下とする。
Si: 0.01 to 0.50%
Si is effective as a deoxidizer and needs to be 0.01% or more for increasing the strength, but if added over 0.50%, weldability and toughness are deteriorated. Therefore, it is limited to 0.01% or more and 0.50% or less. Preferably, the content is 0.05% or more and 0.40% or less.

Mn:0.5〜2.0%
Mnは安価に焼入れ性の増加を通じて強度を高めるだけでなく靭性向上の観点から0.5%以上必要であるが、2.0%を越えると溶接性の劣化する。従って0.5%以上2.0%以下に限定する。好ましくは0.5%以上1.8%以下とする。
Mn: 0.5 to 2.0%
Mn is required not only to increase the strength at a low cost by increasing hardenability but also from the viewpoint of improving toughness, but 0.5% or more is necessary, but if it exceeds 2.0%, the weldability deteriorates. Therefore, it is limited to 0.5% or more and 2.0% or less. Preferably, the content is 0.5% or more and 1.8% or less.

P:0.05%以下
Pは鋼の靭性を劣化させるため、その含有量はできるだけ低いことが望ましい。このため上限を0.05%とした。好ましくは0.03%以下とする。
P: 0.05% or less Since P deteriorates the toughness of steel, its content is desirably as low as possible. For this reason, the upper limit was made 0.05%. Preferably it is 0.03% or less.

S:0.02%以下
Sは多量に添加すると鋼の靭性を低下させるため極力低減するのが望ましい。このため、上限を0.02%とした。好ましくは0.01%以下とする。
S: 0.02% or less It is desirable to reduce S as much as possible because S decreases the toughness of steel when added in a large amount. For this reason, the upper limit was made 0.02%. Preferably, the content is 0.01% or less.

以上を本発明の基本成分とするが、強度、靭性や溶接性等の調整、耐候性の付与などを目的としてCu,Ni,Cr,Mo,Nb,V,Ti,Bの一種または二種以上を添加しても良い。   Although the above is a basic component of the present invention, one or more of Cu, Ni, Cr, Mo, Nb, V, Ti, B for the purpose of adjusting strength, toughness, weldability, etc., and imparting weather resistance, etc. May be added.

Cu:1.0%以下
Cuは固溶による強度上昇効果をもたらすとともに耐候性を向上させる。しかし、その含有量が1.0%を超えると溶接性を損なうとともに鋼材製造時に疵が生じやすくなる。従って、添加する場合はその上限を1.0%とする。好ましくは0.05%以上0.5%以下とする。
Cu: 1.0% or less Cu brings about an effect of increasing strength by solid solution and improves weather resistance. However, if the content exceeds 1.0%, weldability is impaired and flaws are likely to occur during the manufacture of the steel material. Therefore, when added, the upper limit is made 1.0%. Preferably they are 0.05% or more and 0.5% or less.

Ni:2.0%以下
Niは低温靭性を向上させるとともに耐候性やCuを添加した場合に生ずる熱間脆性の改善に有効である。しかし、その添加量が2.0%を超えると溶接性を阻害する上、コストが上昇する。従って、添加する場合はその上限を2.0%とする。好ましくは0.05%以上1.0%以下とする。
Ni: 2.0% or less Ni is effective in improving low temperature toughness and improving weather resistance and hot brittleness that occurs when Cu is added. However, if the added amount exceeds 2.0%, weldability is impaired and the cost increases. Therefore, when added, the upper limit is made 2.0%. Preferably they are 0.05% or more and 1.0% or less.

Cr:1.0%以下
Crは耐候性や強度を向上させる。しかし、その含有量が1.0%を超えると溶接性および靭性を損なう。従って、添加する場合は上限を1.0%とする。好ましくは0.05%以上0.5%以下とする。
Cr: 1.0% or less Cr improves weather resistance and strength. However, if its content exceeds 1.0%, weldability and toughness are impaired. Therefore, when added, the upper limit is made 1.0%. Preferably they are 0.05% or more and 0.5% or less.

Mo:1.0%以下
Moは強度を上昇させる。しかし、その含有量が1.0%を超えると溶接性および靭性の劣化が生じる。従って、添加する場合はその上限を1.0%とする。好ましくは0.05%以上0.5%以下とする。
Mo: 1.0% or less Mo increases the strength. However, if its content exceeds 1.0%, weldability and toughness deteriorate. Therefore, when added, the upper limit is made 1.0%. Preferably they are 0.05% or more and 0.5% or less.

Nb:0.1%以下
Nbは圧延時のオーステナイト再結晶を抑制し細粒化を図ると同時に、析出を通じた高強度化をもたらす働きを有する。しかし、0.1%以上添加すると靭性が劣化する。従って添加する場合は0.1%以下に限定する。好ましくは0.01%以上0.05%以下とする。
Nb: 0.1% or less Nb has the function of suppressing austenite recrystallization during rolling to achieve finer grains, and at the same time, increasing the strength through precipitation. However, when 0.1% or more is added, toughness deteriorates. Therefore, when adding, it is limited to 0.1% or less. Preferably, the content is 0.01% or more and 0.05% or less.

V:0.1%以下
VもNbと同様、析出により高強度化をもたらす働きを有する。しかし、0.1%超えの添加は溶接性および靭性の低下を招く。従って添加する場合は0.1%以下に限定する。好ましくは0.01%以上0.07%以下とする。
V: 0.1% or less V, like Nb, has a function of increasing strength by precipitation. However, addition exceeding 0.1% causes a decrease in weldability and toughness. Therefore, when adding, it is limited to 0.1% or less. Preferably, the content is 0.01% or more and 0.07% or less.

Ti:0.1%以下
Tiは強度上昇と溶接部靭性を改善する。しかし、その含有量が0.1%を超えるとコスト上昇を招く傾向にある。従って添加する場合は上限を0.1%とする。好ましくは0.01%以上0.05%以下とする。
Ti: 0.1% or less Ti improves strength and weld zone toughness. However, when the content exceeds 0.1%, the cost tends to increase. Therefore, when added, the upper limit is made 0.1%. Preferably, the content is 0.01% or more and 0.05% or less.

B:0.005%以下
Bは焼入れ性を高め強度上昇に寄与する。しかし、0.005%を超えて添加すると溶接性を害する。従って上限を0.005%とする。好ましくは0.0005%以上0.003%以下とする。
B: 0.005% or less B contributes to an increase in hardenability and strength. However, if added over 0.005%, the weldability is impaired. Therefore, the upper limit is made 0.005%. Preferably, the content is 0.0005% or more and 0.003% or less.

[金属組織]
本発明に係る疲労き裂伝ぱ特性および耐遅れ破壊特性に優れた高強度鋼材は金属組織が、ベイナイトもしくはマルテンサイトまたはそれらの混合組織であって、当該金属組織中に粒径:50μm以下4μm以上のフェライトが面積分率:3%以上20%以下で存在し、且つ最大サイズが0.5μm以下のラス内炭化物もしくは窒化物または炭窒化物が存在することを特徴とする。
[Metal structure]
The high-strength steel material excellent in fatigue crack propagation characteristics and delayed fracture resistance according to the present invention has a metal structure of bainite, martensite, or a mixed structure thereof, and the particle size in the metal structure is 50 μm or less and 4 μm or more. The ferrite is present in an area fraction of 3% or more and 20% or less, and in the lath carbide or nitride or carbonitride having a maximum size of 0.5 μm or less.

ベイナイトもしくはマルテンサイトまたはそれらの混合組織中の、面積分率:3%以上20%以下の粒径:50μm以下4μm以上のフェライト
ベイナイトもしくはマルテンサイトまたはそれらの混合組織とすることにより高強度化が達成され、さらに、それらの組織中にフェライトを生成させることで、疲労き裂進展速度はフェライトとの界面で局所的な低下を見せるようになり耐疲労き裂伝播特性が向上する。
Higher strength is achieved by using ferrite bainite or martensite or a mixed structure of ferrite or bainite or martensite in an area fraction of 3% or more and 20% or less: 50 μm or less and 4 μm or more in bainite or martensite or a mixed structure thereof. In addition, by generating ferrite in these structures, the fatigue crack propagation rate shows a local decrease at the interface with the ferrite, and the fatigue crack propagation resistance is improved.

そして、フェライト粒径と面積率をそれぞれ50μm以下4μm以上、3%以上20%以下とすることで耐疲労き裂伝播特性は飛躍的に向上する。フェライト面積率はより好ましくは3%以上10%以下である。   And a fatigue crack propagation characteristic improves remarkably by making a ferrite grain size and an area ratio into 50 micrometers or less 4 micrometers or more and 3% or more and 20% or less, respectively. The ferrite area ratio is more preferably 3% or more and 10% or less.

最大サイズが0.5μm以下の、ラス内炭化物もしくは窒化物または炭窒化物
ベイナイトもしくはマルテンサイトまたはそれらの混合組織中に最大サイズで0.5μm以下の微細な炭化物もしくは窒化物または炭窒化物を生成させることで、高い疲労き裂伝播速度を維持しつつ、耐遅れ破壊性と靭性が向上する。ラス内に炭化物もしくは窒化物または炭窒化物が存在しない場合やそれらが最大サイズで0.5μmを超える場合、耐遅れ破壊性や靭性が低下する。なお、炭化物もしくは窒化物または炭窒化物サイズは楕円形を仮定した時の長軸方向の全長を言う。
In-lath carbide or nitride or carbonitride with a maximum size of 0.5 μm or less Produces fine carbide or nitride or carbonitride with a maximum size of 0.5 μm or less in bainite or martensite or their mixed structure As a result, delayed fracture resistance and toughness are improved while maintaining a high fatigue crack propagation rate. When no carbides, nitrides, or carbonitrides are present in the lath, or when they exceed the maximum size of 0.5 μm, delayed fracture resistance and toughness deteriorate. The carbide, nitride, or carbonitride size refers to the total length in the major axis direction when an elliptical shape is assumed.

図1に、フェライトとベイナイトもしくはマルテンサイトあるいはそれらの混合組織で、最大サイズが0.5μm以下のラス内の炭化物もしくは窒化物または炭窒化物が存在する金属組織において、フェライトの粒径と面積率を変化させて引張強度で700MPa以上とした鋼材について疲労き裂伝播特性と遅れ破壊性を調べた結果を示す。試験材は後述する表1のAで示す成分の鋼を、種々の条件で製造した。   Fig. 1 shows the grain size and area ratio of ferrite in a ferrite and bainite or martensite or a mixed structure thereof in which a carbide, nitride, or carbonitride in a lath having a maximum size of 0.5 µm or less exists. The results of investigating fatigue crack propagation characteristics and delayed fracture properties of steel materials having a tensile strength of 700 MPa or more by changing the above are shown. The test material manufactured the steel of the component shown by A of Table 1 mentioned later on various conditions.

図1より、高い強度を有しつつ、遅れ破壊性と耐疲労き裂伝播特性に優れる鋼とするため、粒径:50μm以下4μm以上のフェライトで、当該フェライトの面積分率を3%以上20%以下とする。   As shown in FIG. 1, in order to obtain a steel having high strength and excellent delayed fracture resistance and fatigue crack propagation characteristics, ferrite having a grain size of 50 μm or less and 4 μm or more has an area fraction of the ferrite of 3% or more and 20% or more. % Or less.

高い強度の鋼において、耐遅れ破壊性と疲労き裂伝播特性を向上させる特異なフェライト粒径と面積率の範囲が存在する理由は、フェライト粒径および面積率がそれぞれ4μm未満、3%未満では、遅れ破壊感受性の高い硬質相が多くなるために遅れ破壊性に劣ること、さらには、疲労き裂が硬質相内を優先的に伝播するために、フェライト界面での伝播速度遅延効果が期待できず、一方、フェライト粒径および面積率がそれぞれ50μm超え、20%超えると、高い強度が得られなくなるとともに、疲労き裂がフェライト内を優先的に伝播し易くなってベイナイト界面での伝播速度遅延効果が期待できないためと推察される。   The reason why there is a unique ferrite grain size and area ratio range that improves delayed fracture resistance and fatigue crack propagation characteristics in high-strength steel is that the ferrite grain size and area ratio are less than 4 μm and less than 3%, respectively. In addition, since the hard phase with high delayed fracture susceptibility increases, the delayed fracture property is inferior. Furthermore, since fatigue cracks propagate preferentially in the hard phase, a propagation speed delay effect at the ferrite interface can be expected. On the other hand, if the ferrite grain size and area ratio exceed 50 μm and 20%, respectively, high strength cannot be obtained, and fatigue cracks are preferentially propagated in the ferrite, resulting in a propagation speed delay at the bainite interface. This is probably because the effect cannot be expected.

尚、本発明では上述した金属組織に、不可避的に少量の他の組織が混在することは許容する。   In the present invention, a small amount of other structures are inevitably mixed in the metal structure described above.

本発明の鋼材は上記成分を有する鋼を、1000℃以上1300℃以下に加熱し、Ar点以上で累積圧下率50%以上の圧延を行い、Ar点からAr−200℃の温度範囲において冷却速度で4℃/s未満で3s以上200s以下冷却後、Ms点以下まで5℃/s以上の冷却速度で直接焼入れし、その後1℃/s以上の昇温速度でAc点未満まで再加熱することによって得られる。なお、上記温度は鋼材表面温度とし、冷却速度は鋼材の厚さ方向での平均値とする。 Steel steel having the above components of the present invention, heating to 1000 ° C. or higher 1300 ° C. or less, perform rolling cumulative reduction of 50% or more Ar 3 point or more, the temperature range of Ar 3 -200 ° C. from Ar 3 point After cooling at a cooling rate of less than 4 ° C./s for 3 s or more and 200 s or less, directly quenching at a cooling rate of 5 ° C./s or more to the Ms point or less, and then at a temperature rising rate of 1 ° C./s or more to less than Ac 1 point Obtained by reheating. The temperature is the steel surface temperature, and the cooling rate is the average value in the thickness direction of the steel.

加熱温度:1000℃以上1300℃以下
加熱温度を1000℃未満にするとその後の圧延温度が確保できない。また、1300℃を超える温度にすると鋼の結晶粒が粗大化するので靭性の確保が困難となる。
Heating temperature: 1000 ° C. or higher and 1300 ° C. or lower If the heating temperature is lower than 1000 ° C., the subsequent rolling temperature cannot be secured. On the other hand, if the temperature exceeds 1300 ° C., the crystal grains of the steel become coarse, and it becomes difficult to ensure toughness.

Ar点以上で累積圧下率50%以上
Ar点以上で累積圧下率50%以上の圧延を行うことにより旧オーステナイト粒を微細化させて靭性を向上させるとともに、この後に続く冷却過程でのフェライト生成を促進する。Ar点未満の圧延ではフェライトが過度に生成し、累積圧下率が50%未満では旧オーステナイト粒の微細化が達成されない。
Rolling at an Ar 3 point or higher and a cumulative reduction ratio of 50% or higher at an Ar 3 point or higher to refine the prior austenite grains to improve toughness, and ferrite in the subsequent cooling process Promote generation. In rolling with less than Ar 3 points, ferrite is excessively generated, and if the cumulative rolling reduction is less than 50%, refinement of prior austenite grains cannot be achieved.

Ar点からAr−200℃の温度範囲において冷却速度で4℃/s未満で3s以上200s以下冷却
冷却中にフェライトを生成させる手段として、Ar〜Ar−200℃の温度範囲で冷却速度4℃/s未満となる工程を3s以上設ける。温度がAr点を超える場合あるいはAr点−200℃を下回る場合にはフェライトが生成しない。
As a means of generating a ferrite 3s than 200s in less cooling cooling below 4 ° C. / s at a cooling rate in the temperature range of Ar 3 -200 ° C. from Ar 3 point, cooled at the temperature range of Ar 3 to Ar 3 -200 ° C. A step of a rate of less than 4 ° C./s is provided for 3 seconds or more. Temperature does not produce ferrite, if below or when Ar 3 point -200 ° C. greater than 3 points Ar.

また、その温度域においても冷却速度が4℃/s未満であり、かつその冷却時間が3s以上でないと耐疲労き裂伝播特性と耐遅れ破壊性を向上させるための十分なフェライト量(面積分率3%以上)が得られない。   Also in that temperature range, if the cooling rate is less than 4 ° C./s and the cooling time is not more than 3 s, sufficient ferrite content (area fraction) to improve fatigue crack propagation resistance and delayed fracture resistance 3% or more) is not obtained.

一方、上記のフェライト生成時間が200sを超える場合、製造能率の低下とともに面積分率20%を超える過度のフェライト生成により疲労特性および強度が低下する。より好ましくは上記冷却時間を3s以上100s以下である。   On the other hand, when the ferrite generation time exceeds 200 s, fatigue characteristics and strength are reduced due to excessive ferrite generation exceeding the area fraction of 20% as the production efficiency decreases. More preferably, the cooling time is 3 seconds or more and 100 seconds or less.

上記冷却過程後、Ms点以下まで5℃/s以上の冷却速度で直接焼入れし、その後1℃/s以上の昇温速度でAc点未満まで再加熱
本構成は、上記冷却過程後でフェライト変態が完了しないうちに、残りの未変態オーステナイトをベイナイト、マルテンサイト、あるいはそれらの混合組織とし、かつ、それらのラス中に微細な炭化物、窒化物、あるいは炭窒化物を生成させるため規定する。
After the above cooling process, it is directly quenched at a cooling rate of 5 ° C./s or higher to the Ms point or lower, and then reheated to a temperature less than 1 point at a temperature rising rate of 1 ° C./s or higher. Before the transformation is completed, the remaining untransformed austenite is bainite, martensite, or a mixed structure thereof, and is defined to produce fine carbides, nitrides, or carbonitrides in the laths.

冷却速度が5℃/s未満ではフェライトやパ―ライトが生成する。また、Ms点以下まで冷却し、未変態オーステナイトをベイナイト、マルテンサイト、あるいはそれらの混合組織とすることで高強度化が図れる。   When the cooling rate is less than 5 ° C./s, ferrite and pearlite are generated. Further, the strength can be increased by cooling to the Ms point or lower and using untransformed austenite as bainite, martensite, or a mixed structure thereof.

さらには、その後に、1℃/s以上の昇温速度でAc点未満まで急速に再加熱を行うことでラス中に微細な炭化物、窒化物、あるいは炭窒化物を生成させることができ、高い疲労き裂伝ぱ特性を有しつつ耐遅れ破壊性と靭性が向上する。 Furthermore, fine carbide, nitride, or carbonitride can be generated in the lath by rapidly reheating to less than Ac 1 point at a temperature rising rate of 1 ° C./s or more, Delayed fracture resistance and toughness are improved while having high fatigue crack propagation characteristics.

昇温速度が1℃/sを下回る場合、炭化物、窒化物、あるいは炭窒化物が粗大となること、Ac点以上に再加熱すると島状マルテンサイトが生成されることでそれぞれ靭性や耐遅れ破壊性が低下する。 When the rate of temperature rise is less than 1 ° C / s, carbides, nitrides, or carbonitrides become coarse, and when reheated to one or more points of Ac, island-like martensite is generated, thereby toughness and delay resistance respectively. Destructibility is reduced.

昇温速度はより好ましくは3℃/s以上である。なお、Ar点、Ms点、Ac点は例えば、Ar(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo、Ms(℃)=517−300C−33Mn−22Cr−17Ni−11Mo−11Si、Ac(℃)=723−14Mn+22Si−14.4Ni+23.3Cr(但し、元素記号は鋼材中の各元素の質量%での含有量を表す)で表される関係式により鋼材の成分組成に基づいて導くことが出来る。 The temperature rising rate is more preferably 3 ° C./s or more. Ar 3 point, Ms point, and Ac 1 point are, for example, Ar 3 (° C.) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo, Ms (° C.) = 517-300C-33Mn-22Cr-17Ni— 11Mo-11Si, Ac 1 (° C.) = 723-14Mn + 22Si-14.4Ni + 23.3Cr (where the element symbol represents the content in mass% of each element in the steel) It can be derived based on the composition.

上記のような一連の冷却は例えば、圧延終了後に、1.水冷→徐冷→水冷、2.水冷→放冷→水冷、3.徐冷→水冷、4.放冷→水冷などの工程で行えばよく、Ar点〜Ar−200℃の間で徐冷、放冷期間を設けることでフェライトを導入し、その後、水冷を行って残部をベイナイト、マルテンサイト、あるいはそれらの混合組織とすれば良い。 The series of cooling as described above is performed, for example, after the rolling is completed. 1. Water cooling → Slow cooling → Water cooling 2. water cooling → cooling → water cooling; 3. Slow cooling → water cooling It may be performed by a process such as cooling to water cooling, and ferrite is introduced by providing a slow cooling and cooling period between Ar 3 points to Ar 3 -200 ° C., and then water cooling is performed, and the remainder is bainite and martensite. It may be a site or a mixed organization of them.

図2に板厚25mmtの鋼材を上記2の方法で800℃から冷却して670℃近傍で放冷期間を設けた後、再び40℃まで冷却し、すぐに450℃まで再加熱して、再び放冷したときの板厚内平均温度と時間を(a)に、その時に得られた組織の模式図を(b)に示す(試験材は後述の実施例No.1の鋼板を用いた)。所望の組織が一連の工程で、かつ、非常に短時間(冷却開始から再加熱終了まで50s未満)で得られている。   In FIG. 2, a steel material having a thickness of 25 mm is cooled from 800 ° C. by the above method 2 and provided with a cooling period near 670 ° C., then cooled again to 40 ° C., immediately reheated to 450 ° C., and again The average temperature and time within the plate thickness when allowed to cool are shown in (a), and the schematic diagram of the structure obtained at that time is shown in (b) (the test material was a steel plate of Example No. 1 described later). . The desired structure is obtained in a series of steps and in a very short time (less than 50 seconds from the start of cooling to the end of reheating).

なお、本製造法で加速冷却と再加熱を上述の図2のように最も効率的に行う場合には、加速冷却装置と加熱装置は同一ライン上にレイアウトされていることが好ましい。   In addition, when accelerated cooling and reheating are most efficiently performed as shown in FIG. 2 in the present manufacturing method, the accelerated cooling device and the heating device are preferably laid out on the same line.

また、加熱装置と加速冷却装置との距離が離れている場合には通常のオフラインTemperを施しても特性上は差し支えない。加熱方式は昇温速度が達成されれば誘導加熱、雰囲気加熱などどのようなものでも良く特に規定しない。   In addition, when the distance between the heating device and the acceleration cooling device is long, the normal off-line Temper may be applied in terms of characteristics. Any heating method such as induction heating or atmosphere heating may be used as long as the rate of temperature increase is achieved.

また、再加熱は、所望の強度・靭性が得られる範囲内で、目標温度での等温保持を行っても行わなくても良く、さらに再加熱後には炉冷/放冷/急冷のいずれを選択しても良く特に規定しない。   In addition, reheating may or may not be performed at the target temperature within the range where desired strength and toughness can be obtained, and after reheating, any of furnace cooling / cooling / quenching is selected. But it is not particularly specified.

表1に示す組成を有する鋼片から表2に示す条件により板厚12〜100mmの鋼板を製造した。得られた鋼板について、下記に示す手順にて、組織観察、引張強度、靭性、耐遅れ破壊性、疲労き裂伝ぱ速度を調査した。   Steel plates having a thickness of 12 to 100 mm were manufactured from the steel pieces having the compositions shown in Table 1 under the conditions shown in Table 2. The obtained steel sheet was examined for structure observation, tensile strength, toughness, delayed fracture resistance, and fatigue crack propagation rate by the following procedure.

組織観察は板厚/4位置から採取した試料を研磨した。ミクロ組織観察に関しては2%ナイタール腐食液によりエッチングした面について、光学顕微鏡観察により組織、フェライトの面積分率ならびにフェライトの粒径を測定した。   For the tissue observation, a sample taken from the position of plate thickness / 4 was polished. Regarding the microstructure observation, the structure, the area fraction of ferrite, and the particle size of ferrite were measured by optical microscope observation on the surface etched with 2% nital etchant.

フェライト面積分率、フェライト粒径に関しては1試料について5視野を測定し、その平均値とした。また、同一の採取位置から電解研磨により薄膜を採取し、TEM観察によりラス内における最大の炭化物、窒化物、あるいは炭窒化物のサイズを測定した。   Regarding the ferrite area fraction and the ferrite particle size, five visual fields were measured for one sample, and the average values were obtained. In addition, a thin film was sampled by electrolytic polishing from the same sampling position, and the largest carbide, nitride, or carbonitride size in the lath was measured by TEM observation.

強度は圧延方向に直角方向に採取したJIS Z2201 1A号の全厚試験片(板厚50mm以上は板厚/4位置でのJIS Z2201 4号丸棒試験片)により評価した。   The strength was evaluated by a full thickness test piece of JIS Z2201 1A collected in a direction perpendicular to the rolling direction (JIS Z2201 No. 4 round bar test piece at a thickness of 4 mm for a plate thickness of 50 mm or more).

靭性は板厚/4位置(板厚25mm未満は板厚/2位置)で圧延方向と平行方向に採取したJIS Z 2202のVノッチシャルピー衝撃試験片により評価した。   Toughness was evaluated by a V-notch Charpy impact test piece of JIS Z 2202 taken in a direction parallel to the rolling direction at a plate thickness / 4 position (plate thickness / 2 position is less than 25 mm).

耐遅れ破壊性は、鋼板を3.5%NaCl水溶液中に浸漬させるとともに定荷重を負荷する片持ち梁型の定荷重遅れ破壊試験において評価し、破断に至る最大の応力拡大係数(遅れ破壊発生応力拡大係数)を評価した。なお、この時の破断時間測定は1000時間を最長とした。   Delayed fracture resistance is evaluated by a cantilever type constant load delayed fracture test in which a steel sheet is immersed in a 3.5% NaCl aqueous solution and a constant load is applied. Stress intensity factor). In addition, the measurement of the rupture time at this time was 1000 hours as the longest.

疲労き裂伝ぱ速度は圧延直角方向にき裂が進展するL−T方向に全厚(板厚25mmを超えるものは25mmtまで両面減厚)のCT試験を採取し、応力比0.1、周波数20Hz、室温大気中でASTM E647に準拠して行った。   Fatigue crack propagation rate was obtained by taking a CT test of the full thickness in the LT direction where cracks propagate in the direction perpendicular to the rolling direction (thickness exceeding 25 mm is reduced on both sides to 25 mmt), stress ratio 0.1, frequency The test was carried out in accordance with ASTM E647 in the atmosphere of 20 Hz and room temperature.

本発明において、強度はTSで700MPa以上、靭性はシャルピー衝撃試験での延性/脆性破面遷移温度が−30℃以下、耐遅れ破壊性は遅れ破壊発生応力拡大係数が980N/mm3/2以上であること、疲労き裂伝播特性は大気中において△K=15MPa√mのときの疲労き裂伝ぱ速度が2.0×10−8m/cycle以下であった場合を合格とした。 In the present invention, the strength is 700 MPa or more in TS, the toughness is a ductile / brittle fracture surface transition temperature in a Charpy impact test of −30 ° C. or less, the delayed fracture resistance is a delayed fracture occurrence stress intensity factor of 980 N / mm 3/2 or more. As for the fatigue crack propagation characteristics, the case where the fatigue crack propagation rate when ΔK = 15 MPa√m in the atmosphere was 2.0 × 10 −8 m / cycle or less was regarded as acceptable.

表3に試験結果を示す。本発明に規定の成分および製造法を採用し、本発明に規定のミクロ組織を有するNo.1〜No.8の鋼板は、優れた耐疲労き裂伝ぱ特性を有しており、しかも高い強度、靭性、耐遅れ破壊性をも兼ね備えていることがわかる。   Table 3 shows the test results. The components and production methods defined in the present invention were adopted, and No. 1 having the microstructure defined in the present invention. 1-No. It can be seen that the steel plate No. 8 has excellent fatigue crack propagation characteristics, and also has high strength, toughness, and delayed fracture resistance.

これに対し、P、Sが本発明範囲を超えるNo.9の鋼板は本発明に規定の製造方法と組織としても靭性が劣る。また、Ar点以上の累積圧下率が本発明下限に満たないNo.10の鋼板、Ar〜Ar−200℃の温度範囲で4℃/s未満の放冷や徐冷工程を3s以上設けなかったNo.11、No.12の鋼板は硬質相中にフェライトが導入されておらず、耐疲労き裂伝ぱ特性に劣り、かつ、No.10の鋼板では靭性と耐遅れ破壊性、No.11の鋼板では耐遅れ破壊性も本発明鋼と比較して劣位である。 On the other hand, P and S are No. exceeding the scope of the present invention. Steel plate No. 9 is inferior in toughness as a manufacturing method and structure prescribed in the present invention. Moreover, No. 3 in which the cumulative rolling reduction of Ar 3 points or more does not reach the lower limit of the present invention. Steel 10 were not provided Ar 3 to Ar 3 -200 at a temperature in the range of ° C. 4 ° C. / s of less than cool and the slow cooling step or 3s No. 11, no. No. 12 steel has no ferrite introduced into the hard phase, is inferior in fatigue crack resistance, and No. 10 steel sheet has toughness and delayed fracture resistance, 11 steel plate is also inferior in delayed fracture resistance compared to the steel of the present invention.

水冷を行わなかったNo.13の鋼板はフェライト・パーライト組織となり、かつ、フェライトの面積率と粒径が本発明の上限値を超えている。このため、低強度であり、靭性と耐疲労き裂伝播特性に劣る。Ms点以下まで冷却後に再加熱を行わなかったNo.14の鋼板はラス内に炭化物が生成されておらず、低靭性であり、耐遅れ破壊性に劣る。   No. No water cooling. Steel plate No. 13 has a ferrite-pearlite structure, and the area ratio and grain size of ferrite exceed the upper limit of the present invention. For this reason, it is low strength and inferior toughness and fatigue crack propagation characteristics. No reheating was performed after cooling to the Ms point or lower. No. 14 steel plate has no carbides in the lath, has low toughness, and is inferior in delayed fracture resistance.

再加熱時の温度がAc点を超えるNo.15の鋼板はラス内に炭化物がなく(島状マルテンサイトが生成)、低靭性である。再加熱時の昇温速度が本発明の下限を下回るNo.16の鋼板は、ラス内炭化物のサイズが本発明の上限を超えるため、低強度、低靭性であり、耐疲労き裂伝播特性も劣る。 No. in which reheating temperature exceeds Ac 1 point. No. 15 steel plate has no carbide in the lath (island martensite is generated) and has low toughness. No. in which the temperature rising rate during reheating is lower than the lower limit of the present invention. Since the size of carbide in the lath exceeds the upper limit of the present invention, the steel plate No. 16 has low strength and low toughness and inferior fatigue crack propagation characteristics.

Figure 2007197776
Figure 2007197776

Figure 2007197776
Figure 2007197776

Figure 2007197776
Figure 2007197776

ベイナイト、マルテンサイト、あるいはそれらの混合組織中に粒径と面積率を変化させてフェライトを導入した場合の耐遅れ破壊性と耐疲労き裂伝播特性との関係を示す図。The figure which shows the relationship between the delayed fracture resistance and fatigue crack propagation characteristics at the time of introduce | transducing a ferrite by changing a particle size and an area ratio in a bainite, a martensite, or those mixed structures. (a)は圧延後に水冷、放冷、水冷、再加熱を行った場合の板厚平均温度と時間の関係を示す図、(b)はその各工程により得られるミクロ組織の模式図。(A) is a figure which shows the relationship between sheet thickness average temperature at the time of performing water cooling, natural cooling, water cooling, and reheating after rolling, and (b) is a schematic diagram of the microstructure obtained by each process.

Claims (3)

質量%で、C:0.05〜0.35%、Si:0.01〜0.50%、Mn:0.5〜2.0%、P:0.05%以下、S:0.02%以下、残部Fe及び不可避的不純物の鋼で、金属組織が、最大サイズが0.5μm以下のラス内炭化物もしくは窒化物または炭窒化物が存在する、ベイナイトもしくはマルテンサイトまたはそれらの混合組織で、前記金属組織中には粒径:50μm以下4μm以上のフェライトが面積分率:3%以上20%以下で存在することを特徴とする耐遅れ破壊特性と耐疲労き裂伝ぱ特性に優れた引張強度700MPa以上の高強度鋼材。   In mass%, C: 0.05 to 0.35%, Si: 0.01 to 0.50%, Mn: 0.5 to 2.0%, P: 0.05% or less, S: 0.02 % Or less, the balance Fe and inevitable impurities steel, the metallographic structure is bainite or martensite or a mixed structure in which lath carbide or nitride or carbonitride having a maximum size of 0.5 μm or less exists, Tensile strength with excellent delayed fracture resistance and fatigue crack resistance, characterized in that ferrite having a particle size of 50 μm or less and 4 μm or more is present in the metal structure at an area fraction of 3% or more and 20% or less. High-strength steel material of 700 MPa or more. 更に、質量%でCu:1.0%以下、Ni:2.0%以下、Cr:1.0%以下、Mo:1.0%以下、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下、B:0.005%以下の一種または二種以上を含有する請求項1に記載の耐遅れ破壊特性と耐疲労き裂伝ぱ特性に優れた引張強度700MPa以上の高強度鋼材。   Furthermore, Cu: 1.0% or less, Ni: 2.0% or less, Cr: 1.0% or less, Mo: 1.0% or less, Nb: 0.1% or less, V: 0.1 in mass% %, Ti: 0.1% or less, B: 0.005% or less, or a tensile strength of 700 MPa excellent in delayed fracture resistance and fatigue crack propagation resistance according to claim 1 More high strength steel. 請求項1または2に記載の成分の鋼を、1000℃以上、1300℃以下に加熱し、Ar点以上で累積圧下率50%以上の圧延を行い、Ar点からAr−200℃の温度範囲を冷却速度4℃/s未満で3s以上、200s以下に冷却後、Ms点以下までを5℃/s以上の冷却速度で直接焼入れし、その後1℃/s以上の昇温速度でAc点未満まで再加熱することを特徴とする耐遅れ破壊特性と耐疲労き裂伝ぱ特性に優れた引張強度700MPa以上の高強度鋼材の製造方法。 The steel of the component according to claim 1 or 2 is heated to 1000 ° C. or more and 1300 ° C. or less, rolled at an Ar 3 point or more and a cumulative reduction ratio of 50% or more, and from Ar 3 point to Ar 3 -200 ° C. After cooling the temperature range to 3 s or more and 200 s or less at a cooling rate of less than 4 ° C./s, directly quench at a cooling rate of 5 ° C./s or less to the Ms point or less, and then increase the temperature at a rate of 1 ° C./s or more. A method for producing a high-strength steel material having a tensile strength of 700 MPa or more and excellent in delayed fracture resistance and fatigue crack propagation characteristics, characterized by reheating to less than one point.
JP2006018328A 2006-01-27 2006-01-27 High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor Pending JP2007197776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006018328A JP2007197776A (en) 2006-01-27 2006-01-27 High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006018328A JP2007197776A (en) 2006-01-27 2006-01-27 High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2007197776A true JP2007197776A (en) 2007-08-09

Family

ID=38452660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018328A Pending JP2007197776A (en) 2006-01-27 2006-01-27 High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2007197776A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160729A (en) * 2013-04-08 2013-06-19 内蒙古包钢钢联股份有限公司 Medium-carbon microalloyed steel for engineering machinery caterpillar chain piece and production process thereof
CN103966520A (en) * 2014-05-08 2014-08-06 攀钢集团攀枝花钢铁研究院有限公司 Bainite steel rail containing micro carbide and production method thereof
CN104087852A (en) * 2014-07-25 2014-10-08 攀钢集团攀枝花钢铁研究院有限公司 High-strength bainite steel rail and production method thereof
EP2816128A4 (en) * 2012-02-15 2015-05-20 Jfe Bars & Shapes Corp Soft-nitriding steel and soft-nitrided component using steel as material
JP2015206113A (en) * 2014-04-09 2015-11-19 Jfeスチール株式会社 High strength steel material excellent in fatigue crack propagation property and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2816128A4 (en) * 2012-02-15 2015-05-20 Jfe Bars & Shapes Corp Soft-nitriding steel and soft-nitrided component using steel as material
CN103160729A (en) * 2013-04-08 2013-06-19 内蒙古包钢钢联股份有限公司 Medium-carbon microalloyed steel for engineering machinery caterpillar chain piece and production process thereof
JP2015206113A (en) * 2014-04-09 2015-11-19 Jfeスチール株式会社 High strength steel material excellent in fatigue crack propagation property and manufacturing method therefor
CN103966520A (en) * 2014-05-08 2014-08-06 攀钢集团攀枝花钢铁研究院有限公司 Bainite steel rail containing micro carbide and production method thereof
CN104087852A (en) * 2014-07-25 2014-10-08 攀钢集团攀枝花钢铁研究院有限公司 High-strength bainite steel rail and production method thereof

Similar Documents

Publication Publication Date Title
JP5418047B2 (en) High strength steel plate and manufacturing method thereof
JP5070744B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance
JP5365112B2 (en) High strength steel plate and manufacturing method thereof
JP4926406B2 (en) Steel sheet with excellent fatigue crack propagation characteristics
JP5928405B2 (en) Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same
JP6048436B2 (en) Tempered high tensile steel plate and method for producing the same
JP4670371B2 (en) Manufacturing method of steel with excellent strength uniformity in the thickness direction and fatigue crack propagation characteristics
JP2009242816A (en) High strength steel sheet and producing method therefor
JP6036616B2 (en) Steel sheet for welded structure excellent in fatigue crack resistance and method for producing the same
JP4770235B2 (en) Manufacturing method of steel with excellent ductility and fatigue crack propagation characteristics
JP4687122B2 (en) Manufacturing method of steel with excellent strength uniformity in the thickness direction and fatigue crack propagation characteristics
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2007039795A (en) Method for producing high strength steel having excellent fatigue crack propagation resistance and toughness
JP4857583B2 (en) Steel manufacturing method with excellent fatigue crack propagation characteristics with small strength difference in the thickness direction
JP4645461B2 (en) High-strength steel material excellent in ductile crack initiation characteristics and fatigue crack propagation characteristics and method for producing the same
JP2009041073A (en) High-tensile strength steel weld joint having excellent resistivity to generation of ductile crack from weld zone, and method for producing the same
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP2007197776A (en) High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor
JP6036615B2 (en) Steel sheet for welded structure having excellent weldability and fatigue crack propagation resistance and method for producing the same
JP5369585B2 (en) Thick steel material with excellent fatigue crack resistance and its manufacturing method
KR101791324B1 (en) High-strength steel material having excellent fatigue properties, and method for producing same
JP4645462B2 (en) A high-strength steel material excellent in fatigue crack propagation characteristics with low strength dependence and a method for producing the same.
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
KR20230041060A (en) Thick steel plate and its manufacturing method
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate