JP5070744B2 - Manufacturing method of steel material with excellent fatigue crack propagation resistance - Google Patents

Manufacturing method of steel material with excellent fatigue crack propagation resistance Download PDF

Info

Publication number
JP5070744B2
JP5070744B2 JP2006163207A JP2006163207A JP5070744B2 JP 5070744 B2 JP5070744 B2 JP 5070744B2 JP 2006163207 A JP2006163207 A JP 2006163207A JP 2006163207 A JP2006163207 A JP 2006163207A JP 5070744 B2 JP5070744 B2 JP 5070744B2
Authority
JP
Japan
Prior art keywords
less
cooling
steel
reheating
crack propagation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006163207A
Other languages
Japanese (ja)
Other versions
JP2007332402A (en
Inventor
照輝 貞末
聡 伊木
高宏 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006163207A priority Critical patent/JP5070744B2/en
Publication of JP2007332402A publication Critical patent/JP2007332402A/en
Application granted granted Critical
Publication of JP5070744B2 publication Critical patent/JP5070744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、耐疲労亀裂伝播特性に優れる鋼材およびその製造方法に関する。より詳しくは、船舶、海洋構造物、橋梁、建設機械、建築物、タンクなど各種溶接構造物に用いられ、疲労亀裂伝播速度を遅延する鋼材およびその製造方法に関する。     The present invention relates to a steel material excellent in fatigue crack propagation resistance and a method for producing the same. More specifically, the present invention relates to a steel material that is used in various welded structures such as ships, offshore structures, bridges, construction machines, buildings, and tanks, and delays the fatigue crack propagation rate, and a method for manufacturing the same.

近年、船舶、海洋構造物、橋梁、建設機械、建築物、タンクなどの構造物においては設計の合理化や鋼材重量の低減、薄肉化や溶接の省力化を目的として高強度鋼材が適用される事例が多くなってきている。加えて高強度鋼材においては、靭性や溶接性に優れていること、構造安全性を確保するため、耐疲労特性に優れていることが要求される。   In recent years, high-strength steel materials have been applied to structures such as ships, offshore structures, bridges, construction machinery, buildings, and tanks for the purpose of streamlining design, reducing the weight of steel materials, and reducing the thickness and labor of welding. There are many more. In addition, high-strength steel materials are required to have excellent toughness and weldability and to have excellent fatigue resistance in order to ensure structural safety.

溶接構造物において、疲労破壊は、溶接止端部から疲労亀裂が発生し、鋼材中を伝播して破壊するケースが多い。これは、溶接止端部がその形状から応力集中部となりやすいこと、加えて溶接後に引張の残留応力が生じることなどに起因するとされている。   In a welded structure, fatigue failure often occurs when a fatigue crack occurs from the weld toe and propagates through the steel material and breaks. This is attributed to the fact that the weld toe portion tends to be a stress concentration portion due to its shape, and in addition, tensile residual stress is generated after welding.

このため、溶接止端部からの亀裂発生を抑制させる手段として、付加溶接を施すなどして形状を改善し応力集中を低減させる技術、ショットピーニングなどで圧縮の残留応力を導入する技術などが広く知られている。   For this reason, as a means to suppress the occurrence of cracks at the weld toe, there are wide-ranging technologies such as applying additional welding to improve the shape and reducing stress concentration, and introducing compressive residual stress by shot peening. Are known.

しかし、多数存在する溶接止端部にこのような処理を工業的規模で施すことは不可能に近く、コストの面でも現実的とは言いがたい。そこで、仮に溶接止端部などから疲労亀裂が発生したとしてもその後の鋼材中の伝播速度を遅延させることで疲労寿命を延命させることが重要であり、鋼材自身の耐疲労亀裂伝播特性を向上させることが産業界から強く要望されている。   However, it is almost impossible to apply such treatment to a large number of weld toes on an industrial scale, and it is not practical in terms of cost. Therefore, even if fatigue cracks occur from the weld toe, etc., it is important to extend the fatigue life by delaying the propagation speed in the subsequent steel material, and improve the fatigue crack propagation characteristics of the steel material itself There is a strong demand from industry.

高強度鋼材の耐疲労亀裂伝播特性の向上手法としては組織を軟質相(主にフェライト)と硬質相(主にパーライト、ベイナイト、マルテンサイト)との複合組織とすることが従来から知られており、それらの存在形態を細かく規定することがなされている。   As a method for improving fatigue crack propagation characteristics of high-strength steel materials, it has been conventionally known that the structure is a composite structure of a soft phase (mainly ferrite) and a hard phase (mainly pearlite, bainite, martensite). These forms of existence have been defined in detail.

例えば、特許文献1には組織がフェライト、パーライト、ベイナイトの一種または二種以上で主に構成され、さらに平均存在間隔20μm以下でかつ平均扁平比5以上の島状マルテンサイトが0.5〜5%の割合で存在する耐疲労亀裂伝播特性に優れた鋼板ならびにその製造方法が記載されている。   For example, Patent Document 1 has 0.5 to 5 island-shaped martensite whose structure is mainly composed of one or more of ferrite, pearlite, and bainite, and that has an average existence interval of 20 μm or less and an average aspect ratio of 5 or more. %, A steel plate excellent in fatigue crack propagation characteristics and a method for producing the same are described.

特許文献2には硬質相の素地中に軟質相を分散させ、かつ、硬質相と軟質相との硬度差が150Hv以上、軟質部の平均粒径(硬質部の平均間隔)が50μm以下である、疲労亀裂進展を抑制する鋼板が記載されている。   In Patent Document 2, the soft phase is dispersed in the base material of the hard phase, the hardness difference between the hard phase and the soft phase is 150 Hv or more, and the average particle size of the soft portion (average interval between the hard portions) is 50 μm or less. A steel sheet that suppresses fatigue crack growth is described.

特許文献3にはビッカース硬度:200以上500以下の硬質層組織中にビッカース硬度:100以下のフェライト組織を面積率で10〜50%存在させる耐疲労亀裂進展特性に優れた鋼材とその製造方法が記載されている。
特開平6−271985号公報 特許第2962134号公報 特開2000−129392号公報
Patent Document 3 discloses a steel material excellent in fatigue crack growth resistance and a manufacturing method thereof in which a ferrite structure having a Vickers hardness of 100 or less is present in an area ratio of 10 to 50% in a hard layer structure having a Vickers hardness of 200 or more and 500 or less. Are listed.
JP-A-6-271985 Japanese Patent No. 2962134 JP 2000-129392 A

しかしながら、特許文献1記載の鋼板の場合、島状マルテンサイトを多量に含むため、これらを起点として脆性破壊が生じる可能性が高くなることが懸念される。   However, in the case of the steel sheet described in Patent Document 1, since a large amount of island martensite is contained, there is a concern that the possibility of brittle fracture starting from these becomes high.

また、島状マルテンサイトの平均偏平比が5以上であるために、亀裂が板厚方向に伝播する場合には良好な耐疲労亀裂伝播特性を示すと考えられるが、亀裂が板幅方向や板長さ方向に進展する場合には耐疲労亀裂伝播特性が劣化することが懸念される。   In addition, since the average aspect ratio of the island martensite is 5 or more, it is considered that when the crack propagates in the plate thickness direction, it exhibits good fatigue crack propagation characteristics. When it progresses in the length direction, there is a concern that the fatigue crack propagation characteristics deteriorate.

また、特許文献1〜3に共通する問題点として、疲労亀裂伝播特性を支配する亀裂先端での塑性域の大きさに鋼材の降伏強度が影響を及ぼすにも拘わらず、ミクロ組織を降伏強度に応じて制御させることについての考察はなされておらず、その他の耐疲労亀裂伝播用鋼に関する従来技術においても同様である。   In addition, as a problem common to Patent Documents 1 to 3, the microstructure is made to yield strength in spite of the influence of the yield strength of the steel material on the size of the plastic zone at the crack tip that governs fatigue crack propagation characteristics. No consideration is given to the control in accordance with this, and the same applies to other prior arts related to other fatigue crack propagation steels.

本発明はこのような従来技術の課題を解決し、亀裂伝播特性の異方性を小さくし、かつ、降伏強度レベルによって組織を適切に造りこむことにより、安定的に、耐疲労亀裂伝播特性に優れた鋼材を提供すること、また、そのような鋼材の製造方法を提供することを目的とする。   The present invention solves such problems of the prior art, reduces the anisotropy of the crack propagation characteristics, and appropriately builds the structure according to the yield strength level, thereby stably providing the fatigue crack resistance characteristics. An object is to provide an excellent steel material and to provide a method for producing such a steel material.

本発明者らは、上記課題を解決すべく実験と検討を重ねた。その結果、ミクロ組織をフェライトからなる軟質相と、ベイナイトもしくはマルテンサイトあるいはそれらの混合組織からなる硬質相との二相で主に構成し、硬質相の形態を適切な寸法、形状の範囲内とし、更に、硬質相の平均間隔を降伏強度により変化させることで、広い降伏強度範囲で耐疲労亀裂伝播特性が向上することを見出した。また、このような鋼材は疲労き裂伝播特性の異方性が小さくなることも見出した。   The present inventors have repeated experiments and studies to solve the above problems. As a result, the microstructure is mainly composed of two phases, a soft phase composed of ferrite and a hard phase composed of bainite or martensite or a mixed structure thereof, and the form of the hard phase is within the range of appropriate dimensions and shapes. Furthermore, it has been found that the fatigue crack propagation characteristics are improved in a wide yield strength range by changing the average interval between the hard phases according to the yield strength. It has also been found that such a steel material has a small anisotropy in fatigue crack propagation characteristics.

また、そのようなミクロ組織を有する鋼材を加熱、圧延、加速冷却及び熱処理を組み合
わせることで製造できることを見出した。本発明は得られた知見を基に更に検討を加えて
なされたもので、
1.質量%で、C:0.02〜0.25%、Si:0.01〜0.50%、Mn:0.5〜2.0%、P:0.05%以下、S:0.02%以下、残部Fe及び不可避的不純物からなる鋼を、加熱し、熱間圧延後、加速冷却して、または前記鋼を加熱し、熱間圧延ー冷却後、二相域再加熱後焼入れにより、ミクロ組織フェライトからなる軟質相とベイナイトもしくはマルテンサイトあるいはそれらの混合組織からなる硬質相の二相で構成させ、前記硬質相は硬質相の平均アスペクト比:3以下、硬質相の短軸方向の平均長さ:5μm以上100μm以下とし、前記加速冷却後または前記二相域再加熱後焼入れ後のσ YS が(1)式を満足する場合は焼戻しを行わず、前記加速冷却後または前記二相域再加熱後焼入れ後のσ YS が(1)式を満足しない場合は、(1)式を満足するようにAc1点以下の温度で焼戻しを行うことを特徴とする耐疲労亀裂伝播特性に優れた鋼材の製造方法。
1000000/σYS <L<10000000/σYS (1)
但し、L[μm]:硬質相の平均間隔、σYS:(加速冷却または二相域再加熱)ー焼戻
し後(加速冷却まま、二相域再加熱ままも含む)の鋼材の降伏応力[MPa]
2.更に、質量%でCu:1.0%以下、Ni:2.0%以下、Cr:1.0%以下、Mo:1.0%以下、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下、B:0.005%以下の一種または二種以上を含有することを特徴とする1に記載の耐疲労亀裂伝播特性に優れた鋼材の製造方法
3.前記加速冷却する際の鋼の加熱が900℃以上1300℃以下で、熱間圧延がAr 点以上で累積圧下率50%以上の圧延で、前記加速冷却がAr 点からAr −200℃の温度範囲において冷却速度4℃/s未満で5s以上冷却してフェライトを生成させた後、冷却速度5℃/s以上で500℃以下までの加速冷却で、
前記二相域再加熱後焼入れする際の鋼の加熱が900℃以上1300℃以下で、熱間圧延の終了がAr 点以上で、前記二相域再加熱後焼入れがAc 点以上〜Ac 点未満に再加熱した後に、冷却速度5℃/s以上で500℃以下までの焼入れであることを特徴とする1または2記載の耐疲労亀裂伝播特性に優れた鋼材の製造方法。
Moreover, it discovered that the steel materials which have such a microstructure could be manufactured by combining heating, rolling, accelerated cooling, and heat treatment. The present invention was made by further study based on the obtained knowledge,
1. In mass%, C: 0.02 to 0.25%, Si: 0.01 to 0.50%, Mn: 0.5 to 2.0%, P: 0.05% or less, S: 0.02 % or less, the steel and the balance Fe and unavoidable impurities ing, heated, after hot rolling, and accelerated cooling or heating the steel, after hot rolling over cooled by reheating after quenching dual phase region , the microstructure was composed of two phases of the hard phase made of a soft phase and a bainite or martensite or their mixed structure consisting of ferrite, the hard phase average aspect ratio of the hard phase: 3 or less, a minor axis direction of the hard phase When the σ YS after the accelerated cooling or after quenching after the two-phase region reheating satisfies the formula (1), tempering is not performed, and after the accelerated cooling or the two Σ YS after quenching after reheating the phase region satisfies the formula (1) When there is not, the manufacturing method of the steel material excellent in the fatigue crack propagation characteristics characterized by performing tempering at the temperature below Ac1 point so that Formula (1) may be satisfied .
1000000 / σ YS 2 <L <10000000 / σ YS 2 (1)
However, L [μm]: average interval between hard phases, σ YS : (accelerated cooling or reheating in two phases)-yield stress of steel after tempering (including accelerated cooling and reheating in two phases) [MPa ]
2. Furthermore, Cu: 1.0% or less, Ni: 2.0% or less, Cr: 1.0% or less, Mo: 1.0% or less, Nb: 0.1% or less, V: 0.1 in mass% % Or less, Ti: 0.1% or less, B: 0.005% or less, one or two or more kinds , The manufacturing method of the steel material excellent in the fatigue crack propagation characteristics of 1 characterized by the above-mentioned.
3. The steel is heated at 900 ° C. to 1300 ° C. in the accelerated cooling , the hot rolling is rolled at an Ar 3 point or higher and the cumulative rolling reduction is 50% or more, and the accelerated cooling is performed from the Ar 3 point to Ar 3 -200 ° C. In the temperature range, after cooling at a cooling rate of less than 4 ° C / s for 5s or more to produce ferrite, accelerated cooling to a cooling rate of 5 ° C / s or more to 500 ° C or less,
The heating of the steel when quenching after reheating after the two-phase region is 900 ° C. or more and 1300 ° C. or less, the end of hot rolling is Ar 3 points or more, and the quenching after reheating the two-phase region is Ac 1 point or more to Ac 3. The method for producing a steel material having excellent fatigue crack propagation characteristics according to 1 or 2, wherein the steel material is quenched at a cooling rate of 5 ° C./s to 500 ° C. after reheating to less than 3 points .

本発明によれば、特殊な工程や多量の合金元素の添加を必要とせず、かつ広い降伏強度レベルで疲労き裂伝播特性を高めることができ、船舶、橋梁、建築物に代表されるような溶接構造物の主要部材に対し疲労破壊の安全裕度を拡大できる鋼材が提供可能である。   According to the present invention, it is not necessary to add a special process or a large amount of alloying elements, and it is possible to enhance fatigue crack propagation characteristics at a wide yield strength level, as represented by ships, bridges, and buildings. It is possible to provide a steel material that can increase the safety margin of fatigue failure for the main members of the welded structure.

また、圧延、加速冷却、熱処理を組み合わせた一連の工程により高効率で製造できるために、上記のような諸特性に優れる鋼材を短納期で、安価に提供することが出来、産業上極めて有用である。   In addition, because it can be manufactured with high efficiency by a series of processes combining rolling, accelerated cooling, and heat treatment, it is possible to provide steel materials with excellent properties as described above at a short delivery time and at a low cost, which is extremely useful industrially. is there.

本発明では、鋼材の化学成分、ミクロ組織を規定する。
[化学成分]以下の説明で、%で示す単位は全て質量%である。
C:0.02〜0.25%
Cは強度確保のために0.02%以上の添加が必要である。しかし、0.25%以上の添加は溶接性を阻害する。従って0.02%以上0.25%以下に限定する。好ましくは0.02%以上0.20%以下とする。
In the present invention, the chemical composition and microstructure of the steel material are defined.
[Chemical component] In the following description, all units shown in% are% by mass.
C: 0.02-0.25%
C needs to be added in an amount of 0.02% or more to ensure strength. However, addition of 0.25% or more inhibits weldability. Therefore, it is limited to 0.02% or more and 0.25% or less. Preferably, the content is 0.02% or more and 0.20% or less.

Si:0.01〜0.50%
Siは脱酸剤として有効であるとともに高強度化のためには0.01%以上必要であるが、0.50%を超えて添加すると溶接性、靭性を劣化させる。従って0.01%以上0.50%以下に限定する。好ましくは0.05%以上0.40%以下とする。
Si: 0.01 to 0.50%
Si is effective as a deoxidizer and needs to be 0.01% or more for increasing the strength, but if added over 0.50%, weldability and toughness are deteriorated. Therefore, it is limited to 0.01% or more and 0.50% or less. Preferably, the content is 0.05% or more and 0.40% or less.

Mn:0.5〜2.0%
Mnは安価に焼入れ性の増加を通じて強度を高めるだけでなく靭性向上の観点から0.5%以上必要であるが、2.0%を超えると溶接性の劣化に繋がる。従って0.5%以上2.0%以下に限定する。好ましくは0.5%以上1.8%以下とする。
Mn: 0.5 to 2.0%
Mn is required not only to increase the strength at a low cost by increasing the hardenability but also 0.5% or more from the viewpoint of improving toughness, but if it exceeds 2.0%, it leads to deterioration of weldability. Therefore, it is limited to 0.5% or more and 2.0% or less. Preferably, the content is 0.5% or more and 1.8% or less.

P:0.05%以下
Pは鋼の靭性を劣化させるため、その含有量はできるだけ低いことが望ましい。このため上限を0.05%とした。好ましくは0.03%以下とする。
P: 0.05% or less Since P deteriorates the toughness of steel, its content is desirably as low as possible. For this reason, the upper limit was made 0.05%. Preferably it is 0.03% or less.

S:0.02%以下
Sは多量に添加すると鋼の靭性を低下させるため極力低減するのが望ましい。このため、上限を0.02%とした。好ましくは0.01%以下とする。
S: 0.02% or less It is desirable to reduce S as much as possible because, if added in a large amount, S lowers the toughness of the steel. For this reason, the upper limit was made 0.02%. Preferably, the content is 0.01% or less.

以上を本発明の基本成分とするが、強度、靭性や溶接性等の調整、耐候性の付与などを目的としてCu,Ni,Cr,Mo,Nb,V,Ti,Bの一種または二種以上を添加しても良い。   Although the above is a basic component of the present invention, one or more of Cu, Ni, Cr, Mo, Nb, V, Ti, B for the purpose of adjusting strength, toughness, weldability, etc., and imparting weather resistance, etc. May be added.

Cu:1.0%以下
Cuは固溶による強度上昇効果をもたらすとともに耐候性を向上させる。しかし、その含有量が1.0%を超えると溶接性を損なうとともに鋼材製造時に疵が生じやすくなる。従って、添加する場合はその上限を1.0%とする。好ましくは0.5%以下とする。
Cu: 1.0% or less Cu brings about an effect of increasing strength by solid solution and improves weather resistance. However, if the content exceeds 1.0%, weldability is impaired and flaws are likely to occur during the manufacture of the steel material. Therefore, when added, the upper limit is made 1.0%. Preferably it is 0.5% or less.

Ni:2.0%以下
Niは低温靭性を向上させるとともに耐候性やCuを添加した場合に生ずる熱間脆性の改善に有効である。しかし、その添加量が2.0%を超えると溶接性を阻害し、又コスト上昇に繋がる。従って、添加する場合はその上限を2.0%とする。好ましくは1.0%以下とする。
Ni: 2.0% or less Ni is effective in improving low temperature toughness and improving weather resistance and hot brittleness that occurs when Cu is added. However, if the added amount exceeds 2.0%, weldability is hindered and the cost increases. Therefore, when added, the upper limit is made 2.0%. Preferably it is 1.0% or less.

Cr:1.0%以下
Crは耐候性や強度を向上させる。しかし、その含有量が1.0%を超えると溶接性および靭性を損なう。従って、添加する場合は上限を1.0%とする。好ましくは0.5%以下とする。
Cr: 1.0% or less Cr improves weather resistance and strength. However, if its content exceeds 1.0%, weldability and toughness are impaired. Therefore, when added, the upper limit is made 1.0%. Preferably it is 0.5% or less.

Mo:1.0%以下
Moは強度を上昇させる。しかし、その含有量が1.0%を超えると溶接性および靭性の劣化が生じる。従って、添加する場合はその上限を1.0%とする。好ましくは0.5%以下とする。
Mo: 1.0% or less Mo increases the strength. However, if its content exceeds 1.0%, weldability and toughness deteriorate. Therefore, when added, the upper limit is made 1.0%. Preferably it is 0.5% or less.

Nb:0.1%以下
Nbは圧延時のオーステナイト再結晶を抑制し細粒化を図ると同時に、析出を通じた高強度化をもたらす働きを有する。しかし、0.1%以上添加すると靭性が劣化する。従って添加する場合は0.1%以下に限定する。好ましくは0.05%以下とする。
Nb: 0.1% or less Nb has the function of suppressing austenite recrystallization during rolling to achieve finer grains, and at the same time, increasing the strength through precipitation. However, when 0.1% or more is added, toughness deteriorates. Therefore, when adding, it is limited to 0.1% or less. Preferably it is 0.05% or less.

V:0.1%以下
VもNbと同様、析出により高強度化をもたらす働きを有する。しかし、0.1%以上の添加は溶接性および靭性の低下を招く。従って添加する場合は0.1%以下に限定する。好ましくは0.07%以下とする。
V: 0.1% or less V, like Nb, has a function of increasing strength by precipitation. However, addition of 0.1% or more causes a decrease in weldability and toughness. Therefore, when adding, it is limited to 0.1% or less. Preferably it is 0.07% or less.

Ti:0.1%以下
Tiは強度上昇と溶接部靭性を改善する。しかし、その含有量が0.1%を超えるとコスト上昇を招く傾向にある。従って添加する場合は上限を0.1%とする。好ましくは0.05%以下とする。
Ti: 0.1% or less Ti improves strength and weld zone toughness. However, when the content exceeds 0.1%, the cost tends to increase. Therefore, when added, the upper limit is made 0.1%. Preferably it is 0.05% or less.

B:0.005%以下
Bは焼入れ性を高め強度上昇に寄与する。しかし、0.005%を超えて添加すると溶接性を害する。従って上限を0.005%とする。好ましくは0.003%以下とする。
[ミクロ組織]
本発明に係る、疲労亀裂伝播速度を遅延させる鋼材はフェライトからなる軟質相とベイナイトもしくはマルテンサイトあるいはそれらの混合組織からなる硬質相の二相で主に構成されており、以下の特徴を有する。
(1)硬質相の平均アスペクト比:3以下
(2)硬質相の短軸方向の平均長さ:5μm以上100μm以下
(3)硬質相の平均間隔:L[μm]
1000000/σYS <L<10000000/σYS
但し、σYS:鋼材の降伏応力[MPa]
以下、上記ミクロ組織の限定理由について説明する。
B: 0.005% or less B contributes to an increase in hardenability and strength. However, if added over 0.005%, the weldability is impaired. Therefore, the upper limit is made 0.005%. Preferably it is 0.003% or less.
[Microstructure]
The steel material for delaying the fatigue crack propagation speed according to the present invention is mainly composed of a soft phase composed of ferrite and a hard phase composed of bainite, martensite, or a mixed structure thereof, and has the following characteristics.
(1) Average aspect ratio of hard phase: 3 or less (2) Average length of hard phase in short axis direction: 5 μm or more and 100 μm or less (3) Average interval between hard phases: L [μm]
1000000 / σ YS 2 <L <10000000 / σ YS 2
However, σ YS : Yield stress of steel [MPa]
Hereinafter, the reasons for limiting the microstructure will be described.

フェライトからなる軟質相とベイナイトもしくはマルテンサイトあるいはそれらの混合組織からなる硬質相
軟質相と硬質相とで構成される複合組織とすることにより耐疲労亀裂伝播特性は向上する。また、軟質相をフェライト、硬質相をベイナイトもしくはマルテンサイトあるいはそれらの混合組織とすることで硬度差を設けることができ、フェライト・パーライト鋼よりも耐疲労亀裂伝播特性は向上する。
Fatigue crack propagation resistance is improved by using a composite phase composed of a soft phase composed of ferrite and a hard phase composed of bainite or martensite or a mixed structure thereof. In addition, a hardness difference can be provided by using ferrite as the soft phase and bainite or martensite as the hard phase or a mixed structure thereof, and the fatigue crack propagation characteristics are improved as compared with ferrite and pearlite steel.

硬質相の平均アスペクト比:3以下
硬質相のアスペクト比(圧延方向の長さ/板厚方向の長さ)を3以下とすることで、疲労亀裂伝播方向(板厚、板幅、板長)によらず安定的に、速度が遅い良好な疲労亀裂伝播速度が得られる。アスペクト比が3を超えると、伝播速度に異方性が生じる。より好ましくはアスペクト比を2以下とする。
Average aspect ratio of hard phase: 3 or less By setting the aspect ratio of the hard phase (length in the rolling direction / length in the plate thickness direction) to 3 or less, the fatigue crack propagation direction (plate thickness, plate width, plate length) Regardless of this, it is possible to obtain a good fatigue crack propagation rate that is stable and slow. When the aspect ratio exceeds 3, anisotropy occurs in the propagation speed. More preferably, the aspect ratio is 2 or less.

硬質相の短軸方向の平均長さ:5μm以上100μm以下
軟質相から硬質相へ亀裂が突入する際、硬質相の短軸方向の平均長さが5μm以上とすることで疲労亀裂伝播速度が局所的に遅延するようになる。このような効果は硬質相のサイズ上昇とともに顕著となるが、その長さが100μmを超える場合、靭性が劣化する。より好ましくは5μm以上75μm以下とする。
Average length in the minor axis direction of the hard phase: 5 μm or more and 100 μm or less When cracks penetrate from the soft phase to the hard phase, the fatigue crack propagation rate is locally increased by setting the average length in the minor axis direction of the hard phase to 5 μm or more. Will be delayed. Such an effect becomes conspicuous with an increase in the size of the hard phase, but when its length exceeds 100 μm, the toughness deteriorates. More preferably, it is 5 μm or more and 75 μm or less.

硬質相の平均間隔:L[μm]
1000000/σYS <L<10000000/σYS
但し、σYS:鋼材の降伏応力[MPa]
硬質相の平均間隔を降伏強度を媒介として設定することで、耐疲労亀裂伝播特性は広い降伏強度範囲で安定的に向上する。
Average interval between hard phases: L [μm]
1000000 / σ YS 2 <L <10000000 / σ YS 2
However, σ YS : Yield stress of steel [MPa]
By setting the average interval between the hard phases with the yield strength as a medium, the fatigue crack propagation characteristics are stably improved in a wide range of yield strength.

本発明の規定を満足する種々の成分範囲にて、種々の方法でフェライトとベイナイトもしくはマルテンサイトあるいはそれらの混合組織とし、降伏強度を変化させた鋼板(σYS:約300MPa〜600MPa)について、板幅方向の疲労亀裂伝播試験(ΔK=20MPa√m)を行った。結果を図1に示す。 With respect to steel sheets (σ YS : about 300 MPa to 600 MPa) in which the yield strength is changed in various component ranges satisfying the provisions of the present invention, and ferrite and bainite or martensite or mixed structures thereof are changed by various methods. A fatigue crack propagation test in the width direction (ΔK = 20 MPa√m) was performed. The results are shown in FIG.

図1より、硬質相の平均間隔:Lを本規定の範囲内とすることで疲労亀裂伝播速度が安定的に低くなっていることがわかる。このように広い降伏強度範囲で疲労亀裂伝播速度が低下する原因としては、硬質相の平均間隔を本発明規定の範囲内とすることで、降伏強度により塑性域寸法が変化してもその寸法内に硬質相と軟質相の界面を内在させることができ、結果として疲労亀裂が当該界面で局所的に遅延することによるものと考えられる。   From FIG. 1, it can be seen that the fatigue crack propagation rate is stably reduced by setting the average interval of the hard phase: L within the range of this regulation. The reason why the fatigue crack propagation rate decreases in such a wide yield strength range is that the average interval between the hard phases is within the range specified in the present invention, so that even if the plastic zone size changes due to the yield strength, it remains within that size. It is considered that the interface between the hard phase and the soft phase can be inherent in the structure, and as a result, fatigue cracks are locally delayed at the interface.

尚、硬質相の平均間隔は、本規定値(1000000/σYS )を下回る場合、疲労亀裂が硬質相を主として伝播するために、耐疲労亀裂伝播特性は低下する。 The average distance between the hard phase, if below the prescribed value (1000000 / σ YS 2), for fatigue cracks mainly propagate hard phase, fatigue crack propagation characteristics is reduced.

一方で、本規定値(10000000/σYS )を上回る場合には塑性域内に硬質相と軟質相の界面が安定的に内在しなくなり、耐疲労亀裂伝播特性は低下する。より好ましい硬質相の平均間隔は2000000/σYS <L<8000000/σYS である。但し、σYS:鋼材の降伏応力[MPa]とする。
[製造条件]
本発明に係る鋼材は上記成分を有する鋼を、900℃以上、1300℃以下に加熱し、Ar点以上で累積圧下率50%以上の圧延を行い、Ar点からAr−200℃の温度範囲において冷却速度4℃/s未満で5s以上冷却する工程を設けた後、冷却速度5℃/s以上で500℃以下までの加速冷却まま、もしくはその後Ac1点未満で焼戻しを行うことで得られる。尚、上記温度は鋼材表面温度とし、冷却速度は鋼材の厚さ方向での平均値とする。
On the other hand, when it exceeds the specified value (10000000 / σ YS 2 ), the interface between the hard phase and the soft phase is not stably present in the plastic region, and the fatigue crack propagation resistance is deteriorated. A more preferable average interval between the hard phases is 2000000 / σ YS 2 <L <8000000 / σ YS 2 . However, σ YS is the yield stress [MPa] of the steel material.
[Production conditions]
Steel material according to the present invention is a steel having the above components, 900 ° C. or higher, 1300 ° C. by heating below performs cumulative rolling reduction of 50% or more rolling at Ar 3 point or more, from the Ar 3 point of Ar 3 -200 ° C. By providing a step of cooling for 5 seconds or more at a cooling rate of less than 4 ° C / s in the temperature range, and then tempering at a cooling rate of 5 ° C / s or more to 500 ° C or less, or thereafter tempering at less than Ac 1 point. can get. The temperature is the steel surface temperature, and the cooling rate is the average value in the thickness direction of the steel.

加熱温度:900℃以上1300℃以下
加熱温度を900℃未満にするとその後の圧延温度が確保できない。また、1300℃を超える温度にすると鋼の結晶粒が粗大化して、その後の冷却過程時にフェライトが生成せずに、耐疲労亀裂伝播特性が劣化し、かつ、靭性の確保が困難となる。
Heating temperature: 900 ° C. or more and 1300 ° C. or less If the heating temperature is less than 900 ° C., the subsequent rolling temperature cannot be secured. Further, when the temperature exceeds 1300 ° C., the crystal grains of the steel become coarse, ferrite is not generated during the subsequent cooling process, fatigue crack propagation resistance deteriorates, and it becomes difficult to ensure toughness.

Ar点以上で累積圧下率50%以上
Ar点以上で累積圧下率50%以上の圧延を行うことにより旧オーステナイト粒を微細化させて靭性を向上させるとともに、この後に続く冷却過程でのフェライト生成を促進する。Ar点未満の圧延では、硬質相が伸張し、耐疲労亀裂伝播特性に異方性が生じる。一方で、累積圧下率が50%未満では旧オーステナイト粒の微細化が達成されない。
Rolling at an Ar 3 point or higher and a cumulative reduction ratio of 50% or higher at an Ar 3 point or higher to refine the prior austenite grains to improve toughness, and ferrite in the subsequent cooling process Promote generation. In rolling less than Ar 3 points, the hard phase is stretched and anisotropy occurs in the fatigue crack propagation resistance. On the other hand, if the cumulative rolling reduction is less than 50%, refinement of prior austenite grains cannot be achieved.

Ar点からAr−200℃の温度範囲において冷却速度4℃/s未満で5s以上冷却
フェライトを鋼材中に均一に生成させる手段として、Ar点〜Ar−200℃の温度範囲で冷却速度4℃/s未満となる放冷または徐冷の工程を5s以上設ける。温度がAr点を超える場合あるいはAr点−200℃を下回る場合にはフェライトが生成しない。
From Ar 3 point in the temperature range of Ar 3 -200 ° C. The 5s or cooling ferrite is less than the cooling rate of 4 ° C. / s as a means for uniformly generated in the steel material, the cooling in the temperature range of Ar 3 point to Ar 3 -200 ° C. A cooling or slow cooling step at a rate of less than 4 ° C./s is provided for 5 s or more. Temperature does not produce ferrite, if below or when Ar 3 point -200 ° C. greater than 3 points Ar.

当該温度範囲においても冷却速度が4℃/s未満であり、かつその冷却時間が5s以上でないと耐疲労亀裂伝播特性を向上させるためのフェライトを鋼材中に均一に分布できない。   Even in this temperature range, if the cooling rate is less than 4 ° C./s and the cooling time is not longer than 5 s, ferrite for improving fatigue crack propagation characteristics cannot be uniformly distributed in the steel.

フェライト生成時間である上記放冷または徐冷の工程は5s以上あればよく、特にその上限を設けるものではないが、パーライトの生成や能率の低下を防ぐ目的から500s以下とすることが望ましい。   The above-mentioned cooling or gradual cooling step, which is the ferrite formation time, may be 5 s or longer, and there is no particular upper limit, but it is preferably 500 s or shorter for the purpose of preventing the formation of pearlite and reducing efficiency.

また、上記放冷または徐冷の工程は、Ar点からAr−200℃の温度範囲内であれば、開始時期は規定せず、Ar点に達した後、直ちに行ってその後水冷したり(徐冷(放冷)→水冷)、水冷後、当該水冷を一端中止して、行い、再度水冷を行っても良い(水冷→徐冷(放冷)→水冷)。また、複数回に分割しても良い。 In addition, the above-described cooling or gradual cooling step is not defined if it is within the temperature range from Ar 3 point to Ar 3 -200 ° C., and is performed immediately after reaching Ar 3 point, followed by water cooling. (Slow cooling (relative cooling) → water cooling), after water cooling, the water cooling may be stopped once and then performed, and then water cooling may be performed again (water cooling → slow cooling (cooling) → water cooling). Moreover, you may divide | segment into multiple times.

Ar点〜Ar−200℃の間で徐冷、放冷期間を設けることでフェライトを導入し、その後、水冷を行って残部をベイナイト、マルテンサイト、あるいはそれらの混合組織とする。 Ferrite is introduced by providing a slow cooling and cooling period between Ar 3 points to Ar 3 -200 ° C., and then water cooling is performed to make the balance bainite, martensite, or a mixed structure thereof.

放冷または徐冷後、5℃/s以上の冷却速度で500℃以下まで加速冷却
上記放冷または徐冷後、残りの未変態オーステナイトをベイナイト、マルテンサイト、あるいはそれらの混合組織とする。冷却速度が5℃/s未満あるいは停止温度が500℃以上ではフェライトやパ―ライトが生成する。
After cooling or slow cooling, accelerated cooling to 500 ° C. or less at a cooling rate of 5 ° C./s or more After the above cooling or slow cooling, the remaining untransformed austenite is made bainite, martensite, or a mixed structure thereof. When the cooling rate is less than 5 ° C./s or the stop temperature is 500 ° C. or more, ferrite and pearlite are generated.

尚、Ar点から水冷を開始し、当該水冷を一端中止し、上記放冷または徐冷を行う場合の水冷も5℃/s以上の冷却速度とする。 In addition, water cooling is started from Ar 3 point, the water cooling is stopped once, and the water cooling in the case of performing the above-described cooling or gradual cooling is also set to a cooling rate of 5 ° C./s or more.

本発明においては硬質相間隔を降伏強度により規定している。従って、得られたミクロ組織に対し、降伏強度が加速冷却ままで前記規定を満足しない場合には、焼戻しにより降伏強度が前記規定を満足するように調整する。但し、焼戻し温度がAc点を超えると島状マルテンサイトが生成し、靭性が劣化する。 In the present invention, the hard phase interval is defined by the yield strength. Therefore, when the yield strength of the obtained microstructure does not satisfy the above-mentioned definition while being accelerated and cooled, the yield strength is adjusted by tempering so as to satisfy the above-mentioned specification. However, when the tempering temperature exceeds 1 Ac, island-shaped martensite is generated and toughness deteriorates.

また本発明に係る鋼材は任意の条件で加熱、圧延、冷却し、所望する板厚とした鋼材を、Ac点以上〜Ac点未満に再加熱した後に、冷却速度5℃/s以上で500℃以下まで焼入れすることもしくはその後Ac点未満で焼戻しによっても得られる。 In addition, the steel material according to the present invention is heated, rolled and cooled under arbitrary conditions, and after reheating the steel material having a desired thickness to Ac 1 point or more to less than Ac 3 point, at a cooling rate of 5 ° C./s or more. It can also be obtained by quenching to 500 ° C. or lower, or afterwards tempering at less than 1 Ac.

この場合、焼入れ前組織の種類は特に問わないが、硬質相のアスペクト比や短軸方向の長さ、硬質相の平均間隔は前組織の影響を受けるため、加熱温度は900℃以上1300℃以下、圧延はAr点以上で終了することが望ましい。 In this case, the type of the structure before quenching is not particularly limited, but since the aspect ratio of the hard phase, the length in the minor axis direction, and the average interval between the hard phases are affected by the previous structure, the heating temperature is 900 ° C. or higher and 1300 ° C. or lower. The rolling is preferably completed at Ar 3 points or more.

再加熱焼入れ温度がAc点超えの場合にはその後の焼入れによりフェライトが得られない。再加熱焼入れ温度がAc点未満の場合には、前組織がフェライトを含まない場合は再結晶フェライトが得られず、パーライトを含む場合は逆変態せずに焼入れ後にパーライトが残存する。 When the reheating quenching temperature exceeds Ac 3 points, ferrite cannot be obtained by subsequent quenching. When the reheating quenching temperature is less than Ac 1 point, recrystallized ferrite cannot be obtained when the previous structure does not contain ferrite, and when pearlite is contained, pearlite remains after quenching without reverse transformation.

また、再加熱焼入れ時の冷却速度が5℃/s未満の場合、あるいは停止温度が500℃超えの場合には、パーライトが生成する。   Further, when the cooling rate during reheating and quenching is less than 5 ° C./s, or when the stop temperature is over 500 ° C., pearlite is generated.

得られたミクロ組織に対し、降伏強度が焼入れままで本規定を満足しない場合には、焼戻しにより降伏強度を本規定値となるよう調整する。但し、焼戻し温度がAc点を超えると島状マルテンサイトが生成し、靭性が劣化する。 When the yield strength of the obtained microstructure is as-quenched and does not satisfy this rule, the yield strength is adjusted by tempering so that it becomes the specified value. However, when the tempering temperature exceeds 1 Ac, island-shaped martensite is generated and toughness deteriorates.

なお、Ar点、Ac点、Ac点は例えば、Ar(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo、Ac=854−180C+44Si−14Mn−17.8Ni−1.7Cr、Ac(℃)=723−14Mn+22Si−14.4Ni+23.3Cr(但し、元素記号は鋼材中の各元素の質量%での含有量を表す)で表される関係式により鋼材の成分組成に基づいて導くことが出来る。 Ar 3 point, Ac 3 point, and Ac 1 point are, for example, Ar 3 (° C.) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo, Ac 3 = 854-180C + 44Si-14Mn-17.8Ni-1. .7Cr, Ac 1 (° C.) = 723-14Mn + 22Si-14.4Ni + 23.3Cr (where the element symbol represents the content in mass% of each element in the steel) Can be guided by.

尚、本発明を実製造に適用する場合、予め、サンプル材を用いて、加速冷却後のミクロ組織と降伏強度を求めて、加速冷却ままとするか焼戻しを行うかを決定し、更に焼戻しを行う場合は、所望の降伏強度が得られるように焼戻し条件を求めておき、得られた条件で製品製造を行う。二相域再加熱処理の場合も同様とする。加速冷却まま、二相域再加熱ままで所望の降伏強度が得られている場合は、焼戻しは実施しない。   In addition, when applying the present invention to actual production, the sample structure is used to obtain the microstructure and yield strength after accelerated cooling, determine whether to continue accelerated cooling or temper, and further temper. When performing, tempering conditions are calculated | required so that desired yield strength may be obtained, and product manufacture will be performed on the obtained conditions. The same applies to the two-phase reheating treatment. Tempering is not performed when the desired yield strength is obtained with accelerated cooling and with reheating in the two-phase region.

表1に示す組成を有する鋼を溶製して得られた鋼片を表2,3に示す条件に基づいて板厚12〜100mmの鋼板を製造した。得られた鋼板について、下記に示す手順にて、組織観察、引張強度、靭性、疲労亀裂伝播速度を調査した。尚、表3は再加熱熱処理による製造条件を示す。   Based on the conditions shown in Tables 2 and 3, steel plates having a thickness of 12 to 100 mm were produced from steel pieces obtained by melting steel having the composition shown in Table 1. The obtained steel sheet was examined for structure observation, tensile strength, toughness, and fatigue crack propagation rate by the following procedure. Table 3 shows manufacturing conditions by reheating heat treatment.

組織観察は全厚のサンプルにて、圧延方向に平行な面を2%ナイタール腐食液によりエッチングし、板厚/4位置を光学顕微鏡(倍率×400)により10視野で実施した。これら組織観察から、鋼材の構成組織、硬質相平均アスペクト比、硬質相短軸平均長さ、硬質相平均間隔を求めた。硬質相平均間隔は最近接する硬質相端と硬質相端との間隔を求め、これらを平均することで定めた。     The structure observation was carried out with a sample of full thickness, the surface parallel to the rolling direction was etched with 2% nital etchant, and the plate thickness / 4 position was observed in 10 fields with an optical microscope (magnification × 400). From these structure observations, the structural structure of the steel material, the hard phase average aspect ratio, the hard phase minor axis average length, and the hard phase average interval were determined. The average interval between the hard phases was determined by obtaining the interval between the closest hard phase ends and the hard phase ends and averaging them.

強度は圧延方向に直角方向に採取したJIS Z2201 1A号の全厚試験片(板厚50mm以上は板厚/4位置でのJIS Z2201 4号丸棒試験片)により評価した。   The strength was evaluated by a full thickness test piece of JIS Z2201 1A collected in a direction perpendicular to the rolling direction (JIS Z2201 No. 4 round bar test piece at a thickness of 4 mm for a plate thickness of 50 mm or more).

靭性は板厚/4位置(板厚25mm未満は板厚/2位置)で圧延方向と平行方向に採取したJIS Z 2202のVノッチシャルピー衝撃試験片により評価した。   Toughness was evaluated by a V-notch Charpy impact test piece of JIS Z 2202 taken in a direction parallel to the rolling direction at a plate thickness / 4 position (plate thickness / 2 position is less than 25 mm).

疲労亀裂伝播速度は亀裂が圧延直角方向および圧延方向に進展する全厚(板厚25mmを超えるものは25mmtまで片面減厚)のCT試験を採取し、応力比0.1、周波数20Hz、室温大気中でASTM E647に準拠して行った。   Fatigue crack propagation rate is taken by CT test of full thickness (thickness of one side is reduced to 25mmt when the thickness exceeds 25mm) where the crack propagates in the direction perpendicular to the rolling direction and the rolling direction, stress ratio 0.1, frequency 20Hz, room temperature atmosphere In accordance with ASTM E647.

また、板厚方向への進展速度は全厚(板厚25mmを超えるものは25mmtまで片面減厚)の三点曲げ試験片により、応力比0.1、周波数10Hz、室温大気中にて実施した。   In addition, the rate of progress in the plate thickness direction was measured in a three-point bending test piece of full thickness (thickness on one side was reduced to 25 mm when the plate thickness exceeded 25 mm), stress ratio 0.1, frequency 10 Hz, and room temperature atmosphere. .

本発明においては溶接構造物において溶接止端部などから発生した亀裂が鋼材中を進展するときの伝播速度を低減することが目的であるため、このような状況を想定し、疲労亀裂伝播試験は応力拡大係数範囲(ΔK)が10〜30MPa√mの範囲にて調査した。   The purpose of the present invention is to reduce the propagation speed when a crack generated from a weld toe in a welded structure propagates through a steel material. The stress intensity factor range (ΔK) was investigated in the range of 10 to 30 MPa√m.

実施例において、強度はTSで400MPa以上、靭性はシャルピー衝撃試験での延性/脆性破面遷移温度が−30℃以下、疲労亀裂伝播速度は亀裂進展方向によらず△K=20MPa√mのとき5.0×10−8以下であった場合を合格(本発明範囲内)とした。 In the examples, the strength is 400 MPa or more in TS, the toughness is a ductile / brittle fracture surface transition temperature in a Charpy impact test of −30 ° C. or less, and the fatigue crack propagation rate is ΔK = 20 MPa√m regardless of the crack propagation direction. The case where it was 5.0 × 10 −8 or less was regarded as acceptable (within the scope of the present invention).

表4に試験結果を示す。本発明に規定の成分および製造法を採用し、本発明に規定のミクロ組織を有するNo.1〜No.8、No.18〜20の鋼板は、伝播方向によらず疲労亀裂伝播速度が低く、高い強度と靭性を兼ね備えていることが認められる。   Table 4 shows the test results. The components and production methods defined in the present invention were adopted, and No. 1 having the microstructure defined in the present invention. 1-No. 8, no. It is recognized that the 18-20 steel plates have a low fatigue crack propagation rate regardless of the propagation direction, and have both high strength and toughness.

これに対し、P、Sが本発明範囲を超えるNo.9の鋼板は本発明に規定の製造方法と組織が得られても低い靭性を示している。また、Cが本発値を下回るNo.10の鋼板は本発明に規定の製造方法としてもフェライトの生成が多いために、硬質相の短軸方向の平均長さが本規定値を下回り、硬質相の平均間隔が本規定値を上回る。このため、耐疲労亀裂伝播性能に劣っている。   On the other hand, P and S are No. exceeding the scope of the present invention. Steel plate No. 9 shows low toughness even when the production method and structure specified in the present invention are obtained. In addition, no. Since the steel plate No. 10 produces a large amount of ferrite as a manufacturing method specified in the present invention, the average length in the minor axis direction of the hard phase is less than the specified value, and the average interval between the hard phases exceeds the specified value. For this reason, it is inferior to fatigue crack propagation performance.

加熱温度が本発明上限を上回り、Ar点以上の累積圧下率が本発明の下限に満たないNo.11の鋼板はフェライトが生成されず、しかも、硬質相の短軸方向の平均長さが本規定値を超える。このため、靭性が低く、耐疲労亀裂伝播特性に劣る。 The heating temperature is higher than the upper limit of the present invention, and the cumulative rolling reduction at 3 or more points of Ar is less than the lower limit of the present invention. No. 11 steel plate does not produce ferrite, and the average length in the minor axis direction of the hard phase exceeds this specified value. For this reason, toughness is low and fatigue crack propagation characteristics are inferior.

Ar〜Ar−200℃の温度範囲で4℃/s未満の放冷や徐冷工程を5s以上設けなかったNo.12の鋼板は、フェライトの生成が十分でなく、結果として、硬質相の平均間隔が本規定値を下回る。このため、耐疲労亀裂伝播特性に劣っている。 No. in which a cooling and gradual cooling step of less than 4 ° C./s in the temperature range of Ar 3 to Ar 3 −200 ° C. was not provided for 5 s or more. No. 12 steel plate does not generate enough ferrite, and as a result, the average interval between the hard phases is less than the specified value. For this reason, it is inferior to the fatigue crack propagation characteristics.

Ar点を下回る温度で圧延したNo.13の鋼板は硬質相が伸張しており、アスペクト比が本規定値を上回り、短軸方向の平均長さが本規定値を下回る。このため、板厚方向に比べて圧延方向、圧延直角方向の耐疲労亀裂伝播特性が劣る。 No. 3 rolled at a temperature below 3 points. In the steel plate No. 13, the hard phase is extended, the aspect ratio exceeds the specified value, and the average length in the minor axis direction is lower than the specified value. For this reason, the fatigue crack propagation characteristics in the rolling direction and the direction perpendicular to the rolling direction are inferior to those in the plate thickness direction.

Ar〜Ar−200℃の温度範囲で放冷や徐冷工程を設けなかったNo.14の鋼板はフェライトが導入されておらず、耐疲労亀裂伝播特性が劣る。 No. which was not provided with a cooling or slow cooling step in a temperature range of Ar 3 to Ar 3 -200 ° C. No. 14 steel plate is not introduced with ferrite and has poor fatigue crack propagation characteristics.

5℃/s以上の加速冷却を行わなかったNo.15の鋼板、加速冷却速度が5℃/sを下回り、停止温度も500℃を上回るNo.16の鋼板は組織がフェライト/パーライトとなり、強度、靭性が低く、また、耐疲労亀裂伝播特性に劣る。   No. No accelerated cooling at 5 ° C./s or higher. No. 15 steel plate, the accelerated cooling rate is less than 5 ° C / s, and the stop temperature is over 500 ° C Steel No. 16 has a structure of ferrite / pearlite, has low strength and toughness, and is inferior in fatigue crack propagation resistance.

焼戻し温度がAc1点を上回るNo.17の鋼板は組織中に島状マルテンサイト(MA)が生成されたため、靭性が低い。再加熱温度がAc点を上回るNo.21の鋼板、Ac点を下回るNo.22の鋼板は組織中にフェライトが導入されておらず、耐疲労亀裂伝播特性に劣る。 No. with tempering temperature exceeding Ac1 point. Steel sheet No. 17 has low toughness because island martensite (MA) was generated in the structure. The reheating temperature is higher than Ac 3 point. 21 steel plate, less than the Ac 1 point No. No. 22 steel is inferior in fatigue crack propagation characteristics because no ferrite is introduced into the structure.

再加熱焼入れ時の冷却速度と停止温度が本規定を上回るNo.23の鋼板は組織中にパーライトが混入し、結果として、硬質相(ベイナイト)の平均間隔が本規定値を上回る。このため、低強度であり、耐疲労亀裂伝播特性に劣る。   No. in which the cooling rate and stop temperature during reheating and quenching exceed this regulation In the steel plate No. 23, pearlite is mixed in the structure, and as a result, the average interval between the hard phases (bainite) exceeds the specified value. For this reason, it is low strength and inferior in fatigue crack propagation characteristics.

Figure 0005070744
Figure 0005070744

Figure 0005070744
Figure 0005070744

Figure 0005070744
Figure 0005070744

Figure 0005070744
Figure 0005070744

硬質相平均間隔、降伏強度と疲労亀裂伝播速度の関係を示す図。The figure which shows the relationship of a hard phase average space | interval, yield strength, and fatigue crack propagation velocity.

Claims (3)

質量%で、C:0.02〜0.25%、Si:0.01〜0.50%、Mn:0.5〜2.0%、P:0.05%以下、S:0.02%以下、残部Fe及び不可避的不純物からなる鋼を、加熱し、熱間圧延後、加速冷却して、または熱間圧延ー冷却後、二相域再加熱後焼入れにより、ミクロ組織フェライトからなる軟質相とベイナイトもしくはマルテンサイトあるいはそれらの混合組織からなる硬質相の二相で構成させ、前記硬質相は硬質相の平均アスペクト比:3以下、硬質相の短軸方向の平均長さ:5μm以上100μm以下とし、前記加速冷却後または前記二相域再加熱後焼入れ後のσ YS が(1)式を満足する場合は焼戻しを行わず、前記加速冷却後または前記二相域再加熱後焼入れ後のσ YS が(1)式を満足しない場合は、(1)式を満足するようにAc1点以下の温度で焼戻しを行うことを特徴とする耐疲労亀裂伝播特性に優れた鋼材の製造方法。
1000000/σYS <L<10000000/σYS (1)
但し、L[μm]:硬質相の平均間隔、σYS:(加速冷却または二相域再加熱)ー焼戻
し後(加速冷却まま、二相域再加熱ままも含む)の鋼材の降伏応力[MPa]
In mass%, C: 0.02 to 0.25%, Si: 0.01 to 0.50%, Mn: 0.5 to 2.0%, P: 0.05% or less, S: 0.02 % or less, the steel and the balance Fe and unavoidable impurities ing, heating, after hot rolling, and accelerated cooling, or after hot rolling over cooled by reheating after hardening two-phase region, the microstructure of ferrite comprising a soft phase and bainite or martensite or is composed of two phases of the hard phase consisting of mixed structure, the hard phase average aspect ratio of the hard phase: 3 or less, the hard phase short axial average length: 5 [mu] m When the σ YS after the accelerated cooling or after quenching after reheating in the two-phase region satisfies the formula (1), tempering is not performed, and quenching is performed after the accelerated cooling or after reheating in the two-phase region. If the later σ YS does not satisfy the formula (1), (1 A method for producing a steel material having excellent fatigue crack propagation resistance, characterized by performing tempering at a temperature of Ac1 point or less so as to satisfy the formula (1) .
1000000 / σ YS 2 <L <10000000 / σ YS 2 (1)
However, L [μm]: average interval between hard phases, σ YS : (accelerated cooling or reheating in two phases)-yield stress of steel after tempering (including accelerated cooling and reheating in two phases) [MPa ]
更に、質量%でCu:1.0%以下、Ni:2.0%以下、Cr:1.0%以下、Mo:1.0%以下、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下、B:0.005%以下の一種または二種以上を含有することを特徴とする請求項1に記載の耐疲労亀裂伝播特性に優れた鋼材の製造方法Furthermore, Cu: 1.0% or less, Ni: 2.0% or less, Cr: 1.0% or less, Mo: 1.0% or less, Nb: 0.1% or less, V: 0.1 in mass% % Or less, Ti: 0.1% or less, B: 0.005% or less, or a combination of two or more kinds, The method for producing a steel material having excellent fatigue crack propagation resistance according to claim 1 . 前記加速冷却する際の鋼の加熱が900℃以上1300℃以下で、熱間圧延がAr 点以上で累積圧下率50%以上の圧延で、前記加速冷却がAr 点からAr −200℃の温度範囲において冷却速度4℃/s未満で5s以上冷却してフェライトを生成させた後、冷却速度5℃/s以上で500℃以下までの加速冷却で、
前記二相域再加熱後焼入れする際の鋼の加熱が900℃以上1300℃以下で、熱間圧延の終了がAr 点以上で、前記二相域再加熱後焼入れがAc 点以上〜Ac 点未満に再加熱した後に、冷却速度5℃/s以上で500℃以下までの焼入れであることを特徴とする請求項1または2記載の耐疲労亀裂伝播特性に優れた鋼材の製造方法。
The steel is heated at 900 ° C. to 1300 ° C. in the accelerated cooling , the hot rolling is rolled at an Ar 3 point or higher and the cumulative rolling reduction is 50% or more, and the accelerated cooling is performed from the Ar 3 point to Ar 3 -200 ° C. In the temperature range, after cooling at a cooling rate of less than 4 ° C / s for 5s or more to produce ferrite, accelerated cooling to a cooling rate of 5 ° C / s or more to 500 ° C or less,
The heating of the steel when quenching after reheating after the two-phase region is 900 ° C. or more and 1300 ° C. or less, the end of hot rolling is Ar 3 points or more, and the quenching after reheating the two-phase region is Ac 1 point or more to Ac The method for producing a steel material having excellent fatigue crack propagation characteristics according to claim 1 or 2, wherein the steel material is quenched at a cooling rate of 5 ° C / s to 500 ° C after reheating to less than 3 points.
JP2006163207A 2006-06-13 2006-06-13 Manufacturing method of steel material with excellent fatigue crack propagation resistance Active JP5070744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006163207A JP5070744B2 (en) 2006-06-13 2006-06-13 Manufacturing method of steel material with excellent fatigue crack propagation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006163207A JP5070744B2 (en) 2006-06-13 2006-06-13 Manufacturing method of steel material with excellent fatigue crack propagation resistance

Publications (2)

Publication Number Publication Date
JP2007332402A JP2007332402A (en) 2007-12-27
JP5070744B2 true JP5070744B2 (en) 2012-11-14

Family

ID=38932154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006163207A Active JP5070744B2 (en) 2006-06-13 2006-06-13 Manufacturing method of steel material with excellent fatigue crack propagation resistance

Country Status (1)

Country Link
JP (1) JP5070744B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4976905B2 (en) * 2007-04-09 2012-07-18 株式会社神戸製鋼所 Thick steel plate with excellent HAZ toughness and base metal toughness
CN102337456A (en) * 2011-09-30 2012-02-01 内蒙古包钢钢联股份有限公司 Thick bridge steel plate and rolling method thereof
JP6036616B2 (en) * 2012-10-10 2016-11-30 Jfeスチール株式会社 Steel sheet for welded structure excellent in fatigue crack resistance and method for producing the same
JP6036615B2 (en) * 2012-10-10 2016-11-30 Jfeスチール株式会社 Steel sheet for welded structure having excellent weldability and fatigue crack propagation resistance and method for producing the same
JP6064897B2 (en) * 2013-12-27 2017-01-25 Jfeスチール株式会社 High-strength steel material with excellent fatigue crack propagation resistance and its determination method
JP6064896B2 (en) * 2013-12-27 2017-01-25 Jfeスチール株式会社 Steel material with excellent fatigue crack propagation characteristics, method for producing the same, and method for determining steel materials with excellent fatigue crack propagation characteristics
JP6400517B2 (en) * 2014-04-09 2018-10-03 Jfeスチール株式会社 High strength steel material with excellent fatigue crack propagation resistance and method for producing the same
JP7034861B2 (en) * 2018-08-03 2022-03-14 株式会社神戸製鋼所 Steel sheets and pipes for circular steel pipes with high strength, low yield ratio and excellent weldability, and their manufacturing methods
JP7070814B1 (en) 2020-09-14 2022-05-18 Jfeスチール株式会社 Thick steel plate and its manufacturing method
JP7462853B2 (en) 2021-09-17 2024-04-05 南京鋼鉄股▲ふん▼有限公司 Micro-molybdenum weathering steel plate for bridges and its manufacturing method
CN116288051A (en) * 2022-03-21 2023-06-23 广西柳州钢铁集团有限公司 Weather-proof Q235NHB middle plate produced by double-stand rolling mill
CN116987954B (en) * 2023-08-09 2024-02-06 常熟市龙腾特种钢有限公司 High-strength and high-toughness flat-bulb steel and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3860763B2 (en) * 2002-02-19 2006-12-20 新日本製鐵株式会社 Thick steel plate with excellent fatigue strength and its manufacturing method
JP2005298877A (en) * 2004-04-08 2005-10-27 Nippon Steel Corp Steel plate with excellent fatigue crack propagation characteristic, and its manufacturing method

Also Published As

Publication number Publication date
JP2007332402A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP5070744B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance
JP5418047B2 (en) High strength steel plate and manufacturing method thereof
JP4926406B2 (en) Steel sheet with excellent fatigue crack propagation characteristics
JP5509923B2 (en) Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding
JP2011179030A (en) Super-high strength cold-rolled steel sheet having excellent bending properties
JP4670371B2 (en) Manufacturing method of steel with excellent strength uniformity in the thickness direction and fatigue crack propagation characteristics
JP4676871B2 (en) Steel sheet with excellent fatigue crack growth control
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP2007177318A (en) High-tension steel sheet and method for producing the same
JP4687122B2 (en) Manufacturing method of steel with excellent strength uniformity in the thickness direction and fatigue crack propagation characteristics
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2014095146A (en) Steel sheet for welded structure excellent in fatigue crack propagation resistance and its manufacturing method
JP2007039795A (en) Method for producing high strength steel having excellent fatigue crack propagation resistance and toughness
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2005314811A (en) Method for producing steel having excellent ductility and fatigue crack propagation resistance
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP5082475B2 (en) Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance
JP4857583B2 (en) Steel manufacturing method with excellent fatigue crack propagation characteristics with small strength difference in the thickness direction
JP4645461B2 (en) High-strength steel material excellent in ductile crack initiation characteristics and fatigue crack propagation characteristics and method for producing the same
JP6036615B2 (en) Steel sheet for welded structure having excellent weldability and fatigue crack propagation resistance and method for producing the same
JP2007197776A (en) High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor
KR101791324B1 (en) High-strength steel material having excellent fatigue properties, and method for producing same
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP4645462B2 (en) A high-strength steel material excellent in fatigue crack propagation characteristics with low strength dependence and a method for producing the same.
JP5360185B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Ref document number: 5070744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250