JP4645462B2 - A high-strength steel material excellent in fatigue crack propagation characteristics with low strength dependence and a method for producing the same. - Google Patents

A high-strength steel material excellent in fatigue crack propagation characteristics with low strength dependence and a method for producing the same. Download PDF

Info

Publication number
JP4645462B2
JP4645462B2 JP2006018330A JP2006018330A JP4645462B2 JP 4645462 B2 JP4645462 B2 JP 4645462B2 JP 2006018330 A JP2006018330 A JP 2006018330A JP 2006018330 A JP2006018330 A JP 2006018330A JP 4645462 B2 JP4645462 B2 JP 4645462B2
Authority
JP
Japan
Prior art keywords
less
strength
crack propagation
fatigue crack
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006018330A
Other languages
Japanese (ja)
Other versions
JP2007197778A (en
Inventor
照輝 貞末
聡 伊木
高宏 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006018330A priority Critical patent/JP4645462B2/en
Publication of JP2007197778A publication Critical patent/JP2007197778A/en
Application granted granted Critical
Publication of JP4645462B2 publication Critical patent/JP4645462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、耐疲労亀裂伝播特性に優れ引張強度400MPa以上の高強度鋼材およびその製造方法に関し、特に、鋼材で強度(降伏比)が変動した場合でも、耐疲労亀裂伝播特性への影響が少なく、船舶、海洋構造物、橋梁、建設機械、建築物、タンクなど各種溶接構造物に好適な、繰返し荷重を受けた場合に良好な耐疲労亀裂伝播特性を示す鋼材ならびにその製造方法に関する。   The present invention relates to a high-strength steel material having excellent fatigue crack propagation resistance and a tensile strength of 400 MPa or more, and a method for producing the same. In particular, even when the strength (yield ratio) fluctuates in the steel material, there is little influence on the fatigue crack propagation characteristics. The present invention relates to a steel material exhibiting good fatigue crack propagation characteristics when subjected to repeated loads, which is suitable for various welded structures such as ships, marine structures, bridges, construction machines, buildings, and tanks, and a method for producing the same.

近年、船舶、海洋構造物、橋梁、建設機械、建築物、タンクなどの構造物においては設計の合理化や鋼材重量の低減、薄肉化や溶接の省力化を目的として高強度鋼材が適用される事例が多くなってきている。   In recent years, high-strength steel materials have been applied to structures such as ships, offshore structures, bridges, construction machinery, buildings, and tanks for the purpose of streamlining design, reducing the weight of steel materials, and reducing the thickness and labor of welding. There are many more.

それらに用いられる引張強度400MPa以上の高強度鋼材では、靭性や溶接性に優れていること、構造安全性を確保するため耐疲労特性に優れていることが要求される。   High-strength steel materials having a tensile strength of 400 MPa or more used for them are required to have excellent toughness and weldability and to have excellent fatigue resistance properties in order to ensure structural safety.

溶接構造物において、疲労破壊は、溶接止端部から疲労亀裂が発生し、鋼材中を伝播して破壊するケースが多い。これは、溶接止端部がその形状から応力集中部となりやすいこと、加えて溶接後に引張の残留応力が生じることなどに起因するとされている。   In a welded structure, fatigue failure often occurs when a fatigue crack occurs from the weld toe and propagates through the steel material and breaks. This is attributed to the fact that the weld toe portion tends to be a stress concentration portion due to its shape, and in addition, tensile residual stress is generated after welding.

このため、溶接止端部からの亀裂発生を抑制させる手段として、付加溶接を施すなどして形状を改善し応力集中を低減させる技術、ショットピーニングなどで圧縮の残留応力を導入する技術などが広く知られている。   For this reason, as a means to suppress the occurrence of cracks at the weld toe, there are wide-ranging technologies such as applying additional welding to improve the shape and reducing stress concentration, and introducing compressive residual stress by shot peening. Are known.

しかし、多数存在する溶接止端部にこのような処理を工業的規模で施すことは不可能に近く、コストの面でも現実的とは言いがたい。   However, it is almost impossible to apply such treatment to a large number of weld toes on an industrial scale, and it is not practical in terms of cost.

そこで、仮に疲労亀裂が発生したとしてもその後の鋼材中の伝播速度を低減させることで疲労寿命を延命させることが重要であり、鋼材自身の疲労亀裂伝播特性を向上させることが産業界から強く要望されている。   Therefore, even if fatigue cracks occur, it is important to extend the fatigue life by reducing the propagation speed in subsequent steel materials, and there is a strong demand from the industry to improve the fatigue crack propagation characteristics of the steel materials themselves. Has been.

高強度鋼材の疲労亀裂伝播特性の向上手法として、例えば、特許文献1には組織がフェライト、パーライト、ベイナイトの1種または2種以上で主に構成され、さらに平均存在間隔20μm以下でかつ平均扁平比5以上の島状マルテンサイトが0.5〜5%の割合で存在する耐疲労亀裂伝播特性に優れた鋼板ならびにその製造方法が記載されている。   As a technique for improving the fatigue crack propagation characteristics of high-strength steel materials, for example, Patent Document 1 discloses that the structure is mainly composed of one or more of ferrite, pearlite, and bainite, and has an average existence interval of 20 μm or less and an average flatness. A steel sheet excellent in fatigue crack propagation resistance in which island-like martensite having a ratio of 5 or more is present in a proportion of 0.5 to 5% and a method for producing the same are described.

特許文献2には主としてベイナイト/マルテンサイトからなり、ラス状組織の最小短辺長が1.3μm以下、かつ、ベイナイトを含む場合にはその組織中にアスペクト比が5以上である島状マルテンサイトを面積率で5%未満含む鋼材ならびにその製造方法が開示されている。   Patent Document 2 is mainly composed of bainite / martensite, and the lath-like structure has a minimum short side length of 1.3 μm or less, and when bainite is included, the island-like martensite having an aspect ratio of 5 or more in the structure. Steel material containing less than 5% by area ratio and a method for producing the same are disclosed.

特許文献3には熱間圧延後に鋼板を500℃以下まで水冷後、Ac点+50℃〜Ac点−10℃の二相域に再加熱して圧延することで、組織を細粒フェライトとベイナイトもしくはマルテンサイトの混合組織とし、疲労強度を向上させる技術が記載されている。 In Patent Document 3, after hot rolling, the steel sheet is water-cooled to 500 ° C. or less, and then heated and rolled in a two-phase region of Ac 1 point + 50 ° C. to Ac 3 points−10 ° C. A technique for improving fatigue strength by using a mixed structure of bainite or martensite is described.

また、特許文献4や特許文献5には軟質相:フェライトと硬質相:ベイナイト、マルテンサイトからなる複合組織としそれら相間の硬度差を上昇させるほど疲労亀裂伝播特性が向上する技術が記載されている。
特開平6−271985号公報 特開2003−342672号公報 特開10−168542号公報 特許第2962134号公報 特開2000−129392号公報
Patent Documents 4 and 5 describe a technique in which fatigue crack propagation characteristics are improved as the hardness difference between the phases is increased by using a composite structure composed of a soft phase: ferrite and a hard phase: bainite and martensite. .
JP-A-6-271985 JP 2003-342672 A JP 10-168542 A Japanese Patent No. 2962134 JP 2000-129392 A

しかしながら、上記技術には、種々の問題点が指摘され、例えば、特許文献1の場合、島状マルテンサイトを多量に含むため、これを起点とした脆性破壊が生じやすいことが懸念される。   However, various problems are pointed out in the above-described technology. For example, in the case of Patent Document 1, since a large amount of island-like martensite is contained, there is a concern that brittle fracture is likely to occur.

特許文献2の場合、基本的にフェライトを含まない硬質層(ベイナイト/マルテンサイト)のみの鋼材であるため軟質相/硬質層を有する鋼材と比べて疲労亀裂伝播速度に劣ることや焼戻し処理を行わない場合には遅れ破壊が生じることなどが懸念される。   In the case of Patent Document 2, since the steel material is basically only a hard layer (bainite / martensite) that does not contain ferrite, the fatigue crack propagation rate is inferior to that of a steel material having a soft phase / hard layer and tempering is performed. If not, there is a concern that delayed destruction will occur.

特許文献3の場合、冷却後に再加熱し圧延する製造工程が煩雑であることから、製造コストが上昇し、生産能率が低下する。   In the case of Patent Document 3, since the manufacturing process of reheating and rolling after cooling is complicated, the manufacturing cost increases and the production efficiency decreases.

特許文献4、5などのように相間の硬度差を大きくした複合組織は一般的に降伏比(降伏強度/引張強度)が低い(例えば:溶接構造シンポジウム’99講演論文集P79)。このような鋼材を構造物に用いた場合、同一の引張強度では降伏点が低いために静的な負荷によって容易に塑性崩壊や座屈が生じることが懸念される。   A composite structure in which the hardness difference between phases is large as in Patent Documents 4 and 5 or the like generally has a low yield ratio (yield strength / tensile strength) (for example: Welding Structure Symposium '99 Lecture Proceedings P79). When such a steel material is used for a structure, since the yield point is low at the same tensile strength, there is a concern that plastic collapse or buckling easily occurs due to a static load.

そこで、本発明はこのような従来技術の課題を解決し、耐疲労亀裂伝播特性に優れ、かつ強度依存性が小さい高靭性な鋼材、及び高能率で製造する技術を提供することを目的とする。   Therefore, the present invention aims to solve such problems of the prior art, and to provide a high-toughness steel material having excellent fatigue crack propagation characteristics and low strength dependence, and a technique for manufacturing with high efficiency. .

本発明者らは、上記課題を解決すべく実験と検討を重ねた。その結果、ラス内に微細な炭化物を有するベイナイトもしくはマルテンサイトあるいはそれらの混合組織中にフェライトを分散させ、かつ、フェライト粒径と面積率を特定の範囲内とすることで、強度(降伏比)に大きく依存せずに、優れた疲労亀裂伝播特性を示し、かつ靭性にも優れた鋼材が得られることを見出した。   The present inventors have repeated experiments and studies to solve the above problems. As a result, by dispersing ferrite in bainite or martensite with fine carbides in the lath or mixed structure thereof, and making ferrite grain size and area ratio within a specific range, strength (yield ratio) It was found that a steel material exhibiting excellent fatigue crack propagation characteristics and excellent toughness can be obtained without depending largely on.

またそのような組織を有する鋼材は圧延、制御冷却、熱処理の各工程を高精度に制御し、かつ各工程を連続させて造りこむことによって高能率に生産できることを見出した。本発明は得られた知見を基に更に検討を加えてなされたもので、
1.質量%で、C:0.02〜0.25%、Si:0.01〜0.50%、Mn:0.5〜2.0%、P:0.05%以下、S:0.02%以下、残部Fe及び不可避的不純物の鋼で、金属組織が、最大サイズが0.5μm以下のラス内炭化物もしくは窒化物または炭窒化物が存在する、ベイナイトもしくはマルテンサイトまたはそれらの混合組織で、前記金属組織中には粒径:50μm以下4μm以上のフェライトが面積分率:20%以上60%以下で存在することを特徴とする強度依存性の小さい耐疲労亀裂伝播特性に優れた引張強度400MPa以上の高強度鋼材。
2.更に、質量%でCu:1.0%以下、Ni:2.0%以下、Cr:1.0%以下、Mo:1.0%以下、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下、B:0.005%以下の一種または二種以上を含有する1に記載の強度依存性の小さい耐疲労亀裂伝播特性に優れた引張強度400MPa以上の高強度鋼材。
3.1または2に記載の成分の鋼を、1000℃以上、1300℃以下に加熱し、Ar点以上で累積圧下率50%以上の圧延を行い、Ar点からAr−200℃の温度範囲を冷却速度4℃/s未満で10s以上、500s以下に冷却後、Ms点以下までを5℃/s以上の冷却速度で直接焼入れし、その後1℃/s以上の昇温速度でAc点未満まで再加熱することを特徴とする強度依存性の小さい耐疲労亀裂伝播特性に優れた引張強度400MPa以上の高強度鋼材の製造方法。
It has also been found that a steel material having such a structure can be produced with high efficiency by controlling each process of rolling, controlled cooling, and heat treatment with high precision and by forming each process continuously. The present invention was made by further study based on the obtained knowledge,
1. In mass%, C: 0.02 to 0.25%, Si: 0.01 to 0.50%, Mn: 0.5 to 2.0%, P: 0.05% or less, S: 0.02 % Or less, the balance Fe and inevitable impurities steel, the metallographic structure is bainite or martensite or a mixed structure in which lath carbide or nitride or carbonitride having a maximum size of 0.5 μm or less exists, In the metal structure, ferrite having a particle size of 50 μm or less and 4 μm or more is present in an area fraction of 20% or more and 60% or less. More high strength steel.
2. Furthermore, Cu: 1.0% or less, Ni: 2.0% or less, Cr: 1.0% or less, Mo: 1.0% or less, Nb: 0.1% or less, V: 0.1 in mass% % Or less, Ti: 0.1% or less, B: 0.005% or less, containing 1 type or 2 or more types, high tensile cracking strength of 400 MPa or more with excellent fatigue crack propagation characteristics with small strength dependency according to 1 Strength steel material.
The steel having the components described in 3.1 or 2 is heated to 1000 ° C. or higher and 1300 ° C. or lower, rolled at an Ar 3 point or higher and a cumulative reduction ratio of 50% or higher, and from Ar 3 point to Ar 3 -200 ° C. After cooling the temperature range to 10 s or more and 500 s or less at a cooling rate of less than 4 ° C./s, directly quenching to the Ms point or less at a cooling rate of 5 ° C./s or more, and then increasing the temperature at a rate of 1 ° C./s or more. A method for producing a high-strength steel material having a tensile strength of 400 MPa or more excellent in fatigue crack propagation characteristics with small strength dependency, characterized by reheating to less than one point.

本発明によれば、特殊な工程や多量の合金元素の添加を必要とせずに、強度に大きく依存せずに疲労亀裂伝播特性を高め、かつ、靭性にも優れた鋼材の製造が可能で、船舶、橋梁、建築物に代表されるような溶接構造物の主要部材に対し静的破壊や脆性破壊のみならず疲労破壊の安全裕度を拡大できる鋼材が提供可能である。   According to the present invention, it is possible to produce a steel material that does not require a special process or addition of a large amount of alloy elements, enhances fatigue crack propagation characteristics without greatly depending on strength, and has excellent toughness, It is possible to provide a steel material that can increase the safety margin of fatigue failure as well as static failure and brittle failure for main members of welded structures such as ships, bridges, and buildings.

また、圧延、冷却、再加熱を組み合わせた一連の加工熱処理により製造できるために、上記のような諸特性に優れる鋼材を短納期で、安価に提供することが出来、産業上極めて有用である。   In addition, since it can be manufactured by a series of thermomechanical processing combined with rolling, cooling, and reheating, it is possible to provide a steel material having excellent properties as described above at a short delivery time and at a low cost, which is extremely useful industrially.

本発明に係る鋼材は化学成分、金属組織を規定する。
[化学成分]以下の説明での%は全て質量%である。
C:0.02〜0.25%
Cは強度確保のために0.02%以上の添加が必要である。しかし、0.25%超えの添加は溶接性を阻害する。したがって0.02%以上0.25%以下に限定する。好ましくは0.02%以上0.20%以下とする。
The steel material according to the present invention defines the chemical composition and the metal structure.
[Chemical component] In the following description, all percentages are by mass.
C: 0.02-0.25%
C needs to be added in an amount of 0.02% or more to ensure strength. However, addition exceeding 0.25% inhibits weldability. Therefore, it is limited to 0.02% or more and 0.25% or less. Preferably, the content is 0.02% or more and 0.20% or less.

Si:0.01〜0.50%
Siは脱酸剤として有効であるとともに高強度化のためには0.01%以上必要であるが、0.50%を越えて添加すると溶接性、靭性を劣化させる。従って0.01%以上0.50%以下に限定する。好ましくは0.05%以上0.40%以下とする。
Si: 0.01 to 0.50%
Si is effective as a deoxidizer and needs to be 0.01% or more for increasing the strength, but if added over 0.50%, weldability and toughness are deteriorated. Therefore, it is limited to 0.01% or more and 0.50% or less. Preferably, the content is 0.05% or more and 0.40% or less.

Mn:0.5〜2.0%
Mnは安価に焼入れ性の増加を通じて強度を高めるだけでなく靭性向上の観点から0.5%以上必要であるが、2.0%を越えると溶接性が劣化する。従って0.5%以上2.0%以下に限定する。好ましくは0.5%以上1.8%以下とする。
Mn: 0.5 to 2.0%
Mn is not only required to increase the strength through an increase in hardenability at low cost, but also 0.5% or more is necessary from the viewpoint of improving toughness. However, if it exceeds 2.0%, the weldability deteriorates. Therefore, it is limited to 0.5% or more and 2.0% or less. Preferably, the content is 0.5% or more and 1.8% or less.

P:0.05%以下
Pは鋼の靭性を劣化させるため、その含有量はできるだけ低いことが望ましい。このため上限を0.05%とした。好ましくは0.03%以下とする。
P: 0.05% or less Since P deteriorates the toughness of steel, its content is desirably as low as possible. For this reason, the upper limit was made 0.05%. Preferably it is 0.03% or less.

S:0.02%以下
Sは多量に添加すると鋼の靭性を低下させるため極力低減するのが望ましい。このため、上限を0.02%とした。好ましくは0.01%以下とする。
S: 0.02% or less It is desirable to reduce S as much as possible because S decreases the toughness of steel when added in a large amount. For this reason, the upper limit was made 0.02%. Preferably, the content is 0.01% or less.

以上を本発明の基本成分とするが、強度、靭性や溶接性等の調整、耐候性の付与などを目的としてCu,Ni,Cr,Mo,Nb,V,Ti,Bの一種または二種以上を添加しても良い。   Although the above is a basic component of the present invention, one or more of Cu, Ni, Cr, Mo, Nb, V, Ti, B are used for the purpose of adjusting strength, toughness, weldability, etc., and imparting weather resistance. May be added.

Cu:1.0%以下
Cuは固溶による強度上昇効果をもたらすとともに耐候性を向上させる。しかし、その含有量が1.0%を超えると溶接性を損なうとともに鋼材製造時に疵が生じやすくなる。従って、添加する場合はその上限を1.0%とする。好ましくは0.05%以上0.5%以下とする。
Cu: 1.0% or less Cu brings about an effect of increasing strength by solid solution and improves weather resistance. However, if the content exceeds 1.0%, weldability is impaired and flaws are likely to occur during the manufacture of the steel material. Therefore, when added, the upper limit is made 1.0%. Preferably they are 0.05% or more and 0.5% or less.

Ni:2.0%以下
Niは低温靭性を向上させるとともに耐候性やCuを添加した場合に生ずる熱間脆性の改善に有効である。しかし、その添加量が2.0%を超えると溶接性を阻害する上、コストが上昇する。従って、添加する場合はその上限を2.0%とする。好ましくは0.05%以上1.0%以下とする。
Ni: 2.0% or less Ni is effective in improving low temperature toughness and improving weather resistance and hot brittleness that occurs when Cu is added. However, if the added amount exceeds 2.0%, weldability is impaired and the cost increases. Therefore, when added, the upper limit is made 2.0%. Preferably they are 0.05% or more and 1.0% or less.

Cr:1.0%以下
Crは耐候性や強度を向上させる。しかし、その含有量が1.0%を超えると溶接性および靭性を損なう。従って、添加する場合は上限を1.0%とする。好ましくは0.05%以上0.5%以下とする。
Cr: 1.0% or less Cr improves weather resistance and strength. However, if its content exceeds 1.0%, weldability and toughness are impaired. Therefore, when added, the upper limit is made 1.0%. Preferably they are 0.05% or more and 0.5% or less.

Mo:1.0%以下
Moは強度を上昇させる。しかし、その含有量が1.0%を超えると溶接性および靭性の劣化が生じる。従って、添加する場合はその上限を1.0%とする。好ましくは0.05%以上0.5%以下とする。
Mo: 1.0% or less Mo increases the strength. However, if its content exceeds 1.0%, weldability and toughness deteriorate. Therefore, when added, the upper limit is made 1.0%. Preferably they are 0.05% or more and 0.5% or less.

Nb:0.1%以下
Nbは圧延時のオーステナイト再結晶を抑制し細粒化を図ると同時に、析出を通じた高強度化をもたらす働きを有する。しかし、0.1%以上添加すると靭性が劣化する。従って添加する場合は0.1%以下に限定する。好ましくは0.01%以上0.05%以下とする。
Nb: 0.1% or less Nb has the function of suppressing austenite recrystallization during rolling to achieve finer grains, and at the same time, increasing the strength through precipitation. However, when 0.1% or more is added, toughness deteriorates. Therefore, when adding, it is limited to 0.1% or less. Preferably, the content is 0.01% or more and 0.05% or less.

V:0.1%以下
VもNbと同様、析出により高強度化をもたらす働きを有する。しかし、0.1%超えの添加は溶接性および靭性の低下を招く。従って添加する場合は0.1%以下に限定する。好ましくは0.01%以上0.07%以下とする。
V: 0.1% or less V, like Nb, has a function of increasing strength by precipitation. However, addition exceeding 0.1% causes a decrease in weldability and toughness. Therefore, when adding, it is limited to 0.1% or less. Preferably, the content is 0.01% or more and 0.07% or less.

Ti:0.1%以下
Tiは強度上昇と溶接部靭性を改善する。しかし、その含有量が0.1%を超えるとコスト上昇を招く傾向にある。従って添加する場合は上限を0.1%とする。好ましくは0.01%以上0.05%以下とする。
Ti: 0.1% or less Ti improves strength and weld zone toughness. However, when the content exceeds 0.1%, the cost tends to increase. Therefore, when added, the upper limit is made 0.1%. Preferably, the content is 0.01% or more and 0.05% or less.

B:0.005%以下
Bは焼入れ性を高め強度上昇に寄与する。しかし、0.005%を超えて添加すると溶接性を害する。従って上限を0.005%とする。好ましくは0.0005%以上0.003%以下とする。
B: 0.005% or less B contributes to an increase in hardenability and strength. However, if added over 0.005%, the weldability is impaired. Therefore, the upper limit is made 0.005%. Preferably, the content is 0.0005% or more and 0.003% or less.

[金属組織]
本発明に係る強度依存性の小さい疲労亀裂伝播特性に優れた高強度鋼材は金属組織が、ベイナイトもしくはマルテンサイトまたはそれらの混合組織であって、当該金属組織中に粒径:50μm以下4μm以上のフェライトが面積分率:20%以上60%以下で存在し、且つ最大サイズが0.5μm以下のラス内炭化物もしくは窒化物または炭窒化物が存在することを特徴とする。
[Metal structure]
The high-strength steel material excellent in fatigue crack propagation characteristics with small strength dependency according to the present invention has a metal structure of bainite, martensite, or a mixed structure thereof, and a particle size of 50 μm or less and 4 μm or more in the metal structure. Ferrite is present in an area fraction of 20% or more and 60% or less, and carbides, nitrides, or carbonitrides in the lath having a maximum size of 0.5 μm or less exist.

最大サイズが0.5μm以下の、ラス内炭化物もしくは窒化物または炭窒化物
ベイナイトもしくはマルテンサイトまたはそれらの混合組織中のラス内に最大サイズで0.5μm以下の微細な炭化物もしくは窒化物または炭窒化物を生成させることで、靭性が向上する。ラス内に炭化物もしくは窒化物または炭窒化物が存在しない場合やそれらが最大サイズで0.5μmを超える場合、靭性が低下する。炭化物もしくは窒化物または炭窒化物サイズは楕円形を仮定した時の長軸方向の全長を言う。
In-lath carbide or nitride or carbonitride having a maximum size of 0.5 μm or less Fine carbide or nitride or carbonitride having a maximum size of 0.5 μm or less in lath in bainite or martensite or a mixed structure thereof Toughness improves by generating a thing. If no carbides, nitrides or carbonitrides are present in the lath or if they exceed the maximum size of 0.5 μm, the toughness will be reduced. The carbide or nitride or carbonitride size refers to the total length in the major axis direction assuming an elliptical shape.

なお、ラス内の炭化物もしくは窒化物または炭窒化物の最大サイズが0.5μm以下であれば良く、同時に、ラス界面や旧オーステナイト粒界に0.5μmを超える炭化物もしくは窒化物または炭窒化物が存在していても疲労亀裂伝播特性や強度、靭性への大きな影響はなく、差し支えない。   Note that the maximum size of carbide, nitride or carbonitride in the lath should be 0.5 μm or less, and at the same time, carbide, nitride or carbonitride exceeding 0.5 μm at the lath interface or prior austenite grain boundary. Even if it exists, there is no significant influence on the fatigue crack propagation characteristics, strength, and toughness.

ベイナイトもしくはマルテンサイトまたはそれらの混合組織中の、面積分率:20%以上60%以下の粒径:50μm以下4μm以上のフェライト
上記規定のラス内炭化物もしくは窒化物または炭窒化物を備えたベイナイトもしくはマルテンサイトまたはそれらの混合組織中に粒径:50μm以下4μm以上のフェライトを面積分率:20%以上60%以下とすることで、疲労亀裂進展速度はフェライトとの界面で局所的な低下を見せるようになり耐疲労亀裂伝播特性が向上する。フェライト面積分率はより好ましくは30%以上60%以下である。
Bainite or martensite or a mixed structure thereof, area fraction: 20% to 60%, particle size: 50 μm or less, 4 μm or more of ferrite By setting ferrite having a particle size of 50 μm or less and 4 μm or more in martensite or a mixed structure thereof to an area fraction of 20% or more and 60% or less, the fatigue crack growth rate is locally reduced at the interface with ferrite. Thus, fatigue crack propagation resistance is improved. The ferrite area fraction is more preferably 30% or more and 60% or less.

本発明に係る鋼材は、上述のようにラス内組織を規定したベイナイトもしくはマルテンサイトまたはそれらの混合組織中に規定の面積分率でフェライトを複合させることで、疲労亀裂伝播速度が強度に大きく依存せずに安定的に向上する。   In the steel material according to the present invention, the fatigue crack propagation rate greatly depends on the strength by combining ferrite with a specified area fraction in the bainite or martensite having a lath structure as described above or a mixed structure thereof as described above. Stable improvement without

図1に、フェライトとベイナイトもしくはマルテンサイトあるいはそれらの混合組織で、フェライトの粒径と面積率が本発明範囲内で、ラス内の炭化物もしくは窒化物または炭窒化物が、最大サイズで0.5μm以下とした金属組織、および0.5μm超えとした金属組織の鋼材について疲労亀裂伝播速度におよぼす降伏比の影響を調査した結果を示す。試験材は後述する表1のAで示す成分の鋼を、種々の条件で製造した。   FIG. 1 shows that ferrite, bainite, martensite, or a mixed structure thereof has a grain size and area ratio of ferrite within the range of the present invention, and carbide, nitride, or carbonitride in the lath has a maximum size of 0.5 μm. The result of investigating the influence of the yield ratio on the fatigue crack propagation rate for steel materials having the following metal structures and metal structures exceeding 0.5 μm is shown. The test material manufactured the steel of the component shown by A of Table 1 mentioned later on various conditions.

図1より、ラス内炭化物もしくは窒化物または炭窒化物の形態を本発明範囲内とした場合、降伏比(降伏強度)に大きく依存せずに疲労亀裂伝播速度が安定して低いことが認められる。特に降伏比の高い領域で、塑性変形に対する静的な強度に強く、かつ、疲労亀裂伝播特性に優れた鋼材を得ることが可能である。   From FIG. 1, it is recognized that the fatigue crack propagation rate is stable and low without greatly depending on the yield ratio (yield strength) when the form of the carbide, nitride or carbonitride in the lath is within the scope of the present invention. . In particular, in a region with a high yield ratio, it is possible to obtain a steel material that is strong in static strength against plastic deformation and excellent in fatigue crack propagation characteristics.

尚、本発明では上述した金属組織に、不可避的に少量の他の組織が混在することは許容する。   In the present invention, a small amount of other structures are inevitably mixed in the metal structure described above.

本発明の鋼材は上記成分を有する鋼を、1000℃以上1300℃以下に加熱し、Ar点以上で累積圧下率50%以上の圧延を行い、Ar点からAr−200℃の温度範囲において冷却速度で4℃/s未満で10s以上500s以下冷却後、Ms点以下まで5℃/s以上の冷却速度で直接焼入れし、その後1℃/s以上の昇温速度でAc点未満まで再加熱することによって得られる。なお、上記温度は鋼材表面温度とし、冷却速度は鋼材の厚さ方向での平均値とする。 Steel steel having the above components of the present invention, heating to 1000 ° C. or higher 1300 ° C. or less, perform rolling cumulative reduction of 50% or more Ar 3 point or more, the temperature range of Ar 3 -200 ° C. from Ar 3 point After cooling at a cooling rate of less than 4 ° C./s for 10 s or more and 500 s or less, it is directly quenched at a cooling rate of 5 ° C./s or less to the Ms point or less, and then at a heating rate of 1 ° C./s or more to less than Ac 1 point. Obtained by reheating. The temperature is the steel surface temperature, and the cooling rate is the average value in the thickness direction of the steel.

加熱温度:1000℃以上1300℃以下
加熱温度を1000℃未満にするとその後の圧延温度が確保できない。また、1300℃を超える温度にすると鋼の結晶粒が粗大化するので靭性の確保が困難となる。
Heating temperature: 1000 ° C. or higher and 1300 ° C. or lower If the heating temperature is lower than 1000 ° C., the subsequent rolling temperature cannot be secured. On the other hand, if the temperature exceeds 1300 ° C., the crystal grains of the steel become coarse, and it becomes difficult to ensure toughness.

Ar点以上で累積圧下率50%以上
Ar点以上で累積圧下率50%以上の圧延を行うことにより旧オーステナイト粒を微細化させて靭性を向上させるとともに、この後に続く冷却過程でのフェライト生成を促進する。Ar点未満の圧延ではフェライトが過度に生成し、累積圧下率が50%未満では旧オーステナイト粒の微細化が達成されない。
Rolling at an Ar 3 point or higher and a cumulative reduction ratio of 50% or higher at an Ar 3 point or higher to refine the prior austenite grains to improve toughness, and ferrite in the subsequent cooling process Promote generation. In rolling with less than Ar 3 points, ferrite is excessively generated, and if the cumulative rolling reduction is less than 50%, refinement of prior austenite grains cannot be achieved.

Ar点からAr−200℃の温度範囲において冷却速度で4℃/s未満で10s以上500s以下冷却
冷却中にフェライトを生成させる手段として、Ar〜Ar−200℃の温度範囲で冷却速度4℃/s未満となる工程を10s以上設ける。温度がAr点を超える場合あるいはAr点−200℃を下回る場合にはフェライトが生成しない。
As a means of generating a ferrite 10s or 500s in less cooling cooling below 4 ° C. / s at a cooling rate in the temperature range of Ar 3 -200 ° C. from Ar 3 point, cooled at the temperature range of Ar 3 to Ar 3 -200 ° C. A step of a speed of less than 4 ° C./s is provided for 10 seconds or longer. Temperature does not produce ferrite, if below or when Ar 3 point -200 ° C. greater than 3 points Ar.

また、その温度域においても冷却速度が4℃/s未満であり、かつその冷却時間が10s以上でないと耐疲労亀裂伝播特性を向上させるための十分なフェライト量(面積分率20%以上)が得られない。   Also, in that temperature range, if the cooling rate is less than 4 ° C./s and the cooling time is not longer than 10 s, there is a sufficient amount of ferrite (area fraction of 20% or higher) for improving the fatigue crack propagation resistance. I can't get it.

一方、上記のフェライト生成時間が500sを超える場合、製造能率の低下とともに面積分率60%を超える過度のフェライト生成により疲労特性および強度が低下する。より好ましくは上記冷却時間を10s以上200s以下である。   On the other hand, when the ferrite generation time exceeds 500 s, fatigue characteristics and strength are reduced due to excessive ferrite generation exceeding the area fraction of 60% as the production efficiency decreases. More preferably, the cooling time is 10 s or more and 200 s or less.

上記冷却過程後、Ms点以下まで5℃/s以上の冷却速度で直接焼入れし、その後1℃/s以上の昇温速度でAc点未満まで再加熱
本構成は、上記冷却過程後でフェライト変態が完了しないうちに、残りの未変態オーステナイトをベイナイト、マルテンサイト、あるいはそれらの混合組織とし、かつ、それらのラス中に微細な炭化物、窒化物、あるいは炭窒化物を生成させるため規定する。
After the above cooling process, it is directly quenched at a cooling rate of 5 ° C./s or higher up to the Ms point or lower, and then reheated to a temperature of 1 ° C./s or higher to below Ac 1 point Before the transformation is completed, the remaining untransformed austenite is bainite, martensite, or a mixed structure thereof, and is defined to produce fine carbides, nitrides, or carbonitrides in the laths.

冷却速度が5℃/s未満ではフェライトやパ―ライトが生成するため、5℃/s以上とする。また、Ms点以下まで冷却し、未変態オーステナイトをベイナイト、マルテンサイト、あるいはそれらの混合組織とすることで高強度化が図れる。   When the cooling rate is less than 5 ° C./s, ferrite and pearlite are generated, so the temperature is set to 5 ° C./s or more. Further, the strength can be increased by cooling to the Ms point or lower and using untransformed austenite as bainite, martensite, or a mixed structure thereof.

さらには、その後に、1℃/s以上の昇温速度でAc点未満まで急速に再加熱を行うことでラス中に微細な炭化物、窒化物、あるいは炭窒化物を生成させることができ、靭性が向上する。 Furthermore, fine carbide, nitride, or carbonitride can be generated in the lath by rapidly reheating to less than Ac 1 point at a temperature rising rate of 1 ° C./s or more, Toughness is improved.

昇温速度が1℃/sを下回る場合、炭化物、窒化物、あるいは炭窒化物が粗大となること、Ac点以上に再加熱すると島状マルテンサイトが生成されることでそれぞれ靭性が低下する。 When the rate of temperature rise is less than 1 ° C./s, the toughness decreases because carbides, nitrides, or carbonitrides become coarse, and when reheated to one or more points of Ac, island-like martensite is generated. .

昇温速度はより好ましくは3℃/s以上である。なお、Ar点、Ms点、Ac点は例えば、Ar(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo、Ms(℃)=517−300C−33Mn−22Cr−17Ni−11Mo−11Si、Ac(℃)=723−14Mn+22Si−14.4Ni+23.3Cr(但し、元素記号は鋼材中の各元素の質量%での含有量を表す)で表される関係式により鋼材の成分組成に基づいて導くことが出来る。 The temperature rising rate is more preferably 3 ° C./s or more. Ar 3 point, Ms point, and Ac 1 point are, for example, Ar 3 (° C.) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo, Ms (° C.) = 517-300C-33Mn-22Cr-17Ni— 11Mo-11Si, Ac 1 (° C.) = 723-14Mn + 22Si-14.4Ni + 13.3Cr (where the element symbol represents the content in mass% of each element in the steel) It can be derived based on the composition.

上記のような一連の冷却は例えば、圧延終了後に、1.水冷→徐冷→水冷、2.水冷→放冷→水冷、3.徐冷→水冷、4.放冷→水冷などの工程で行えばよく、Ar点〜Ar−200℃の間で徐冷、放冷期間を設けることでフェライトを導入し、その後、水冷を行って残部をベイナイト、マルテンサイト、あるいはそれらの混合組織とすれば良い。 The series of cooling as described above is performed, for example, after the rolling is completed. 1. Water cooling → Slow cooling → Water cooling 2. water cooling → cooling → water cooling; 3. Slow cooling → water cooling It may be performed by a process such as cooling to water cooling, and ferrite is introduced by providing a slow cooling and cooling period between Ar 3 points to Ar 3 -200 ° C., and then water cooling is performed, and the remainder is bainite and martensite. It may be a site or a mixed organization of them.

図2に板厚25mmtの鋼材を上記2の方法で800℃から冷却して620−610℃で放冷期間を設けた後、再び130℃まで冷却し、すぐに500℃まで再加熱して、再び放冷したときの板厚内平均温度と時間の関係を(a)に、得られる組織の模式図を(b)に示す(試験材は後述の実施例No.1の鋼板を用いた)。所望の組織が一連の工程で、かつ、非常に短時間(冷却開始から再加熱終了まで100s未満)で得られている。   In FIG. 2, a steel material having a thickness of 25 mmt is cooled from 800 ° C. by the above-mentioned method 2 and provided with a cooling period at 620-610 ° C., then cooled again to 130 ° C. and immediately reheated to 500 ° C. The relationship between the average temperature within the plate thickness and time when cooled again is shown in (a), and the schematic diagram of the resulting structure is shown in (b) (the test material was a steel plate of Example No. 1 described later) . The desired structure is obtained in a series of steps and in a very short time (less than 100 s from the start of cooling to the end of reheating).

なお、本製造法で加速冷却と再加熱を上述の図2のように最も効率的に行う場合には、加速冷却装置と加熱装置は同一ライン上にレイアウトされていることが好ましい。また、加熱装置と加速冷却装置との距離が離れている場合には通常のオフラインTemperを施しても特性上は差し支えない。加熱方式は昇温速度が達成されれば誘導加熱、雰囲気加熱などどのようなものでも良く特に規定しない。   In addition, when accelerated cooling and reheating are most efficiently performed as shown in FIG. 2 in the present manufacturing method, the accelerated cooling device and the heating device are preferably laid out on the same line. In addition, when the distance between the heating device and the acceleration cooling device is long, the normal off-line Temper may be applied in terms of characteristics. Any heating method such as induction heating or atmosphere heating may be used as long as the rate of temperature increase is achieved.

また、再加熱は、所望の強度・靭性が得られる範囲内で、目標温度での等温保持を行っても行わなくても良く、さらに再加熱後には炉冷/放冷/急冷のいずれを選択しても良く特に規定しない。   In addition, reheating may or may not be performed at the target temperature within the range where desired strength and toughness can be obtained, and after reheating, any of furnace cooling / cooling / quenching is selected. But it is not particularly specified.

表1に示す組成を有する鋼を溶製して得られた鋼片を表2に示す条件に基づいて板厚12〜100mmの鋼板を製造した。これらの鋼板について、下記に示す手順にて、組織観察、引張強度、靭性、疲労亀裂伝播速度を調査した。   Based on the conditions shown in Table 2, steel plates having a thickness of 12 to 100 mm were produced from steel pieces obtained by melting steel having the composition shown in Table 1. With respect to these steel sheets, the structure observation, tensile strength, toughness, and fatigue crack propagation rate were investigated by the following procedure.

組織観察は板厚/4位置から採取した試料を研磨した。ミクロ組織観察に関しては2%ナイタール腐食液によりエッチングした面について、光学顕微鏡観察により組織、フェライトの面積分率ならびにフェライトの粒径を測定した。   For the tissue observation, a sample taken from the position of plate thickness / 4 was polished. Regarding the microstructure observation, the structure, the area fraction of ferrite, and the particle size of ferrite were measured by optical microscope observation on the surface etched with 2% nital etchant.

フェライト面積分率、フェライト粒径に関しては1試料について5視野を測定し、その平均値とした。また、同一の採取位置から電解研磨により薄膜を採取し、TEM観察によりラス内における最大の炭化物、窒化物、あるいは炭窒化物のサイズを測定した。   Regarding the ferrite area fraction and the ferrite particle size, five visual fields were measured for one sample, and the average values were obtained. In addition, a thin film was sampled by electrolytic polishing from the same sampling position, and the largest carbide, nitride, or carbonitride size in the lath was measured by TEM observation.

強度は圧延方向に直角方向に採取したJIS Z2201 1A号の全厚試験片(板厚50mm以上は板厚/4位置でのJIS Z2201 4号丸棒試験片)により評価した。   The strength was evaluated by a full thickness test piece of JIS Z2201 1A collected in a direction perpendicular to the rolling direction (JIS Z2201 No. 4 round bar test piece at a thickness of 4 mm for a plate thickness of 50 mm or more).

靭性は板厚/4位置(板厚25mm未満は板厚/2位置)で圧延方向と平行方向に採取したJIS Z 2202のVノッチシャルピー衝撃試験片により評価した。   Toughness was evaluated by a V-notch Charpy impact test piece of JIS Z 2202 taken in a direction parallel to the rolling direction at a plate thickness / 4 position (plate thickness / 2 position is less than 25 mm).

疲労亀裂伝播速度は圧延直角方向に亀裂が進展するL−T方向に全厚(板厚25mmを超えるものは25mmtまで片面減厚)のCT試験を採取し、応力比0.1、周波数20Hz、室温大気中でASTM E647に準拠して行った。   Fatigue crack propagation rate was obtained by taking a CT test of the full thickness in the LT direction where cracks propagate in the direction perpendicular to the rolling direction (thickness on one side is reduced to 25 mm when the thickness exceeds 25 mm), stress ratio 0.1, frequency 20 Hz, This was performed in accordance with ASTM E647 in the room temperature atmosphere.

本発明において、強度はTSで400MPa以上、靭性はシャルピー衝撃試験での延性/脆性破面遷移温度が−30℃以下、疲労亀裂伝播特性は大気中において△K=25MPa√mのときの疲労亀裂伝播速度が1.0×10−7m/cycle以下であった場合を合格とした。 In the present invention, the strength is 400 MPa or more in TS, the toughness is a ductile / brittle fracture surface transition temperature in a Charpy impact test of −30 ° C. or less, and the fatigue crack propagation characteristics are fatigue cracks when ΔK = 25 MPa√m in the atmosphere. The case where the propagation speed was 1.0 × 10 −7 m / cycle or less was regarded as acceptable.

表3に試験結果を示す。本発明に規定の成分および製造法を採用し、本発明に規定のミクロ組織を有するNo.1〜No.8の鋼板は、いずれも降伏比(YR)によらず高い疲労亀裂伝播特性を有しており、しかも高い強度と靭性をも兼ね備えていることがわかる。   Table 3 shows the test results. The components and production methods defined in the present invention were adopted, and No. 1 having the microstructure defined in the present invention. 1-No. It can be seen that all the steel plates No. 8 have high fatigue crack propagation characteristics regardless of the yield ratio (YR), and also have high strength and toughness.

これに対し、P、Sが本発明範囲を超えるNo.9の鋼板は本発明に規定の製造方法と組織としても低い靭性を示している。また、Ar点以上の累積圧下率が本発明下限に満たないNo.10の鋼板は、フェライトの面積率とフェライト粒径が本発明の下限値に満たず、高い疲労亀裂伝播速度を示している。 On the other hand, P and S are No. exceeding the scope of the present invention. Steel plate No. 9 shows low toughness as a manufacturing method and structure prescribed in the present invention. Moreover, No. 3 in which the cumulative rolling reduction of Ar 3 points or more does not reach the lower limit of the present invention. Steel sheet No. 10 has a ferrite area ratio and a ferrite grain size not lower than the lower limit values of the present invention, and exhibits a high fatigue crack propagation rate.

Ar〜Ar−200℃の温度範囲で4℃/s未満の放冷や徐冷工程を10s以上設けなかったNo.11〜No.12の鋼板は、組織中にフェライトが導入出来ておらず、疲労亀裂伝播特性に劣る。 No. in which a cooling or slow cooling step of less than 4 ° C./s was not provided for 10 s or more in the temperature range of Ar 3 to Ar 3 -200 ° C. 11-No. No. 12 steel plate is inferior in fatigue crack propagation characteristics because ferrite cannot be introduced into the structure.

水冷を行わなかったNo.13の鋼板はフェライト・パーライト組織となり、かつ、フェライトの面積率が本発明の上限値を超えている。このため、低強度であり、疲労亀裂伝播特性にも劣る。Ms点以下まで冷却後に再加熱を行わなかったNo.14の鋼板はラス内に微細な炭化物が生成されておらず、低靭性である。   No. No water cooling. Steel plate No. 13 has a ferrite / pearlite structure, and the area ratio of ferrite exceeds the upper limit of the present invention. For this reason, it is low in strength and inferior in fatigue crack propagation characteristics. No. No reheating was performed after cooling to the Ms point or lower. No. 14 steel plate has no fine carbides in the lath and has low toughness.

再加熱時の温度がAc点を超えるNo.15の鋼板はラス内に炭化物がなく(一部島状マルテンサイトが生成)、靭性が低い。再加熱時の昇温速度が本発明の下限を下回るNo.16の鋼板は、ラス内炭化物のサイズが本発明の上限を超えるため、低靭性であり、疲労亀裂伝播特性が劣る。 No. in which reheating temperature exceeds Ac 1 point. No. 15 steel plate has no carbides in the lath (partially island martensite is generated) and has low toughness. No. in which the temperature rising rate during reheating is lower than the lower limit of the present invention. Since the size of carbide in the lath exceeds the upper limit of the present invention, the steel plate No. 16 has low toughness and poor fatigue crack propagation characteristics.

Figure 0004645462
Figure 0004645462

Figure 0004645462
Figure 0004645462

Figure 0004645462
Figure 0004645462

フェライトとベイナイト、マルテンサイト、あるいはそれらの混合組織としラス内炭化物形態を変化させた場合の降伏比と耐疲労亀裂伝播特性との関係を示す図。The figure which shows the relationship between a yield ratio and fatigue crack propagation characteristics when changing the carbide | carbonized_material form in a lath as ferrite and bainite, a martensite, or those mixed structure. 圧延後に水冷、放冷、水冷、再加熱を行った場合の板厚平均温度と時間の関係ならびにその各工程により得られるミクロ組織の模式図。The schematic diagram of the microstructure obtained by each process of the relationship between the plate thickness average temperature at the time of performing water cooling, natural cooling, water cooling, and reheating after rolling.

Claims (3)

質量%で、C:0.02〜0.25%、Si:0.01〜0.50%、Mn:0.5〜2.0%、P:0.05%以下、S:0.02%以下、残部Fe及び不可避的不純物の鋼で、金属組織が、最大サイズが0.5μm以下のラス内炭化物もしくは窒化物または炭窒化物が存在する、ベイナイトもしくはマルテンサイトまたはそれらの混合組織で、前記金属組織中には粒径:50μm以下4μm以上のフェライトが面積分率:20%以上60%以下で存在することを特徴とする強度依存性の小さい耐疲労亀裂伝播特性に優れた引張強度400MPa以上の高強度鋼材。   In mass%, C: 0.02 to 0.25%, Si: 0.01 to 0.50%, Mn: 0.5 to 2.0%, P: 0.05% or less, S: 0.02 % Or less, the balance Fe and inevitable impurities steel, the metallographic structure is bainite or martensite or a mixed structure in which lath carbide or nitride or carbonitride having a maximum size of 0.5 μm or less exists, In the metal structure, ferrite having a particle size of 50 μm or less and 4 μm or more is present in an area fraction of 20% or more and 60% or less. More high strength steel. 更に、質量%でCu:1.0%以下、Ni:2.0%以下、Cr:1.0%以下、Mo:1.0%以下、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下、B:0.005%以下の一種または二種以上を含有する請求項1に記載の強度依存性の小さい耐疲労亀裂伝播特性に優れた引張強度400MPa以上の高強度鋼材。   Furthermore, Cu: 1.0% or less, Ni: 2.0% or less, Cr: 1.0% or less, Mo: 1.0% or less, Nb: 0.1% or less, V: 0.1 in mass% % Or less, Ti: 0.1% or less, B: 0.005% or less, or a combination of two or more, tensile strength of 400 MPa or more excellent in fatigue crack propagation characteristics with small strength dependence according to claim 1 High strength steel material. 請求項1または2に記載の成分の鋼を、1000℃以上、1300℃以下に加熱し、Ar点以上で累積圧下率50%以上の圧延を行い、Ar点からAr−200℃の温度範囲を冷却速度4℃/s未満で10s以上、500s以下に冷却後、Ms点以下までを5℃/s以上の冷却速度で直接焼入れし、その後1℃/s以上の昇温速度でAc点未満まで再加熱することを特徴とする強度依存性の小さい耐疲労亀裂伝播特性に優れた引張強度400MPa以上の高強度鋼材の製造方法。 The steel of the component according to claim 1 or 2 is heated to 1000 ° C. or more and 1300 ° C. or less, rolled at an Ar 3 point or more and a cumulative reduction ratio of 50% or more, and from Ar 3 point to Ar 3 -200 ° C. After cooling the temperature range to 10 s or more and 500 s or less at a cooling rate of less than 4 ° C./s, directly quenching to the Ms point or less at a cooling rate of 5 ° C./s or more, and then increasing the temperature at a rate of 1 ° C./s or more. A method for producing a high-strength steel material having a tensile strength of 400 MPa or more excellent in fatigue crack propagation characteristics with small strength dependency, characterized by reheating to less than one point.
JP2006018330A 2006-01-27 2006-01-27 A high-strength steel material excellent in fatigue crack propagation characteristics with low strength dependence and a method for producing the same. Active JP4645462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006018330A JP4645462B2 (en) 2006-01-27 2006-01-27 A high-strength steel material excellent in fatigue crack propagation characteristics with low strength dependence and a method for producing the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006018330A JP4645462B2 (en) 2006-01-27 2006-01-27 A high-strength steel material excellent in fatigue crack propagation characteristics with low strength dependence and a method for producing the same.

Publications (2)

Publication Number Publication Date
JP2007197778A JP2007197778A (en) 2007-08-09
JP4645462B2 true JP4645462B2 (en) 2011-03-09

Family

ID=38452662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018330A Active JP4645462B2 (en) 2006-01-27 2006-01-27 A high-strength steel material excellent in fatigue crack propagation characteristics with low strength dependence and a method for producing the same.

Country Status (1)

Country Link
JP (1) JP4645462B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5266836B2 (en) * 2008-03-28 2013-08-21 Jfeスチール株式会社 Method of manufacturing a steel material excellent in fatigue crack propagation resistance and ductility
CN111041328A (en) * 2019-12-25 2020-04-21 鞍钢铸钢有限公司 Toothless saw blade for cutting steel rope and production method thereof
WO2023040034A1 (en) 2021-09-17 2023-03-23 南京钢铁股份有限公司 Micro-molybdenum-type weather-resistant bridge steel plate and preparation method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258788A (en) * 1994-03-18 1995-10-09 Nippon Steel Corp Production of thick steel plate excellent in brittle fracture propagation stop characteristic and low temperature toughness
JP2000129392A (en) * 1998-10-20 2000-05-09 Nippon Steel Corp High strength steel product excellent in fatigue crack propagation resistance, and its manufacture
JP2000144309A (en) * 1998-11-02 2000-05-26 Nippon Steel Corp Steel excellent in corrosion resistance for structural purpose and its production
JP2002256380A (en) * 2001-03-06 2002-09-11 Sumitomo Metal Ind Ltd Thick high tensile strength steel plate having excellent brittle crack propagation arrest property and weld zone property and production method therefor
JP2003003229A (en) * 2001-06-19 2003-01-08 Nippon Steel Corp Thick steel plate having excellent fatigue strength and production method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258788A (en) * 1994-03-18 1995-10-09 Nippon Steel Corp Production of thick steel plate excellent in brittle fracture propagation stop characteristic and low temperature toughness
JP2000129392A (en) * 1998-10-20 2000-05-09 Nippon Steel Corp High strength steel product excellent in fatigue crack propagation resistance, and its manufacture
JP2000144309A (en) * 1998-11-02 2000-05-26 Nippon Steel Corp Steel excellent in corrosion resistance for structural purpose and its production
JP2002256380A (en) * 2001-03-06 2002-09-11 Sumitomo Metal Ind Ltd Thick high tensile strength steel plate having excellent brittle crack propagation arrest property and weld zone property and production method therefor
JP2003003229A (en) * 2001-06-19 2003-01-08 Nippon Steel Corp Thick steel plate having excellent fatigue strength and production method therefor

Also Published As

Publication number Publication date
JP2007197778A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP5070744B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance
JP4926406B2 (en) Steel sheet with excellent fatigue crack propagation characteristics
JP4897125B2 (en) High-strength steel sheet and its manufacturing method
CN108368594B (en) High-strength steel material having excellent low-temperature strain aging impact characteristics and weld heat-affected zone impact characteristics, and method for producing same
JP4882251B2 (en) Manufacturing method of high strength and tough steel sheet
JP2008184638A (en) Thick high tensile strength steel plate, and method for producing the same
JP6036616B2 (en) Steel sheet for welded structure excellent in fatigue crack resistance and method for producing the same
JP2005336514A (en) Steel sheet having excellent fatigue crack propagation resistance and its production method
CN108368593B (en) High-strength steel material having excellent low-temperature strain aging impact characteristics and method for producing same
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP2007039795A (en) Method for producing high strength steel having excellent fatigue crack propagation resistance and toughness
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP5082475B2 (en) Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance
JP4645461B2 (en) High-strength steel material excellent in ductile crack initiation characteristics and fatigue crack propagation characteristics and method for producing the same
JP6394378B2 (en) Abrasion resistant steel plate and method for producing the same
JP2015190008A (en) Non-heat treated low yield ratio high tensile thick steel sheet excellent in weld heat-affected zone toughness and production method therefor
JP6036615B2 (en) Steel sheet for welded structure having excellent weldability and fatigue crack propagation resistance and method for producing the same
JP2007197776A (en) High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor
JP2012246520A (en) Steel material excellent in fatigue-crack propagation resistance and low-temperature toughness at weld heat-affected zone, and method for production thereof
JP4645462B2 (en) A high-strength steel material excellent in fatigue crack propagation characteristics with low strength dependence and a method for producing the same.
KR101791324B1 (en) High-strength steel material having excellent fatigue properties, and method for producing same
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP4497009B2 (en) Thick steel plate with excellent fatigue crack propagation characteristics and toughness and method for producing the same
JP5446900B2 (en) High tensile hot-rolled steel sheet having high bake hardenability and excellent stretch flangeability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4645462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250