JP2005336514A - Steel sheet having excellent fatigue crack propagation resistance and its production method - Google Patents

Steel sheet having excellent fatigue crack propagation resistance and its production method Download PDF

Info

Publication number
JP2005336514A
JP2005336514A JP2004153572A JP2004153572A JP2005336514A JP 2005336514 A JP2005336514 A JP 2005336514A JP 2004153572 A JP2004153572 A JP 2004153572A JP 2004153572 A JP2004153572 A JP 2004153572A JP 2005336514 A JP2005336514 A JP 2005336514A
Authority
JP
Japan
Prior art keywords
steel sheet
steel
cooling
fatigue
crack growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004153572A
Other languages
Japanese (ja)
Other versions
JP4466196B2 (en
Inventor
Hiroshi Katsumoto
弘 勝元
Kazushi Onishi
一志 大西
Noboru Yoda
登 誉田
Tomoya Fujiwara
知哉 藤原
Kazushige Arimochi
和茂 有持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004153572A priority Critical patent/JP4466196B2/en
Priority to KR1020097000477A priority patent/KR100925940B1/en
Priority to PCT/JP2005/009341 priority patent/WO2005113848A1/en
Priority to CNB2005800163578A priority patent/CN100500911C/en
Publication of JP2005336514A publication Critical patent/JP2005336514A/en
Application granted granted Critical
Publication of JP4466196B2 publication Critical patent/JP4466196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel sheet having excellent fatigue crack resisting performance enhanced in resistance to that cracks inherent in a weld zone of a welded structure or the liken progress by being applied with repeated stress, and to provide its production method. <P>SOLUTION: The steel sheet has a composition containing, by mass, 0.01 to 0.1% C, 0.03 to 0.6% Si, 0.3 to 2% Mn, 0.001 to 0.1% solAl and 0.0005 to 0.008% N, and, if required, comprising one or more kinds of elements selected from at least 1 group among 1 to 3 groups, and the balance Fe with impurities, and has a metallic structure composed of a bainitic structure by ≥30%, in area ratio, a martensitic structure and a pearlitic structure by ≤5% in total, and the balance ferritic structure. The production method uses the steel sheet. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、土木建築構造物、船体、海洋構造物およびラインパイプなどの構造物の材料として好適な、大気中および腐食環境中における耐疲労き裂進展性に優れた鋼板に関する。   The present invention relates to a steel plate excellent in fatigue crack propagation resistance in the atmosphere and in a corrosive environment, which is suitable as a material for structures such as civil engineering and building structures, hulls, marine structures, and line pipes.

船舶、海洋構造物、橋梁、建築物、タンクあるいは自動車などで使用される鋼材には、強度、靱性等各種の機械的性質が優れていること、および溶接性に優れていることが要求される。特に機械的性質のなかで疲労特性は構造物の強度設計上極めて重要である。   Steel materials used in ships, offshore structures, bridges, buildings, tanks or automobiles are required to have excellent mechanical properties such as strength and toughness and excellent weldability. . In particular, fatigue characteristics are extremely important in the strength design of structures among mechanical properties.

特許文献1には、疲労特性に優れた高強度熱延鋼板の製造方法の発明が開示されている。この発明は、同じ引張り強度でも疲労強度または疲労限度比を上げるために金属組織を規定したもので、PおよびCuを添加した鋼をフェライトとベイナイトからなる組織にし、フェライト部分の硬さを120Hv以上とすれば、加工性にすぐれ、疲労限が向上することが示されている。   Patent Document 1 discloses an invention of a method for producing a high-strength hot-rolled steel sheet having excellent fatigue characteristics. This invention defines a metal structure to increase fatigue strength or fatigue limit ratio even with the same tensile strength. Steel with P and Cu added is made of ferrite and bainite, and the hardness of the ferrite portion is 120 Hv or more. If so, it is shown that the workability is excellent and the fatigue limit is improved.

特許文献2には、疲労特性と伸びフランジ性の優れた高強度熱延鋼板に係わる発明が開示されている。この発明では、Si、P、MnおよびCrの各含有量を規定した、フェライトと第二相(パーライト、ベイナイト、マルテンサイトおよび残留オーステナイト等)からなる高強度熱延鋼板において、第二相の硬さを 200〜 600Hv、体積率を 5〜10%とし、フェライトの 硬さを第二相の量から決まるある硬さに制御することにより疲労限度比の向上を図っている。   Patent Document 2 discloses an invention relating to a high-strength hot-rolled steel sheet having excellent fatigue characteristics and stretch flangeability. In the present invention, in the high-strength hot-rolled steel sheet comprising ferrite and a second phase (such as pearlite, bainite, martensite, and retained austenite), each content of Si, P, Mn, and Cr is defined. The fatigue limit ratio is improved by controlling the hardness of the ferrite to a certain hardness determined from the amount of the second phase, with a thickness of 200 to 600 Hv and a volume ratio of 5 to 10%.

これらの文献に記載の発明では、疲労限度を改善したことを特徴としているが、疲労限度あるいは疲労限度比は、通常は回転曲げ、薄板の場合は平面曲げの疲労試験によるS−N曲線から求められる。それらの試験片は特定の場合を除いて、最も応力の加わる部分は可能な限り平滑にされるので、材料に疵やき裂が存在する場合の参考にはなり得ない。   In the inventions described in these documents, the fatigue limit is improved. However, the fatigue limit or the fatigue limit ratio is usually obtained from an SN curve by a fatigue test of rotational bending, and in the case of a thin plate, plane bending. It is done. Except for specific cases, these test pieces are smoothed as much as possible, so that they cannot be used as a reference when there are wrinkles or cracks in the material.

一般に疲労破壊が起こる過程は、応力集中部でのき裂の発生、およびその後の疲労き裂の進展とに大きく2つの過程に区分できるが、前記のような試験法により求めた疲労限度や疲労限度比の値では、それらがき裂の発生と進展過程に及ぼす影響が不明である。   In general, the process in which fatigue fracture occurs can be broadly divided into two processes: the occurrence of a crack at the stress concentration part and the subsequent development of the fatigue crack. The limit ratio values are unclear how they affect crack initiation and propagation.

溶接構造物では、応力集中部としての溶接止端部が多数存在しており、疲労き裂の発生を完全に防止することは技術的に不可能に近く、また、経済的にも得策ではない。そのため、き裂がすでに存在している状態からのき裂進展寿命を大幅に延長させる必要がある。   In welded structures, there are many weld toes as stress concentration parts, and it is almost impossible technically to prevent the occurrence of fatigue cracks, and it is not economically advantageous. . Therefore, it is necessary to greatly extend the crack growth life from the state where the crack already exists.

したがって、き裂の進展速度をできるだけ遅くすることが重要になってくる。
構造物の設計時における対策として、応力が集中しないように荷重を分散させ、強度的に充分な余裕を持たせることにより、たとえき裂が発生しても、致命的な破壊に至ることのないようにすることは可能である。しかし、強度上充分な余裕を持たせることは、経済上の制約があり、できれば鋼材自身の疲労き裂の進展を遅くすること、すなわち、き裂進展抵抗を増大させることが望ましい。ところが、この材料の疲労き裂進展抵抗性を向上させる技術については、従来あまり検討されていなかった。
Therefore, it is important to make the crack growth rate as slow as possible.
As a countermeasure when designing a structure, by distributing the load so that stress is not concentrated and giving a sufficient margin in strength, even if a crack occurs, it will not cause a fatal failure. It is possible to do so. However, providing a sufficient margin for strength is economically constrained, and if possible, it is desirable to slow the progress of fatigue cracks in the steel itself, that is, to increase the crack propagation resistance. However, a technique for improving the fatigue crack growth resistance of this material has not been studied so far.

特許文献3には、疲労強度と疲労き裂伝播抵抗の共に優れた高強度熱延鋼板の製造方法が記載されており、PおよびCuの含有量を規制し、フェライト結晶粒径を5〜25μm、第二相の体積分率が10〜30%の二相組織とすることにより疲労強度と疲労き裂伝播抵抗が改善されることが開示されている。ただし、この文献で言う疲労き裂伝播抵抗とは、後述の疲労き裂の進展における下限界応力拡大係数範囲(ΔKth)のことであり、疲労き裂が進展する下限の応力拡大係数値を高める効果はあるが、疲労き裂進展速度を遅くすることについては効果のある方法ではない。   Patent Document 3 describes a method for producing a high-strength hot-rolled steel sheet excellent in both fatigue strength and fatigue crack propagation resistance. The content of P and Cu is regulated, and the ferrite crystal grain size is 5 to 25 μm. It is disclosed that fatigue strength and fatigue crack propagation resistance are improved by using a two-phase structure with a volume fraction of the second phase of 10 to 30%. However, the fatigue crack propagation resistance referred to in this document is a lower limit stress intensity factor range (ΔKth) in the fatigue crack growth described later, and increases the lower limit stress intensity factor value at which the fatigue crack propagates. Although effective, it is not an effective method for reducing the fatigue crack growth rate.

特許文献4には、組織の20%以上がベイナイトである鋼材の疲労き裂進展速度評価方法が開示されている。しかし、この文献に記載の発明は評価方法に関わるものであり、鋼材の強度や靭性など機械的特性が考慮されておらず、土木建築構造物、船体や海洋構造物などへの適用が適切とは言えない。
特開平 4−276016号公報 特開平 4−329848号公報 特開平4-337026号公報 特開2001-41868号公報
Patent Document 4 discloses a fatigue crack growth rate evaluation method for steel materials in which 20% or more of the structure is bainite. However, the invention described in this document relates to the evaluation method, and mechanical properties such as strength and toughness of steel materials are not considered, and it is appropriate to apply to civil engineering and building structures, hulls and marine structures. I can't say that.
JP-A-4-276016 JP-A-4-329848 JP-A-4-337026 JP 2001-41868

本発明の課題は、各種の溶接構造物等の溶接部等に内在するき裂が、繰り返し応力を受けて進展することに対する抵抗性を高めた耐疲労破壊性能に優れた鋼板とその製造方法を提供することにある。具体的には、後述する繰り返し荷重1サイクル中の応力拡大係数Kの最大値と最小値の差である△Kが20MPa√mで、応力比0.1の条件で求めた疲労き裂進展速度を3.2×10−5mm/cycle以下とすることを目標とする。 An object of the present invention is to provide a steel sheet excellent in fatigue fracture resistance with improved resistance against cracks inherent in welded parts of various welded structures and the like, and the method of manufacturing the same. It is to provide. Specifically, the fatigue crack growth rate obtained under the condition that ΔK, which is the difference between the maximum value and the minimum value of the stress intensity factor K in one cycle of the repeated load described later, is 20 MPa√m and the stress ratio is 0.1. Is set to 3.2 × 10 −5 mm / cycle or less.

本発明者らは、上記課題を解決するため種々の実験と検討を重ねた結果、以下に示す耐疲労き裂進展性に優れた鋼板およびその製造方法を発明するに至った。
(1)鋼板については次の通りである。
As a result of repeating various experiments and studies in order to solve the above-mentioned problems, the present inventors have invented a steel plate excellent in fatigue crack growth resistance and a method for producing the same as described below.
(1) The steel sheet is as follows.

1)質量%で、C:0.01〜0.1%、Si:0.03〜0.6%、Mn:0.3〜2%、sol.Al:0.001〜0.1%、N:0.0005〜0.008%を含有し、残部はFeおよび不純物からなる化学組成を有し、かつ金属組織が面積率で30%以上のベイナイト組織、合計で0〜5%のマルテンサイト組織とパーライト組織、残部がフェライト組織であることを特徴とする鋼板。   1) By mass%, C: 0.01 to 0.1%, Si: 0.03 to 0.6%, Mn: 0.3 to 2%, sol. Al: 0.001 to 0.1%, N: 0.0005 to 0.008% contained, the balance having a chemical composition composed of Fe and impurities, and a metal structure having a bainite structure with an area ratio of 30% or more, a total of 0 to 5% martensite A steel sheet characterized by a structure and a pearlite structure, and the balance being a ferrite structure.

2)上記の鋼板は、さらに下記の第1群から第3群までのうちの少なくとも1群から選んだ1種以上の成分を含有させることができる。
第1群:
質量%で、Cu:0.05〜1%、Ni:0.05〜1%、Cr:0.05〜1%、Mo:0.05〜0.8%およびW:0.05〜0.5%。
2) The above steel sheet may further contain one or more components selected from at least one of the following first to third groups.
First group:
In mass%, Cu: 0.05-1%, Ni: 0.05-1%, Cr: 0.05-1%, Mo: 0.05-0.8% and W: 0.05-0. 5%.

第2群:
質量%で、Nb:0.005〜0.08%、Ti:0.005%〜0.03%、V:0.005〜0.08%およびB:0.0005〜0.003%。
Second group:
In mass%, Nb: 0.005 to 0.08%, Ti: 0.005% to 0.03%, V: 0.005 to 0.08% and B: 0.0005 to 0.003%.

第3群:
質量%で、Ca:0.0005〜0.007%、Mg:0.0005〜0.007%およびREM:0.0005〜0.05%。
Group 3:
By mass%, Ca: 0.0005-0.007%, Mg: 0.0005-0.007% and REM: 0.0005-0.05%.

(2)製造方法については次の通りである。
1)上記の化学組成を有する鋼片を、1000℃〜1250℃の温度範囲内に加熱した後、熱間圧延して冷却し、冷却後に形状矯正をおこなう鋼板の製造方法であって、前記冷却に際し、少なくとも650℃〜500℃の温度域は平均冷却速度5℃/s以上の加速冷却する鋼板の製造方法。
(2) The manufacturing method is as follows.
1) A method for producing a steel sheet in which a steel slab having the above chemical composition is heated in a temperature range of 1000 ° C. to 1250 ° C., then hot-rolled and cooled, and shape correction is performed after cooling. In this case, at least a temperature range of 650 ° C. to 500 ° C. is a method for producing a steel sheet that is accelerated and cooled at an average cooling rate of 5 ° C./s or more.

2)上記の化学組成を有する鋼片を、1000℃〜1250℃の温度範囲内に加熱した後、熱間圧延をして、熱間圧延後Ac点以上の温度に再加熱して冷却し、冷却後に形状矯正をおこなう鋼板の製造方法であって、前記冷却に際し、少なくとも650℃〜500℃の温度域は平均冷却速度5℃/s以上の加速冷却とする鋼板の製造方法。 2) After the steel slab having the above chemical composition is heated within a temperature range of 1000 ° C. to 1250 ° C., it is hot-rolled, and after hot rolling, it is reheated to a temperature of Ac 1 point or higher and cooled. A method of manufacturing a steel sheet that performs shape correction after cooling, wherein the temperature range of at least 650 ° C. to 500 ° C. is accelerated cooling with an average cooling rate of 5 ° C./s or more.

3)上記1)または2)に記載の製造方法において、冷却後さらに450℃以下に加熱して焼戻す鋼板の製造方法。
4)形状矯正における鋼板の塑性変形率を0.3〜0.87として矯正する上記1)〜3)のいずれかに記載の鋼板の製造方法。
3) In the manufacturing method according to 1) or 2) above, a method for manufacturing a steel sheet that is further tempered by cooling to 450 ° C. or lower after cooling.
4) The method for producing a steel sheet according to any one of 1) to 3), wherein the plastic deformation rate of the steel sheet in shape correction is corrected to 0.3 to 0.87.

5)形状矯正に用いる装置をローラレベラとし、下式から求まるローラレベラーの鋼板入り側から3本目のロールによる鋼板の塑性変形率(η)を0.3〜0.87として矯正する上記1)〜3)のいずれかに記載の鋼板の製造方法。   5) The apparatus used for shape correction is a roller leveler, and the plastic deformation rate (η) of the steel sheet by the third roll from the roller leveler side of the roller leveler obtained from the following formula is corrected as 0.3 to 0.87, 1) to above. The manufacturing method of the steel plate in any one of 3).

η=1−2ρiσy/Et
ここで、ρi:ローラレベラー入り側から3本目のロールでの鋼板の曲率半径、σy:2次元降伏応力、σy=1.15×σe(σeは通常鋼材で表現する降伏応力)、E:縦弾性係数、t:板厚とする。
η = 1−2ρ i σ y / Et
Where ρ i is the radius of curvature of the steel sheet in the third roll from the roller leveler entry side, σ y is the two-dimensional yield stress, σ y = 1.15 × σe (σe is the yield stress expressed in ordinary steel), E: Longitudinal elastic modulus, t: thickness.

(3)構造物については次の通りである。
上記のいずれかの鋼材または上記のいずれかに記載の製造方法により製造された鋼材を用いた構造物。
(3) The structure is as follows.
A structure using any one of the above steel materials or a steel material produced by the production method according to any one of the above.

図1は、疲労き裂進展速度と応力拡大係数との関係を示す図である。
前述のように疲労破壊が起こる過程は、応力集中部でのき裂の発生と、その後の疲労き裂の進展とに大きく2つの過程に区分できる。すでに疲労き裂が発生した状態において、き裂の進展を破壊力学的に取り扱うと、繰り返し応力の応力比(R=σmin /σmax :1サイクル中の最大応力と最小応力の比)が一定の場合、疲労き裂進展速度(da/dN:繰り返し荷重1サイクル当たりのき裂進展量)と応力拡大係数範囲(ΔK=Kmax −Kmin :1サイクル中の応力拡大係数Kの最大値と最小値の差)との間には、両対数表示にて図1に示すような関係がある。
FIG. 1 is a diagram showing the relationship between the fatigue crack growth rate and the stress intensity factor.
As described above, the process in which fatigue fracture occurs can be broadly divided into two processes: the generation of a crack in the stress concentration portion and the subsequent growth of the fatigue crack. When the crack growth is handled mechanically in a state where a fatigue crack has already occurred, the stress ratio of repeated stress (R = σmin / σmax: ratio of maximum stress to minimum stress in one cycle) is constant , Fatigue crack growth rate (da / dN: amount of crack growth per cycle) and stress intensity factor range (ΔK = Kmax−Kmin: difference between maximum value and minimum value of stress intensity factor K during one cycle) 1), there is a relationship as shown in FIG.

この図で、第IIa と示したΔKが小さい領域では、き裂があっても進展速度は小さく、ある下限値ΔKthにおいて疲労き裂進展速度da/dNは急激に小さくなり、き裂の進展は事実上認められなくなる。このΔKthを下限界応力拡大係数範囲と言い、これ以下の応力であれば、き裂が存在した状態であっても進展はない。   In this figure, in the region where ΔK shown as IIa is small, even if there is a crack, the growth rate is small, and at a certain lower limit ΔKth, the fatigue crack growth rate da / dN decreases rapidly, and the crack growth is Virtually disallowed. This ΔKth is referred to as the lower limit stress intensity factor range, and if the stress is less than this range, no progress occurs even in the presence of a crack.

第IIbと示したところは、き裂先端のすべり面分離が支配的機構となってき裂が進展する領域である。この領域で形成されるストライエーションは、典型的な疲労破壊の破面として観察される。この第IIbの領域では、パリス則として知られる式
da/dN=C(△K)
が成立する。ここで、Cおよびmは材料、環境、応力比などに依存する定数である。
The area indicated as IIb is the region where the crack progresses due to the separation of the slip surface at the crack tip. The striation formed in this region is observed as a typical fatigue fracture surface. In this region IIb, the formula known as the Paris rule
da / dN = C (ΔK) m
Is established. Here, C and m are constants depending on the material, environment, stress ratio, and the like.

第IIcと示した領域では、通常の引張り応力による破壊、すなわちへき開や粒界割れ、あるいは微小空孔の合体のような微視的な金属組織的様相を示す静的な破壊に近く、き裂進展速度は著しく加速される。   In the region indicated as IIc, the fracture is close to normal fracture due to tensile stress, i.e., static fracture that shows microscopic metallographic aspects such as cleavage, intergranular cracking, or coalescence of microvoids. The speed of development is significantly accelerated.

ここで、疲労き裂進展速度の測定方法について説明しておく。
図6は、疲労き裂進展速度の測定方法を説明するための図である。同図に示すように応力拡大係数範囲ΔKが約18、22、26、30、34MPa√mの場合のda/dNの値を求める。次にパリス式
da/dN=C(△K)
を用いて5つのda/dNとΔKの関係から対数グラフを作成し、直線近似からCとmの値を求める。そして内挿法によってΔK=20 MPa√mのときのda/dNを求め、3.2×10-5 mm/cycle以下を本発明の目標値としている。
Here, a method for measuring the fatigue crack growth rate will be described.
FIG. 6 is a diagram for explaining a method of measuring the fatigue crack growth rate. As shown in the figure, the value of da / dN is obtained when the stress intensity factor range ΔK is approximately 18, 22, 26, 30, 34 MPa√m. Next is Paris
da / dN = C (ΔK) m
Is used to create a logarithmic graph from the relationship between five da / dN and ΔK, and the values of C and m are obtained from linear approximation. Then, da / dN when ΔK = 20 MPa√m is obtained by interpolation, and the target value of the present invention is 3.2 × 10 −5 mm / cycle or less.

本発明者らは、図1の第IIb領域でのき裂進展を遅くすることに着目し、同領域における疲労き裂進展速度da/dNにおよぼす材料の影響および製造方法に関し、種々の試験を繰り返しおこない検討を重ねた結果、以下の知見を得た。   The present inventors paid attention to slowing the crack growth in the region IIb of FIG. 1, and conducted various tests on the influence of the material on the fatigue crack growth rate da / dN in the region and the manufacturing method. As a result of repeated studies, the following knowledge was obtained.

1)疲労き裂進展速度da/dNは組織によって左右され、ベイナイト組織が30%以上であると小さくなること。特に60〜85%でda/dNが最も小さくなる。
2)形状矯正を適正な条件で行えば、da/dNがさらに小さくなる。
1) The fatigue crack growth rate da / dN depends on the structure, and decreases when the bainite structure is 30% or more. In particular, da / dN becomes the smallest at 60 to 85%.
2) If shape correction is performed under appropriate conditions, da / dN is further reduced.

3)マルテンサイト組織とパーライト組織は硬くて脆い組織のため相境界で疲労き裂の進展を抑制することができなく、これらの組織が面積率で5%を超えるとda/dNが劣化する。    3) Since the martensite structure and the pearlite structure are hard and brittle, the progress of fatigue cracks cannot be suppressed at the phase boundary, and when these structures exceed 5% in area ratio, da / dN deteriorates.

上記1)について本発明者らは、疲労き裂が進展してベイナイト相に遭遇すると、その粒界でき裂が停留したり、ベイナイト組織を避けるように屈曲したりしながら進展することを確認した。
図2は、ベイナイト相の疲労き裂の進展に及ぼす影響を調べるために用いた、フェライト単相鋼およびベイナイト単相鋼からなる積層型CT試験片の斜視図である。
Regarding the above 1), the present inventors have confirmed that when a fatigue crack propagates and encounters a bainite phase, the crack propagates while retaining at the grain boundary or bending to avoid the bainite structure. .
FIG. 2 is a perspective view of a laminated CT specimen made of a ferrite single-phase steel and a bainite single-phase steel, used for examining the influence of the bainite phase on fatigue crack growth.

本発明者らは、同図に簡易的に示すようにフェライト単相鋼(F)、ベイナイト単相鋼(B)からなる積層型CT試験片を作製し、疲労き裂10の進展方向が積層境界に直角となるように加工した。この試験片を用いてΔK=25MPa√mにおける疲労き裂進展速度を応力比0.1の条件で測定した。   The inventors of the present invention produced a laminated CT test piece made of a ferritic single phase steel (F) and a bainite single phase steel (B) as shown in FIG. Processed to be perpendicular to the boundary. Using this specimen, the fatigue crack growth rate at ΔK = 25 MPa√m was measured under the condition of a stress ratio of 0.1.

図3は、測定結果から得られた疲労き裂長さと疲労き裂進展速度(伝播速度)との関係を示す図である。同図に示すようにフェライト相(F)からベイナイト相(B)にき裂が進展する際に、進展速度が大きく抑制されていることが明らかとなり、ベイナイト相境界でのき裂の停留、屈曲が影響していることが示唆された。   FIG. 3 is a diagram showing the relationship between the fatigue crack length and the fatigue crack growth rate (propagation rate) obtained from the measurement results. As shown in the figure, it is clear that when the crack propagates from the ferrite phase (F) to the bainite phase (B), the growth rate is greatly suppressed, and the crack is retained and bent at the boundary of the bainite phase. It was suggested that this is affecting.

また、ベイナイトは疲労き裂進展試験のような繰り返し変形を受けると加工軟化することが知られている。これは変態によって導入された転位が、繰り返し変形によって合体、消滅するためであり、これによって疲労き裂先端に蓄積する歪が緩和される。すなわち加工軟化特性によってき裂進展駆動力が低下することもベイナイトがき裂進展の抑制に有効であると考えられる。   In addition, it is known that bainite softens when subjected to repeated deformation as in a fatigue crack growth test. This is because the dislocations introduced by transformation coalesce and disappear due to repeated deformation, thereby relaxing the strain accumulated at the fatigue crack tip. In other words, it is considered that bainite is effective in suppressing crack growth because the crack growth driving force decreases due to work softening characteristics.

そこで、本発明者らは下記の試験を実施した。
C:0.08%, Si:0.25%, Mn:1.4%, Nb:0.02%, Ti:0.01%, sol.Al:0.025%、N:0.004%の化学組成を有する鋼片を1150℃に加熱し、熱間圧延を施した後、加速冷却を行い、ベイナイト分率が異なる4種類のベイナイト−フェライト鋼板を得た。それらの鋼板のΔK=20MPa√mにおけるda/dNを応力比0.1の条件で測定した。
Therefore, the present inventors conducted the following tests.
A steel slab having a chemical composition of C: 0.08%, Si: 0.25%, Mn: 1.4%, Nb: 0.02%, Ti: 0.01%, sol.Al: 0.025%, N: 0.004% is heated to 1150 ° C. After hot rolling, accelerated cooling was performed to obtain four types of bainite-ferrite steel sheets having different bainite fractions. The da / dN at ΔK = 20 MPa√m of these steel plates was measured under the condition of a stress ratio of 0.1.

図4は、測定結果から得られたベイナイト組織分立と疲労き裂進展速度da/dNとの関係を示す図である。同図に示すようにベイナイト分率が30%以上であるとda/dNが小さくなり、特に60〜85%で最も小さくなることを知るに至った。   FIG. 4 is a diagram showing the relationship between the bainite structure separation and the fatigue crack growth rate da / dN obtained from the measurement results. As shown in the figure, when the bainite fraction is 30% or more, da / dN becomes small, and it has been found that it becomes the smallest particularly at 60 to 85%.

多くの場合、圧延後あるいは熱処理後にローラレベラやプレス機による形状矯正を施す。
特にローラレベラによる矯正は形状矯正のためだけでなく、疲労き裂進展速度低下にも効果的であり、塑性変形率が重要な管理項目となるということを、本発明者らの下記実験により知るに至った。
In many cases, shape correction is performed by a roller leveler or a press after rolling or heat treatment.
In particular, the following experiments conducted by the present inventors show that correction using a roller leveler is effective not only for shape correction but also for reducing the fatigue crack growth rate, and that the plastic deformation rate is an important management item. It came.

C:0.05%, Si:0.20%, Mn:1.45%, Cu:0.2%, Ni:0.1%, Nb:0.02%, sol.Al:0.030%、N:0.004%の組成を有する鋼片を1150℃に加熱後、仕上げ温度880℃で熱間加工を施した後、800℃から加速冷却を開始し、100℃以下で冷却を停止して板厚15mmの鋼板を得た。   Steel slab having the composition of C: 0.05%, Si: 0.20%, Mn: 1.45%, Cu: 0.2%, Ni: 0.1%, Nb: 0.02%, sol.Al:0.030%, N: 0.004% at 1150 ° C After heating, the steel was hot worked at a finishing temperature of 880 ° C., then accelerated cooling was started from 800 ° C., and the cooling was stopped at 100 ° C. or lower to obtain a steel plate having a thickness of 15 mm.

その鋼板を、圧下条件を種々変えたローラレベラに通して矯正を実施し、得られた鋼板から試験片を採取して疲労き裂進展速度を測定すると共に、矯正する前の鋼板の疲労き裂進展速度も測定し、矯正前後の鋼板で比較した。なお、疲労き裂進展速度は応力比0.1の条件で、ΔK=20MPa√mのときのものである。   The steel sheet is passed through a roller leveler with different rolling conditions, and the specimen is taken from the obtained steel sheet to measure the fatigue crack growth rate and the fatigue crack growth of the steel sheet before correction. The speed was also measured and compared with steel sheets before and after straightening. The fatigue crack growth rate is that when ΔK = 20 MPa√m under the condition of a stress ratio of 0.1.

図5は塑性変形率とき裂進展速度変化比の関係を示す図である。図中の疲労き裂進展速度比は、矯正前のda/dNを矯正後のda/dNで除したものである。すなわちこの比が1を超えれば矯正によってda/dNが増加し、1より小さければda/dNが低下したことを示す。また、レベラーの塑性変形率とは、ここではレベラーの入り側から数えて3本目のロールで設定した。一般的にローラレベラーの場合、入り側から出側にかけて圧下量を傾斜的に小さくする、いわゆる入り側から出側に向かってテーパ状になるようなロール間隔にして矯正する。従って、入り側のロールの方が出側に比べ、負荷は大きくなる。材料力学的に考えた場合、1,2本目のロールには支点数が少ないため、一番負荷がかかるロールが3本目であるためである。この3本目のロールによる塑性変形率の計算方法を以下に示す。   FIG. 5 is a diagram showing the relationship between the plastic deformation rate and the crack growth rate change ratio. The fatigue crack growth rate ratio in the figure is obtained by dividing da / dN before correction by da / dN after correction. That is, if this ratio exceeds 1, da / dN is increased by correction, and if it is less than 1, da / dN is decreased. In addition, the plastic deformation rate of the leveler is set by the third roll counted from the leveler entrance side. In general, in the case of a roller leveler, the amount of reduction is reduced in an inclined manner from the entry side to the exit side, and the roll interval is corrected so as to be tapered from the so-called entry side to the exit side. Therefore, the load on the entrance side roll is greater than that on the exit side. This is because when considering material mechanics, the first and second rolls have a small number of fulcrum points, and therefore the third roll is the most loaded. The calculation method of the plastic deformation rate by this third roll is shown below.

塑性変形率ηは下記式により求めることができる。
η=1−2ρiσy/Et
ここでρi:ローラレベラー入り側からi本目のロールでの鋼板の曲率半径、σy:2次元降伏応力、σy=1.15×σe(σeは通常鋼材で表現する降伏応力)、E:縦弾性係数、t:板厚 である。
なお、縦弾性係数は鋼板の温度によって変化する。例えば機械工学便覧A4編材料力学のA4-6ページの表2に、炭素鋼(C:0.25%以下)の温度と縦弾性係数の関係が提示されており、この値を使うことが望ましい。
The plastic deformation rate η can be obtained by the following equation.
η = 1−2ρ i σ y / Et
Where ρ i is the radius of curvature of the steel sheet at the i-th roll from the roller leveler entry side, σ y is the two-dimensional yield stress, σ y = 1.15 × σe (σe is the yield stress expressed in ordinary steel materials), E is the longitudinal Elastic modulus, t: plate thickness.
The longitudinal elastic modulus changes depending on the temperature of the steel plate. For example, Table 2 on page A4-6 of A4 knitting material mechanics in mechanical engineering manual shows the relationship between temperature and longitudinal elastic modulus of carbon steel (C: 0.25% or less), and it is desirable to use this value.

図5から、塑性変形率を適正化することによって矯正加工前に比べ、き裂進展速度変化比が小さくなることがわかる。これは矯正加工によって、試験片内部の転位が、疲労試験の際に容易に動きやすい転位に変化するためと考えられる。通常転位は、圧延によって多量に組織に導入されるが、これらの転位は互いにからみあって疲労試験の際に動き難く、繰り返し変形においても転位同士の消滅が起こらず繰り返し軟化の現象が生じない。これに対し、レベラーによる矯正を行うことにより、組織中の転位が動き易くなり、繰り返し変形による転位同士の合体、消滅が多くなり、繰り返し軟化量が大きくなり、その結果、進展速度が遅くなるためと考えられる。   FIG. 5 shows that the crack growth rate change ratio becomes smaller by optimizing the plastic deformation rate than before the straightening process. This is considered to be because the dislocation inside the test piece is changed to a dislocation that is easily moved during the fatigue test by the straightening process. Usually, dislocations are introduced into the structure in a large amount by rolling. However, these dislocations are entangled with each other and hardly move during a fatigue test, and even during repeated deformation, dislocations do not disappear and repeated softening does not occur. On the other hand, by performing correction with a leveler, dislocations in the tissue are easy to move, coalescence and annihilation of dislocations due to repeated deformation increase, the amount of repeated softening increases, and as a result, the rate of progress decreases. it is conceivable that.

本発明によれば、疲労き裂進展に対する抵抗性が大きい鋼板が得られ、この鋼板を船舶、海洋構造物、橋梁、建築物、タンクおよび自動車等の繰り返し荷重下で使用される鋼構造物にこれを適用することによって、その安全性が高まり、構造物の寿命の延長、さらには鋼材使用量の削減が可能となる。   According to the present invention, a steel plate having a high resistance to fatigue crack growth is obtained, and this steel plate is used as a steel structure used under repeated loads such as ships, offshore structures, bridges, buildings, tanks and automobiles. By applying this, the safety can be increased, the life of the structure can be extended, and the amount of steel used can be reduced.

本発明の鋼板および製造方法における各条件の限定理由について詳細に説明する。
なお、以下に示す各元素の含有量を示す%は、質量%である。
The reason for limitation of each condition in the steel plate and manufacturing method of the present invention will be described in detail.
In addition,% which shows content of each element shown below is the mass%.

鋼板の化学組成
C:0.01〜0.1%
強度の確保および適量のベイナイト相を生成させるために、含有量を管理する必要がある。含有量が0.01%未満では、ベイナイト量が不十分で、き裂進展の抵抗性を増すことができない。一方、含有量が0.1%をこえると、溶接性が悪化する。そこで、C含有量は、0.01〜0.1%とした。望ましくは0.02〜0.08%である。
Chemical composition of steel sheet C: 0.01 to 0.1%
In order to ensure strength and generate an appropriate amount of bainite phase, it is necessary to control the content. If the content is less than 0.01%, the amount of bainite is insufficient and the resistance to crack propagation cannot be increased. On the other hand, if the content exceeds 0.1%, weldability deteriorates. Therefore, the C content is set to 0.01 to 0.1%. Desirably, it is 0.02 to 0.08%.

Si:0.03〜0.6%
Siは脱酸および強度を高める目的で添加する。 0.03%未満の含有量ではその効果が十分でなく、0.6%を超えるとベイナイト組織中に島状マルテンサイトが形成され、靱性の劣化や、表面性状の悪化をきたすので、その含有量は 0.03〜0.6%とした。なお、好適な範囲としては0.1〜0.5%である。
Si: 0.03-0.6%
Si is added for the purpose of deoxidation and increasing strength. If the content is less than 0.03%, the effect is not sufficient. If the content exceeds 0.6%, island-shaped martensite is formed in the bainite structure, resulting in deterioration of toughness and surface properties. The amount was 0.03 to 0.6%. In addition, as a suitable range, it is 0.1 to 0.5%.

Mn:0.3〜2%
Mnは構造用鋼としての強度の保証や安定したベイナイト相の生成に必要な元素で、0.3%未満では効果が十分でなく、2%をこえると溶接性や靱性が劣化する。好ましくは0.5%以上である。
Mn: 0.3-2%
Mn is an element necessary for guaranteeing strength as a structural steel and generating a stable bainite phase. If it is less than 0.3%, the effect is not sufficient, and if it exceeds 2%, weldability and toughness deteriorate. Preferably it is 0.5% or more.

安定して良好な効果が得られる望ましい範囲は、0.8 〜1.8 %である。
Sol.Al:0.001〜0.1%
Alは、脱酸の目的で製鋼時に添加する。含有量が0.001%未満では脱酸不十分で圧延前の鋼塊に内部欠陥が増加し、0.1%を超えると靱性が劣化する。好ましくは0.01%以上である。
A desirable range in which good effects can be stably obtained is 0.8 to 1.8%.
Sol.Al: 0.001 to 0.1%
Al is added during steelmaking for the purpose of deoxidation. If the content is less than 0.001%, deoxidation is insufficient and internal defects increase in the steel ingot before rolling, and if it exceeds 0.1%, the toughness deteriorates. Preferably it is 0.01% or more.

したがって、Al含有量は0.001%〜0.1%とした。なお、ある程度以上添加しても効果が飽和してくるので、望ましいのは0.01〜0.05%である。
N:0.0005〜0.008%
NはAlやTiと結合して析出物となり、オーステナイト粒の細粒化に寄与し、靭性を改善する作用がある。この効果を得るためには、Nは0.0005%以上含有させる必要がある。他方、N含有量が0.008%を超えると島状マルテンサイト比率が増加し、靭性が劣化するため、その上限は0.008%とした。
Therefore, the Al content is set to 0.001% to 0.1%. In addition, since an effect will be saturated even if it adds more than a certain amount, 0.01 to 0.05% is desirable.
N: 0.0005 to 0.008%
N combines with Al and Ti to form precipitates, contributes to the finer austenite grains, and has the effect of improving toughness. In order to acquire this effect, it is necessary to contain N 0.0005% or more. On the other hand, if the N content exceeds 0.008%, the island-like martensite ratio increases and the toughness deteriorates, so the upper limit was made 0.008%.

Cu、Ni、Cr、Mo、W:
これらの元素は、鋼の強度向上、疲労き裂進展抑制に効果があるとともに、耐食性向上にも効果がある。そのため、サワー原油中などの腐食環境下においても疲労き裂進展抑制に効果を発揮し、必要により含有させる。含有させる場合はCu、Ni、Crでは0.05〜1% 、Moでは0.05〜0.8%、Wでは0.05〜0.5%とする。これらの下限未満では十分な効果が得られない。一方、これらの上限を超えると、Cuでは熱間圧延時の割れ、Ni、Crでは溶接性の劣化、Mo、Wでは靭性の劣化をきたす。
Cu, Ni, Cr, Mo, W:
These elements are effective in improving the strength of steel and suppressing fatigue crack growth, and are also effective in improving corrosion resistance. Therefore, it is effective in suppressing fatigue crack growth even in a corrosive environment such as in sour crude oil, and is contained if necessary. In the case of inclusion, it is 0.05 to 1% for Cu, Ni and Cr, 0.05 to 0.8% for Mo, and 0.05 to 0.5% for W. Below these lower limits, a sufficient effect cannot be obtained. On the other hand, when these upper limits are exceeded, Cu causes cracking during hot rolling, Ni and Cr cause deterioration of weldability, and Mo and W cause deterioration of toughness.

Ti、Nb、V、B:
これらの元素は、強度を高め、疲労き裂進展速度を抑制する効果があり、必要により含有させる。
Ti, Nb, V, B:
These elements have the effect of increasing the strength and suppressing the fatigue crack growth rate, and are contained if necessary.

TiおよびNbは、析出硬化により強度を改善することができる。また、圧延条件や熱処理条件と組合せによりオーステナイト粒径の制御ができ、さらには焼入性向上による転位導入により疲労き裂進展速度が抑制する。これらの効果を十分得るにはTi、Nb共に0.005%以上含有させる必要がある。一方、多すぎると鋼の靱性を劣化させるので、その含有量の上限はどちらも 0.1%以下とした。好ましくは、どちらも0.01〜0.05%である。V、Bは、鋼の強度を高める他に靭性を高める効果がある。また、これらの元素は焼入性向上により、組織中の転位密度を上昇させ疲労き裂進展速度の向上に寄与する。特にBは焼入性向上による変態点低下の効果が大きいので、有効である。これらの効果を十分得るにはVは0.005%以上、Bは0.0005%以上含有させる必要がある。一方、Vは0.08%を、Bは0.003%を超えると、靭性が劣化する。好ましい含有量は、Vでは0.02〜0.06% 、Bでは0.0008〜0.002%である。   Ti and Nb can improve strength by precipitation hardening. Further, the austenite grain size can be controlled by a combination with rolling conditions and heat treatment conditions, and further, the fatigue crack growth rate is suppressed by introducing dislocations by improving hardenability. In order to obtain these effects sufficiently, it is necessary to contain both 0.005% or more of Ti and Nb. On the other hand, if the amount is too large, the toughness of the steel deteriorates, so the upper limit of the content of both was set to 0.1% or less. Preferably, both are 0.01 to 0.05%. V and B have the effect of increasing toughness in addition to increasing the strength of steel. Moreover, these elements contribute to the improvement of fatigue crack growth rate by increasing the dislocation density in the structure by improving the hardenability. In particular, B is effective because it has a great effect of lowering the transformation point by improving hardenability. In order to obtain these effects sufficiently, it is necessary to contain V in an amount of 0.005% or more and B in an amount of 0.0005% or more. On the other hand, if V exceeds 0.08% and B exceeds 0.003%, the toughness deteriorates. Preferable content is 0.02 to 0.06% for V and 0.0008 to 0.002% for B.

Ca,Mg、REM(希土類元素):
これらの元素は組織を微細化し、靭性改善に効果があり必要により含有させる。これらの効果を十分得るには各元素共に0.0005%以上含有させる必要がある。しかし、過剰に入れると靭性が劣化するのでCa、Mgの上限は0.007%、REMの上限は0.05%とした。したがって、Ca:0.0005〜0.007%、Mg:0.0005〜0.007%、REM:0.0005〜0.05%とした。
Ca, Mg, REM (rare earth elements):
These elements refine the structure and are effective in improving toughness, and are contained if necessary. In order to obtain these effects sufficiently, it is necessary to contain 0.0005% or more of each element. However, since the toughness deteriorates if added excessively, the upper limit of Ca and Mg is 0.007%, and the upper limit of REM is 0.05%. Therefore, Ca: 0.0005 to 0.007%, Mg: 0.0005 to 0.007%, and REM: 0.0005 to 0.05%.

PおよびSは、いずれも靱性を劣化させる不純物元素であり、少なければ少ないほどよい。本発明の鋼では、目立った影響をおよぼさない限界として、PおよびSの含有量はそれぞれ0.02%、0.01%以下とするのが望ましい。   P and S are both impurity elements that deteriorate toughness, and the smaller the better. In the steel of the present invention, it is desirable that the P and S contents be 0.02% and 0.01% or less, respectively, as a limit that does not have a noticeable effect.

(2)金属組織
ベイナイト組織
耐疲労き裂進展性に優れた鋼板の開発目標として、ΔK=20MPa√mで応力比0.1の条件においてda/dNを3.2以下としたが、図4で示したようにベイナイト分率で80%近辺において最もda/dNが小さくなることが分かった。
(2) Metal structure Bainitic structure As a development goal of a steel plate with excellent fatigue crack growth resistance, da / dN was set to 3.2 or less under the condition of ΔK = 20 MPa√m and stress ratio of 0.1. Thus, it was found that da / dN was the smallest in the vicinity of 80% in terms of the bainite fraction.

したがって、da/dNを3.2以下にするには、図4から分かるようにベイナイト分率を30%以上とする必要がある。好ましくは35〜90%である。なお、上限は規定しないが92%以下が望ましい。   Therefore, in order to make da / dN 3.2 or less, it is necessary to make the bainite fraction 30% or more as can be seen from FIG. Preferably it is 35 to 90%. The upper limit is not specified but is preferably 92% or less.

マルテンサイト組織、パーライト組織
マルテンサイト、パーライトは、硬く脆い組織のため相境界で疲労き裂の進展を抑制できないことから極力少ない方がよい。それらの合計が5%を超えるとda/dNが劣化するので、0〜5%とした。なお、残部はフェライト組織からなる。
Martensite structure and pearlite structure Martensite and pearlite are preferably as few as possible because they are hard and brittle and cannot suppress the growth of fatigue cracks at the phase boundary. If the total of these exceeds 5%, da / dN deteriorates, so 0 to 5% was set. The balance consists of a ferrite structure.

(3)製造方法
(i)鋼片の加熱温度、熱間圧延:
加熱温度は1000〜1250℃としたが、この温度は鋼片(スラブ)の中心温度である。これは伝熱計算により上記温度範囲になるように、加熱炉の各ゾーンの温度設定、在炉時間を決めればよい。1000℃未満ではフェライト率が高くなり、き裂の進展速度が大きくなる。また1250℃を超える場合、組織が粗大になり、靭性が劣化するためである。熱間圧延は通常の方法でおこなえばよく、また仕上げ温度は特に規定はしていないが、Ar3 点を充分上回る温度にて所要厚さに仕上げることが望ましい。また圧延中の各パス、特に仕上げ圧延工程においては、圧下率を10%以上とすることが望ましい。これは金属組織のベイナイト分率を30%以上とするためである。
(3) Manufacturing method
(i) Steel slab heating temperature, hot rolling:
Although heating temperature was 1000-1250 degreeC, this temperature is the center temperature of a steel piece (slab). What is necessary is just to determine the temperature setting and in-furnace time of each zone of a heating furnace so that this may become the said temperature range by heat-transfer calculation. If it is less than 1000 ° C., the ferrite rate increases and the crack growth rate increases. Moreover, when it exceeds 1250 degreeC, a structure | tissue will become coarse and toughness will deteriorate. The hot rolling may be performed by a normal method, and the finishing temperature is not particularly specified, but it is desirable to finish to the required thickness at a temperature sufficiently higher than the Ar 3 point. In each pass during rolling, particularly in the finish rolling process, it is desirable that the rolling reduction be 10% or more. This is to make the bainite fraction of the metal structure 30% or more.

(ii) 加速冷却:
加速冷却とは、水などの冷却媒体を用いて強制的に鋼板を冷却することをいう。
a)熱間圧延直後に加速冷却をおこなう、いわゆるTMCP型の製造方法。
少なくとも650〜500℃の温度範囲の強制冷却速度を5℃/s以上とするのは、5℃/s未満ではフェライト率が高くなり、き裂進展速度が大きくなるからである。また、強制冷却停止温度を500℃以下とするのは、強制冷却停止温度が500℃より高くなると、フェライト率が高くなり、裂進展速度が大きくなるからである。好ましい強制冷却停止温度範囲は450℃以下であり、更に好ましくは400℃以下である。
(ii) Accelerated cooling:
Accelerated cooling refers to forcibly cooling a steel sheet using a cooling medium such as water.
a) A so-called TMCP type manufacturing method in which accelerated cooling is performed immediately after hot rolling.
The reason why the forced cooling rate in the temperature range of at least 650 to 500 ° C. is set to 5 ° C./s or more is that if it is less than 5 ° C./s, the ferrite rate increases and the crack growth rate increases. The reason why the forced cooling stop temperature is set to 500 ° C. or less is that when the forced cooling stop temperature is higher than 500 ° C., the ferrite rate increases and the crack growth rate increases. A preferable forced cooling stop temperature range is 450 ° C. or lower, and more preferably 400 ° C. or lower.

b)圧延直後に加速冷却はせずに一旦放冷した後で再度鋼板を加熱して強制冷却により焼き入れする製造方法。
この方法は熱間圧延後放冷し、別ラインで再加熱、強制冷却および形状矯正をおこなう方法であり、強制冷却条件および強制冷却停止温度の限定理由は上記a)の場合と同様である。
b) A manufacturing method in which the steel sheet is heated again after quenching without accelerated cooling immediately after rolling and then quenched by forced cooling.
This method is a method of cooling after hot rolling and performing reheating, forced cooling and shape correction in another line, and the reasons for limiting the forced cooling conditions and the forced cooling stop temperature are the same as in the case of a) above.

上記a)およびb)の方法共に強制冷却の停止温度の下限は限定するものではなく、常温まで強制冷却してもよい。
再加熱温度をAc点以上とするのは、Ac点を下回ると焼入れによる変態が生じないので目標のベイナイト分率30%以上を有した鋼材を得ることができないためである。
In the methods a) and b), the lower limit of the forced cooling stop temperature is not limited, and forced cooling may be performed to room temperature.
The reason why the reheating temperature is set to Ac 1 point or more is that if the temperature is less than Ac 1 point, transformation due to quenching does not occur, and thus a steel material having a target bainite fraction of 30% or more cannot be obtained.

(iii) 焼戻し温度:
焼戻し処理は、強度調整と靭性改善が必要な場合に施す。焼戻しをおこなう場合、焼戻し温度は450℃以下とし、下限は限定しないが、その効果を得るには300℃以上とするのが好ましい。
(iii) Tempering temperature:
Tempering is applied when strength adjustment and toughness improvement are required. When tempering is performed, the tempering temperature is set to 450 ° C. or lower, and the lower limit is not limited, but is preferably set to 300 ° C. or higher to obtain the effect.

本発明者らは、C:0.06%,Si:0.30%,Mn:1.50%,Cu:0.2%,Ni:0.1%, Nb:0.02%, sol.Al:0.03%、N:0.003%の組成を有する鋼片を1150℃に加熱後、仕上げ温度870℃で熱間加工を施した後、810℃から加速冷却を開始し、400℃で冷却を停止して得た板厚25mmの鋼材を用いて、焼戻し温度がda/dNに及ぼす影響を調査した。   The inventors have a composition of C: 0.06%, Si: 0.30%, Mn: 1.50%, Cu: 0.2%, Ni: 0.1%, Nb: 0.02%, sol.Al: 0.03%, N: 0.003%. After heating the steel piece to 1150 ° C. and hot-working at a finishing temperature of 870 ° C., using accelerated steel from 810 ° C. and stopping cooling at 400 ° C., using a 25 mm thick steel material The effect of tempering temperature on da / dN was investigated.

図7は、試験の結果得られた焼戻し温度と疲労き裂進展速度の関係を示す図である。
同図に示すように450℃以上では、き裂進展速度が急激に劣化することが明らかとなった。原因は定かではないが、ベイナイト中の転位が消滅し、き裂進展抑制効果が減少するためと考えられる。
FIG. 7 is a diagram showing the relationship between the tempering temperature and the fatigue crack growth rate obtained as a result of the test.
As shown in the figure, it was revealed that the crack growth rate deteriorates rapidly at 450 ° C. or higher. The cause is not clear, but it is thought that dislocations in bainite disappear and the effect of suppressing crack growth decreases.

(iv) 形状矯正:
形状矯正に用いる装置は特に限定するものでないが、特にローラレベラー方式が望ましい。発明者らの実験によれば、ローラレベラーの場合、塑性変形率が重要な管理項目となる。
(iv) Shape correction:
The apparatus used for shape correction is not particularly limited, but a roller leveler method is particularly desirable. According to the inventors' experiment, in the case of a roller leveler, the plastic deformation rate is an important management item.

塑性変形率と、き裂進展速度の関係は試験結果から得られた図5で示した通りで、塑性変形率が0.3〜0.87であれば、矯正加工前に比べ、速度変化比が小さくなることがわかる。例えばこの速度変化比を0.9以下とする場合には、レベラーの塑性変形率を0.3〜0.82とすることが望ましい。   The relationship between the plastic deformation rate and the crack growth rate is as shown in FIG. 5 obtained from the test results. If the plastic deformation rate is 0.3 to 0.87, the rate of change in speed compared to that before straightening. It turns out that becomes small. For example, when the speed change ratio is 0.9 or less, the plastic deformation rate of the leveler is preferably 0.3 to 0.82.

なお、本発明ではこのレベラーによる矯正が特に重要である。このメカニズムとしては圧延で生じた初期転位を疲労試験の際に容易に動きやすい転位に変化させるためである。
圧延によって多量の転位が組織に導入されるが、これらの転位は互いにからみあって疲労試験の際に動き難く、繰り返し変形においても転位同士の消滅が起こらず繰り返し軟化の現象が生じない。これに対し、レベラーによる矯正を行うことにより、組織中の転位が動き易くなり、繰り返し変形による転位同士の合体・消滅が多くなり、繰り返し軟化量が大きくなり、その結果、進展速度が遅くなるためと考えられる。
In the present invention, correction by this leveler is particularly important. This is because the initial dislocation generated by rolling is changed to a dislocation that is easily moved during the fatigue test.
Although a large amount of dislocations is introduced into the structure by rolling, these dislocations are entangled with each other and hardly move during a fatigue test, and even during repeated deformation, dislocations do not disappear and repeated softening does not occur. On the other hand, by performing correction with a leveler, dislocations in the tissue are easy to move, and coalescence and annihilation between dislocations due to repeated deformation increase, and the amount of repeated softening increases, resulting in a slow progress rate. it is conceivable that.

表1に示す化学組成の鋼片(スラブ)を用い、 表2に示す製造条件で板厚15mmの熱間圧延鋼板を製造した。   Using a steel slab (slab) having the chemical composition shown in Table 1, a hot-rolled steel sheet having a thickness of 15 mm was manufactured under the manufacturing conditions shown in Table 2.

Figure 2005336514
Figure 2005336514

Figure 2005336514
Figure 2005336514

得られた鋼板から各種試験片を採取し、光学顕微鏡組織観察、引張試験およびシャルピー試験を実施した。また、図8で示したCT試験片を採取しASTM規格E 647にしたがって疲労き裂進展試験をおこなった。その結果を表3に示す。   Various test pieces were collected from the obtained steel sheet, and subjected to optical microscope structure observation, tensile test and Charpy test. Further, the CT specimen shown in FIG. 8 was collected and subjected to a fatigue crack growth test in accordance with ASTM standard E 647. The results are shown in Table 3.

Figure 2005336514
Figure 2005336514

金属組織の観察、引張強度、靭性および疲労き裂進展速度の評価は以下の方法でおこなった。
金属組織は、板厚の1/4に相当する部分から採取した試料の断面を研磨し、2%ナイタール腐食液によりエッチングを施した面について、光学顕微鏡観察によりベイナイト、パーライトの分率を測定した。1試料について10視野測定し、10個の測定値の平均を当該鋼板のベイナイト分率、パーライト分率とした。
Observation of the metal structure, tensile strength, toughness, and fatigue crack growth rate were evaluated by the following methods.
The metal structure was obtained by polishing a cross section of a sample taken from a portion corresponding to 1/4 of the plate thickness, and measuring the fraction of bainite and pearlite by optical microscope observation on the surface etched with 2% nital corrosive solution. . Ten visual fields were measured for one sample, and the average of the ten measurements was taken as the bainite fraction and pearlite fraction of the steel sheet.

引張試験片は、JIS14B号引張試験片を圧延方向に直角に採取して、引張試験に供した。靭性は、JIS-Z2202に規定される4号のシャルピー衝撃試験片を板厚中心部から圧延方向に平行に採取してシャルピー衝撃試験をおこない、衝撃吸収エネルギー(vE-20、単位はJ)を求めた。   As the tensile test piece, a JIS 14B tensile test piece was sampled at right angles to the rolling direction and subjected to a tensile test. As for toughness, No. 4 Charpy impact test piece specified in JIS-Z2202 is taken in parallel to the rolling direction from the center of the plate thickness and subjected to Charpy impact test, and impact absorption energy (vE-20, unit is J). Asked.

疲労き裂進展速度は、図8に示したCT試験片と電気油圧式閉ループ型疲労試験装置を用いる疲労試験法により測定した。
図8は、CT試験片を示す図で、図8(a)は正面図、図(b)は側面図である。
The fatigue crack growth rate was measured by a fatigue test method using a CT test piece and an electrohydraulic closed loop fatigue test apparatus shown in FIG.
FIG. 8 is a view showing a CT test piece, FIG. 8A is a front view, and FIG. 8B is a side view.

図9は電気油圧式閉ループ型疲労試験装置を示す側面図である。図9に示す装置で、参照番号1はCT試験片、2は荷重測定用ロードセル、3は油圧シリンダー、4は油圧源、5は油圧バルブ、6は波形発生器、7は負荷制御器、8aおよび8bは負荷棒をそれぞれ示す。図8に示すCT試験片にはノッチの先端に長さ2.5mmの疲労予き裂が導入してあり、その上下の穴部に負荷棒8aおよび8bを装着する。   FIG. 9 is a side view showing an electrohydraulic closed loop fatigue testing apparatus. In the apparatus shown in FIG. 9, reference numeral 1 is a CT test piece, 2 is a load cell for load measurement, 3 is a hydraulic cylinder, 4 is a hydraulic source, 5 is a hydraulic valve, 6 is a waveform generator, 7 is a load controller, 8a And 8b show load bars respectively. In the CT test piece shown in FIG. 8, a fatigue precrack having a length of 2.5 mm is introduced at the tip of the notch, and load rods 8a and 8b are mounted in the upper and lower holes.

本装置により、CT試験片1に油圧シリンダ3より負荷棒8aおよび8bを経由して疲労予き裂先端部に繰り返し応力を負荷する。試験片は厚さ方向で板厚中心の部分から疲労き裂の長手方向が圧延方向に直角になるように採取し、表裏面を0.5mmずつ削除し鏡面研磨を施した。   With this apparatus, the CT test piece 1 is repeatedly subjected to stress from the hydraulic cylinder 3 via the load rods 8a and 8b to the fatigue precrack tip. The specimens were taken from the center of the plate thickness in the thickness direction so that the longitudinal direction of the fatigue crack was perpendicular to the rolling direction, and the front and back surfaces were removed by 0.5 mm and mirror polished.

疲労試験条件は次のとおりとした。
f(繰り返し速度)=20Hz
R(応力比)=0.1
T(試験温度)=室温
試験雰囲気は大気中
疲労き裂進展試験の結果、いずれの試験片の場合も、中ΔK領域(△K:応力拡大係数範囲で最大応力拡大係数と最小応力拡大係数との差)における疲労き裂進展速度が評価された。本試験での中△K領域(15〜34MPa√m)は疲労き裂進展の第IIb領域に相当した。すなわちParis則〔Trans.ASTM,Ser.D.85、523(1963)〕
da/dN=C(△K)m
ただし△K:MPa√m、da/dN:mm/cycle
が成り立つことが判明した。
The fatigue test conditions were as follows.
f (repetition rate) = 20Hz
R (stress ratio) = 0.1
T (test temperature) = room temperature The test atmosphere is in the atmosphere. As a result of fatigue crack growth test, in each specimen, the medium ΔK region (ΔK: the maximum stress intensity factor and the minimum stress intensity factor in the stress intensity factor range) Fatigue crack growth rate was evaluated. The middle ΔK region (15 to 34 MPa√m) in this test corresponded to the IIb region of fatigue crack growth. That is, the Paris rule [Trans. ASTM, Ser. D. 85, 523 (1963)]
da / dN = C (ΔK) m
△ K: MPa√m, da / dN: mm / cycle
Was found to hold.

このことから、本発明では、疲労き裂進展特性はこの中△K領域の△K=20MPa√mにおける、き裂進展速度da/dN(mm/cycle)で評価した。
表2、3に上記の各試験の結果を示す。これらの表に示すように、組織と成分が本発明で規定する条件を満足する鋼種記号A〜Lは、疲労き裂進展速度が3.2×10-5mm/cycle以下と遅く、極めて優れた疲労き裂進展抵抗性を有していた。これに対し、鋼種記号M〜Qの鋼板は、吸収エネルギーが100Jに満たなかったり、疲労き裂進展速度が4×10-5mm/cycleを超えており、所望の疲労き裂進展抵抗性が得られなかった。
Therefore, in the present invention, the fatigue crack growth characteristics were evaluated by the crack growth rate da / dN (mm / cycle) at ΔK = 20 MPa√m in the ΔK region.
Tables 2 and 3 show the results of the above tests. As shown in these tables, steel types A to L whose structure and components satisfy the conditions specified in the present invention have a fatigue crack growth rate as slow as 3.2 × 10 −5 mm / cycle or less, and extremely excellent fatigue It had crack growth resistance. On the other hand, steel plates with steel grades M to Q have an absorbed energy of less than 100 J or a fatigue crack growth rate exceeding 4 × 10 -5 mm / cycle, and the desired fatigue crack growth resistance. It was not obtained.

疲労き裂進展速度と応力拡大係数範囲との関係を示す図である。It is a figure which shows the relationship between a fatigue crack growth rate and the stress intensity factor range. フェライト単相鋼、ベイナイト単相鋼からなる積層型CT試験片の斜視図である。1 is a perspective view of a multilayer CT specimen made of a ferrite single phase steel and a bainite single phase steel. FIG. 疲労き裂長さと疲労き裂進展速度との関係を示す図である。It is a figure which shows the relationship between fatigue crack length and fatigue crack growth rate. ベイナイト組織分率と疲労き裂進展速度da/dNとの関係を示す図である。It is a figure which shows the relationship between a bainite structure fraction and fatigue crack growth rate da / dN. 塑性変形率とき裂進展速度変化率との関係を示す図である。It is a figure which shows the relationship between a plastic deformation rate and a crack growth rate change rate. 図6(a) 、(b) 、(c) は、疲労き裂進展速度の測定方法を説明するための図である。FIGS. 6A, 6B and 6C are diagrams for explaining a method of measuring the fatigue crack growth rate. 焼戻し温度と疲労き裂進展速度の関係を示す図である。It is a figure which shows the relationship between tempering temperature and fatigue crack growth rate. CT試験片正面図と側面図である。They are a CT test piece front view and a side view. 電気油圧式閉ループ型疲労試験装置を示す側面図である。It is a side view which shows an electrohydraulic closed loop type fatigue test apparatus.

符号の説明Explanation of symbols

1.CT試験片
2.荷重測定用ロードセル
3.油圧シリンダー
4.油圧源
6.波形発生器
7.負荷制御器
8.負荷棒
1. CT specimen 2. 2. Load cell for load measurement Hydraulic cylinder4. Hydraulic source 6. 6. Waveform generator Load controller 8. Load rod

Claims (10)

質量%で、C:0.01〜0.1%、Si:0.03〜0.6%、Mn:0.3〜2%、sol.Al:0.001〜0.1%、N:0.0005〜0.008%を含有し、残部はFeおよび不純物からなる化学組成を有し、かつ金属組織が面積率で30%以上のベイナイト組織、合計で0〜5%のマルテンサイト組織とパーライト組織、残部がフェライト組織であることを特徴とする鋼板。   In mass%, C: 0.01 to 0.1%, Si: 0.03 to 0.6%, Mn: 0.3 to 2%, sol. Al: 0.001 to 0.1%, N: 0.0005-0.008% is contained, the balance has a chemical composition consisting of Fe and impurities, and the metal structure is a bainite structure with an area ratio of 30% or more, and a total martensite structure of 0-5% A steel sheet characterized by having a pearlite structure and the balance being a ferrite structure. Feの一部に代えて、さらに質量%で、Cu:0.05〜1%、Ni:0.05〜1%、Cr:0.05〜1%、Mo:0.05〜0.8%およびW:0.05〜0.5%の1種または2種以上を含有することを特徴とする請求項1に記載の鋼板。   In place of a part of Fe, in mass%, Cu: 0.05 to 1%, Ni: 0.05 to 1%, Cr: 0.05 to 1%, Mo: 0.05 to 0.8% And W: 0.05-0.5% of 1 type or 2 types or more are contained, The steel plate of Claim 1 characterized by the above-mentioned. Feの一部に代えて、さらに質量%で、Nb:0.005〜0.08%、Ti:0.005%〜0.03%、V:0.005〜0.08%およびB:0.0005〜0.003%の1種または2種以上を含有することを特徴とする請求項1または2に記載の鋼板。   In place of a part of Fe, further mass%, Nb: 0.005 to 0.08%, Ti: 0.005% to 0.03%, V: 0.005 to 0.08% and B: 0 The steel sheet according to claim 1 or 2, characterized by containing one or more of 0.0005 to 0.003%. Feの一部に代えて、さらに質量%で、Ca:0.0005〜0.007%、Mg:0.0005〜0.007%およびREM:0.0005〜0.05%の1種または2種以上を含むことを特徴とする請求項1〜3のいずれかに記載の鋼板。   In place of a part of Fe, by mass%, Ca: 0.0005-0.007%, Mg: 0.0005-0.007% and REM: 0.0005-0.05% The steel plate according to any one of claims 1 to 3, comprising more than seeds. 請求項1〜4のいずれかに記載の化学組成を有する鋼片を、1000℃〜1250℃の温度範囲内に加熱した後、熱間圧延をしてから冷却を行い、冷却後に形状矯正をおこなう鋼板の製造方法であって、前記冷却に際し、少なくとも650℃〜500℃の温度域は平均冷却速度5℃/s以上で加速冷却をすることを特徴とする鋼板の製造方法。   The steel slab having the chemical composition according to any one of claims 1 to 4 is heated in a temperature range of 1000 ° C to 1250 ° C, then hot-rolled and then cooled, and the shape is corrected after cooling. A method for producing a steel plate, comprising the step of performing accelerated cooling at an average cooling rate of 5 ° C./s or more in a temperature range of at least 650 ° C. to 500 ° C. during the cooling. 請求項1〜4のいずれかに記載の化学組成を有する鋼片を、1000℃〜1250℃の温度範囲内に加熱した後、熱間圧延をして、次いで熱間圧延後Ac点以上の温度に再加熱して冷却を行い、冷却後に形状矯正をおこなう鋼板の製造方法であって、前記冷却に際し、少なくとも650℃〜500℃の温度域は平均冷却速度5℃/s以上で加速冷却をすることを特徴とする鋼板の製造方法。 The steel slab having the chemical composition according to any one of claims 1 to 4 is heated in a temperature range of 1000 ° C to 1250 ° C, then hot-rolled, and then hot-rolled, Ac 1 point or more A method of manufacturing a steel sheet which is reheated to a temperature and cooled, and is subjected to shape correction after cooling. In the cooling, at least a temperature range of 650 ° C. to 500 ° C. is accelerated at an average cooling rate of 5 ° C./s or more. A method for producing a steel sheet, comprising: 請求項5または6に記載の製造方法において、加速冷却後さらに450℃以下に加熱して焼戻し処理を施すことを特徴とする鋼板の製造方法。   The manufacturing method according to claim 5 or 6, wherein after accelerating cooling, the steel plate is further heated to 450 ° C or lower to be tempered. 鋼板の塑性変形率を0.3〜0.87として形状矯正をすることを特徴とする請求項5〜7のいずれかに記載の鋼板の製造方法。   The method of manufacturing a steel sheet according to any one of claims 5 to 7, wherein the shape correction is performed by setting the plastic deformation rate of the steel sheet to 0.3 to 0.87. 形状矯正をローラレベラにより行い、下記式から求まるローラレベラーの鋼板入り側から3本目のロールによる鋼板の塑性変形率(η)を、0.3〜0.87として形状矯正をすることを特徴とする請求項5〜7のいずれかに記載の鋼板の製造方法。
η=1−2ρiσy/Et
ここで、ρi:ローラレベラー入り側から3本目のロールでの鋼板の曲率半径、σy:2次元降伏応力、σy=1.15×σe(σeは通常鋼材で表現する降伏応力)、E:縦弾性係数、t:板厚とする。
Shape correction is performed with a roller leveler, and the shape correction is performed by setting the plastic deformation rate (η) of the steel sheet by the third roll from the steel sheet entrance side of the roller leveler obtained from the following formula to 0.3 to 0.87. The manufacturing method of the steel plate in any one of Claims 5-7.
η = 1−2ρ i σ y / Et
Where ρ i is the radius of curvature of the steel sheet in the third roll from the roller leveler entry side, σ y is the two-dimensional yield stress, σ y = 1.15 × σe (σe is the yield stress expressed in ordinary steel), E: Longitudinal elastic modulus, t: thickness.
請求項1〜4のいずれかに記載の鋼材または請求項5〜9のいずれかに記載の製造方法により製造された鋼材を用いた構造物。   A structure using the steel material according to any one of claims 1 to 4 or the steel material produced by the production method according to any one of claims 5 to 9.
JP2004153572A 2004-05-24 2004-05-24 Steel sheet with excellent fatigue crack growth resistance and method for producing the same Expired - Fee Related JP4466196B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004153572A JP4466196B2 (en) 2004-05-24 2004-05-24 Steel sheet with excellent fatigue crack growth resistance and method for producing the same
KR1020097000477A KR100925940B1 (en) 2004-05-24 2005-05-23 Steel plate excellent in resistance to fatigue crack progression
PCT/JP2005/009341 WO2005113848A1 (en) 2004-05-24 2005-05-23 Steel plate excellent in resistance to fatigue crack progression
CNB2005800163578A CN100500911C (en) 2004-05-24 2005-05-23 Steel plate excellent in resistance to fatigue crack expansibility and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004153572A JP4466196B2 (en) 2004-05-24 2004-05-24 Steel sheet with excellent fatigue crack growth resistance and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009273253A Division JP5304619B2 (en) 2009-12-01 2009-12-01 Steel sheet with excellent fatigue crack growth resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005336514A true JP2005336514A (en) 2005-12-08
JP4466196B2 JP4466196B2 (en) 2010-05-26

Family

ID=35428424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004153572A Expired - Fee Related JP4466196B2 (en) 2004-05-24 2004-05-24 Steel sheet with excellent fatigue crack growth resistance and method for producing the same

Country Status (4)

Country Link
JP (1) JP4466196B2 (en)
KR (1) KR100925940B1 (en)
CN (1) CN100500911C (en)
WO (1) WO2005113848A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072752A1 (en) * 2005-12-19 2007-06-28 Kabushiki Kaisha Kobe Seiko Sho Sheet steel excellent in fatigue crack propagation resistance
JP2007169678A (en) * 2005-12-19 2007-07-05 Kobe Steel Ltd Steel plate excellent in suppression of fatigue crack propagation
JP2007321220A (en) * 2006-06-02 2007-12-13 Kobe Steel Ltd Steel plate with excellent resistance to fatigue crack propagation
WO2008069289A1 (en) * 2006-11-30 2008-06-12 Nippon Steel Corporation Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP2008156754A (en) * 2006-11-30 2008-07-10 Nippon Steel Corp Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP2008169440A (en) * 2007-01-12 2008-07-24 Jfe Steel Kk Thin-walled low-yield ratio high-tensile-strength steel sheet and manufacturing method therefor
JP2008202119A (en) * 2007-02-22 2008-09-04 Sumitomo Metal Ind Ltd High-tensile steel having excellent ductile crack initiation resistance
JP2008303424A (en) * 2007-06-07 2008-12-18 Nippon Steel Corp Method for producing high-tension steel excellent in weld-cracking resistance
JP2009121882A (en) * 2007-11-13 2009-06-04 Ihi Corp Soundness verifying method of welded structure
KR100905368B1 (en) * 2006-05-23 2009-07-01 가부시키가이샤 고베 세이코쇼 Steel plate excellent in resistance to fatigue crack progression
JP2009149917A (en) * 2006-11-30 2009-07-09 Nippon Steel Corp Weld steel pipe for high-strength line pipe excellent in low-temperature toughness, and manufacturing method therefor
KR100957965B1 (en) * 2007-12-27 2010-05-17 주식회사 포스코 High Strength Hot Rolled Steel Sheet for Hot Forming with Reduced Cracking in Cooling and Coiling and Manufacturing Method Thereof
CN105200316A (en) * 2015-09-11 2015-12-30 首钢总公司 Slurry conveying pipeline steel and manufacturing process of slurry conveying pipeline steel
JP2017043787A (en) * 2015-08-24 2017-03-02 Jfeスチール株式会社 Steel material for structure excellent in ethanol corrosion resistance
JP7533414B2 (en) 2021-09-29 2024-08-14 Jfeスチール株式会社 Steel plate with excellent fatigue crack propagation resistance and manufacturing method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8128762B2 (en) 2008-08-12 2012-03-06 Kobe Steel, Ltd. High-strength steel sheet superior in formability
CN103328671B (en) * 2011-03-18 2015-06-03 新日铁住金株式会社 Hot-rolled steel sheet exhibiting exceptional press-molding properties and method for manufacturing same
CN103667963B (en) * 2013-12-06 2015-12-09 武汉钢铁(集团)公司 The low-carbon bainite construction(al)steel of a kind of yield tensile ratio < 0.8 and production method
CN103981459B (en) * 2014-05-30 2016-03-16 武汉钢铁(集团)公司 A kind of high-strength fireproof anti-seismic structure steel and production method
CN104561796B (en) 2014-12-19 2016-08-24 宝山钢铁股份有限公司 Fatigue crack extends excellent steel plate and manufacture method thereof
KR101797300B1 (en) * 2015-11-09 2017-11-14 주식회사 포스코 Steel for construction having excellent surface flatness and method for manufacturing the same
CN113528957A (en) * 2021-06-30 2021-10-22 武汉钢铁有限公司 High-strength container steel with excellent fatigue and corrosion resistance and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2690791B2 (en) * 1989-10-28 1997-12-17 株式会社神戸製鋼所 High-strength hot-rolled steel sheet with excellent workability and method for producing the same
JP3255790B2 (en) * 1994-03-18 2002-02-12 新日本製鐵株式会社 Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness
JPH10259448A (en) * 1997-03-21 1998-09-29 Kobe Steel Ltd High strength steel sheet excellent in static absorbed energy and impact resistance and its production
JP2000129392A (en) * 1998-10-20 2000-05-09 Nippon Steel Corp High strength steel product excellent in fatigue crack propagation resistance, and its manufacture
DE60213736T2 (en) * 2001-11-14 2007-08-16 Sumitomo Metal Industries, Ltd. Steel with improved fatigue strength and method of manufacture
JP4348102B2 (en) * 2002-05-20 2009-10-21 新日本製鐵株式会社 490 MPa class high strength steel excellent in high temperature strength and manufacturing method thereof
JP3869747B2 (en) * 2002-04-09 2007-01-17 新日本製鐵株式会社 High-strength steel plate, high-strength steel pipe and manufacturing method excellent in deformation performance
JP3770208B2 (en) * 2002-05-30 2006-04-26 住友金属工業株式会社 Steel material excellent in fatigue crack growth resistance and its manufacturing method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169678A (en) * 2005-12-19 2007-07-05 Kobe Steel Ltd Steel plate excellent in suppression of fatigue crack propagation
JP4676871B2 (en) * 2005-12-19 2011-04-27 株式会社神戸製鋼所 Steel sheet with excellent fatigue crack growth control
WO2007072752A1 (en) * 2005-12-19 2007-06-28 Kabushiki Kaisha Kobe Seiko Sho Sheet steel excellent in fatigue crack propagation resistance
KR100905368B1 (en) * 2006-05-23 2009-07-01 가부시키가이샤 고베 세이코쇼 Steel plate excellent in resistance to fatigue crack progression
JP2007321220A (en) * 2006-06-02 2007-12-13 Kobe Steel Ltd Steel plate with excellent resistance to fatigue crack propagation
JP2008156754A (en) * 2006-11-30 2008-07-10 Nippon Steel Corp Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP2009149917A (en) * 2006-11-30 2009-07-09 Nippon Steel Corp Weld steel pipe for high-strength line pipe excellent in low-temperature toughness, and manufacturing method therefor
KR101119240B1 (en) 2006-11-30 2012-03-20 신닛뽄세이테쯔 카부시키카이샤 Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
US8039118B2 (en) 2006-11-30 2011-10-18 Nippon Steel Corporation Welded steel pipe for high strength line pipe superior in low temperature toughness and method of production of the same
WO2008069289A1 (en) * 2006-11-30 2008-06-12 Nippon Steel Corporation Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP2008169440A (en) * 2007-01-12 2008-07-24 Jfe Steel Kk Thin-walled low-yield ratio high-tensile-strength steel sheet and manufacturing method therefor
JP2008202119A (en) * 2007-02-22 2008-09-04 Sumitomo Metal Ind Ltd High-tensile steel having excellent ductile crack initiation resistance
JP2008303424A (en) * 2007-06-07 2008-12-18 Nippon Steel Corp Method for producing high-tension steel excellent in weld-cracking resistance
JP2009121882A (en) * 2007-11-13 2009-06-04 Ihi Corp Soundness verifying method of welded structure
KR100957965B1 (en) * 2007-12-27 2010-05-17 주식회사 포스코 High Strength Hot Rolled Steel Sheet for Hot Forming with Reduced Cracking in Cooling and Coiling and Manufacturing Method Thereof
JP2017043787A (en) * 2015-08-24 2017-03-02 Jfeスチール株式会社 Steel material for structure excellent in ethanol corrosion resistance
CN105200316A (en) * 2015-09-11 2015-12-30 首钢总公司 Slurry conveying pipeline steel and manufacturing process of slurry conveying pipeline steel
CN105200316B (en) * 2015-09-11 2017-05-03 首钢总公司 Slurry conveying pipeline steel and manufacturing process of slurry conveying pipeline steel
JP7533414B2 (en) 2021-09-29 2024-08-14 Jfeスチール株式会社 Steel plate with excellent fatigue crack propagation resistance and manufacturing method thereof

Also Published As

Publication number Publication date
KR20090011053A (en) 2009-01-30
CN1957100A (en) 2007-05-02
WO2005113848A1 (en) 2005-12-01
KR100925940B1 (en) 2009-11-09
JP4466196B2 (en) 2010-05-26
CN100500911C (en) 2009-06-17

Similar Documents

Publication Publication Date Title
JP4466196B2 (en) Steel sheet with excellent fatigue crack growth resistance and method for producing the same
JP5776398B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5034308B2 (en) High strength thick steel plate with excellent delayed fracture resistance and method for producing the same
JP4897125B2 (en) High-strength steel sheet and its manufacturing method
JP5605527B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP5900303B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP4951997B2 (en) A method for producing a high-tensile steel sheet having a tensile strength of 550 MPa or more.
US20110253271A1 (en) High-strength steel plate and producing method therefor
JP2007332402A (en) Steel material superior in fatigue-crack propagation resistance and manufacturing method therefor
JP2012036501A (en) High-tensile strength steel sheet having superior bending property and low-temperature toughness, and method for manufacturing the same
US20220002851A1 (en) Ultrahigh-strength steel having excellent cold workability and ssc resistance, and manufacturing method therefor
WO2015151468A1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP4645461B2 (en) High-strength steel material excellent in ductile crack initiation characteristics and fatigue crack propagation characteristics and method for producing the same
JP3741078B2 (en) High strength steel material with excellent fatigue crack growth resistance and its manufacturing method
KR20210064296A (en) High-strength steel sheet for sour-resistant line pipe and manufacturing method thereof, and high-strength steel pipe using high-strength steel sheet for sour-resistant line pipe
JP4706477B2 (en) Steel material excellent in fatigue crack growth resistance and its manufacturing method
JP4325503B2 (en) Steel material with excellent fatigue characteristics and method for producing the same
JP2007197776A (en) High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor
JP4645462B2 (en) A high-strength steel material excellent in fatigue crack propagation characteristics with low strength dependence and a method for producing the same.
KR101791324B1 (en) High-strength steel material having excellent fatigue properties, and method for producing same
JP5891748B2 (en) High-strength, high-toughness thick-walled steel plate with excellent material uniformity in the steel plate and method for producing the same
JP5304619B2 (en) Steel sheet with excellent fatigue crack growth resistance and method for producing the same
JP5446900B2 (en) High tensile hot-rolled steel sheet having high bake hardenability and excellent stretch flangeability and method for producing the same
JP2007277697A (en) High tensile strength thick steel plate having excellent fatigue crack propagation resistance and brittle crack propagation arrest property and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Ref document number: 4466196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees