JPH10259448A - High strength steel sheet excellent in static absorbed energy and impact resistance and its production - Google Patents

High strength steel sheet excellent in static absorbed energy and impact resistance and its production

Info

Publication number
JPH10259448A
JPH10259448A JP8756597A JP8756597A JPH10259448A JP H10259448 A JPH10259448 A JP H10259448A JP 8756597 A JP8756597 A JP 8756597A JP 8756597 A JP8756597 A JP 8756597A JP H10259448 A JPH10259448 A JP H10259448A
Authority
JP
Japan
Prior art keywords
less
steel sheet
temperature
impact resistance
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8756597A
Other languages
Japanese (ja)
Inventor
Kenichi Watanabe
憲一 渡辺
Yukiaki Tamura
享昭 田村
Yoichiro Okano
洋一郎 岡野
Mitsuru Kitamura
充 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8756597A priority Critical patent/JPH10259448A/en
Publication of JPH10259448A publication Critical patent/JPH10259448A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a high strength steel sheet excellent in absorbed energy and impact resistance at the time of deforming at low strain rate without deteriorating its press formability and to provide a producing method suitable therefor. SOLUTION: This steel sheet has components contg., by mass, 0.05 to 0.20% C, <=2.0% Si, 0.3 to 3.0% Mn, <=0.1% P, <=0.1% Al, the balance Fe and inevitable impurities and has a two phase structure composed of bainitic phases, and the balance substantial ferritic phases, in which the volume ratio of the bainitic phases is regulated to be 20 to 60%, and the ratio of the hardness Hv(B) of the bainitic phases to the hardness Hv(F) of the ferritic phases, i.e., Hv(B)/Hv(F) is regulated to be 1.5 to 2.5. The components may further contain one or more kinds among <=1.0% Mo, 2.5% Cr and <=0.002% B and/or one or more kinds among Ti, Nb, Zr and V by <=0.4% in total, <=2.5% Cu, <=1.5% Ni, and <=0.02% Ca.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、例えば自動車の車
室の補強部材を構成する部品用鋼板のように、プレス加
工時は成形性が要求されるとともに、自動車走行時の衝
突に代表されるような衝撃に対して優れた防護作用すな
わち耐衝撃性が要求される部材に好適な高強度鋼板及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention requires formability at the time of press working and is typified by a collision at the time of running of a car, such as a steel plate for a part constituting a reinforcing member of a cabin of a car. The present invention relates to a high-strength steel sheet suitable for a member requiring an excellent protective action against such an impact, that is, impact resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、車体の軽量化は主に鋼板の高強度
化による板厚の低減により実現されてきた。従来の自動
車用鋼板の高強度化方法としては、例えば、特開昭57
−41849号公報には低CでNb、Ti等の炭化物形
成元素に加えて、P、Si等の固溶強化元素の添加によ
る方法が開示されている。また、特開昭60−5252
8号公報には高温焼鈍・急冷にてマルテンサイト相を析
出させて延性に優れた高強度鋼板を得る方法が開示され
ている。
2. Description of the Related Art In recent years, weight reduction of a vehicle body has been realized mainly by reducing the thickness of a steel plate by increasing the strength of the steel plate. As a conventional method for increasing the strength of a steel sheet for automobiles, for example, Japanese Unexamined Patent Publication No.
Japanese Patent No. 41849 discloses a method in which a solid solution strengthening element such as P and Si is added in addition to carbide forming elements such as Nb and Ti at low C. Also, JP-A-60-5252
No. 8 discloses a method of obtaining a high-strength steel sheet having excellent ductility by precipitating a martensite phase by high-temperature annealing and rapid cooling.

【0003】これらの技術はプレス成形性は考慮されて
いるが、自動車の衝突の際に問題になる高歪み速度での
特性については考慮されておらず、低歪み速度での静的
引張強度を基に設計されていたに過ぎない。すなわち、
従来、鋼板の強度は低歪み速度での静的引張強度に基づ
いて決定されており、衝突事故のような衝撃状態の場
合、すなわち高歪み速度で変形が進行する場合に鋼板が
塑性変形することによって吸収する吸収エネルギーにつ
いてはあまり考慮されておらず、高速変形時の鋼板の吸
収エネルギーに対する静的強度の寄与率については一定
のものとしていた。
[0003] In these techniques, press formability is taken into consideration, but characteristics at a high strain rate, which is a problem in the event of an automobile collision, are not taken into consideration. It was only designed based on it. That is,
Conventionally, the strength of a steel sheet is determined based on the static tensile strength at a low strain rate, and in the case of an impact state such as a collision accident, that is, the steel sheet undergoes plastic deformation when deformation proceeds at a high strain rate. The absorbed energy absorbed by the steel sheet was not considered much, and the contribution of static strength to the absorbed energy of the steel sheet during high-speed deformation was fixed.

【0004】この問題に対して、本発明者らの検討によ
ると、高速変形時の鋼板の吸収エネルギーに対する静的
強度の寄与率は必ずしも一定ではなく、静的強度の向上
がそのまま高速変形時の鋼板の吸収エネルギーの向上に
つながらないことがわかった。図1は発明者らが、種々
の鋼板に対して、静的引張り時(歪み速度=0.01s
-1)の吸収エネルギーと、動的引張り時(歪み速度=8
00s- 1 )の吸収エネルギーを整理したものであり、
静的強度が増加した場合の静的引張り時の吸収エネルギ
ーの増加ほど、動的引張り時の吸収エネルギーは増加し
ないことが認められる。この吸収エネルギーは、図2に
示すように、引張試験により得られた応力−歪み曲線に
基づき、歪み量=5%までの単位体積当たりの吸収エネ
ルギーとして算出したものである。
According to the study of the present inventors, the contribution of the static strength to the absorbed energy of the steel sheet during high-speed deformation is not always constant. It was found that the absorption energy of the steel sheet was not improved. FIG. 1 shows that the inventors obtained various steel plates at the time of static tension (strain rate = 0.01 s).
-1 ) absorbed energy and dynamic tension (strain rate = 8)
00s -1 ) is a summary of the absorbed energy,
It can be seen that the absorbed energy during dynamic tension does not increase as much as the absorbed energy during static tension increases when the static strength increases. As shown in FIG. 2, the absorbed energy was calculated as an absorbed energy per unit volume up to a strain amount of 5% based on a stress-strain curve obtained by a tensile test.

【0005】なお、本発明者らの研究では、鋼板の耐衝
撃性を評価する場合、実際に行われた部材衝撃圧壊テス
トで得られた圧壊吸収エネルギーは、鋼板の高速引張試
験により得られた応力−歪み曲線に基づく、降伏応力付
近での加工硬化特性との相関が非常に高いことが知見さ
れており、この特性を代表する値として、引張り時の歪
み量が5%程度までの単位体積当たりの吸収エネルギー
を用いている。
In the study of the present inventors, when evaluating the impact resistance of a steel sheet, the crush absorption energy obtained in an actual member impact crush test was obtained by a high-speed tensile test of the steel sheet. It has been found that the correlation with the work hardening property near the yield stress based on the stress-strain curve is very high, and a typical value of this property is a unit volume at which the strain amount at the time of tension is up to about 5%. The energy absorbed per hit is used.

【0006】したがって、板厚低減による軽量化を図る
場合、単に静的強度で評価した場合には、衝撃的な変形
では、期待されるほどの耐衝撃特性の向上効果が得られ
ておらず、耐衝撃特性が不足する。
[0006] Therefore, when the weight is reduced by reducing the thickness of the sheet, the impact strength is not improved as expected by the impact deformation when the static strength is simply evaluated. Insufficient impact resistance.

【0007】ところで、自動車の車室まわりを構成する
部材は自動車の前面衝突時には乗員の生存空間を確保す
るために変形を最小限に低減させる必要がある。そし
て、前面衝突時には車体前部のフロントサイドメンバー
等の部材が大きく変形し衝撃を吸収するため、この部材
の変形の歪み速度は低いものとなる。従って、これらの
部材を構成する鋼板は低歪み速度変形時の降伏強度およ
び吸収エネルギーがプレス加工性を著しく低下させない
範囲で高い方が望ましい。一方、自動車の側面衝突時に
は、これらの車体まわりを構成する部材も、直接衝撃を
受けるため高い歪み速度で変形させられることになる。
そこで、このような部材を構成する鋼板は高強度であ
り、かつ低歪み速度変形時の吸収エネルギー(静的吸収
エネルギー)ばかりでなく、高歪み速度変形時の吸収エ
ネルギー(動的吸収エネルギー)も高くすることが重要
になる。
[0007] Incidentally, it is necessary to minimize the deformation of members constituting the periphery of the cabin of an automobile in order to secure a living space for the occupant in the event of a frontal collision of the automobile. At the time of a frontal collision, a member such as a front side member at the front of the vehicle body is largely deformed and absorbs impact, so that the deformation speed of the deformation of the member is low. Therefore, it is desirable that the steel sheets constituting these members have high yield strength and absorbed energy at the time of low strain rate deformation as long as the press workability is not significantly reduced. On the other hand, at the time of a side collision of an automobile, these members around the vehicle body are also directly deformed and deformed at a high strain rate.
Therefore, the steel sheet constituting such a member has high strength and not only absorbed energy at low strain rate deformation (static absorption energy) but also absorbed energy at high strain rate deformation (dynamic absorption energy). It is important to be high.

【0008】本発明はかかる問題に鑑みなされたもの
で、プレス成形性を低下させることなく、低歪み速度変
形時の吸収エネルギーすなわち静的吸収エネルギーに優
れるとともに、優れた耐衝撃性を有する高強度鋼板及び
その好適な製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a high strength having excellent impact resistance, that is, excellent absorption energy at low strain rate deformation, that is, static absorption energy, without deteriorating press formability. An object of the present invention is to provide a steel sheet and a preferable method for manufacturing the same.

【0009】なお、耐衝撃特性に優れる鋼板として、例
えば、特開昭52−86919号公報には、鋳造過程で
溶鋼の注入操作を調整するとともに、鋳型内の溶鋼中に
合金元素を添加し、特定の成分組成をもつ内外2層を有
する高強度鋼板が開示されているが、この鋼板の特徴は
溶接部の酸化物組成を制御し、溶接部に生じた溶融金属
の流動性を改善することで、ナゲット接着力の向上を図
り、衝撃時の吸収エネルギーを改善するものであり、鋼
板自体の耐衝撃特性の向上を図るものではなく、また鋳
造工程での2層化は生産性を低下させ、経済的に不利で
ある。
As a steel sheet having excellent impact resistance, for example, Japanese Patent Application Laid-Open No. 52-86919 discloses a method of adjusting the injection operation of molten steel in a casting process and adding an alloy element to molten steel in a mold. A high-strength steel sheet having two inner and outer layers having a specific component composition has been disclosed. The feature of this steel sheet is to control the oxide composition of the welded part and improve the fluidity of the molten metal generated in the welded part. In order to improve the adhesive strength of the nugget and to improve the energy absorption at the time of impact, it is not intended to improve the impact resistance of the steel sheet itself. Is economically disadvantageous.

【0010】[0010]

【課題を解決するための手段】本発明の高強度鋼板は、
後述の鋼成分を有し、ベイナイト相と残部が実質的にフ
ェライト相からなる2相組織鋼板であり、ベイナイト相
の体積率が20〜60%で、ベイナイト相の硬さHv
(B) とフェライト相の硬さHv(F) の比Hv(B)/Hv
(F) が1.5〜2.5とされたものである。ここに、
「実質的にフェライト相からなる」とは、フェライト相
のみ、あるいはフェライト相中に必要により添加された
Ti、Nb等の炭化物生成元素の析出炭化物を含むこと
を意味する。また、本発明における「ベイナイト」と
は、ベイニティックフェライトあるいは炭化物を内包す
るベイナイトを含むことを意味する。
The high-strength steel sheet of the present invention comprises:
It is a two-phase steel sheet having a steel component described below, the bainite phase and the balance substantially consisting of a ferrite phase. The volume ratio of the bainite phase is 20 to 60%, and the hardness Hv of the bainite phase is obtained.
(H) / Hv (B) / Hv
(F) is set to 1.5 to 2.5. here,
The phrase "consisting substantially of a ferrite phase" means that the ferrite phase contains only or a precipitated carbide of a carbide-forming element such as Ti or Nb added as necessary in the ferrite phase. Further, the term “bainite” in the present invention means that bainite containing bainitic ferrite or carbide is included.

【0011】本発明鋼板の2相組織、硬さ比に基づく耐
衝撃特性の向上理由については、必ずしも明確ではない
が、ベイナイト体積率を適正な範囲に制御した上で、ベ
イナイト相とフェライト相の硬さの比を適切に制御する
ことにより、静的変形時に、プレス加工性を低下させる
ことなく、降伏応力を向上させることができる。一方、
動的変形時には、フェライト相とベイナイト相の界面が
転位運動の障害となり、降伏応力が大きく上昇し、静的
吸収エネルギーばかりでなく、動的吸収エネルギーも大
きくすることができる。
Although the reason for the improvement of the impact resistance based on the two-phase structure and the hardness ratio of the steel sheet of the present invention is not always clear, it is necessary to control the bainite volume ratio to an appropriate range and to obtain the bainite phase and the ferrite phase. By properly controlling the hardness ratio, the yield stress can be improved without deteriorating the press workability during static deformation. on the other hand,
At the time of dynamic deformation, the interface between the ferrite phase and the bainite phase hinders the dislocation motion, and the yield stress greatly increases, so that not only static absorption energy but also dynamic absorption energy can be increased.

【0012】ベイナイト相の体積率の限定理由は、ベイ
ナイト量が20%未満では動的吸収エネルギーばかりで
なく、静的吸収エネルギーも低くなり、また引張強度も
低くなる。一方、60%を超えると、静的吸収エネルギ
ーだけが高くなり、耐衝撃特性を低下させるとともに硬
質化が過ぎてプレス成形性を劣化させる。従って、ベイ
ナイト量の下限を20%、上限を60%とする。なお、
ベイナイト量の調整はC含有量の調整や熱延または焼鈍
時の2次冷却開始温度、冷却速度の調整等によって行う
ことができる。
The reason for limiting the volume fraction of the bainite phase is that when the bainite amount is less than 20%, not only the dynamic absorption energy but also the static absorption energy is reduced and the tensile strength is also reduced. On the other hand, if it exceeds 60%, only the static absorption energy is increased, and the impact resistance is lowered, and at the same time, the hardness is too high and the press formability is deteriorated. Therefore, the lower limit of the bainite amount is set to 20% and the upper limit is set to 60%. In addition,
The amount of bainite can be adjusted by adjusting the C content or adjusting the secondary cooling start temperature and cooling rate during hot rolling or annealing.

【0013】また、ベイナイト相の硬さHv(B) とフェ
ライト相の硬さHv(F) の比Hv(B) /Hv(F) の限定
理由は、Hv(B) /Hv(F) は耐衝撃特性の向上に寄与
するものであり、1.5未満では静的吸収エネルギーは
高くなるが、動的吸収エネルギーの向上が得られない。
また、硬さ比の増加にともない動的吸収エネルギーは向
上するが、加工性が劣化し、特に伸びフランジ性が低下
することになる。従って、Hv(B) /Hv(F) の下限を
1.5、上限を2.5とする。好ましくは1.7〜2.
1とするのがよい。
The reason for limiting the ratio Hv (B) / Hv (F) between the hardness Hv (B) of the bainite phase and the hardness Hv (F) of the ferrite phase is that Hv (B) / Hv (F) is It contributes to the improvement of impact resistance. If it is less than 1.5, the static absorption energy increases, but the dynamic absorption energy cannot be improved.
Further, although the dynamic absorption energy increases with an increase in the hardness ratio, workability deteriorates, and in particular, stretch flangeability decreases. Therefore, the lower limit of Hv (B) / Hv (F) is 1.5 and the upper limit is 2.5. Preferably 1.7 to 2.
It is better to set to 1.

【0014】ところで、自動車部材ではプレス成形後に
焼付塗装が施される場合が多い。このような歪み時効処
理が付与される場合、フェライト相中に固溶Cが残存し
ていると、焼付硬化性(BH性)すなわち時効処理後に
降伏応力が増加することが知れている。
Incidentally, baking coating is often applied to automotive parts after press molding. It is known that when such a strain aging treatment is applied, if solid solution C remains in the ferrite phase, bake hardenability (BH property), that is, yield stress increases after the aging treatment.

【0015】本発明者らの研究により、本発明鋼板の場
合、所要の固溶C量をフェライト中に残存させることに
より、焼付硬化による降伏応力の上昇が低速変形に比較
して高速変形で著しいことがわかった。請求項4に記載
されたは発明は、かかる知見を基づきなされたものであ
り、2相組織におけるベイナイト量およびベイナイト相
とフェライト相との硬さ比を規定するほか、さらにフェ
ライト相中の固溶C量を10〜30ppm に制御すること
により、ベイナイト相の近傍の可動転位の導入により降
伏点伸びを発生させることなく、自動車部材のようにプ
レス成形後に焼付塗装される際の時効処理により、さら
に吸収エネルギーの向上、耐衝撃特性の向上を図ること
ができる。固溶C量が10ppm 未満では吸収エネルギー
の向上効果は小さく、30ppm を超えると降伏点伸びが
発生し、プレス成形性が低下する。
According to the study by the present inventors, in the case of the steel sheet of the present invention, the required amount of solute C remains in the ferrite, so that the yield stress due to bake hardening is significantly higher at high speed deformation than at low speed deformation. I understand. The invention described in claim 4 has been made based on such knowledge, and not only defines the amount of bainite in the two-phase structure and the hardness ratio between the bainite phase and the ferrite phase, but also defines the solid solution in the ferrite phase. By controlling the amount of C to 10 to 30 ppm, the aging treatment at the time of baking coating after press forming such as an automobile member without generating a yield point elongation due to the introduction of movable dislocation near the bainite phase, It is possible to improve absorption energy and impact resistance. If the amount of solute C is less than 10 ppm, the effect of improving the absorbed energy is small, and if it exceeds 30 ppm, elongation at the yield point occurs, and press formability decreases.

【0016】本発明鋼板は、所定量のベイナイト相と残
部実質的にフェライト相からなる2相組織とし、2相の
硬さ比、あるいは更にフェライト中の固溶C量を前記所
定の値に調整し、化学成分(質量%)を以下のように限
定することにより、プレス成形性を低下させることな
く、引張強度及び静的吸収エネルギーに優れるととも
に、動的吸収エネルギーすなわち耐衝撃特性をも効果的
に向上させることができる。
The steel sheet of the present invention has a two-phase structure consisting of a predetermined amount of a bainite phase and the remainder substantially a ferrite phase, and the hardness ratio of the two phases or the amount of solute C in the ferrite is adjusted to the predetermined value. By limiting the chemical components (% by mass) as described below, the tensile strength and the static absorption energy are excellent, and the dynamic absorption energy, that is, the impact resistance, is effectively reduced without deteriorating the press formability. Can be improved.

【0017】C :0.05〜0.20%、Si:2.
0%以下、Mn:0.3〜3.0%、P :0.1%以
下、Al:0.1%以下、を含み、残部Feおよび不可
避的不純物からなる。あるいは前記基本成分のほか更に
〔Mo:1.0%以下、Cr:2.5%以下、B:0.
002%以下〕のいずれか1種以上、及び/又は〔T
i,Nb,Zr,V:合計で0.4%以下、Cu:2.
5%以下、Ni:1.5%以下、、Ca:0.02%以
下〕のいずれか1種以上を含むことができる。
C: 0.05 to 0.20%, Si: 2.
0% or less, Mn: 0.3 to 3.0%, P: 0.1% or less, Al: 0.1% or less, the balance being Fe and unavoidable impurities. Alternatively, in addition to the above basic components, [Mo: 1.0% or less, Cr: 2.5% or less, B: 0.
002% or less] and / or [T
i, Nb, Zr, V: 0.4% or less in total; Cu: 2.
5% or less, Ni: 1.5% or less, Ca: 0.02% or less].

【0018】以下、成分限定理由について説明する。 C:0.05〜0.20% Cは含有量が少ないほど加工性が向上するが、0.05
%未満ではベイナイト相の体積率が少なくなり、十分な
強度の確保が困難になるばかりか、高い衝撃吸収エネル
ギーが得られないようになる。一方、0.20%を超え
て添加すると、スポット溶接性、プレス成形性、特に伸
びフランシ性が低下する。したがって、添加量の下限を
0.05%、上限を0.20%とする。
Hereinafter, the reasons for limiting the components will be described. C: 0.05 to 0.20% The workability is improved as the content of C is smaller, but 0.05 to 0.20%.
%, The volume ratio of the bainite phase decreases, making it difficult to secure sufficient strength, and making it impossible to obtain high impact absorption energy. On the other hand, if it is added in excess of 0.20%, the spot weldability, the press formability, and particularly the elongation francy, will decrease. Therefore, the lower limit of the addition amount is 0.05% and the upper limit is 0.20%.

【0019】Si:2.0%以下 Siはフェライトを固溶強化し、鋼板の高強度化に有効
であるとともに鋼板の延性も改善する。したがって、鋼
板の要求される強度に応じて添加すればよいが、2.0
%を超えて添加すると表面疵が生じやすくなるので、そ
の上限を2.0%とする。
Si: 2.0% or less Si solid-solution strengthens ferrite, is effective in increasing the strength of a steel sheet, and also improves the ductility of the steel sheet. Therefore, it may be added according to the required strength of the steel sheet.
%, Surface flaws are likely to occur, so the upper limit is made 2.0%.

【0020】Mn:0.3〜3.0% Mnは鋼板を強化するとともに焼入れ性を向上させる。
しかし、0.3%未満ではその効果が過少であり、一方
3.0%を超えて添加すると、プレス成形性を劣化させ
るとともにスポット溶接性をも低下させる。したがっ
て、その上限を3.0%とする。
Mn: 0.3 to 3.0% Mn strengthens the steel sheet and improves the hardenability.
However, if it is less than 0.3%, the effect is too small, while if it exceeds 3.0%, the press formability is deteriorated and the spot weldability is also reduced. Therefore, the upper limit is set to 3.0%.

【0021】P :0.1%以下 Pは固溶強化により鋼板の強度を高めるので、鋼板の要
求される強度に応じて添加すればよい。しかし、0.1
%を超えて添加すると、結晶粒界強度の低下により2次
加工脆化が著しくなるばかりか、耐衝撃特性の低下を招
く。したがって、その上限を0.1%とする。
P: 0.1% or less Since P enhances the strength of the steel sheet by solid solution strengthening, it may be added according to the required strength of the steel sheet. However, 0.1
%, The secondary work embrittlement becomes remarkable due to the decrease in the grain boundary strength, and also the impact resistance decreases. Therefore, the upper limit is set to 0.1%.

【0022】Al:0.1%以下、 Alは脱酸元素として添加されるが、多量に添加する
と、C系介在物か増加して表面疵の原因になるとともに
加工性を低下させるので、その上限を0.1%とする。
Al: 0.1% or less Al is added as a deoxidizing element. If added in a large amount, C-based inclusions increase to cause surface flaws and reduce workability. The upper limit is set to 0.1%.

【0023】不可避的な不純物としてのS、Nは、多量
に添加すると材料特性を劣化させる。すなわち、Sは多
量に添加すると、伸びフランジ性が低下するので、好ま
しい範囲として、その上限を0.01%とするのがよ
い。また、Nは多量に添加すると常温時効性を低下さ
せ、降伏点伸びを発生させるので、好ましい範囲とし
て、その上限を0.01%とするのがよい。
S and N as inevitable impurities deteriorate the material properties when added in large amounts. That is, if a large amount of S is added, the stretch flangeability decreases, so the upper limit is preferably set to 0.01% as a preferable range. Further, when N is added in a large amount, the aging property at normal temperature is lowered and the yield point elongation is generated. Therefore, the upper limit is preferably set to 0.01% as a preferable range.

【0024】以上の基本成分のほか、焼入性を向上させ
るために、Mo:1.0%以下、Cr:2.5%以下、
B:0.002%以下の内から1種以上添加することが
できる。
In addition to the above basic components, in order to improve hardenability, Mo: 1.0% or less, Cr: 2.5% or less,
B: One or more of 0.002% or less can be added.

【0025】Mo:1.0%以下 Moは焼入性を向上させるとともに析出強化や組織強化
により鋼板の高強度化に有効である。しかし、1.0%
を超えて添加しても効果が飽和するばかりか、延性を低
下させるので、その上限を1.0%とする。好ましく
は、0.05%以上の添加がよい。
Mo: 1.0% or less Mo is effective for improving the hardenability and for strengthening the steel sheet by strengthening the precipitation and strengthening the structure. However, 1.0%
Is added, the effect is not only saturated, but also the ductility is reduced, so the upper limit is made 1.0%. Preferably, addition of 0.05% or more is good.

【0026】Cr:2.5%以下 Crは焼入性を向上させるとともに固溶強化により鋼板
の高強度化に有効である。しかし、多量に添加すると、
効果が飽和するばかりか延性を低下させるので、その上
限を2.5%とする。好ましくは、0.05%以上の添
加がよい。
Cr: 2.5% or less Cr is effective in improving the hardenability and strengthening the steel sheet by solid solution strengthening. However, when added in large amounts,
The effect is not only saturated but also lowers the ductility, so the upper limit is made 2.5%. Preferably, addition of 0.05% or more is good.

【0027】B:0.002%以下 Bは焼入性を向上させるとともに鋼板の強度上昇や粒界
強化による2次加工脆化の防止に有効であるが、多量に
添加すると、延性を低下させるので、その上限を0.0
02%とする。好ましくは、0.0003%以上の添加
がよい。
B: 0.002% or less B is effective for improving the hardenability and for preventing the secondary working embrittlement due to the increase in the strength of the steel sheet and the strengthening of the grain boundary. However, the addition of a large amount lowers the ductility. So its upper limit is 0.0
02%. Preferably, 0.0003% or more is added.

【0028】また、さらに本発明の効果を阻害すること
なく、下記の元素を1種以上添加することができる。 Ti,Nb,Zr,V:合計で0.4%以下 Ti,Nb,Zr,Vは析出強化により鋼板の高強度化
に有効である。しかし、過多に添加すると、効果が飽和
するばかりか、延性を低下させるので、その上限を合計
で0.4%とする。
Further, one or more of the following elements can be added without inhibiting the effects of the present invention. Ti, Nb, Zr, V: 0.4% or less in total Ti, Nb, Zr, V are effective for strengthening the steel sheet by precipitation strengthening. However, an excessive addition not only saturates the effect but also reduces the ductility, so the upper limit is made 0.4% in total.

【0029】Cu:2.5%以下、Ni:1.5%以下 Cu、Niは固溶強化・析出強化により鋼板の高強度化
に有効であり、耐食性の向上にも寄与する。しかし、多
量に添加すると延性を低下させるので、その上限をCu
添加量では2.5%とし、Niは1.5%とする。な
お、Cuの単独添加では添加量によっては鋼板に表面疵
を発生させるおそれがあるが、Niを複合添加すること
により改善される。
Cu: 2.5% or less, Ni: 1.5% or less Cu and Ni are effective for increasing the strength of a steel sheet by solid solution strengthening and precipitation strengthening, and also contribute to improvement of corrosion resistance. However, the addition of a large amount lowers the ductility, so the upper limit is Cu.
The added amount is 2.5%, and Ni is 1.5%. In addition, although the single addition of Cu may cause surface flaws in the steel sheet depending on the addition amount, it is improved by adding Ni in combination.

【0030】Ca:0.02%以下 Caは鋼の介在物形態を改善する作用を有し、鋼板の加
工性や靱性の改善に有効である。しかし、多量に添加す
ると、介在物量が増加して、逆に鋼板の冷間加工性や靱
性を低下させるので、その上限を0.02%とする。
Ca: 0.02% or less Ca has the effect of improving the form of inclusions in steel, and is effective in improving the workability and toughness of steel sheets. However, if added in a large amount, the amount of inclusions increases and conversely decreases the cold workability and toughness of the steel sheet, so the upper limit is made 0.02%.

【0031】次に、本発明の製造方法について説明す
る。本発明の製造方法は、前記成分を有する鋼を熱間圧
延した後、冷間圧延を行い、その後好ましくは760〜
920℃の均熱温度で焼鈍した後、均熱温度から500
〜850℃の範囲内の2次冷却開始温度まで50℃/s
以下で冷却した後、引き続き少なくとも400℃までを
10℃/s以上200℃/s以下の冷却速度で冷却し、
さらに600℃以下250℃以上の温度範囲で保持した
後、冷却することを特徴とする。600〜250℃での
温度保持後の冷却においては、100℃以下まで5℃/
s以上で冷却することにより、所定量の固溶Cを確保す
ることができる。
Next, the manufacturing method of the present invention will be described. In the production method of the present invention, the steel having the above components is hot-rolled, and then cold-rolled.
After annealing at a soaking temperature of 920 ° C., 500
50 ° C / s to the secondary cooling start temperature within the range of ~ 850 ° C
After cooling below, at least up to 400 ° C. is cooled at a cooling rate of 10 ° C./s or more and 200 ° C./s or less,
It is further characterized in that it is kept in a temperature range of not higher than 600 ° C. and not lower than 250 ° C. and then cooled. In cooling after maintaining the temperature at 600 to 250 ° C, the temperature is reduced to 5 ° C / 100 ° C or less.
By cooling at s or more, a predetermined amount of solid solution C can be secured.

【0032】本発明においては、熱間圧延、冷間圧延は
常法に従って行えばよいが、熱延仕上温度をAr3点以上
とし、巻取温度を600℃以下とすることが好ましい。
また、冷間圧延の圧下率は、冷延後の焼鈍により再結晶
させるため30%以上とするのがよい。この場合の焼鈍
は、特に限定されないが、生産性および品質安定性の観
点から連続焼鈍が好ましい。
In the present invention, hot rolling and cold rolling may be carried out in a conventional manner, but it is preferable that the hot rolling finish temperature is not less than 3 points and the winding temperature is not more than 600 ° C.
The rolling reduction of the cold rolling is preferably 30% or more in order to recrystallize by annealing after cold rolling. Annealing in this case is not particularly limited, but continuous annealing is preferable from the viewpoint of productivity and quality stability.

【0033】焼鈍時の均熱温度は760〜920℃とす
るのがよい。760℃未満では十分な量のベイナイト相
が得られないようになり、一方920℃を超えると結晶
粒の粗大化が発生し、プレス成形性、とくに伸びフラン
ジ性を劣化させるようになる。
The soaking temperature during annealing is preferably 760 to 920 ° C. If the temperature is lower than 760 ° C., a sufficient amount of the bainite phase cannot be obtained. On the other hand, if the temperature exceeds 920 ° C., the crystal grains become coarse, and the press formability, particularly the stretch flangeability, deteriorates.

【0034】焼鈍後、均熱温度から500〜850℃の
範囲内の2次冷却開始温度まで50℃/s以下で冷却す
る。これにより、ベイナイト相の分布状態を均一にする
ことができる。850℃より高いと、ベイナイト相の分
布状態が均一でなくなり、その結果延性が低下するよう
になる。また、500℃より低いと、炭化物の析出が促
進され、ベイナイト相が減少する。また、その時の冷却
速度が50℃/sを超えると、冷却開始温度への温度調
節が困難になり、また所定のフェライト量を析出させる
反応が非平衡であるため、ベイナイト相が不安定になり
やすく、材質のバラツキが大きくなる。
After annealing, cooling is performed at a rate of 50 ° C./s or less from the soaking temperature to the secondary cooling start temperature in the range of 500 to 850 ° C. Thereby, the distribution state of the bainite phase can be made uniform. When the temperature is higher than 850 ° C., the distribution state of the bainite phase is not uniform, and as a result, the ductility is reduced. On the other hand, when the temperature is lower than 500 ° C., precipitation of carbides is promoted, and the bainite phase decreases. If the cooling rate at that time exceeds 50 ° C./s, it is difficult to adjust the temperature to the cooling start temperature, and the reaction for precipitating a predetermined amount of ferrite is non-equilibrium, so that the bainite phase becomes unstable. Easy, and the variation in the material is large.

【0035】2次冷却開始温度からの冷却は、400℃
までを10℃/s以上200℃/s以下の冷却速度で冷
却する。少なくとも400℃までは積極的に冷却すべき
であり、400℃を越える前に所定の冷却を停止したの
では、ベイナイト相が軟質になり、強度−伸びのバラン
スが低下するようになる。なお、冷却停止温度はマルテ
ンサイト変態温度よりも高い温度であればよいが、同温
度は成分により変動するため、マルテンサイトの生成を
可及的に防止すべく400℃に到達後速やかに冷却を停
止することが望ましい。
Cooling from the secondary cooling start temperature is 400 ° C.
Is cooled at a cooling rate of 10 ° C./s or more and 200 ° C./s or less. It is necessary to actively cool to at least 400 ° C., and if the predetermined cooling is stopped before the temperature exceeds 400 ° C., the bainite phase becomes soft and the balance between strength and elongation is reduced. The cooling stop temperature may be any temperature higher than the martensite transformation temperature, but since the temperature fluctuates depending on the components, the cooling is quickly performed after reaching 400 ° C. in order to prevent the formation of martensite as much as possible. It is desirable to stop.

【0036】2次冷却開始温度からの冷却速度は、冷却
開始時における第2相体積率を減らすことなく、またパ
ーライトを生成させることなく、ベイナイトを生成させ
るために急冷することが必要であり、10℃/s未満で
はベイナイト相の生成が困難で、一方200℃/sを超
えるとフェライト中の固溶C量が過多になり、降伏点伸
びが発生し、プレス成形性が低下するようになるので、
上限を200℃/sとする。好ましくは、25〜60℃
/sであり、この冷却速度はミスト冷却やロールクエン
チ等により得られる。
The cooling rate from the secondary cooling start temperature requires rapid cooling to form bainite without reducing the volume ratio of the second phase at the start of cooling and without generating pearlite. If it is less than 10 ° C./s, it is difficult to form a bainite phase, while if it exceeds 200 ° C./s, the amount of solid solution C in ferrite becomes excessive, yield point elongation occurs, and press formability decreases. So
The upper limit is set to 200 ° C./s. Preferably, 25-60 ° C
/ S, and this cooling rate is obtained by mist cooling, roll quenching, or the like.

【0037】2次冷却停止後、600℃以下250℃以
上の温度範囲で保持を行う。この処理(焼戻し処理)に
より安定化しているオーステナイトを効率よくベイナイ
トに変態させることができる。600℃を超える温度で
は、ベイナイト相が軟質になり、強度−伸びバランスが
低下するようになるととも、静的吸収エネルギーが低下
するとともに、動的吸収エネルギーも低下する結果とな
る。一方、250℃未満では未変態で残っているオース
テナイトがベイナイトに変態する前にマルテンサイトに
変態するようになるため、マルテンサイト量が増え、伸
びフランジ性に悪影響を及ぼす。なお、所定温度での保
持は、2次冷却停止温度によっては、単に保温するだけ
でもよく、あるいは所定の保持温度に再加熱して温度保
持するようにしてもよい。また、保持時間は特に制限さ
れないが、通常5秒以上、生産性の点から180秒以下
が好ましい。
After the secondary cooling is stopped, the temperature is kept in a temperature range from 600 ° C. to 250 ° C. Austenite stabilized by this treatment (tempering treatment) can be efficiently transformed into bainite. At a temperature higher than 600 ° C., the bainite phase becomes soft, and the strength-elongation balance is reduced. As a result, the static absorption energy is reduced and the dynamic absorption energy is also reduced. On the other hand, if the temperature is lower than 250 ° C., the untransformed austenite is transformed into martensite before transforming into bainite, so that the amount of martensite increases and the stretch flangeability is adversely affected. The holding at the predetermined temperature may be performed simply by keeping the temperature depending on the secondary cooling stop temperature, or the temperature may be held by reheating to the predetermined holding temperature. Although the holding time is not particularly limited, it is usually 5 seconds or longer, and preferably 180 seconds or shorter from the viewpoint of productivity.

【0038】保持温度で保持した後、100℃以下まで
5℃/s以上で冷却することにより、適正な固溶C(1
0〜30ppm)を確保することができる。冷却速度が
5℃/s以上でも冷却下限温度が100℃を超える場
合、あるいは5℃/s未満の冷却速度では固溶Cが減少
して、適正な量の固溶Cを確保できない。
After holding at a holding temperature, the mixture is cooled to 100 ° C. or less at a rate of 5 ° C./s or more, so that an appropriate solid solution C (1
0 to 30 ppm). Even when the cooling rate is 5 ° C./s or more, if the lower limit temperature of cooling exceeds 100 ° C., or if the cooling rate is less than 5 ° C./s, the amount of solid solution C decreases, and an appropriate amount of solid solution C cannot be secured.

【0039】本発明鋼板は熱延鋼板のみならず、冷延鋼
板においてもその効果を発揮し、さらには溶融亜鉛めっ
き等の各種のめっき鋼板の原板としても好適である。ま
た、本発明の製造方法は、冷延鋼板の製造方法に関する
ものであるが、溶融亜鉛めっき等の各種のめっき鋼板の
原板の製造方法としても使用できることは勿論である。
The steel sheet of the present invention exerts its effect not only on a hot-rolled steel sheet but also on a cold-rolled steel sheet, and is also suitable as an original sheet for various types of coated steel sheets such as hot-dip galvanizing. In addition, the production method of the present invention relates to a method for producing a cold-rolled steel sheet. However, it is needless to say that the production method can also be used as a method for producing an original sheet of various types of plated steel sheets such as hot dip galvanization.

【0040】[0040]

【実施例】【Example】

〔実施例A〕表1および表2に示す成分の鋼片を用い
て、常法に従って熱間圧延および冷間圧延を行った後、
焼鈍を行い、板厚1.2mmの鋼板を得た。焼鈍は、76
0〜920℃で均熱後、400〜950℃まで80℃/
s以下で徐冷(1次冷却)し、さらに300℃までを5
℃/s以上300℃/s以下で2次冷却した。また、2
次冷却後に、150〜750℃の範囲内の温度で保持す
る焼戻し処理を行った。また、焼付硬化性を調べるた
め、一部の鋼板については焼鈍後にBH処理(2%予歪
み付与後、170℃×20分の時効処理)を施した。
[Example A] After hot rolling and cold rolling were performed according to a conventional method using steel slabs having the components shown in Tables 1 and 2,
Annealing was performed to obtain a steel plate having a thickness of 1.2 mm. Annealing is 76
After soaking at 0 to 920 ° C, 80 ° C /
s or slower (primary cooling).
Secondary cooling was performed at a temperature of at least 300C / s. Also, 2
After the next cooling, a tempering treatment was performed in which the temperature was maintained at a temperature in the range of 150 to 750 ° C. Further, in order to examine the bake hardenability, some steel sheets were subjected to a BH treatment (aging treatment at 170 ° C. × 20 minutes after imparting 2% prestrain) after annealing.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】得られた鋼板について、ベイナイト相の体
積率%、ベイナイト相の硬さHv(B) 及びフェライト相
の硬さHv(F) を測定し、硬さ比Hv(B) /Hv(F) を
算出した。ベイナイト相の体積率は圧延方向に直角な板
厚方向断面において、表面から板厚の1/4の位置での
組織のSEM写真から測定した。また、各相の硬さはビ
ッカース硬度計により、荷重=5gfにて測定した。
With respect to the obtained steel sheet, the volume ratio% of the bainite phase, the hardness Hv (B) of the bainite phase and the hardness Hv (F) of the ferrite phase were measured, and the hardness ratio Hv (B) / Hv (F) was measured. ) Was calculated. The volume fraction of the bainite phase was measured from an SEM photograph of the structure at a position 1/4 of the plate thickness from the surface in a section in the plate thickness direction perpendicular to the rolling direction. The hardness of each phase was measured with a Vickers hardness meter at a load of 5 gf.

【0044】また、これらの鋼板からJIS7号試験片
を採取し、歪み速度=0.01s-1(静的試験)および
800s-1(動的試験)で引張試験を行い、静的引張強
度および各試験により得られた応力−歪み曲線に基づ
き、歪み量=5%の単位体積当たりの静的吸収エネルギ
ーおよび動的吸収エネルギーを求め、この値が図1に示
す従来レベルを上回っているか否かにより、低歪み速度
変形時の吸収エネルギーおよび耐衝撃特性を評価した。
Further, JIS No. 7 test pieces were sampled from these steel sheets and subjected to tensile tests at a strain rate of 0.01 s −1 (static test) and 800 s −1 (dynamic test), and the static tensile strength and Based on the stress-strain curve obtained from each test, the static absorption energy and the dynamic absorption energy per unit volume of the strain amount = 5% were obtained, and whether or not this value exceeded the conventional level shown in FIG. In this manner, the absorbed energy and the impact resistance during low strain rate deformation were evaluated.

【0045】さらに、鋼種Aの鋼板については、プレス
加工性を調べるために、穴拡げ特性を調べた。穴拡げ特
性は、直径10mmの打抜き穴に頂角60°の円錐ポンチ
を挿入して押し拡げ、穴縁にクラックが発生した穴(限
界穴)における直径Dを求め、下記式により算出された
λ値により評価した。 λ値(%)={(D−10)/10}×100
Further, with respect to the steel sheet of steel type A, hole expanding characteristics were examined in order to examine press workability. The hole expansion characteristic is determined by inserting a conical punch having a vertex angle of 60 ° into a punched hole having a diameter of 10 mm and expanding the hole to obtain a diameter D in a hole (limit hole) in which a crack has occurred at the edge of the hole. The value was evaluated. λ value (%) = {(D-10) / 10} × 100

【0046】また、焼付硬化性の調査対象とした鋼種F
の鋼板については、フェライト中の固溶C量を内部摩擦
試験から求め、降伏点伸びを静的引張試験から求めた。
これらの試験結果を表3および表4に併せて示す。
In addition, steel type F which was subjected to bake hardening
For the steel sheet No. 3, the amount of solid solution C in ferrite was determined from an internal friction test, and the yield point elongation was determined from a static tensile test.
The test results are shown in Tables 3 and 4.

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【表4】 [Table 4]

【0049】表3における試料No. C1〜C5をみる
と、C1はベイナイト体積率が過少であり、吸収エネル
ギーは静的、動的ともに従来レベルになっている。一
方、本発明範囲の20〜60%を満足する発明例のNo.
C2〜C5ではベイナイト量に応じて強度も高くなり、
静的・動的ともに吸収エネルギーが向上しており、優れ
た特性が得られることがわかる。
Looking at sample Nos. C1 to C5 in Table 3, C1 has an insufficient bainite volume ratio, and the absorbed energy is static and dynamic at the conventional level. On the other hand, in the case of the invention example satisfying 20 to 60% of the range of the present invention,
In C2 to C5, the strength increases according to the amount of bainite,
It can be seen that the absorption energy is improved in both static and dynamic, and that excellent characteristics can be obtained.

【0050】プレス成形性としては、伸びフランジ性が
90%以上は欲しいところであるが、試料No. A1〜A
5をみると、硬さ比を本発明範囲内に制御したNo. A2
〜A4では、静的、動的ともに吸収エネルギーが向上し
ており、プレス成形性も良好な結果が得られていること
がわかる。
Regarding press formability, it is desired that stretch flangeability is 90% or more.
Looking at No. 5, No. A2 in which the hardness ratio was controlled within the range of the present invention.
In A4, the absorption energy is improved both in static and dynamic, and it can be seen that good press moldability is obtained.

【0051】試料No. D1〜D4からMn添加量の影響
をみると、No. D1はMn量が低いためにベイナイト相
の体積率が低くなり、静的、動的ともに吸収エネルギー
が低くなっていることがわかる。
Looking at the influence of the amount of added Mn from the sample Nos. D1 to D4, the volume fraction of the bainite phase is low in No. D1 because the Mn content is low, and the absorption energy is low in both static and dynamic. You can see that there is.

【0052】次に、試料No. F1〜F5からフェライト
中の固溶C量の影響をみると、固溶C量によっては耐衝
撃特性の著しい低下は認められないものの、No. F1は
固溶C量が過少であるため、BH処理前後で耐衝撃特性
の向上効果が少ない。また、No. F5は固溶C量が過多
のため、降伏点伸びが大きくなっており、プレス成形性
が低下する。固溶C量を10〜30ppm に制御したNo.
F2〜F4では、降伏点伸びをほとんど発生させること
なく、さらに吸収エネルギーが増加していることがわか
る。
Next, the influence of the amount of solid solution C in the ferrite from the sample Nos. F1 to F5 was examined. No significant decrease in impact resistance was observed depending on the amount of solid solution C. Since the amount of C is too small, the effect of improving the impact resistance before and after the BH treatment is small. Further, in No. F5, since the amount of solid solution C is excessive, the yield point elongation is large, and the press formability is reduced. No. 3 in which the amount of solid solution C was controlled to 10 to 30 ppm.
From F2 to F4, it can be seen that the absorbed energy is further increased with almost no yield point elongation.

【0053】また、試料No. H1〜H3、I1〜I2、
J、K1〜K2、L1〜L2、M1〜M2、N1〜N
2、P1〜P2、Q1〜Q5から、補助的元素を請求項
4の範囲で添加しても耐衝撃特性の向上を阻害しないこ
とかわかる。
Sample Nos. H1 to H3, I1 to I2,
J, K1-K2, L1-L2, M1-M2, N1-N
2, From P1 to P2 and Q1 to Q5, it can be seen that addition of an auxiliary element within the scope of claim 4 does not hinder improvement in impact resistance.

【0054】〔実施例B〕表5に示す成分の鋼片を12
00〜1250℃に加熱した後、仕上温度を850〜9
00℃として、板厚4.0mmで熱間圧延を終了し、巻取
温度550〜600℃にて巻取り後、板厚1.2mmに冷
間圧延した後、焼鈍を行った。
Example B A billet having the components shown in Table 5
After heating to 00 to 1250 ° C, the finishing temperature is raised to 850 to 9
Hot rolling was completed at a sheet thickness of 4.0 mm at a temperature of 00 ° C., wound at a winding temperature of 550 to 600 ° C., cold-rolled to a sheet thickness of 1.2 mm, and then annealed.

【0055】[0055]

【表5】 [Table 5]

【0056】焼鈍条件は表6および表7に示すとおりで
あり、740〜980℃(均熱温度:ST)で90s均
熱後、550〜880℃(2次冷却開始温度:TQ)ま
で8〜70℃/s以下(均熱温度からTQまでの冷却速
度:CR1)で冷却し、さらに400℃までを30℃/
s以上280℃/s以下(2次冷却速度:CR2)で冷
却した後、一部を除いて680℃以下の温度(保持温
度:QT)に再加熱し、その温度で60〜300s間保
持し、2〜10℃/s(再加熱温度からの冷却速度:C
R3)で100℃以下まで冷却した。また、一部の得ら
れた焼鈍板にBH処理(2%予歪み付与後、170℃×
20分の時効処理)を施した。
The annealing conditions are as shown in Tables 6 and 7. After soaking at 740 to 980 ° C. (soaking temperature: ST) for 90 seconds, the temperature was increased from 8 to 550 to 880 ° C. (secondary cooling start temperature: TQ). Cool at 70 ° C / s or less (cooling rate from soaking temperature to TQ: CR1).
After cooling at a temperature of s to 280 ° C / s (secondary cooling rate: CR2), it is reheated to a temperature of 680 ° C or less (holding temperature: QT) except for a part, and held at that temperature for 60 to 300s. 2 to 10 ° C / s (cooling rate from reheating temperature: C
The mixture was cooled to 100 ° C. or lower in R3). In addition, BH treatment (170 ° C. ×
Aging treatment for 20 minutes).

【0057】焼鈍後の鋼板から、〔実施例A〕と同様に
して、ベイナイト相の体積率%(VB )、ベイナイト相
とフェライト相との硬さ比(Hv(B) /Hv(F) )、固
溶C量、静的引張試験における機械的特性、静的吸収エ
ネルギー(Es )および動的吸収エネルギー(Ed )を
求めた。これらの結果を表6、表7に併せて示す。
From the steel sheet after annealing, the volume ratio% of bainite phase (VB) and the hardness ratio of bainite phase to ferrite phase (Hv (B) / Hv (F)) in the same manner as in [Example A]. , The amount of solute C, the mechanical properties in a static tensile test, the static absorption energy (Es) and the dynamic absorption energy (Ed). The results are shown in Tables 6 and 7.

【0058】[0058]

【表6】 [Table 6]

【0059】[0059]

【表7】 [Table 7]

【0060】表6より、実施例にかかる試料は、高強度
であり、良好なプレス成形性、静的・動的吸収エネルギ
ーが得られている。もっとも、試料No. E3は、BH処
理前には十分な耐衝撃性が得られているが、再加熱温度
からの冷却速度が遅いため、固溶C量が不足し、BH処
理後の吸収エネルギーの向上作用がやや不足している。
As shown in Table 6, the samples according to the examples have high strength, good press formability, and static and dynamic absorption energies. Although sample No. E3 had sufficient impact resistance before the BH treatment, the cooling rate from the reheating temperature was slow, so the amount of dissolved C was insufficient, and the absorbed energy after the BH treatment was low. The effect of improving is slightly lacking.

【0061】これに対して、試料No. A1、A3、A
4、C2およびC4は保持温度が適正でないため、プレ
ス加工性または吸収エネルギー向上が低下している。ま
た、No. B1は2次冷却開始温度が低く、ベイナイト体
積率が増大しているため、プレス加工性が低下してい
る。
On the other hand, sample Nos. A1, A3 and A
In 4, C2 and C4, the holding temperature is not appropriate, so that the press workability or the improvement in absorbed energy is reduced. In addition, No. B1 has a low secondary cooling start temperature and an increased bainite volume ratio, so that press workability is reduced.

【0062】また、No. G2は2次冷却速度が速いため
に、マルテンサイトが生成し、所望のベイナイト体積率
が得られず、静的吸収エネルギーが低下している。ま
た、No. G3は焼鈍均熱温度からの1次冷却速度が速い
ため、所望のベイナイト体積率が得られず、静的・動的
吸収エネルギーが低下している。一方、No. G4は均熱
温度が高いために、結晶粒が粗大化して、プレス加工性
が低下している。
Further, in No. G2, since the secondary cooling rate was high, martensite was formed, a desired bainite volume fraction was not obtained, and the static absorption energy was reduced. Further, in No. G3, the primary cooling rate from the annealing and soaking temperature was high, so that the desired bainite volume fraction was not obtained, and the static / dynamic absorption energy was reduced. On the other hand, since No. G4 has a high soaking temperature, the crystal grains are coarsened and the press workability is reduced.

【0063】また、試料No. D、Fは鋼成分が本発明範
囲を外れるために、ベイナイト体積率が低くなり、静的
・動的吸収エネルギーが低下している。また、No. Mは
P量が高すぎるために、動的吸収エネルギーが低くな
り、耐衝撃性が低下している。一方、試料No. N〜Yか
ら、Mo、Cr、Ti、Nb等の補助的元素の所定量を
添加しても、耐衝撃特性の向上を阻害しないことがわか
る。
In Samples D and F, since the steel composition is out of the range of the present invention, the bainite volume ratio is low, and the static / dynamic absorption energy is low. Further, in No. M, since the amount of P was too high, the dynamic absorption energy was low, and the impact resistance was low. On the other hand, it can be seen from Sample Nos. N to Y that the addition of a predetermined amount of an auxiliary element such as Mo, Cr, Ti, or Nb does not hinder the improvement of the impact resistance.

【0064】なお、本発明鋼板の製造においては、実施
例A、実施例Bの製造条件に限定されるものでないこと
は勿論である。また、本発明鋼板は自動車部品、特に車
室を補強する部品のように、プレス加工時は成形性が要
求されるとともに、自動車走行時の衝突に代表されるよ
うな衝撃に対して優れた防護作用を有する素材鋼板とし
て好適であり、衝突安全性を低下させることなく、軽量
化を図ることができるが、かかる用途に限定されないこ
とは勿論であり、耐衝撃特性が要求される各種部材用鋼
板として好適である。
The manufacturing conditions of the steel sheet of the present invention are not limited to the manufacturing conditions of Examples A and B. In addition, the steel sheet of the present invention is required to have formability at the time of press working and is excellent in protection against impacts typified by collisions during driving of automobiles, such as automobile parts, especially parts for reinforcing a passenger compartment. It is suitable as a material steel sheet having an effect, and it is possible to reduce the weight without lowering the collision safety. However, it is needless to say that the steel sheet is not limited to such applications, and various types of steel sheets for which impact resistance is required. It is suitable as.

【0065】[0065]

【発明の効果】本発明の高強度鋼板によれば、特定の鋼
成分を有し、鋼板組織を特定量のベイナイト相と残部実
質的にフェライト相の2相組織とし、2相の硬さ比を所
定値に規定したので、プレス成形性を損なうことなく、
低速歪み速度変形時において高強度を有し、かつ大きな
静的エネルギー及び動的吸収エネルギーを得ることがて
きる。また、フェライト相中の固溶C量を10〜30pp
m とすることにより、降伏点伸びをほとんど生じさせる
となく、耐衝撃特性を著しく向上させることができる。
また、本発明の製造方法は、上記本発明の高強度鋼板の
工業的生産方法として優れる。
According to the high-strength steel sheet of the present invention, the steel sheet has a specific steel component and has a two-phase structure of a specific amount of bainite phase and the remainder substantially a ferrite phase. Is specified to a predetermined value, without impairing press formability,
It has high strength at the time of low-speed strain rate deformation, and can obtain large static energy and dynamic absorption energy. Further, the amount of solid solution C in the ferrite phase is 10 to 30 pp.
By setting the value of m, the impact resistance can be remarkably improved with almost no yield point elongation.
Further, the production method of the present invention is excellent as an industrial production method of the high-strength steel sheet of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】静的引張強度と従来レベルの静的引張吸収エネ
ルギー(歪み速度0.01s-1下)及び動的引張吸収エ
ネルギー(歪み速度800s-1下)の関係を示すグラフ
である。
FIG. 1 is a graph showing the relationship between static tensile strength and conventional levels of static tensile absorbed energy (under a strain rate of 0.01 s −1 ) and dynamic tensile absorbed energy (under a strain rate of 800 s −1 ).

【図2】応力−歪み曲線と歪み量=5%までの単位体積
当たりの吸収エネルギーとの関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a stress-strain curve and absorbed energy per unit volume up to a strain amount of 5%.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北村 充 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Mitsuru Kitamura 1 Kanazawacho, Kakogawa-shi, Hyogo Kobe Steel, Ltd. Inside the Kakogawa Works

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.05〜0.20% Si:2.0%以下 Mn:0.3〜3.0% P :0.1%以下 Al:0.1%以下 を含み、残部がFeおよび不可避的不純物からなり、体
積率で20〜60%のベイナイト相と残部実質的にフェ
ライト相からなる2相組織を有し、ベイナイト相の硬さ
とフェライト相の硬さの比が1.5〜2.5であること
を特徴とする静的吸収エネルギー及び耐衝撃性に優れた
高強度鋼板。
1. Mass%: C: 0.05 to 0.20% Si: 2.0% or less Mn: 0.3 to 3.0% P: 0.1% or less Al: 0.1% or less And the balance consists of Fe and unavoidable impurities, has a two-phase structure consisting of a bainite phase at a volume ratio of 20 to 60% and a balance substantially of a ferrite phase, and has a hardness of the bainite phase and a hardness of the ferrite phase. A high strength steel sheet excellent in static absorption energy and impact resistance, having a ratio of 1.5 to 2.5.
【請求項2】 請求項1に記載した成分のほか、さら
に、Mo:1.0%以下、Cr:2.5%以下、B:
0.002%以下のいずれか1種以上を含む請求項1に
記載した静的吸収エネルギー及び耐衝撃性に優れた高強
度鋼板。
2. In addition to the components described in claim 1, Mo: 1.0% or less, Cr: 2.5% or less, B:
The high-strength steel sheet excellent in static absorption energy and impact resistance according to claim 1, containing at least one of 0.002% or less.
【請求項3】 請求項1又は2に記載した成分のほか、
さらに、Ti,Nb,Zr,V:合計で0.4%以下、
Cu:2.5%以下、Ni:1.5%以下、Ca:0.
02%以下のいずれか1種以上を含む請求項1又は2に
記載した静的吸収エネルギー及び耐衝撃性に優れた高強
度鋼板。
3. In addition to the components described in claim 1 or 2,
Further, Ti, Nb, Zr, V: 0.4% or less in total,
Cu: 2.5% or less, Ni: 1.5% or less, Ca: 0.
The high-strength steel sheet excellent in static absorption energy and impact resistance according to claim 1 or 2 containing at least one kind of not more than 02%.
【請求項4】 フェライト相中の固溶C量が10〜30
ppm である請求項1〜3のいずれか1項に記載した静的
吸収エネルギー及び耐衝撃性に優れた高強度鋼板。
4. The amount of solid solution C in the ferrite phase is 10 to 30.
The high-strength steel sheet excellent in static absorption energy and impact resistance according to any one of claims 1 to 3, which is ppm.
【請求項5】 請求項1〜3のいずれか1項に記載した
成分を有する鋼を熱間圧延した後、冷間圧延を行い、焼
鈍均熱温度から500〜850℃の範囲内の2次冷却開
始温度まで50℃/s以下の冷却速度で冷却した後、4
00℃までを10℃/s以上200℃/s以下の冷却速
度で冷却し、さらに600℃以下250℃以上の温度範
囲で保持した後、冷却することを特徴とする静的吸収エ
ネルギー及び耐衝撃性に優れた高強度鋼板の製造方法。
5. A steel having the composition according to claim 1, which is hot-rolled, then cold-rolled, and has a secondary temperature in the range of 500 to 850 ° C. from the soaking temperature. After cooling to the cooling start temperature at a cooling rate of 50 ° C./s or less, 4
Static absorption energy and impact resistance characterized by cooling to 00 ° C at a cooling rate of 10 ° C / s or more and 200 ° C / s or less, and further cooling at a temperature range of 600 ° C or less and 250 ° C or more. For manufacturing high-strength steel sheets with excellent heat resistance.
【請求項6】 600℃以下250℃以上の温度範囲で
保持した後、100℃以下まで5℃/s以上で冷却する
請求項5に記載した静的吸収エネルギー及び耐衝撃性に
優れた高強度鋼板の製造方法。
6. A high strength excellent in static absorption energy and impact resistance according to claim 5, wherein after holding at a temperature range of 600 ° C. or lower and 250 ° C. or higher, cooling is performed at a temperature of 5 ° C./s or lower to 100 ° C. or lower. Steel plate manufacturing method.
JP8756597A 1997-03-21 1997-03-21 High strength steel sheet excellent in static absorbed energy and impact resistance and its production Pending JPH10259448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8756597A JPH10259448A (en) 1997-03-21 1997-03-21 High strength steel sheet excellent in static absorbed energy and impact resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8756597A JPH10259448A (en) 1997-03-21 1997-03-21 High strength steel sheet excellent in static absorbed energy and impact resistance and its production

Publications (1)

Publication Number Publication Date
JPH10259448A true JPH10259448A (en) 1998-09-29

Family

ID=13918522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8756597A Pending JPH10259448A (en) 1997-03-21 1997-03-21 High strength steel sheet excellent in static absorbed energy and impact resistance and its production

Country Status (1)

Country Link
JP (1) JPH10259448A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052301A1 (en) * 1998-11-30 2000-11-15 Nippon Steel Corporation Ferrite sheet steel excellent in strain rate dependency and automobile using it
WO2003056041A1 (en) * 2001-12-27 2003-07-10 Posco High strength cold rolled steel sheet with superior formability and weldability, and manufacturing method therefor
EP1493828A1 (en) * 2002-03-29 2005-01-05 Nippon Steel Corporation High tensile steel excellent in high temperature strength and method for production thereof
WO2005113848A1 (en) * 2004-05-24 2005-12-01 Sumitomo Metal Industries, Ltd. Steel plate excellent in resistance to fatigue crack progression
JP2006274372A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk High strength high deformability steel sheet having excellent ductile crack generation resistance, and method for producing the same
JP2006283174A (en) * 2005-04-05 2006-10-19 Nippon Steel Corp Method for designing shock absorbing member having excellent dynamic deformation characteristic
JP2007077466A (en) * 2005-09-15 2007-03-29 Sumitomo Metal Ind Ltd Steel sheet for rapid heating/quenching, and its manufacturing method
JP2010506044A (en) * 2006-10-06 2010-02-25 エクソンモービル アップストリーム リサーチ カンパニー Low yield ratio dual phase steel line tube with excellent strain aging resistance
JP2010138458A (en) * 2008-12-12 2010-06-24 Sumitomo Metal Ind Ltd Cr-CONTAINING STEEL SHEET AND MANUFACTURING METHOD THEREOF
WO2010150919A1 (en) * 2009-06-26 2010-12-29 Jfeスチール株式会社 High-strength molten zinc-plated steel sheet and process for production thereof
KR101388392B1 (en) * 2012-06-21 2014-04-25 현대제철 주식회사 High strength steel sheet with excellent plating and bending properties and method of manufacturing the same
JP2017043787A (en) * 2015-08-24 2017-03-02 Jfeスチール株式会社 Steel material for structure excellent in ethanol corrosion resistance
US9896748B2 (en) 2009-04-06 2018-02-20 Exxon Mobil Upstream Research Company Low yield ratio dual phase steel linepipe with superior strain aging resistance
CN108486496A (en) * 2018-03-13 2018-09-04 昆明理工大学 A kind of cooling controlling and rolling controlling process method of Ti-Zr-Mo combined microalloyings steel fine austenite grain

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052301A1 (en) * 1998-11-30 2000-11-15 Nippon Steel Corporation Ferrite sheet steel excellent in strain rate dependency and automobile using it
EP1052301A4 (en) * 1998-11-30 2002-03-13 Nippon Steel Corp Ferrite sheet steel excellent in strain rate dependency and automobile using it
WO2003056041A1 (en) * 2001-12-27 2003-07-10 Posco High strength cold rolled steel sheet with superior formability and weldability, and manufacturing method therefor
EP1458896A1 (en) * 2001-12-27 2004-09-22 Posco High strength cold rolled steel sheet with superior formability and weldability, and manufacturing method therefor
EP1458896A4 (en) * 2001-12-27 2004-12-29 Posco High strength cold rolled steel sheet with superior formability and weldability, and manufacturing method therefor
EP1493828A1 (en) * 2002-03-29 2005-01-05 Nippon Steel Corporation High tensile steel excellent in high temperature strength and method for production thereof
EP1493828A4 (en) * 2002-03-29 2011-01-05 Nippon Steel Corp High tensile steel excellent in high temperature strength and method for production thereof
WO2005113848A1 (en) * 2004-05-24 2005-12-01 Sumitomo Metal Industries, Ltd. Steel plate excellent in resistance to fatigue crack progression
JP2006274372A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk High strength high deformability steel sheet having excellent ductile crack generation resistance, and method for producing the same
JP2006283174A (en) * 2005-04-05 2006-10-19 Nippon Steel Corp Method for designing shock absorbing member having excellent dynamic deformation characteristic
JP4513701B2 (en) * 2005-09-15 2010-07-28 住友金属工業株式会社 Steel plate for rapid heating and quenching and its manufacturing method
JP2007077466A (en) * 2005-09-15 2007-03-29 Sumitomo Metal Ind Ltd Steel sheet for rapid heating/quenching, and its manufacturing method
JP2010506044A (en) * 2006-10-06 2010-02-25 エクソンモービル アップストリーム リサーチ カンパニー Low yield ratio dual phase steel line tube with excellent strain aging resistance
JP2014062333A (en) * 2006-10-06 2014-04-10 Exxonmobil Upstram Research Company Low yield ratio dual phase steel linepipe with superior strain aging resistance
JP2010138458A (en) * 2008-12-12 2010-06-24 Sumitomo Metal Ind Ltd Cr-CONTAINING STEEL SHEET AND MANUFACTURING METHOD THEREOF
US9896748B2 (en) 2009-04-06 2018-02-20 Exxon Mobil Upstream Research Company Low yield ratio dual phase steel linepipe with superior strain aging resistance
AU2010263547B8 (en) * 2009-06-26 2013-12-19 Jfe Steel Corporation High-strength galvanised steel sheet and method for manufacturing the same
AU2010263547B2 (en) * 2009-06-26 2013-12-05 Jfe Steel Corporation High-strength galvanised steel sheet and method for manufacturing the same
JP2011026699A (en) * 2009-06-26 2011-02-10 Jfe Steel Corp High-strength molten zinc-plated steel sheet and process for producing the same
US9255318B2 (en) 2009-06-26 2016-02-09 Jfe Steel Corporation High-steel galvanized steel sheet and method for manufacturing the same
WO2010150919A1 (en) * 2009-06-26 2010-12-29 Jfeスチール株式会社 High-strength molten zinc-plated steel sheet and process for production thereof
KR101388392B1 (en) * 2012-06-21 2014-04-25 현대제철 주식회사 High strength steel sheet with excellent plating and bending properties and method of manufacturing the same
JP2017043787A (en) * 2015-08-24 2017-03-02 Jfeスチール株式会社 Steel material for structure excellent in ethanol corrosion resistance
CN108486496A (en) * 2018-03-13 2018-09-04 昆明理工大学 A kind of cooling controlling and rolling controlling process method of Ti-Zr-Mo combined microalloyings steel fine austenite grain
CN108486496B (en) * 2018-03-13 2020-11-27 昆明理工大学 Controlled rolling and controlled cooling process method for superfine austenite grains of Ti-Zr-Mo composite microalloyed steel

Similar Documents

Publication Publication Date Title
US6364968B1 (en) High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
KR100334948B1 (en) High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof
US9427939B2 (en) Steel sheet with high mechanical strength, ductility and formability properties, production method and use of such sheets
US8828154B2 (en) Hot-rolled steel sheet, method for making the same, and worked body of hot-rolled steel sheet
JP4682822B2 (en) High strength hot rolled steel sheet
CN115404406A (en) High-strength galvanized steel sheet, high-strength member, and method for producing same
JP3619357B2 (en) High strength steel sheet having high dynamic deformation resistance and manufacturing method thereof
JP7364942B2 (en) Steel plate and its manufacturing method
KR102500089B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP3370875B2 (en) High strength steel sheet excellent in impact resistance and method for producing the same
JP7244716B2 (en) High-strength steel sheet with excellent collision resistance and method for manufacturing the same
JPH11193439A (en) Steel plate combining good workability with high strength and having high dynamic deformation resistance, and its production
JP2000239791A (en) Superfine-grained hot rolled steel plate excellent in impact resistance
JPH10259448A (en) High strength steel sheet excellent in static absorbed energy and impact resistance and its production
JP4211520B2 (en) High strength and high ductility galvanized steel sheet with excellent aging resistance and method for producing the same
JPH10130776A (en) High ductility type high tensile strength cold rolled steel sheet
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP4802682B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP3870868B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in stretch flangeability, strength-ductility balance and strain age hardening characteristics, and method for producing the same
EP4137601A1 (en) Steel sheet, member, and methods for producing these
JP7453364B2 (en) High yield ratio thick high strength steel with excellent durability and its manufacturing method
JP5034296B2 (en) Hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP2001011565A (en) High strength steel sheet excellent in impact energy absorbability and its production
JP2002294400A (en) High tensile strength steel plate and production method therefor
US20210071278A1 (en) High yield ratio-type high-strength steel sheet and method for manufacturing same