JP7364942B2 - Steel plate and its manufacturing method - Google Patents

Steel plate and its manufacturing method Download PDF

Info

Publication number
JP7364942B2
JP7364942B2 JP2021572738A JP2021572738A JP7364942B2 JP 7364942 B2 JP7364942 B2 JP 7364942B2 JP 2021572738 A JP2021572738 A JP 2021572738A JP 2021572738 A JP2021572738 A JP 2021572738A JP 7364942 B2 JP7364942 B2 JP 7364942B2
Authority
JP
Japan
Prior art keywords
less
point
steel plate
temperature range
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021572738A
Other languages
Japanese (ja)
Other versions
JPWO2021149676A1 (en
Inventor
直紀 丸山
和夫 匹田
進一郎 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2021149676A1 publication Critical patent/JPWO2021149676A1/ja
Application granted granted Critical
Publication of JP7364942B2 publication Critical patent/JP7364942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、鋼板およびその製造方法に関する。 The present invention relates to a steel plate and a method for manufacturing the same.

車体軽量化および衝突安全性の確保の観点から、自動車用の鋼板には高強度鋼板の適用が指向されている。自動車用の部材としては、バンパーまたはドアガードバーなどの補強部材に加えて、ピラー、シル、またはメンバーといった骨格用部材が挙げられる。これらの部材に適用する高強度鋼板には、衝突時に搭乗者の安全を確保し得る耐衝突特性が求められる(例えば、特許文献1~3)。ここで耐衝突特性とは、高い反力特性を有し、かつ衝突変形時に部材が大きく変形しても脆性的に破壊することなく衝突変形時のエネルギーを吸収することができる特性である。 From the viewpoint of reducing vehicle body weight and ensuring collision safety, high-strength steel plates are being used as steel plates for automobiles. Automobile members include reinforcing members such as bumpers and door guard bars, as well as frame members such as pillars, sills, and members. High-strength steel plates applied to these members are required to have collision resistance properties that can ensure the safety of passengers in the event of a collision (for example, Patent Documents 1 to 3). Here, the collision resistance property is a property that has a high reaction force property and is capable of absorbing energy during collision deformation without causing brittle destruction even if the member is significantly deformed during collision deformation.

エネルギー吸収性能に優れた鋼板としては、フェライトとマルテンサイトとの二相組織を有するDP鋼板(例えば、特許文献4)、または、フェライトおよびベイナイトに加えて残留γの組織を有するTRIP鋼板(変態誘起塑性鋼板)が使用されている(例えば、特許文献5)。さらに、マルテンサイトを主体とする組織からなる高い降伏応力を有する鋼板および部材が開示されている(例えば、特許文献6~8)。 Examples of steel sheets with excellent energy absorption performance include DP steel sheets that have a two-phase structure of ferrite and martensite (for example, Patent Document 4), or TRIP steel sheets that have a structure of residual γ in addition to ferrite and bainite (transformation-induced steel sheets). Plastic steel plate) is used (for example, Patent Document 5). Further, steel plates and members having high yield stress and having a structure mainly composed of martensite have been disclosed (for example, Patent Documents 6 to 8).

特開2009-185355号公報Japanese Patent Application Publication No. 2009-185355 特開2011-111672号公報Japanese Patent Application Publication No. 2011-111672 特開2012-251239号公報Japanese Patent Application Publication No. 2012-251239 特開平11-080878号公報Japanese Patent Application Publication No. 11-080878 特開平11-080879号公報Japanese Patent Application Publication No. 11-080879 特開2010-174280号公報JP2010-174280A 特開2013-117068号公報JP2013-117068A 特開2015-175050号公報JP2015-175050A

「鋼のベイナイト写真集-1」 日本鉄鋼協会(1992年) p.4“Steel Bainite Photo Collection-1” Japan Iron and Steel Institute (1992) p. 4 「鉄鋼の組織制御」、牧正志著、内田老鶴圃(2015年)“Structural control of steel”, Masashi Maki, Rokaku Uchida (2015) Liu Xiao外5名,Lattice-parameter variation with carbon content of martensite.I.X-ray-diffraction experimental study,Physical Review B,第52巻(1995)第9970頁~第9978頁Five people including Liu Xiao, Lattice-parameter variation with carbon content of martensite. I. X-ray-diffraction experimental study, Physical Review B, Vol. 52 (1995), pp. 9970-9978

しかしながら、特許文献4または5に記載のDP鋼板またはTRIP鋼板では、得られる降伏応力が低く、反力特性が不十分であることに加えて、衝突変形時に剪断打抜きに生じた端面からき裂が発生して、所定のエネルギー吸収量を得ることができない場合があった。 However, in the DP steel plate or TRIP steel plate described in Patent Documents 4 or 5, the yield stress obtained is low and the reaction force characteristics are insufficient, and in addition, cracks occur from the end face of the shear punching during impact deformation. Therefore, there were cases where it was not possible to obtain a predetermined amount of energy absorption.

さらに、特許文献6~8に記載されるマルテンサイトを主体とする組織を有する鋼板では、高い降伏応力は得られるものの、部材成形後の衝突変形時において打ち抜き端面または板が屈曲した部位等の応力集中部で脆性的な割れが発生し、衝突エネルギーを十分に吸収できない場合があった。 Furthermore, although high yield stress can be obtained with steel plates having a martensite-based structure described in Patent Documents 6 to 8, stress on the punched end face or bent portions of the plate during impact deformation after forming the member In some cases, brittle cracks occurred in concentrated areas, and the impact energy could not be absorbed sufficiently.

本発明は、上記の課題を解決し、部品形状に成形した後に衝撃荷重を付加させた際に、良好な反力特性を発揮し、かつ部品端面または衝撃時に屈曲した部位から割れが発生しにくく、1000MPa以上の降伏応力を有する鋼板およびその製造方法を提供することを目的とする。 The present invention solves the above problems, exhibits good reaction force characteristics when an impact load is applied after being molded into a part shape, and is less likely to cause cracks from the end face of the part or the part bent during impact. , an object of the present invention is to provide a steel plate having a yield stress of 1000 MPa or more and a method for manufacturing the same.

本発明者らは、上記課題を解決する手法について鋭意検討し、その結果、以下の知見を得るに至った。 The present inventors have diligently studied methods for solving the above problems, and as a result, have come to the following findings.

(a)マルテンサイトの結晶構造を最適化し、さらにブロック粒径を一定値以下にすることにより、高速大変形時の応力集中部の割れの発生と伝播を抑制できる。 (a) By optimizing the crystal structure of martensite and further reducing the block grain size to a certain value or less, it is possible to suppress the occurrence and propagation of cracks in stress concentration areas during high-speed large deformation.

(b)成分の適正化、およびマルテンサイト変態開始温度Msの適正化により、高速変形時の応力集中部の割れの発生と伝播を抑制できる。 (b) By optimizing the ingredients and optimizing the martensitic transformation start temperature Ms, it is possible to suppress the occurrence and propagation of cracks in stress concentration areas during high-speed deformation.

(c)上記割れ発生を抑制した上で、高い降伏応力を有することにより、高い反力特性と衝撃エネルギー吸収能が得られる。 (c) By suppressing the cracking described above and having a high yield stress, high reaction force characteristics and impact energy absorption ability can be obtained.

本発明は、上記知見に基づいてなされたものであり、下記の鋼板およびその製造方法を要旨とする。 The present invention has been made based on the above findings, and its gist is the following steel plate and method for manufacturing the same.

(1)化学組成が、質量%で、
C:0.14~0.60%、
Si:0%超3.00%未満、
Al:0%超3.00%未満、
Mn:5.00%以下、
P:0.030%以下、
S:0.0050%以下、
N:0.015%以下、
B:0~0.0050%、
Ni:0~5.00%、
Cu:0~5.00%、
Cr:0~5.00%、
Mo:0~1.00%、
W:0~1.00%、
Ti:0~0.20%、
Zr:0~0.20%、
Hf:0~0.20%、
V:0~0.20%、
Nb:0~0.20%、
Ta:0~0.20%、
Sc:0~0.20%、
Y:0~0.20%、
Sn:0~0.020%、
As:0~0.020%、
Sb:0~0.020%、
Bi:0~0.020%、
Mg:0~0.005%、
Ca:0~0.005%、
REM:0~0.005%、
残部:Feおよび不純物であり、かつ、
下記(i)~(v)式を満足し、
下記(vi)式で表わされるMsの値が200以上であり、
金属組織が、体積%で、
マルテンサイト:85%以上、
残留オーステナイト:15%以下、
残部:ベイナイトであり、
マルテンサイトおよびベイナイトの平均ブロック粒径:3.0μm以下、
マルテンサイトおよびベイナイトの平均軸比:1.0004~1.0100であり、
降伏応力が1000MPa以上である、
鋼板。
Si+Al≦3.00 ・・・(i)
C×Mn≦0.80 ・・・(ii)
Mn+Ni+Cu+1.3Cr+4(Mo+W)≧0.80 ・・・(iii)
0.003≦Ti+Zr+Hf+V+Nb+Ta+Sc+Y≦0.20 ・・・(iv)
Sn+As+Sb+Bi≦0.020 ・・・(v)
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W) ・・・(vi)
但し、上記式中の元素記号は、各元素の鋼板中の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
(1) The chemical composition is in mass%,
C: 0.14-0.60%,
Si: more than 0% and less than 3.00%,
Al: more than 0% and less than 3.00%,
Mn: 5.00% or less,
P: 0.030% or less,
S: 0.0050% or less,
N: 0.015% or less,
B: 0 to 0.0050%,
Ni: 0-5.00%,
Cu: 0 to 5.00%,
Cr: 0-5.00%,
Mo: 0-1.00%,
W: 0-1.00%,
Ti: 0 to 0.20%,
Zr: 0 to 0.20%,
Hf: 0-0.20%,
V: 0-0.20%,
Nb: 0 to 0.20%,
Ta: 0 to 0.20%,
Sc: 0-0.20%,
Y: 0-0.20%,
Sn: 0 to 0.020%,
As: 0 to 0.020%,
Sb: 0 to 0.020%,
Bi: 0-0.020%,
Mg: 0 to 0.005%,
Ca: 0-0.005%,
REM: 0-0.005%,
The remainder: Fe and impurities, and
The following formulas (i) to (v) are satisfied,
The value of Ms expressed by the following formula (vi) is 200 or more,
The metal structure is in volume %,
Martensite: 85% or more,
Retained austenite: 15% or less,
The remainder: Bainite,
Average block grain size of martensite and bainite: 3.0 μm or less,
Average axial ratio of martensite and bainite: 1.0004 to 1.0100,
The yield stress is 1000 MPa or more,
steel plate.
Si+Al≦3.00...(i)
C×Mn≦0.80...(ii)
Mn+Ni+Cu+1.3Cr+4(Mo+W)≧0.80...(iii)
0.003≦Ti+Zr+Hf+V+Nb+Ta+Sc+Y≦0.20...(iv)
Sn+As+Sb+Bi≦0.020...(v)
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W)...(vi)
However, the element symbol in the above formula represents the content (mass %) of each element in the steel sheet, and if it is not contained, 0 is substituted.

(2)前記金属組織中に含まれる鉄炭化物の平均粒径が0.005~0.20μmである、
前記(1)に記載の鋼板。
(2) the average grain size of iron carbides contained in the metal structure is 0.005 to 0.20 μm;
The steel plate according to (1) above.

(3)表面にめっき層を有する、
上記(1)または(2)に記載の鋼板。
(3) having a plating layer on the surface;
The steel plate according to (1) or (2) above.

(4)上記(1)から(3)までのいずれかに記載の鋼板の製造方法であって、
上記(1)に記載の化学組成を有する鋳片に対して、熱間圧延工程、冷間圧延工程、焼鈍工程および熱処理工程を順に施し、
前記熱間圧延工程において、圧延終了温度から650℃までの間の平均冷却速度を8℃/s以上として、室温まで冷却し、
前記焼鈍工程において、Ac点~(Ac点+100)℃の温度範囲で3~90s保持し、かつ、
700℃から(Ms点-50)℃までの間の平均冷却速度を10℃/s以上とし、
前記熱処理工程において、
Ms点が250℃以上の場合には、
(Ms点+50)~250℃の温度範囲での滞留時間を100~10000sとし、
Ms点が250℃未満の場合には、
(Ms点+80)~100℃の温度範囲での滞留時間を100~50000sとする、
鋼板の製造方法。
但し、上記のMs点(℃)およびAc点(℃)は、下記式によって表わされ、式中の元素記号は、各元素の鋼板中の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W) ・・・(vi)
Ac=910-203×C0.5+44.7(Si+Al)-30×Mn+700×P-15.2×Ni-26×Cu-11×Cr+31.5×Mo ・・・(vii)
(4) A method for manufacturing a steel plate according to any one of (1) to (3) above,
A slab having the chemical composition described in (1) above is sequentially subjected to a hot rolling process, a cold rolling process, an annealing process, and a heat treatment process,
In the hot rolling process, the average cooling rate from the rolling end temperature to 650 ° C. is 8 ° C. / s or more, and cooling to room temperature,
In the annealing step, the temperature is maintained in the temperature range of 3 points Ac to ( 3 points Ac + 100) ° C. for 3 to 90 seconds, and
The average cooling rate from 700 °C to (Ms point -50) °C is 10 °C / s or more,
In the heat treatment step,
If the Ms point is 250℃ or higher,
(Ms point +50) ~ 250 ° C. Residence time in the temperature range of 100 ~ 10000 s,
If the Ms point is less than 250°C,
(Ms point +80) ~ 100 ° C. Residence time in the temperature range of 100 ~ 50000 s,
Method of manufacturing steel plates.
However, the above Ms point (℃) and Ac 3 point (℃) are expressed by the following formula, and the element symbol in the formula represents the content (mass%) of each element in the steel sheet, and if it is not contained. shall be assigned 0.
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W)...(vi)
Ac 3 =910-203×C 0.5 +44.7(Si+Al)-30×Mn+700×P-15.2×Ni-26×Cu-11×Cr+31.5×Mo...(vii)

(5)上記(1)から(3)までのいずれかに記載の鋼板の製造方法であって、
上記(1)に記載の化学組成を有する鋳片に対して、熱間圧延工程、焼鈍工程および熱処理工程を順に施し、
前記熱間圧延工程において、圧延終了温度から650℃までの間の平均冷却速度を8℃/s以上として、室温まで冷却し、
前記焼鈍工程において、Ac~(Ac+100)℃の温度範囲で3~90s保持し、かつ、
700℃から(Ms-50)℃までの間の平均冷却速度を10℃/s以上とし、
前記熱処理工程において、
Ms点が250℃以上の場合には、
(Ms+50)~250℃の温度範囲での滞留時間を100~10000sとし、
Ms点が250℃未満の場合には、
(Ms+80)~100℃の温度範囲での滞留時間を100~50000sとする、
鋼板の製造方法。
但し、上記のMs点(℃)およびAc点(℃)は、下記式によって表わされ、式中の元素記号は、各元素の鋼板中の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W) ・・・(vi)
Ac=910-203×C0.5+44.7(Si+Al)-30×Mn+700×P-15.2×Ni-26×Cu-11×Cr+31.5×Mo ・・・(vii)
(5) A method for manufacturing a steel plate according to any one of (1) to (3) above,
The slab having the chemical composition described in (1) above is subjected to a hot rolling process, an annealing process, and a heat treatment process in order,
In the hot rolling process, the average cooling rate from the rolling end temperature to 650 ° C. is 8 ° C. / s or more, and cooling to room temperature,
In the annealing step, a temperature range of Ac 3 to (Ac 3 +100)° C. is maintained for 3 to 90 seconds, and
The average cooling rate from 700°C to (Ms-50)°C is 10°C/s or more,
In the heat treatment step,
If the Ms point is 250℃ or higher,
The residence time in the temperature range of (Ms+50) to 250°C is 100 to 10,000 s,
If the Ms point is less than 250°C,
(Ms + 80) ~ 100 ° C. Residence time in the temperature range of 100 ~ 50000 s,
Method of manufacturing steel plates.
However, the above Ms point (℃) and Ac 3 point (℃) are expressed by the following formula, and the element symbol in the formula represents the content (mass%) of each element in the steel sheet, and if it is not contained. shall be assigned 0.
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W)...(vi)
Ac 3 =910-203×C 0.5 +44.7(Si+Al)-30×Mn+700×P-15.2×Ni-26×Cu-11×Cr+31.5×Mo...(vii)

(6)上記(1)から(3)までのいずれかに記載の鋼板の製造方法であって、
上記(1)に記載の化学組成を有する鋳片に対して、熱間圧延工程および熱処理工程を順に施し、
前記熱間圧延工程において、圧延終了温度をAr点以上とし、かつ、
圧延終了温度から(Ms-50)℃までの間の平均冷却速度を10℃/s以上とし、
前記熱処理工程において、
Ms点が250℃以上の場合には、
(Ms+50)~250℃の温度範囲での滞留時間を100~10000sとし、
Ms点が250℃未満の場合には、
(Ms+80)~100℃の温度範囲での滞留時間を100~50000sとする、
鋼板の製造方法。
但し、上記のMs点(℃)およびAr点(℃)は、下記式によって表わされ、式中の元素記号は、各元素の鋼板中の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W) ・・・(vi)
Ar=910-310×C+33×Si-80×Mn-55×Ni-20×Cu-15×Cr-80×Mo ・・・(viii)
(6) A method for manufacturing a steel plate according to any one of (1) to (3) above,
A slab having the chemical composition described in (1) above is subjected to a hot rolling process and a heat treatment process in order,
In the hot rolling step, the rolling end temperature is set to Ar 3 points or higher, and
The average cooling rate from the rolling end temperature to (Ms-50) °C is 10 °C / s or more,
In the heat treatment step,
If the Ms point is 250℃ or higher,
The residence time in the temperature range of (Ms+50) to 250°C is 100 to 10,000 s,
If the Ms point is less than 250°C,
(Ms + 80) ~ 100 ° C. Residence time in the temperature range of 100 ~ 50000 s,
Method of manufacturing steel plates.
However, the above Ms point (°C) and Ar 3 point (°C) are expressed by the following formula, and the element symbol in the formula represents the content (mass%) of each element in the steel sheet, and if it is not contained. shall be assigned 0.
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W)...(vi)
Ar 3 =910-310×C+33×Si-80×Mn-55×Ni-20×Cu-15×Cr-80×Mo...(viii)

本発明によれば、部品形状に成形した後に衝撃荷重を付加させた際に、良好な反力特性を発揮し、かつ部品端面または衝撃時に屈曲した部位から割れが発生しにくく、1000MPa以上の降伏応力を有する高強度鋼板を得ることが可能になる。 According to the present invention, when an impact load is applied after forming the part into a shape, it exhibits good reaction force characteristics, is less prone to cracking from the end face of the part or the part bent at the time of impact, and has a yield of 1000 MPa or more. It becomes possible to obtain a high-strength steel plate with stress.

衝突試験に用いられる試験体の形状を説明するための図である。It is a figure for explaining the shape of the test object used for a collision test.

以下、本発明の各要件について詳しく説明する。 Hereinafter, each requirement of the present invention will be explained in detail.

(A)化学組成
各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
(A) Chemical composition The reasons for limiting each element are as follows. In addition, in the following description, "%" regarding content means "mass %".

C:0.14~0.60%
Cは、強度向上およびブロック粒径の微細化に効果がある元素である。1000MPaの降伏応力を維持するため、C含有量は0.14%以上とする。一方、C含有量が0.60%を超えると、Ms点が低下し、後述する平均軸比が増大しやすくなる。その結果、衝突変形時において応力集中部で脆性的な破壊が発生し、衝撃エネルギー吸収能が低下する。したがって、C含有量は0.14~0.60%とする。C含有量は0.15%以上であるのが好ましく、0.18%以上であるのがより好ましく、0.50%以下であるのが好ましい。
C: 0.14-0.60%
C is an element that is effective in improving strength and making the block grain size finer. In order to maintain a yield stress of 1000 MPa, the C content is set to 0.14% or more. On the other hand, when the C content exceeds 0.60%, the Ms point decreases and the average axial ratio described below tends to increase. As a result, brittle fracture occurs at the stress concentration portion during impact deformation, reducing the impact energy absorption ability. Therefore, the C content is set to 0.14 to 0.60%. The C content is preferably 0.15% or more, more preferably 0.18% or more, and preferably 0.50% or less.

Si:0%超3.00%未満およびAl:0%超3.00%未満、かつ、
Si+Al≦3.00 ・・・(i)
SiおよびAlは、鋼の脱酸に有効な元素であるが、本発明においては、マルテンサイトの平均軸比を増大させる効果、鉄炭化物の形成を抑制する効果、およびマルテンサイトのブロック粒径を小さくする効果を有し、それによって、部材の衝突変形時の割れを抑制してエネルギー吸収能を向上させる。脱酸の効果を得るため、SiおよびAlはそれぞれ0%を超えて含有させる。SiおよびAlはそれぞれ0.01%以上含有させるのが好ましい。
Si: more than 0% and less than 3.00% and Al: more than 0% and less than 3.00%, and
Si+Al≦3.00...(i)
Si and Al are effective elements for deoxidizing steel, but in the present invention, they have the effect of increasing the average axial ratio of martensite, the effect of suppressing the formation of iron carbides, and the effect of increasing the block grain size of martensite. This has the effect of reducing the size of the material, thereby suppressing cracking during collision deformation of the member and improving energy absorption ability. In order to obtain a deoxidizing effect, Si and Al are each contained in an amount exceeding 0%. It is preferable to contain 0.01% or more of each of Si and Al.

しかしながら、その合計含有量が3.00%を超えると、衝突変形時に脆性破壊する傾向が強くなり、衝撃エネルギー吸収能が低下する。したがって、SiおよびAlの合計含有量は3.00%以下とする。上記合計含有量は2.50%以下であるのが好ましい。合計含有量の下限は特に限定しないが、ブロック粒径を小さくする効果を確実に得るためには、0.10%以上であることが好ましい。 However, if the total content exceeds 3.00%, there is a strong tendency for brittle fracture to occur during impact deformation, and impact energy absorption ability decreases. Therefore, the total content of Si and Al is 3.00% or less. The total content is preferably 2.50% or less. Although the lower limit of the total content is not particularly limited, it is preferably 0.10% or more in order to reliably obtain the effect of reducing the block particle size.

Mn:5.00%以下
Mnは、フェライトの形成を抑制し、降伏応力を向上させる効果を有し、さらに、平均軸比の制御に有用な元素である。しかしながら、Mn含有量が5.00%を超えると、Ms点が低下し、後述する平均軸比が増大しやすくなる。その結果、衝突変形時において応力集中部で脆性的な破壊が発生し、衝撃エネルギー吸収能が低下する。したがって、Mn含有量は5.00%以下とする。Mn含有量は4.00%以下、3.00%以下、または2.00%以下であるのが好ましい。上記の効果を確実に得るためには、0.01%以上含有させるのが好ましい。
Mn: 5.00% or less Mn has the effect of suppressing the formation of ferrite and improving yield stress, and is also an element useful for controlling the average axial ratio. However, when the Mn content exceeds 5.00%, the Ms point decreases and the average axial ratio described below tends to increase. As a result, brittle fracture occurs at the stress concentration portion during impact deformation, reducing the impact energy absorption ability. Therefore, the Mn content is set to 5.00% or less. The Mn content is preferably 4.00% or less, 3.00% or less, or 2.00% or less. In order to reliably obtain the above effects, the content is preferably 0.01% or more.

C×Mn≦0.80 ・・・(ii)
CとMnとの含有量の積は、衝突変形時における応力集中部での脆性的な破壊と相関するパラメーターである。C×Mnの値が0.80を超えると、脆性破壊傾向が強くなるため、0.80以下とする。この値は0.60以下であるのが好ましく、0.40以下であるのがより好ましい。
C×Mn≦0.80...(ii)
The product of the C and Mn contents is a parameter that correlates with brittle fracture at stress concentration areas during impact deformation. If the value of C×Mn exceeds 0.80, the brittle fracture tendency becomes strong, so it is set to 0.80 or less. This value is preferably 0.60 or less, more preferably 0.40 or less.

P:0.030%以下
Pは、強度の向上に寄与する元素である。しかし、P含有量が0.030%を超えると、衝突変形時に粒界破壊傾向が増大し、衝撃エネルギー吸収能が低下する。したがって、P含有量は0.030%以下とする。抵抗溶接性の観点から、P含有量は0.020%以下であるのが好ましい。下限は特に限定しないが、0.001%未満に低減することは、製造コストの増大を招くので、実用上、0.001%が下限となる。
P: 0.030% or less P is an element that contributes to improving strength. However, when the P content exceeds 0.030%, the grain boundary fracture tendency increases during impact deformation, and the impact energy absorption ability decreases. Therefore, the P content is set to 0.030% or less. From the viewpoint of resistance weldability, the P content is preferably 0.020% or less. Although the lower limit is not particularly limited, reducing the content to less than 0.001% will increase manufacturing costs, so 0.001% is the lower limit in practice.

S:0.0050%以下
Sは、不純物元素であり、その含有量が0.0050%を超えると、衝突時に打ち抜き部または屈曲部からの破壊発生が起こる。したがって、S含有量は0.0050%以下とする。S含有量は0.0040%以下、または0.0030%以下であるのが好ましい。下限は特に限定しないが、0.0002%未満に低減することは、製造コストの増大を招くので、実用上、0.0002%が下限となる。
S: 0.0050% or less S is an impurity element, and if its content exceeds 0.0050%, breakage occurs from the punched portion or bent portion upon collision. Therefore, the S content is set to 0.0050% or less. The S content is preferably 0.0040% or less, or 0.0030% or less. The lower limit is not particularly limited, but reducing the content to less than 0.0002% will increase manufacturing costs, so 0.0002% is practically the lower limit.

N:0.015%以下
Nは、平均軸比の制御に用いることができる元素である。しかし、N含有量が0.015%を超えると、鋼板の靱性が低下し、衝突時に応力集中部から割れが発生する傾向がある。したがって、N含有量は0.015%以下とする。N含有量は0.010%以下、または0.005%以下であるのが好ましい。下限は特に限定しないが、0.001%未満に低減することは、製造コストの増大を招くので、実用上、0.001%が下限となる。
N: 0.015% or less N is an element that can be used to control the average axial ratio. However, when the N content exceeds 0.015%, the toughness of the steel plate decreases, and cracks tend to occur from stress concentration areas during a collision. Therefore, the N content is set to 0.015% or less. The N content is preferably 0.010% or less, or 0.005% or less. Although the lower limit is not particularly limited, reducing the content to less than 0.001% will increase manufacturing costs, so 0.001% is the lower limit in practice.

B:0~0.0050%
Bは、鋼板の焼入れ性を高める効果を有する元素であるため必要に応じて含有させてもよい。しかし、B含有量が0.0050%を超えると、衝突変形時に割れが発生する場合がある。したがって、B含有量は0.0050%以下とする。B含有量は0.0040%以下、または0.0030%以下であるのが好ましい。下限は特に限定せず、0%であってもよいが、上記の効果を得たい場合は、B含有量は0.0003%以上であるのが好ましい。
B: 0-0.0050%
Since B is an element that has the effect of improving the hardenability of the steel sheet, it may be included as necessary. However, if the B content exceeds 0.0050%, cracks may occur during impact deformation. Therefore, the B content is set to 0.0050% or less. The B content is preferably 0.0040% or less, or 0.0030% or less. The lower limit is not particularly limited and may be 0%, but if the above effects are desired, the B content is preferably 0.0003% or more.

Ni:0~5.00%、Cu:0~5.00%、Cr:0~5.00%、Mo:0~1.00%、およびW:0~1.00%、かつ、
Mn+Ni+Cu+1.3Cr+4(Mo+W)≧0.80 ・・・(iii)
Ni、Cu、Cr、Mo、Wは、Mnと同様に、フェライトの形成を抑制し、降伏応力を向上させる効果を有し、さらに、平均軸比の制御に有用な元素である。したがって、これらの元素から選択される1種以上を含有させてもよい。この効果を得るためには、これらの元素の含有量が(iii)式を満足する必要がある。
Ni: 0 to 5.00%, Cu: 0 to 5.00%, Cr: 0 to 5.00%, Mo: 0 to 1.00%, and W: 0 to 1.00%, and
Mn+Ni+Cu+1.3Cr+4(Mo+W)≧0.80...(iii)
Like Mn, Ni, Cu, Cr, Mo, and W have the effect of suppressing the formation of ferrite and improving yield stress, and are also useful elements for controlling the average axial ratio. Therefore, one or more selected from these elements may be contained. In order to obtain this effect, the content of these elements needs to satisfy formula (iii).

フェライトおよびベイナイトの形成を安定的に抑制する観点からは、上記(iii)式の左辺値は1.00以上であることが好ましい。上限は特に限定しないが、4.00を超えると、Ms点が低下し、後述する平均軸比が増大しやすくなる。その結果、衝突変形時において応力集中部で脆性的な破壊が発生し、衝撃エネルギー吸収能が低下するおそれがある。そのため、上記(iii)式の左辺値は4.00以下であるのが好ましい。 From the viewpoint of stably suppressing the formation of ferrite and bainite, the left-hand side value of the above formula (iii) is preferably 1.00 or more. The upper limit is not particularly limited, but if it exceeds 4.00, the Ms point decreases and the average axial ratio described below tends to increase. As a result, there is a risk that brittle fracture will occur at the stress concentration part during collision deformation, and the impact energy absorption ability will decrease. Therefore, it is preferable that the left-hand side value of the above equation (iii) is 4.00 or less.

また、NiおよびCuの含有量は、それぞれ、4.00%以下であるのが好ましく、3.00%以下であるのがより好ましく、1.00%以下であるのがさらに好ましい。Cr含有量は3.00%以下であるのが好ましく、1.00%以下であるのがより好ましい。そして、MoおよびWの含有量は、それぞれ、0.80%以下であるのが好ましく、0.60%以下であるのがより好ましい。 Further, the content of Ni and Cu is preferably 4.00% or less, more preferably 3.00% or less, and even more preferably 1.00% or less. The Cr content is preferably 3.00% or less, more preferably 1.00% or less. The contents of Mo and W are each preferably at most 0.80%, more preferably at most 0.60%.

Ti:0~0.20%、Zr:0~0.20%、Hf:0~0.20%、V:0~0.20%、Nb:0~0.20%、Ta:0~0.20%、Sc:0~0.20%、およびY:0~0.20%、かつ、
0.003≦Ti+Zr+Hf+V+Nb+Ta+Sc+Y≦0.20 ・・・(iv)
これら元素は、マルテンサイトのブロック粒径を小さくする効果と、鉄炭化物の形成を抑制する効果とを有し、それによって、衝突変形時の応力集中部からの割れの発生と伝播を抑制する。そのため、これらの元素を少なくとも1種以上含有させた上で、その合計含有量を0.003%以上とする。一方、合計含有量が0.20%を超えると、多量の合金析出物が析出し、衝突変形時に割れが発生しやすくなるので、0.20%以下とする。合計含有量は0.010%以上であるのが好ましい。
Ti: 0-0.20%, Zr: 0-0.20%, Hf: 0-0.20%, V: 0-0.20%, Nb: 0-0.20%, Ta: 0-0 .20%, Sc: 0 to 0.20%, and Y: 0 to 0.20%, and
0.003≦Ti+Zr+Hf+V+Nb+Ta+Sc+Y≦0.20...(iv)
These elements have the effect of reducing the block grain size of martensite and the effect of suppressing the formation of iron carbides, thereby suppressing the generation and propagation of cracks from stress concentration areas during impact deformation. Therefore, at least one of these elements is contained, and the total content is set to 0.003% or more. On the other hand, if the total content exceeds 0.20%, a large amount of alloy precipitates will precipitate and cracks will easily occur during impact deformation, so the content should be 0.20% or less. The total content is preferably 0.010% or more.

Sn:0~0.020%、As:0~0.020%、Sb:0~0.020%、およびBi:0~0.020%、かつ、
Sn+As+Sb+Bi≦0.020 ・・・(v)
Sn、As、SbおよびBiは、所定の金属組織を得るために用いられる元素であるため、これらから選択される1種以上を必要に応じて含有させてもよい。しかし、これらの合計含有量が0.020%を超えると、衝突変形時に粒界破壊傾向が増大するため、その上限を0.020%とする。下限は特に限定しないが、0.00005%未満に低減することは、製造コストの増大を招くので、実用上、0.00005%が下限となる。
Sn: 0 to 0.020%, As: 0 to 0.020%, Sb: 0 to 0.020%, and Bi: 0 to 0.020%, and
Sn+As+Sb+Bi≦0.020...(v)
Since Sn, As, Sb, and Bi are elements used to obtain a predetermined metal structure, one or more selected from these may be included as necessary. However, if the total content exceeds 0.020%, the tendency for grain boundary fracture to occur during impact deformation increases, so the upper limit is set to 0.020%. Although the lower limit is not particularly limited, reducing the content to less than 0.00005% causes an increase in manufacturing costs, so 0.00005% is practically the lower limit.

Mg:0~0.005%、Ca:0~0.005%、およびREM:0~0.005%
Mg、CaおよびREMは、酸化物および硫化物の形態を制御する作用を有する元素であるため、これらから選択される1種以上を必要に応じて含有させてもよい。しかしながら、いずれの元素の含有量も、0.005%を超えると、添加効果が飽和するとともに衝突変形時のエネルギー吸収能が低下するため、0.005%以下とする。Mg、CaおよびREMの含有量はいずれも、0.003%以下であるのが好ましい。上記の効果を得たい場合は、Mg:0.001%以上、Ca:0.001%以上およびREM:0.001%以上から選択される1種以上を含有させるのが好ましい。
Mg: 0-0.005%, Ca: 0-0.005%, and REM: 0-0.005%
Since Mg, Ca, and REM are elements that have the effect of controlling the morphology of oxides and sulfides, one or more selected from these may be included as necessary. However, if the content of any element exceeds 0.005%, the effect of addition will be saturated and the energy absorption ability during impact deformation will decrease, so it is set to 0.005% or less. It is preferable that the contents of Mg, Ca and REM are all 0.003% or less. In order to obtain the above effects, it is preferable to contain one or more selected from Mg: 0.001% or more, Ca: 0.001% or more, and REM: 0.001% or more.

ここで、本発明において、REMはランタノイドの15元素を指し、前記REMの含有量はランタノイドの合計含有量を意味する。なお、ランタノイドは、工業的には、ミッシュメタルの形で添加される。 Here, in the present invention, REM refers to 15 elements of lanthanoids, and the content of REM means the total content of lanthanides. Note that lanthanoids are industrially added in the form of mischmetal.

Msの値:200以上
Msは、マルテンサイト変態開始温度(℃)を意味する。鋼板のMs点が200℃未満であると軸比が増大し、本発明の構成では、衝突変形時の脆性的な破壊を抑制することが困難となる。このため、Msの値を200以上とする。Msの値は220以上であることが好ましい。
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W) ・・・(vi)
Value of Ms: 200 or more Ms means the martensitic transformation start temperature (° C.). If the Ms point of the steel plate is less than 200°C, the axial ratio will increase, and with the configuration of the present invention, it will be difficult to suppress brittle fracture during collision deformation. Therefore, the value of Ms is set to 200 or more. The value of Ms is preferably 220 or more.
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W)...(vi)

本発明の鋼板の化学組成において、残部はFeおよび不純物である。ここで「不純物」とは、鋼板を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。 In the chemical composition of the steel sheet of the present invention, the remainder is Fe and impurities. Here, "impurities" are components that are mixed in during the industrial production of steel sheets due to raw materials such as ore and scrap, and various factors in the manufacturing process, and are allowed within the range that does not adversely affect the present invention. means something that

(B)金属組織
本発明の一実施形態に係る鋼板の金属組織について説明する。以下の説明において「%」は、「体積%」を意味する。
(B) Metal structure The metal structure of the steel plate according to one embodiment of the present invention will be explained. In the following description, "%" means "volume %".

マルテンサイト:85%以上
マルテンサイトを主な組織とすることは、1000MPa以上の降伏応力の確保に不可欠である。マルテンサイトの体積率が85%未満であると、降伏応力:1000MPa以上の確保が難しくなる。そのため、マルテンサイトの体積率を85%以上とする。降伏応力の安定的な確保のためには、マルテンサイトの体積率は90%以上であるのが好ましい。なお、マルテンサイトは焼戻しを受けたマルテンサイト、すなわち内部に炭化物が形成したマルテンサイトを含むものとする。また、マルテンサイトの形態はラス、バタフライ、双晶、薄板等のいずれでも構わない。
Martensite: 85% or more Having martensite as the main structure is essential to ensuring a yield stress of 1000 MPa or more. When the volume fraction of martensite is less than 85%, it becomes difficult to ensure a yield stress of 1000 MPa or more. Therefore, the volume fraction of martensite is set to 85% or more. In order to ensure stable yield stress, the volume fraction of martensite is preferably 90% or more. Note that martensite includes tempered martensite, that is, martensite in which carbides are formed inside. Further, the form of martensite may be lath, butterfly, twin, thin plate, etc.

残留オーステナイト:15%以下
残留オーステナイトは、成形加工性の向上および衝撃エネルギー吸収特性の向上に有効な金属組織である。しかし、その体積率が15%を超えると、降伏応力が低下するとともに、衝突変形時に脆性的な割れが発生する傾向がある。そのため、残留オーステナイトの体積率は15%以下とする。残留オーステナイトの体積率は12%以下であるのが好ましい。下限は特に限定しないが、0.1%以上であることが好ましい。
Retained austenite: 15% or less Retained austenite is a metal structure that is effective in improving formability and impact energy absorption characteristics. However, when the volume fraction exceeds 15%, the yield stress decreases and brittle cracks tend to occur during impact deformation. Therefore, the volume fraction of retained austenite is set to 15% or less. The volume fraction of retained austenite is preferably 12% or less. Although the lower limit is not particularly limited, it is preferably 0.1% or more.

上記組織以外の残部組織は、ベイナイトである。ここで、ベイナイトは、下部ベイナイトおよび上部ベイナイトを含み、さらに、非特許文献1に記載のベイニティックフェライト(α°B)はベイナイトに区分する。なお、焼戻しを受けたマルテンサイトは、参考文献1によってもベイナイトとの組織分離が難しい場合が生じる。このように組織分離が困難な場合は、マルテンサイトと見做して組織分率を算出する。残部であるベイナイトの面積率に上限を設ける必要はないが、実質的に15%以下であり、10%以下であるのが好ましい。 The remaining structure other than the above structure is bainite. Here, bainite includes lower bainite and upper bainite, and bainitic ferrite (α°B) described in Non-Patent Document 1 is classified as bainite. Note that, even according to Reference 1, it may be difficult to separate the structure of martensite from bainite after tempering. In cases where tissue separation is difficult as described above, the tissue fraction is calculated assuming that the material is martensite. Although it is not necessary to set an upper limit to the area ratio of the remaining bainite, it is substantially 15% or less, preferably 10% or less.

金属組織の体積率は、以下の手順により求める。まず、鋼板の圧延方向および厚さ方向に平行な面の1/4厚さ部を鏡面研磨した後、ナイタール腐食する。そして、その表面を走査電子顕微鏡(SEM)またはさらに透過電子顕微鏡(TEM)による組織観察を行い、撮影した組織写真を用いて、ポイントカウント法または画像解析によって、マルテンサイトおよびベイナイトの面積率を求め、これを体積率とする。また、残留オーステナイトの体積率は、X線回折法により求める。観察する面積領域は、SEMの場合は1000μm以上、TEMを用いる場合は100μm以上とする。The volume fraction of the metal structure is determined by the following procedure. First, a 1/4 thickness portion of the surface parallel to the rolling direction and thickness direction of the steel plate is mirror polished and then subjected to nital corrosion. Then, the structure of the surface is observed using a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and the area ratio of martensite and bainite is determined using a point counting method or image analysis using the photographed structure photograph. , this is taken as the volume ratio. Further, the volume fraction of retained austenite is determined by an X-ray diffraction method. The area to be observed is 1000 μm 2 or more when using SEM, and 100 μm 2 or more when using TEM.

また、本発明においては、マルテンサイトおよびベイナイトの平均ブロック粒径および平均軸比についても以下のように規定する。 Further, in the present invention, the average block grain size and average axial ratio of martensite and bainite are also defined as follows.

マルテンサイトおよびベイナイトの平均ブロック粒径:3.0μm以下
マルテンサイトのブロック粒径は、衝突変形時の脆性破壊の発生と伝播に影響し、その値が小さいほど良好な衝撃特性が得られる。平均ブロック粒径が3.0μmを超えると、衝突変形時の屈曲部において、板破断が発生する場合があることから、3.0μm以下とする。平均ブロック粒径は2.7μm以下、2.5μm以下、または2.4μm以下であるのが好ましい。
Average block grain size of martensite and bainite: 3.0 μm or less The block grain size of martensite affects the occurrence and propagation of brittle fracture during impact deformation, and the smaller the value, the better the impact properties can be obtained. If the average block grain size exceeds 3.0 μm, plate breakage may occur at the bent portion during collision deformation, so it is set to 3.0 μm or less. Preferably, the average block particle size is 2.7 μm or less, 2.5 μm or less, or 2.4 μm or less.

ここでブロック粒径について説明する。非特許文献2のp.223の表に示されるように、マルテンサイトおよびベイナイトは、その下部構造として異なる24個の結晶単位(バリアント)から構成されるものとして分類することができる。この24個のバリアントをグループ化する方法の一つとして、非特許文献2のp.223記載のBainグループがあり、これによりマルテンサイトおよびベイナイトを3種類の結晶単位に分類することができる。本発明におけるブロック粒径とは、このBainグループで分類した際のグループ粒の平均サイズを示す。 Here, the block particle size will be explained. Non-Patent Document 2, p. As shown in Table 223, martensite and bainite can be classified as being composed of 24 different crystal units (variants) as their substructures. One method of grouping these 24 variants is as described in Non-Patent Document 2, p. There is a Bain group described in No. 223, which allows martensite and bainite to be classified into three types of crystal units. The block grain size in the present invention refers to the average size of group grains when classified by this Bain group.

また、平均ブロック粒径は、以下の手順により測定する。まず、各鋼板を圧延方向および厚さ方向に平行な面が観察面となるように切断し、この断面の板厚の1/4位置から1/2位置の間を5000μm以上の面積領域についてEBSD法で測定する。測定のステップサイズは0.2μmとする。そして、EBSD測定により得られた結晶方位情報を元に、3つのBainグループ単位に方位を分類し、画像表示し、JIS G 0552の附属書2に記載の交差線分法によりこの結晶単位の大きさを求める。Moreover, the average block particle size is measured by the following procedure. First, each steel plate is cut so that the plane parallel to the rolling direction and the thickness direction serves as the observation plane, and the area between the 1/4 position and the 1/2 position of the plate thickness of this cross section is 5000 μm 2 or more. Measure by EBSD method. The step size of the measurement is 0.2 μm. Then, based on the crystal orientation information obtained by EBSD measurement, the orientation is classified into three Bain groups, displayed as an image, and the size of this crystal unit is determined using the intersecting line segment method described in Annex 2 of JIS G 0552. Seek the truth.

マルテンサイトおよびベイナイトの平均軸比:1.0004~1.0100
残留オーステナイトを除く金属組織部分、すなわちマルテンサイトおよびベイナイトの結晶構造は、衝突変形時の応力集中部および屈曲部での割れ挙動に影響する。特に、正方晶構造を有するマルテンサイトおよびベイナイトの平均軸比を適切に調整する必要がある。ここで、軸比とは、正方晶構造におけるa軸およびc軸の格子定数をそれぞれaおよびcとした時に、c/aで表わされる値である。軸比c/aの大きさが衝突試験時の高速大変形時の割れ挙動と関連する理由については定かではないが、結晶格子歪が何らかの影響を及ぼしている可能性がある。
Average axial ratio of martensite and bainite: 1.0004 to 1.0100
The crystal structure of the metallographic parts other than retained austenite, that is, martensite and bainite, influences the cracking behavior at stress concentration areas and bending areas during impact deformation. In particular, it is necessary to appropriately adjust the average axial ratio of martensite and bainite having a tetragonal structure. Here, the axial ratio is a value expressed as c/a, where a and c are the lattice constants of the a-axis and c-axis in the tetragonal structure, respectively. Although it is not clear why the magnitude of the axial ratio c/a is related to the cracking behavior during high-speed large deformation during a collision test, it is possible that crystal lattice strain has some influence.

平均軸比が1.0004未満であると、衝突変形時に割れが発生する場合があるか衝撃エネルギーを吸収しにくくなる傾向にある。一方、1.0100を超えると、衝突変形時に部材端面または屈曲部から脆性的に破壊する傾向がある。このため、平均軸比を1.0004~1.0100とする。安定的に降伏応力を確保する観点から、平均軸比は1.0006以上が好ましい。また、衝突変形時の割れをより確実に抑制するためには、平均軸比は1.0007以上であるのが好ましい。一方、衝撃エネルギーをより吸収する観点から、平均軸比は1.0080以下であることが好ましい。 If the average axial ratio is less than 1.0004, cracks may occur during collision deformation, or impact energy tends to be difficult to absorb. On the other hand, if it exceeds 1.0100, there is a tendency for the member to break brittle from the end face or bent portion during collision deformation. Therefore, the average axial ratio is set to 1.0004 to 1.0100. From the viewpoint of stably securing yield stress, the average axial ratio is preferably 1.0006 or more. Further, in order to more reliably suppress cracking during collision deformation, the average axial ratio is preferably 1.0007 or more. On the other hand, from the viewpoint of better absorbing impact energy, the average axial ratio is preferably 1.0080 or less.

ここで、マルテンサイトおよびベイナイトの平均軸比は、X線回折法により以下の手順で測定する。この際、正方晶鉄または立方晶鉄の回折線の分裂有無に応じて、以下の2つの方法のいずれかにより平均軸比c/aを求めるものとする。ここで、試料上でのX線の照射領域面積は0.2mm以上とする。Here, the average axial ratio of martensite and bainite is measured by the following procedure using an X-ray diffraction method. At this time, the average axial ratio c/a shall be determined by one of the following two methods depending on whether or not the diffraction lines of tetragonal iron or cubic iron are split. Here, the area of the X-ray irradiation area on the sample is 0.2 mm 2 or more.

(a)200回折線と002回折線とが明確に2つに分裂している場合
擬Voigt関数により{200}面からの回折線のピーク分離を行い、200回折角から算出した格子定数をa、002回折角から算出した格子定数をcとし、その比を平均軸比c/aとする。
(a) When the 200 diffraction line and the 002 diffraction line are clearly split into two The peak separation of the diffraction line from the {200} plane is performed using the pseudo Voigt function, and the lattice constant calculated from the 200 diffraction angle is a , 002 The lattice constant calculated from the diffraction angle is c, and the ratio thereof is the average axial ratio c/a.

(b)回折線が明確に2つに分裂していない場合
{200}面からの回折の回折角から計算する格子定数をaとし、{110}面からの回折角から計算する格子定数をc’とし、その比c’/aを平均軸比c/aと近似する(非特許文献3を参照)。
(b) When the diffraction line is not clearly split into two, the lattice constant calculated from the diffraction angle from the {200} plane is a, and the lattice constant calculated from the diffraction angle from the {110} plane is c. ', and the ratio c'/a is approximated to the average axial ratio c/a (see Non-Patent Document 3).

鉄炭化物の平均粒径:0.005~0.20μm
本発明の他の実施形態に係る鋼板の金属組織中には、鉄炭化物を含有してもよい。鉄炭化物の平均粒径が0.20μmを超えると、衝突変形中に屈曲部からの破壊が促進する傾向があり、一方、鉄炭化物の平均粒径が0.005μm未満の場合も、鉄衝突変形中に屈曲部からの脆性破壊が促進する傾向がある。そのため、鉄炭化物の平均粒径は、0.005~0.20μmであることが好ましい。なお、鉄炭化物中にはFe以外に、MnまたはCr等の合金元素を含んでいても構わない。
Average particle size of iron carbide: 0.005-0.20μm
The metal structure of the steel sheet according to another embodiment of the present invention may contain iron carbide. When the average grain size of iron carbide exceeds 0.20 μm, fracture from the bending part tends to be promoted during impact deformation. On the other hand, when the average grain size of iron carbide is less than 0.005 μm, iron impact deformation tends to accelerate. There is a tendency for brittle fracture to occur at bent portions. Therefore, the average particle size of the iron carbide is preferably 0.005 to 0.20 μm. Note that the iron carbide may contain alloying elements such as Mn or Cr in addition to Fe.

マルテンサイト中およびベイナイト中の鉄炭化物の平均粒径は、SEMおよびTEMにより10μm以上の面積領域について組織観察を行って測定する。TEMで判別できない微細な鉄炭化物については、アトムプローブ法により測定を行う。この場合、5個以上の鉄炭化物の測定を行うものとする。The average grain size of iron carbides in martensite and bainite is measured by observing the structure of an area of 10 μm 2 or more using SEM and TEM. Fine iron carbides that cannot be determined by TEM are measured using the atom probe method. In this case, five or more iron carbides shall be measured.

(C)めっき層
本発明の他の実施形態に係る鋼板は、その表面にめっき層を有していてもよい。めっきの組成は特に限定することはなく、また、溶融めっき、合金化溶融めっき、電気めっきのいずれでも構わない。
(C) Plating layer The steel plate according to another embodiment of the present invention may have a plating layer on its surface. The composition of the plating is not particularly limited, and any of hot-dip plating, alloyed hot-dip plating, and electroplating may be used.

(D)機械特性
降伏応力:1000MPa以上
降伏応力が1000MPa未満であると、部材薄肉化による部材軽量化メリットが得られないため、降伏応力は1000MPa以上とする。ここで降伏応力は、JIS Z 2241 2011に準拠して引張試験を行った際の、歪0.002における流動応力(0.2%耐力)とする。
(D) Mechanical properties Yield stress: 1000 MPa or more If the yield stress is less than 1000 MPa, the advantage of reducing the weight of the member by making the member thinner cannot be obtained, so the yield stress is set to be 1000 MPa or more. Here, the yield stress is the flow stress (0.2% proof stress) at a strain of 0.002 when a tensile test is conducted in accordance with JIS Z 2241 2011.

また、引張強さについては特に制限は設けないが、衝撃エネルギー吸収特性を高める観点から、1400MPa以上であるのが好ましい。 Further, there is no particular restriction on the tensile strength, but from the viewpoint of improving impact energy absorption characteristics, it is preferably 1400 MPa or more.

(E)製造方法
本発明に係る鋼板の製造条件について特に制限はないが、上述した化学組成を有する鋳片に対して、以下の(a)~(c)に示す工程を有する処理を施すことにより、製造することができる。各方法について詳しく説明する。
(E) Manufacturing method Although there are no particular restrictions on the manufacturing conditions for the steel plate according to the present invention, a slab having the above-mentioned chemical composition may be subjected to a treatment including the steps shown in (a) to (c) below. It can be manufactured by Each method will be explained in detail.

なお、鋳片は、上記の化学組成を有する溶鋼から常法により得ることができる。熱間圧延に供する鋳片は特に限定するものではない。すなわち、連続鋳造スラブまたは薄スラブキャスターなどで製造したものであればよい。また、鋳造後に直ちに熱間圧延を行う連続鋳造-直接圧延のようなプロセスにも適合する。 Incidentally, the slab can be obtained by a conventional method from molten steel having the above chemical composition. The slab to be subjected to hot rolling is not particularly limited. That is, it may be manufactured by continuous casting slabs or thin slab casters. It is also compatible with continuous casting-direct rolling processes in which hot rolling is performed immediately after casting.

また、以降の説明において、Ms点(℃)、Ac点(℃)およびAr点(℃)は、下記式によって表わされ、式中の元素記号は、各元素の鋼板中の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W) ・・・(vi)
Ac=910-203×C0.5+44.7(Si+Al)-30×Mn+700×P-15.2×Ni-26×Cu-11×Cr+31.5×Mo ・・・(vii)
Ar=910-310×C+33×Si-80×Mn-55×Ni-20×Cu-15×Cr-80×Mo ・・・(viii)
In addition, in the following explanation, Ms point (°C), Ac 3 point (°C), and Ar 3 point (°C) are expressed by the following formula, and the element symbol in the formula is the content of each element in the steel plate. (% by mass), and if it is not contained, 0 is substituted.
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W)...(vi)
Ac 3 =910-203×C 0.5 +44.7(Si+Al)-30×Mn+700×P-15.2×Ni-26×Cu-11×Cr+31.5×Mo...(vii)
Ar 3 =910-310×C+33×Si-80×Mn-55×Ni-20×Cu-15×Cr-80×Mo...(viii)

(a)熱間圧延工程、冷間圧延工程、焼鈍工程および熱処理工程を含む方法
上記の鋳片に対して、熱間圧延工程、冷間圧延工程、焼鈍工程および熱処理工程を順に施す。この場合、得られる鋼板は冷間圧延鋼板となる。各工程について、詳しく説明する。
(a) Method including a hot rolling process, a cold rolling process, an annealing process, and a heat treatment process The above slab is sequentially subjected to a hot rolling process, a cold rolling process, an annealing process, and a heat treatment process. In this case, the obtained steel plate will be a cold rolled steel plate. Each process will be explained in detail.

熱間圧延工程においては、まず鋳片を加熱する。加熱温度は特に限定しないが、鋳造中または粗圧延中に析出した合金炭窒化物を再溶解させるために、1200℃以上にすることが好ましい。 In the hot rolling process, the slab is first heated. Although the heating temperature is not particularly limited, it is preferably 1200° C. or higher in order to remelt alloy carbonitrides precipitated during casting or rough rolling.

加熱後に熱間圧延を行う。このとき、圧延終了温度から650℃までの間の平均冷却速度を8℃/s以上とする。上記の平均冷却速度が8℃/s未満であると、最終製品のマルテンサイトのブロック粒径が大きくなり、衝撃特性が低下する。その後、鋼板を巻き取る。巻き取り温度は特に限定しないが、630℃以下であることが好ましい。そして、巻き取り後にさらに室温まで冷却する。 Hot rolling is performed after heating. At this time, the average cooling rate from the rolling end temperature to 650°C is set to 8°C/s or more. If the above average cooling rate is less than 8° C./s, the martensite block grain size of the final product becomes large and the impact properties deteriorate. After that, the steel plate is rolled up. The winding temperature is not particularly limited, but is preferably 630°C or lower. After winding, the film is further cooled to room temperature.

続いて、酸洗等の処理を行った後、冷間圧延を行う。冷間圧延の条件については、圧延パスの回数、圧下率を特に規定する必要はなく常法に従えばよい。 Subsequently, after performing treatments such as pickling, cold rolling is performed. Regarding the cold rolling conditions, there is no need to particularly specify the number of rolling passes and the rolling reduction ratio, and conventional methods may be followed.

焼鈍工程においては、冷間圧延後の鋼板に対して、Ac点~(Ac点+100)℃の温度範囲で3~90s保持する。焼鈍温度がAc点未満であると、所定の量のマルテンサイトを得ることができず、また(Ac点+100)℃を超えるとブロック粒径が大きくなる。また、この温度範囲内の保持時間が3s未満であると、所定の量のマルテンサイトが得られず、1000MPa以上の降伏応力を得ることができない。一方、保持時間が90sを超えると、ブロック粒径が大きくなる。ブロック粒径を小さくする観点からは、焼鈍温度は低い方が好ましく、(Ac点+80)℃以下であることが好ましい。また、保持時間は10s以上であることが好ましく、60s以下であることが好ましい。In the annealing step, the steel plate after cold rolling is maintained at a temperature range of 3 points Ac to ( 3 points Ac + 100)° C. for 3 to 90 seconds. If the annealing temperature is less than 3 points of Ac, a predetermined amount of martensite cannot be obtained, and if the annealing temperature exceeds 3 points of Ac + 100°C, the block grain size becomes large. Further, if the holding time within this temperature range is less than 3 seconds, a predetermined amount of martensite cannot be obtained, and a yield stress of 1000 MPa or more cannot be obtained. On the other hand, when the holding time exceeds 90 seconds, the block particle size increases. From the viewpoint of reducing the block grain size, the annealing temperature is preferably lower, and is preferably at most (Ac 3 points + 80)°C. Further, the holding time is preferably 10 seconds or more, and preferably 60 seconds or less.

上記温度範囲で所定時間保持した後、700℃から(Ms点-50)℃までの間の平均冷却速度が10℃/s以上となる条件で冷却する。この平均冷却速度が10℃/s未満であると、所定の量のマルテンサイトを得ることができずに降伏応力が低下するとともに、さらにブロック粒径が大きくなり衝撃変形時に割れが発生しやすくなる。上述した平均軸比を1.0007以上とし、衝突変形時の割れをより確実に抑制したい場合は、平均冷却速度は20℃/s以上であるのが好ましい。なお、この冷却を停止する温度は(Ms-50)℃以下であればよく、特に限定はしないが、耐破壊特性の観点から100℃以上であることが好ましい。 After maintaining the above temperature range for a predetermined time, cooling is performed under conditions such that the average cooling rate from 700°C to (Ms point -50)°C is 10°C/s or more. If this average cooling rate is less than 10°C/s, it will not be possible to obtain a predetermined amount of martensite, and the yield stress will decrease, and the block grain size will further increase, making it more likely that cracks will occur during impact deformation. . When the above-mentioned average axial ratio is set to 1.0007 or more and cracking during collision deformation is desired to be suppressed more reliably, the average cooling rate is preferably 20° C./s or more. Note that the temperature at which this cooling is stopped may be (Ms-50)° C. or lower, and is not particularly limited, but is preferably 100° C. or higher from the viewpoint of anti-destruction properties.

熱処理工程においては、鋼板の化学組成から計算されるMsに応じて、下記の熱履歴となるような熱処理を行う。なお、前記した冷却を停止してから、引き続き下記の熱処理を行ってもよいし、下記の熱処理工程の温度範囲の上限を超えない程度の加熱を行ってもよい。 In the heat treatment process, the heat treatment is performed so that the following heat history is obtained according to Ms calculated from the chemical composition of the steel plate. In addition, after stopping the cooling described above, the following heat treatment may be performed successively, or heating may be performed to an extent that does not exceed the upper limit of the temperature range of the heat treatment step described below.

鋼板の化学組成から計算されるMs点が250℃以上の場合には、(Ms点+50)~250℃の温度範囲での滞留時間を100~10000sとする。滞留時間が100s未満であると、平均軸比が所定値を超えて衝突試験時に脆性破壊するか、あるいは所定の降伏応力が得られなくなる場合がある。一方、10000sを超えると、平均軸比が所定値未満となり、さらに鉄炭化物が粗大化し、衝突時に割れが発生しやすくなる。滞留時間は400s以上であるのが好ましく、5000s以下であるのが好ましい。特に、上述した平均軸比を1.0007以上とし、衝突変形時の割れをより確実に抑制したい場合は、滞留時間は1500s以下であるのがより好ましい。 When the Ms point calculated from the chemical composition of the steel plate is 250°C or higher, the residence time in the temperature range of (Ms point + 50) to 250°C is set to 100 to 10,000 s. If the residence time is less than 100 seconds, the average axial ratio may exceed a predetermined value and brittle fracture may occur during a collision test, or a predetermined yield stress may not be obtained. On the other hand, if it exceeds 10,000 seconds, the average axial ratio becomes less than a predetermined value, and the iron carbide becomes coarser, making it easier to crack during a collision. The residence time is preferably 400 seconds or more, and preferably 5000 seconds or less. In particular, when the above-mentioned average axial ratio is set to 1.0007 or more and it is desired to more reliably suppress cracking during collision deformation, the residence time is more preferably 1500 seconds or less.

また、鋼板の化学組成から計算されるMs点が250℃未満の場合には、(Ms点+80)~100℃の温度範囲での滞留時間を100~50000sとする。滞留時間が100s未満であると、平均軸比が所定値を超え、衝突試験時に脆性破壊するおそれがある。一方、50000sを超えると、平均軸比が所定値未満となり、さらに鉄炭化物が粗大化し、衝突時に割れが発生しやすくなる。滞留時間は400s以上であるのが好ましく、30000s以下であるのが好ましく、10000s以下であるのがより好ましい。 Further, when the Ms point calculated from the chemical composition of the steel plate is less than 250°C, the residence time in the temperature range of (Ms point + 80) to 100°C is set to 100 to 50,000 s. If the residence time is less than 100 seconds, the average axial ratio will exceed a predetermined value, and there is a risk of brittle fracture during a collision test. On the other hand, if it exceeds 50,000 seconds, the average axial ratio becomes less than a predetermined value, and the iron carbides become coarser, making it easier to crack during a collision. The residence time is preferably 400 seconds or more, preferably 30,000 seconds or less, and more preferably 10,000 seconds or less.

(b)熱間圧延工程、焼鈍工程および熱処理工程を含む方法
上記の鋳片に対して、熱間圧延工程、焼鈍工程および熱処理工程を順に施す。この場合、得られる鋼板は熱間圧延鋼板となる。各工程について、詳しく説明する。
(b) Method including a hot rolling process, an annealing process, and a heat treatment process The above slab is sequentially subjected to a hot rolling process, an annealing process, and a heat treatment process. In this case, the obtained steel plate will be a hot rolled steel plate. Each process will be explained in detail.

上述の(a)に示す工程に対して、本工程では冷間圧延工程を行わない。焼鈍工程において、室温から焼鈍温度まで冷間圧延鋼板を加熱する間に母相であるフェライトが再結晶し、集合組織が発達する。この結晶方位の配向の影響を受けて、Ac点~(Ac点+100)℃の温度範囲での保持で存在するオーステナイトでも、集合組織が発達するようになる。集合組織の発達により、方位に偏りの生じたオーステナイトがマルテンサイトに変態する際、マルテンサイトの結晶は特定の方向に生成および成長する。In contrast to the step shown in (a) above, this step does not include a cold rolling step. In the annealing process, while heating the cold rolled steel sheet from room temperature to the annealing temperature, ferrite, which is the parent phase, recrystallizes and a texture develops. Under the influence of this crystal orientation, texture develops even in austenite that exists when maintained in the temperature range of Ac 3 point to (Ac 3 point + 100)°C. When austenite, whose orientation is biased due to the development of texture, transforms into martensite, martensite crystals are generated and grown in a specific direction.

また、マルテンサイトの結晶の生成および成長により鋼は膨張することから、マクロの観点では鋼板が特定の方向に偏って膨張する。しかし、焼鈍工程において鋼帯を自由に膨張あるいは変形させると通板性の低下を招くため、通常は張力をかけて鋼板の形状を矯正するとともに、通板の安定性を保っている。 Furthermore, since steel expands due to the formation and growth of martensite crystals, from a macroscopic point of view, the steel sheet expands in a particular direction. However, freely expanding or deforming the steel strip during the annealing process will result in a decrease in threadability, so tension is usually applied to correct the shape of the steel sheet and maintain threading stability.

なお、このような過度な張力を与えた状態でマルテンサイト変態が生じると、鋼板中に残留応力が付与されて割れを抑制する効果が得られにくくなる。また、鋼板内の残留応力が高くなると、鋼板を変形させた際に生じる亀裂が生成および伝播しやすくなる。そのため、衝突変形時の割れをより確実に抑制する観点からは、冷間圧延工程は省略することが好ましく、すなわち、焼鈍工程において母相のフェライトの再結晶による集合組織の発達を防ぎ、結晶方位をランダムにする狙いから、本発明の一実施形態に係る鋼板は、熱間圧延鋼板であることが好ましい。 Note that if martensitic transformation occurs under such excessive tension, residual stress will be imparted to the steel sheet, making it difficult to obtain the effect of suppressing cracking. Furthermore, when the residual stress within the steel plate increases, cracks that occur when the steel plate is deformed become more likely to generate and propagate. Therefore, from the viewpoint of more reliably suppressing cracking during impact deformation, it is preferable to omit the cold rolling process.In other words, in the annealing process, the development of texture due to recrystallization of the matrix ferrite is prevented, and the crystal orientation is For the purpose of randomization, the steel plate according to one embodiment of the present invention is preferably a hot rolled steel plate.

熱間圧延工程においては、まず鋳片を加熱する。加熱温度は特に限定しないが、鋳造中または粗圧延中に析出した合金炭窒化物を再溶解させるために、1200℃以上にすることが好ましい。 In the hot rolling process, the slab is first heated. Although the heating temperature is not particularly limited, it is preferably 1200° C. or higher in order to remelt alloy carbonitrides precipitated during casting or rough rolling.

加熱後に熱間圧延を行う。このとき、圧延終了温度から650℃までの間の平均冷却速度を8℃/s以上とする。上記の平均冷却速度が8℃/s未満であると、最終製品のマルテンサイトのブロック粒径が大きくなり、衝撃特性が低下する。その後、鋼板を巻き取ってもよいし、巻き取らずに室温まで冷却してもよい。また、冷却後は、酸洗等の処理を行ってもよいし、形状矯正を行ってもよい。 Hot rolling is performed after heating. At this time, the average cooling rate from the rolling end temperature to 650°C is set to 8°C/s or more. If the above average cooling rate is less than 8° C./s, the martensite block grain size of the final product becomes large and the impact properties deteriorate. Thereafter, the steel plate may be rolled up or may be cooled to room temperature without being rolled up. Further, after cooling, a treatment such as pickling or the like may be performed, or shape correction may be performed.

焼鈍工程においては、熱間圧延後の鋼板に対して、Ac点~(Ac点+100)℃の温度範囲で3~90s保持する。焼鈍温度がAc点未満であると、所定の量のマルテンサイトを得ることができず、また(Ac点+100)℃を超えるとブロック粒径が大きくなる。また、この温度範囲内の保持時間が3s未満であると、所定の量のマルテンサイトが得られず、1000MPa以上の降伏応力を得ることができない。一方、保持時間が90sを超えると、ブロック粒径が大きくなる。ブロック粒径を小さくする観点からは、焼鈍温度は低い方が好ましく、(Ac点+80)℃以下であることが好ましい。また、保持時間は10s以上であることが好ましく、60s以下であることが好ましい。In the annealing step, the hot-rolled steel plate is maintained at a temperature range of 3 points Ac to ( 3 points Ac + 100)° C. for 3 to 90 seconds. If the annealing temperature is less than 3 points of Ac, a predetermined amount of martensite cannot be obtained, and if the annealing temperature exceeds 3 points of Ac + 100°C, the block grain size becomes large. Further, if the holding time within this temperature range is less than 3 seconds, a predetermined amount of martensite cannot be obtained, and a yield stress of 1000 MPa or more cannot be obtained. On the other hand, when the holding time exceeds 90 seconds, the block particle size increases. From the viewpoint of reducing the block grain size, the annealing temperature is preferably lower, and is preferably at most (Ac 3 points + 80)°C. Further, the holding time is preferably 10 seconds or more, and preferably 60 seconds or less.

上記温度範囲で所定時間保持した後、700℃から(Ms点-50)℃までの間の平均冷却速度が10℃/s以上となる条件で冷却する。この平均冷却速度が10℃/s未満であると、所定の量のマルテンサイトを得ることができずに降伏応力が低下するとともに、さらにブロック粒径が大きくなり衝撃変形時に割れが発生しやすくなる。上述した平均軸比を1.0007以上とし、衝突変形時の割れをより確実に抑制したい場合は、平均冷却速度は20℃/s以上であるのが好ましい。なお、この冷却を停止する温度は(Ms-50)℃以下であればよく、特に限定はしないが、耐破壊特性の観点から100℃以上であることが好ましい。 After maintaining the above temperature range for a predetermined time, cooling is performed under conditions such that the average cooling rate from 700°C to (Ms point -50)°C is 10°C/s or more. If this average cooling rate is less than 10°C/s, it will not be possible to obtain a predetermined amount of martensite, and the yield stress will decrease, and the block grain size will further increase, making it more likely that cracks will occur during impact deformation. . When the above-mentioned average axial ratio is set to 1.0007 or more and cracking during collision deformation is desired to be suppressed more reliably, the average cooling rate is preferably 20° C./s or more. Note that the temperature at which this cooling is stopped may be (Ms-50)°C or lower, and is not particularly limited, but preferably 100°C or higher from the viewpoint of anti-destruction properties.

熱処理工程においては、鋼板の化学組成から計算されるMsに応じて、下記の熱履歴となるような処理を行う。なお、前記した焼鈍工程の冷却を停止してから、引き続き下記の熱処理を行ってもよいし、下記の熱処理の温度範囲の上限を超えない程度の加熱を行ってもよい。 In the heat treatment step, the treatment is performed so that the following thermal history is obtained according to Ms calculated from the chemical composition of the steel plate. Note that after stopping the cooling in the annealing step described above, the following heat treatment may be performed successively, or heating may be performed to an extent that does not exceed the upper limit of the temperature range of the heat treatment described below.

鋼板の化学組成から計算されるMs点が250℃以上の場合には、(Ms点+50)~250℃の温度範囲での滞留時間を100~10000sとする。滞留時間が100s未満であると、平均軸比が所定値を超えて衝突試験時に脆性破壊するか、あるいは所定の降伏応力が得られなくなる場合がある。一方、10000sを超えると、平均軸比が所定値未満となり、さらに鉄炭化物が粗大化し、衝突時に割れが発生しやすくなる。滞留時間は400s以上であるのが好ましく、5000s以下であるのが好ましい。特に、上述した平均軸比を1.0007以上とし、衝突変形時の割れをより確実に抑制したい場合は、滞留時間は1500s以下であるのがより好ましい。 When the Ms point calculated from the chemical composition of the steel plate is 250°C or higher, the residence time in the temperature range of (Ms point + 50) to 250°C is set to 100 to 10,000 s. If the residence time is less than 100 seconds, the average axial ratio may exceed a predetermined value and brittle fracture may occur during a collision test, or a predetermined yield stress may not be obtained. On the other hand, if it exceeds 10,000 seconds, the average axial ratio becomes less than a predetermined value, and the iron carbide becomes coarser, making it easier to crack during a collision. The residence time is preferably 400 seconds or more, and preferably 5000 seconds or less. In particular, when the above-mentioned average axial ratio is set to 1.0007 or more and it is desired to more reliably suppress cracking during collision deformation, the residence time is more preferably 1500 seconds or less.

また、鋼板の化学組成から計算されるMs点が250℃未満の場合には、(Ms点+80)~100℃の温度範囲での滞留時間を100~50000sとする。滞留時間が100s未満であると、平均軸比が所定値を超え、衝突試験時に脆性破壊するおそれがある。一方、50000sを超えると、平均軸比が所定値未満となり、さらに鉄炭化物が粗大化し、衝突時に割れが発生しやすくなる。滞留時間は400s以上であるのが好ましく、30000s以下であるのが好ましく、10000s以下であるのがより好ましい。 Further, when the Ms point calculated from the chemical composition of the steel plate is less than 250°C, the residence time in the temperature range of (Ms point + 80) to 100°C is set to 100 to 50,000 s. If the residence time is less than 100 seconds, the average axial ratio will exceed a predetermined value, and there is a risk of brittle fracture during a collision test. On the other hand, if it exceeds 50,000 seconds, the average axial ratio becomes less than a predetermined value, and the iron carbides become coarser, making it easier to crack during a collision. The residence time is preferably 400 seconds or more, preferably 30,000 seconds or less, and more preferably 10,000 seconds or less.

(c)熱間圧延工程および熱処理工程を含む方法
上記の鋳片に対して、熱間圧延工程および熱処理工程を順に施す。この場合、得られる鋼板は熱間圧延鋼板となる。各工程について、詳しく説明する。
(c) Method including a hot rolling step and a heat treatment step The above slab is sequentially subjected to a hot rolling step and a heat treatment step. In this case, the obtained steel plate will be a hot rolled steel plate. Each process will be explained in detail.

上述の(b)に示す工程に対して、本工程では焼鈍工程を行わない。焼鈍を行うと、焼鈍工程において室温から焼鈍温度まで加熱する間に、マルテンサイト組織の界面移動が生じる。さらに、この界面移動では易動度の高い特定の方位の結晶界面が優先的に移動するため、結晶方位のランダム化が損なわれ、焼鈍工程を経た鋼板には僅かに残留応力が残る。そのため、残留応力を可能な限り低減する観点からは、焼鈍工程は省略することが好ましい。 In contrast to the step shown in (b) above, this step does not include an annealing step. When annealing is performed, interfacial movement of the martensitic structure occurs during heating from room temperature to the annealing temperature in the annealing process. Furthermore, in this interface movement, crystal interfaces in specific orientations with high mobility move preferentially, so randomization of crystal orientation is impaired, and a slight residual stress remains in the steel plate after the annealing process. Therefore, from the viewpoint of reducing residual stress as much as possible, it is preferable to omit the annealing step.

熱間圧延工程においては、まず鋳片を加熱する。加熱温度は特に限定しないが、鋳造中または粗圧延中に析出した合金炭窒化物を再溶解させるために、1200℃以上にすることが好ましい。 In the hot rolling process, the slab is first heated. Although the heating temperature is not particularly limited, it is preferably 1200° C. or higher in order to remelt alloy carbonitrides precipitated during casting or rough rolling.

加熱後に熱間圧延を行う。このとき、圧延終了温度がAr点以上となるように行う。圧延終了温度がAr点未満であると、フェライトが形成され、所定の降伏応力が得ることが困難になる。Hot rolling is performed after heating. At this time, rolling is performed so that the end temperature of the rolling becomes 3 points or higher. If the rolling end temperature is less than 3 points of Ar, ferrite is formed and it becomes difficult to obtain a predetermined yield stress.

熱間圧延の後、圧延終了温度から(Ms点-50)℃までの間の平均冷却速度が10℃/s以上となる条件で冷却する。この平均冷却速度が10℃/s未満であると、フェライトまたはベイナイトの体積率が増大し、所定の量のマルテンサイトを得ることができずに降伏応力が低下するとともに、さらにブロック粒径が大きくなり衝撃変形時に割れが発生しやすくなる。なお、この冷却を停止する温度は(Ms-50)℃以下であればよく、特に限定はしないが、耐破壊特性の観点から100℃以上であることが好ましい。 After hot rolling, cooling is performed under conditions such that the average cooling rate from the rolling end temperature to (Ms point -50)°C is 10°C/s or more. If this average cooling rate is less than 10°C/s, the volume fraction of ferrite or bainite increases, making it impossible to obtain a predetermined amount of martensite, lowering the yield stress, and further increasing the block grain size. Therefore, cracks are more likely to occur during impact deformation. Note that the temperature at which this cooling is stopped may be (Ms-50)° C. or lower, and is not particularly limited, but is preferably 100° C. or higher from the viewpoint of anti-destruction properties.

熱処理工程においては、鋼板の化学組成から計算されるMsに応じて、下記の熱履歴となるような処理を行う。なお、前記した熱延工程の冷却を停止してから、引き続き下記の熱処理を行ってもよいし、下記の熱処理の温度範囲の上限を超えない程度の加熱を行ってもよい。 In the heat treatment step, the treatment is performed so that the following thermal history is obtained according to Ms calculated from the chemical composition of the steel plate. Note that after stopping the cooling in the hot rolling process described above, the following heat treatment may be performed successively, or heating may be performed to an extent that does not exceed the upper limit of the temperature range of the heat treatment described below.

鋼板の化学組成から計算されるMs点が250℃以上の場合には、(Ms点+50)~250℃の温度範囲での滞留時間を100~10000sとする。滞留時間が100s未満であると、平均軸比が所定値を超えて衝突試験時に脆性破壊するか、あるいは所定の降伏応力が得られなくなる場合がある。一方、10000sを超えると、平均軸比が所定値未満となり、さらに鉄炭化物が粗大化し、衝突時に割れが発生しやすくなる。滞留時間は400s以上であるのが好ましく、5000s以下であるのが好ましい。特に、上述した平均軸比を1.0007以上とし、衝突変形時の割れをより確実に抑制したい場合は、滞留時間は1500s以下であるのがより好ましい。 When the Ms point calculated from the chemical composition of the steel plate is 250°C or higher, the residence time in the temperature range of (Ms point + 50) to 250°C is set to 100 to 10,000 s. If the residence time is less than 100 seconds, the average axial ratio may exceed a predetermined value and brittle fracture may occur during a collision test, or a predetermined yield stress may not be obtained. On the other hand, if it exceeds 10,000 seconds, the average axial ratio becomes less than a predetermined value, and the iron carbide becomes coarser, making it easier to crack during a collision. The residence time is preferably 400 seconds or more, and preferably 5000 seconds or less. In particular, when the above-mentioned average axial ratio is set to 1.0007 or more and it is desired to more reliably suppress cracking during collision deformation, the residence time is more preferably 1500 seconds or less.

また、鋼板の化学組成から計算されるMs点が250℃未満の場合には、(Ms点+80)~100℃の温度範囲での滞留時間を100~50000sとする。滞留時間が100s未満であると、平均軸比が所定値を超え、衝突試験時に脆性破壊するおそれがある。一方、50000sを超えると、平均軸比が所定値未満となり、さらに鉄炭化物が粗大化し、衝突時に割れが発生しやすくなる。滞留時間は1000s以上であるのが好ましく、30000s以下であるのが好ましく、10000s以下であるのがより好ましい。 Further, when the Ms point calculated from the chemical composition of the steel plate is less than 250°C, the residence time in the temperature range of (Ms point + 80) to 100°C is set to 100 to 50,000 s. If the residence time is less than 100 seconds, the average axial ratio will exceed a predetermined value, and there is a risk of brittle fracture during a collision test. On the other hand, if it exceeds 50,000 seconds, the average axial ratio becomes less than a predetermined value, and the iron carbides become coarser, making it easier to crack during a collision. The residence time is preferably 1,000 seconds or more, preferably 30,000 seconds or less, and more preferably 10,000 seconds or less.

以上の(a)~(c)のいずれかの工程が終了した後、形状矯正のために調質圧延を行ってもよい。伸び率は特に限定することはない。さらに、前記熱履歴を満足する範囲内で、その熱処理の中途または熱処理の終了後にめっき処理を施してもよい。また、めっきの方法は連続焼鈍・めっきラインで製造しても、焼鈍ラインとは別にめっき専用の設備を用いても構わない。めっきの組成は特に限定することはなく、また、溶融めっき、合金化溶融めっき、電気めっきのいずれでも構わない。 After completing any of the steps (a) to (c) above, temper rolling may be performed to correct the shape. The elongation rate is not particularly limited. Furthermore, plating treatment may be performed during or after the heat treatment within a range that satisfies the heat history. Further, the plating method may be manufactured using a continuous annealing/plating line, or may use a dedicated plating equipment separate from the annealing line. The composition of the plating is not particularly limited, and any of hot-dip plating, alloyed hot-dip plating, and electroplating may be used.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

表1に示す組成を有する鋼を溶製してスラブを製造し、このスラブを1220~1260℃で加熱して、熱間で粗圧延を行った。それに続き、仕上圧延を行い、冷却した後、500~620℃で巻き取り処理を行い、室温まで冷却を行った。そして、表2および3に示すように、圧延終了温度(FT)から650℃までの間の平均冷却速度(CR1)を変化させた。 A slab was manufactured by melting steel having the composition shown in Table 1, and this slab was heated at 1220 to 1260° C. and hot rolled. Subsequently, finish rolling was performed, and after cooling, winding treatment was performed at 500 to 620° C., and cooling was performed to room temperature. As shown in Tables 2 and 3, the average cooling rate (CR1) from the rolling end temperature (FT) to 650°C was varied.

室温まで冷却後、酸洗処理を行い、スケールを除去した後、1.2mm厚さになるように冷延率30~70%で冷間圧延を行い、その後、焼鈍を行った。 After cooling to room temperature, pickling treatment was performed to remove scale, cold rolling was performed at a cold rolling rate of 30 to 70% to a thickness of 1.2 mm, and then annealing was performed.

焼鈍は、焼鈍温度(ST)、焼鈍保持時間(t1)、700℃~(Ms点-50)℃間の平均冷却速度(CR2)を変化させ、さらに熱処理工程では、Msが250℃以上の鋼は(Ms+50)℃~250℃間の滞留時間(t2)を、Msが250℃未満の鋼は(Ms+80)℃~100℃間の滞留時間(t3)を変化させた。熱処理工程の後、形状矯正のための調質圧延を行った。 In annealing, the annealing temperature (ST), the annealing holding time (t1), and the average cooling rate (CR2) between 700°C and (Ms point -50)°C are changed, and in the heat treatment process, the steel with Ms of 250°C or higher is The residence time (t2) between (Ms+50)°C and 250°C was changed, and the residence time (t3) between (Ms+80)°C and 100°C was changed for steel with Ms less than 250°C. After the heat treatment step, temper rolling was performed to correct the shape.

Figure 0007364942000001
Figure 0007364942000001

Figure 0007364942000002
Figure 0007364942000002

Figure 0007364942000003
Figure 0007364942000003

次に得られた鋼板の金属組織観察を行い、各組織の体積率の測定を行った。具体的には、鋼板の圧延方向および厚さ方向に平行な面の1/4厚さ部を鏡面研磨した後、ナイタール腐食をした表面をSEMにより観察した。その組織写真を用いて、ポイントカウント法によって測定して、各組織の面積率を求め、その値を各組織の体積率とした。この際、観察面積は、2500μm以上とした。また、残留オーステナイトの体積率は、X線回折法により測定した。Next, the metal structure of the obtained steel plate was observed, and the volume fraction of each structure was measured. Specifically, after mirror-polishing a 1/4 thickness portion of a surface parallel to the rolling direction and thickness direction of the steel plate, the nital-corroded surface was observed by SEM. Using the tissue photograph, the area ratio of each tissue was determined by measurement using the point counting method, and the value was taken as the volume ratio of each tissue. At this time, the observation area was 2500 μm 2 or more. Moreover, the volume fraction of retained austenite was measured by an X-ray diffraction method.

なお、表中の残部組織欄に記載のFはフェライト、Bはベイナイト、Pはパーライトを示し、fMおよびfAは、それぞれ全組織に対するマルテンサイトおよび残留オーステナイトの体積率を示す。 In addition, in the remaining structure column in the table, F indicates ferrite, B indicates bainite, P indicates pearlite, and fM and fA indicate the volume fraction of martensite and retained austenite, respectively, with respect to the total structure.

また、マルテンサイトおよびベイナイトの平均ブロック粒径を以下の手順で測定した。まず、各鋼板を圧延方向および厚さ方向に平行な面が観察面となるように切断し、この断面の板厚の1/4位置から1/2位置の間を5000μm以上の面積領域についてEBSD法で測定した。測定のステップサイズは0.2μmで行った。In addition, the average block grain size of martensite and bainite was measured using the following procedure. First, each steel plate is cut so that the plane parallel to the rolling direction and the thickness direction serves as the observation plane, and the area between the 1/4 position and the 1/2 position of the plate thickness of this cross section is 5000 μm 2 or more. Measured by EBSD method. The step size of the measurement was 0.2 μm.

次に、EBSD測定により得られた結晶方位情報を元に、非特許文献2のp.223の表に示される3つのBainグループ単位に方位を分類した。次いで、これらのグループ間の境界をブロック粒界、この境界に囲まれた領域をブロック粒として、JIS G0552の附属書2に記載の交差線分法によりブロック粒の大きさ(db)を求めた。 Next, based on the crystal orientation information obtained by the EBSD measurement, the following procedure is performed as described in p. The directions were classified into three Bain groups shown in the table of No. 223. Next, the boundary between these groups was defined as a block grain boundary, and the area surrounded by this boundary was defined as a block grain, and the size (db) of the block grain was determined by the intersecting line segment method described in Appendix 2 of JIS G0552. .

マルテンサイトおよびベイナイトの平均軸比は、X線回折法により以下の手順で測定した。この際、正方晶鉄または立方晶鉄の回折線の分裂有無に応じて、以下の2つの方法により軸比c/aを測定し、平均軸比を求めた。 The average axial ratios of martensite and bainite were measured by X-ray diffraction according to the following procedure. At this time, the axial ratio c/a was measured by the following two methods depending on the presence or absence of splitting of the diffraction lines of tetragonal iron or cubic iron, and the average axial ratio was determined.

(a)200回折線と002回折線とが明確に2つに分裂している場合
擬Voigt関数により{200}面からの回折線のピーク分離を行い、200回折角から算出した格子定数をa、002回折角から算出した格子定数をcとし、その比を平均軸比c/aとした。
(a) When the 200 diffraction line and the 002 diffraction line are clearly split into two The peak separation of the diffraction line from the {200} plane is performed using the pseudo Voigt function, and the lattice constant calculated from the 200 diffraction angle is a , 002 The lattice constant calculated from the diffraction angle was defined as c, and the ratio thereof was defined as the average axial ratio c/a.

(b)回折線が明確に2つに分裂していない場合
{200}面からの回折の回折角から計算する格子定数をaとし、{110}面からの回折角から計算する格子定数をc’とし、その比c’/aを平均軸比c/aとした。
(b) When the diffraction line is not clearly split into two, the lattice constant calculated from the diffraction angle from the {200} plane is a, and the lattice constant calculated from the diffraction angle from the {110} plane is c. ', and the ratio c'/a was taken as the average axial ratio c/a.

さらに、SEMおよびTEMによる組織観察を行い、10μm以上の面積領域に存在する鉄炭化物の平均粒径を測定し、円相当直径(dcar)として算出した。TEMで判別できない微細な鉄炭化物については、アトムプローブ法により測定を行った。Further, the structure was observed by SEM and TEM, and the average particle size of iron carbides present in an area of 10 μm 2 or more was measured and calculated as equivalent circle diameter (dcar). Fine iron carbides that could not be determined by TEM were measured by the atom probe method.

続いて、得られた鋼板から、圧延直角方向(板幅方向)を長手方向として、JIS Z 2241(2011)に記載の引張試験片を採取した。そして、その引張試験片を用いて、引張試験をJIS Z 2241(2011)に準拠して行い、機械的特性(降伏応力YS、引張強さTS)を測定した。 Subsequently, a tensile test piece as described in JIS Z 2241 (2011) was taken from the obtained steel plate with the longitudinal direction in the direction perpendicular to rolling (plate width direction). Then, using the tensile test piece, a tensile test was conducted in accordance with JIS Z 2241 (2011), and mechanical properties (yield stress YS, tensile strength TS) were measured.

さらに、鋼板の耐衝突特性を調査するために、以下の手順により衝突試験を実施し、その時の破壊の有無を評価した。 Furthermore, in order to investigate the collision resistance characteristics of the steel plate, a collision test was conducted according to the following procedure, and the presence or absence of fracture at that time was evaluated.

まず、鋼板を冷間の曲げまたはロール成形にて、ハット型形状部品Aを成形し、次いで、ハット型形状部品Aと蓋Bをスポット溶接により接合し、図1に示す形状を有する試験体を作製した。次いで、台D上に、Aが上面となるように試験体を載置し、3mの高さから円筒状の重さ500kgの錘Cを試験体の中央部に衝突させた。そして、衝突により屈曲した部位および試験体端面を目視で観察し、割れの評価を行った。評価に際しては、割れの最大長に応じて、最大長が10mm以上をE、7mm以上10mm未満をD、4mm以上7mm未満をC、2mm以上4mm未満をB、2mm未満をAとする評点を与えた。 First, a hat-shaped part A is formed by cold bending or roll forming a steel plate, and then the hat-shaped part A and the lid B are joined by spot welding to form a test specimen having the shape shown in Fig. 1. Created. Next, the test specimen was placed on table D with A facing upward, and a cylindrical weight C weighing 500 kg was made to collide with the center of the test specimen from a height of 3 m. Then, the portion bent due to the collision and the end face of the test piece were visually observed to evaluate cracks. When evaluating, a score is given according to the maximum length of the crack: E if the maximum length is 10 mm or more, D if it is 7 mm or more and less than 10 mm, C if it is 4 mm or more and less than 7 mm, B if it is 2 mm or more and less than 4 mm, and A if the maximum length is less than 2 mm. Ta.

以上の測定結果および評価結果を表2および3にまとめて示す。表2および3に示す結果から明らかなように、規定を全て満足する本発明例の場合には、降伏応力が1000MPa以上であり、部材の衝突試験後に割れが起きないことが分かる。これにより、本発明に係る鋼板は、衝突特性に優れていることが明らかである。 The above measurement results and evaluation results are summarized in Tables 2 and 3. As is clear from the results shown in Tables 2 and 3, in the case of the example of the present invention that satisfies all the regulations, the yield stress is 1000 MPa or more, and it can be seen that no cracking occurs after the impact test of the member. From this, it is clear that the steel plate according to the present invention has excellent collision characteristics.

表1に示す組成を有する鋼を溶製してスラブを製造し、このスラブを1220~1260℃で加熱して、熱間で粗圧延を行い、引き続き、仕上圧延を行い、室温まで冷却を行った。そして、表4に示すように、最終圧延温度(FT)から650℃間の平均冷却速度(CR1)を変化させ、650℃以下は、10℃/sから20℃/hの範囲の冷却を行った。 A slab is manufactured by melting steel having the composition shown in Table 1, and this slab is heated at 1,220 to 1,260°C, subjected to hot rough rolling, then finish rolled, and cooled to room temperature. Ta. As shown in Table 4, the average cooling rate (CR1) from the final rolling temperature (FT) to 650°C was varied, and below 650°C, cooling was performed in the range of 10°C/s to 20°C/h. Ta.

熱延終了後、形状矯正を行い、焼鈍を行った。焼鈍は、焼鈍温度(ST)、焼鈍保持時間(t1)、700℃~(Ms点-50)℃間の平均冷却速度(CR2)を変化させ、さらに熱処理工程では、Msが250℃以上の鋼は(Ms+50)℃~250℃間の滞留時間(t2)を、Msが250℃未満の鋼は(Ms+80)℃~100℃間の滞留時間(t3)を変化させた。熱処理工程の後、形状矯正のための調質圧延を行った。 After hot rolling, the shape was corrected and annealed. In annealing, the annealing temperature (ST), the annealing holding time (t1), and the average cooling rate (CR2) between 700°C and (Ms point -50)°C are changed, and in the heat treatment process, the steel with Ms of 250°C or higher is The residence time (t2) between (Ms+50)°C and 250°C was changed, and the residence time (t3) between (Ms+80)°C and 100°C was changed for steel with Ms less than 250°C. After the heat treatment step, temper rolling was performed to correct the shape.

得られた鋼板に対して、実施例1と同様に、金属組織および機械特性の測定ならびに耐衝突特性の評価を行った。測定結果および評価結果を表4に示す。 The obtained steel plate was subjected to measurement of metallographic structure and mechanical properties and evaluation of collision resistance properties in the same manner as in Example 1. The measurement results and evaluation results are shown in Table 4.

Figure 0007364942000004
Figure 0007364942000004

表4に示す結果から明らかなように、規定を全て満足する本発明例の場合には、降伏応力が1000MPa以上であり、部材の衝突試験後に割れが起きないことが分かる。これにより、本発明に係る鋼板は、衝突特性に優れていることが明らかである。 As is clear from the results shown in Table 4, in the case of the example of the present invention that satisfies all the regulations, the yield stress is 1000 MPa or more, and it can be seen that no cracking occurs after the impact test of the member. From this, it is clear that the steel plate according to the present invention has excellent collision characteristics.

表1に示す組成を有する鋼を溶製してスラブを製造し、このスラブを1220~1260℃で加熱して、熱間で粗圧延を行い、引き続き、仕上圧延を行い、その後の熱履歴を変化させた。表5に示すように、最終圧延温度(FT)、最終圧延温度~(Ms-50)℃間の平均冷却速度(CR3)を変化させた。さらに熱処理工程では、Msが250℃以上の鋼は(Ms+50)℃~250℃間の滞留時間(t2)を、Msが250℃未満の鋼は(Ms+80)℃~100℃間の滞留時間(t3)を変化させた。熱処理工程の後、形状矯正のための調質圧延を行った。 A slab is manufactured by melting steel having the composition shown in Table 1, and this slab is heated at 1220 to 1260°C, hot rough rolled, and then finish rolled. Changed. As shown in Table 5, the final rolling temperature (FT) and the average cooling rate (CR3) between the final rolling temperature and (Ms-50)°C were varied. Furthermore, in the heat treatment process, the residence time (t2) between (Ms+50)℃ and 250℃ for steel with Ms of 250℃ or higher, and the residence time (t3) between (Ms+80)℃ and 100℃ for steel with Ms of less than 250℃. ) changed. After the heat treatment step, temper rolling was performed to correct the shape.

得られた鋼板に対して、実施例1と同様に、金属組織および機械特性の測定ならびに耐衝突特性の評価を行った。測定結果および評価結果を表5に示す。 The obtained steel plate was subjected to measurement of metallographic structure and mechanical properties and evaluation of collision resistance properties in the same manner as in Example 1. Table 5 shows the measurement results and evaluation results.

Figure 0007364942000005
Figure 0007364942000005

表5に示す結果から明らかなように、規定を全て満足する本発明例の場合には、降伏応力が1000MPa以上であり、部材の衝突試験後に割れが起きないことが分かる。これにより、本発明に係る鋼板は、衝突特性に優れていることが明らかである。 As is clear from the results shown in Table 5, in the case of the example of the present invention that satisfies all the regulations, the yield stress is 1000 MPa or more, and it can be seen that no cracking occurs after the impact test of the member. From this, it is clear that the steel plate according to the present invention has excellent collision characteristics.

本発明によれば、部品形状に成形した後に衝撃荷重を付加させた際に、良好な反力特性を発揮し、かつ部品端面または衝撃時に屈曲した部位から割れが発生しにくく、1000MPa以上の降伏応力を有する高強度鋼板を得ることが可能になる。したがって、本発明に係る鋼板は、自動車の骨格部品、補強部品および建築産業機械の部品に用いるのに好適である。 According to the present invention, when an impact load is applied after forming the part into a shape, it exhibits good reaction force characteristics, is less prone to cracking from the end face of the part or the part bent at the time of impact, and has a yield of 1000 MPa or more. It becomes possible to obtain a high-strength steel plate with stress. Therefore, the steel sheet according to the present invention is suitable for use in automobile frame parts, reinforcing parts, and parts of construction industry machinery.

Claims (6)

化学組成が、質量%で、
C:0.14~0.60%、
Si:0%超3.00%未満、
Al:0%超3.00%未満、
Mn:5.00%以下、
P:0.030%以下、
S:0.0050%以下、
N:0.015%以下、
B:0~0.0050%、
Ni:0~5.00%、
Cu:0~5.00%、
Cr:0~5.00%、
Mo:0~1.00%、
W:0~1.00%、
Ti:0~0.20%、
Zr:0~0.20%、
Hf:0~0.20%、
V:0~0.20%、
Nb:0~0.20%、
Ta:0~0.20%、
Sc:0~0.20%、
Y:0~0.20%、
Sn:0~0.020%、
As:0~0.020%、
Sb:0~0.020%、
Bi:0~0.020%、
Mg:0~0.005%、
Ca:0~0.005%、
REM:0~0.005%、
残部:Feおよび不純物であり、かつ、
下記(i)~(v)式を満足し、
下記(vi)式で表わされるMsの値が200以上であり、
金属組織が、体積%で、
マルテンサイト:85%以上、
残留オーステナイト:15%以下、
残部:ベイナイトであり、
マルテンサイトおよびベイナイトの平均ブロック粒径:2.4μm以下、
マルテンサイトおよびベイナイトの平均軸比:1.0004~1.0100であり、
降伏応力が1000MPa以上である、
鋼板。
0.10≦Si+Al≦3.00 ・・・(i)
C×Mn≦0.80 ・・・(ii)
Mn+Ni+Cu+1.3Cr+4(Mo+W)≧0.80 ・・・(iii)
0.003≦Ti+Zr+Hf+V+Nb+Ta+Sc+Y≦0.20 ・・・(iv)
Sn+As+Sb+Bi≦0.020 ・・・(v)
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W) ・・・(vi)
但し、上記式中の元素記号は、各元素の鋼板中の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
The chemical composition is in mass%,
C: 0.14-0.60%,
Si: more than 0% and less than 3.00%,
Al: more than 0% and less than 3.00%,
Mn: 5.00% or less,
P: 0.030% or less,
S: 0.0050% or less,
N: 0.015% or less,
B: 0 to 0.0050%,
Ni: 0 to 5.00%,
Cu: 0 to 5.00%,
Cr: 0-5.00%,
Mo: 0-1.00%,
W: 0-1.00%,
Ti: 0 to 0.20%,
Zr: 0 to 0.20%,
Hf: 0-0.20%,
V: 0-0.20%,
Nb: 0 to 0.20%,
Ta: 0 to 0.20%,
Sc: 0-0.20%,
Y: 0-0.20%,
Sn: 0 to 0.020%,
As: 0 to 0.020%,
Sb: 0 to 0.020%,
Bi: 0-0.020%,
Mg: 0 to 0.005%,
Ca: 0-0.005%,
REM: 0-0.005%,
The remainder: Fe and impurities, and
The following formulas (i) to (v) are satisfied,
The value of Ms expressed by the following formula (vi) is 200 or more,
The metal structure is in volume %,
Martensite: 85% or more,
Retained austenite: 15% or less,
The remainder: Bainite,
Average block grain size of martensite and bainite: 2.4 μm or less,
Average axial ratio of martensite and bainite: 1.0004 to 1.0100,
The yield stress is 1000 MPa or more,
steel plate.
0.10≦ Si+Al≦3.00...(i)
C×Mn≦0.80...(ii)
Mn+Ni+Cu+1.3Cr+4(Mo+W)≧0.80...(iii)
0.003≦Ti+Zr+Hf+V+Nb+Ta+Sc+Y≦0.20...(iv)
Sn+As+Sb+Bi≦0.020...(v)
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W)...(vi)
However, the element symbol in the above formula represents the content (mass %) of each element in the steel sheet, and if it is not contained, 0 is substituted.
前記金属組織中に含まれる鉄炭化物の平均粒径が0.005~0.20μmである、
請求項1に記載の鋼板。
The average particle size of iron carbides contained in the metal structure is 0.005 to 0.20 μm,
The steel plate according to claim 1.
表面にめっき層を有する、
請求項1または請求項2に記載の鋼板。
Has a plating layer on the surface,
The steel plate according to claim 1 or claim 2.
請求項1から請求項3までのいずれかに記載の鋼板の製造方法であって、
請求項1に記載の化学組成を有する鋳片に対して、熱間圧延工程、冷間圧延工程、焼鈍工程および熱処理工程を順に施し、
前記熱間圧延工程において、圧延終了温度から650℃までの間の平均冷却速度を8℃/s以上として、室温まで冷却し、
前記焼鈍工程において、Ac点~(Ac点+80)℃の温度範囲で3~90s保持し、かつ、
700℃から(Ms点-50)℃までの間の平均冷却速度を10℃/s以上とし、
前記熱処理工程において、
Ms点が250℃以上の場合には、
(Ms点+50)~250℃の温度範囲での滞留時間を100~10000sとし、
Ms点が250℃未満の場合には、
(Ms点+80)~100℃の温度範囲での滞留時間を100~50000sとする、
鋼板の製造方法。
但し、上記のMs点(℃)およびAc点(℃)は、下記式によって表わされ、式中の元素記号は、各元素の鋼板中の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W) ・・・(vi)
Ac=910-203×C0.5+44.7(Si+Al)-30×Mn+700×P-15.2×Ni-26×Cu-11×Cr+31.5×Mo ・・・(vii)
A method for manufacturing a steel plate according to any one of claims 1 to 3,
A slab having the chemical composition according to claim 1 is sequentially subjected to a hot rolling process, a cold rolling process, an annealing process, and a heat treatment process,
In the hot rolling process, the average cooling rate from the rolling end temperature to 650 ° C. is 8 ° C. / s or more, and cooling to room temperature,
In the annealing step, the temperature is maintained at a temperature range of 3 points Ac to ( 3 points Ac + 80 °C) for 3 to 90 seconds, and
The average cooling rate from 700 °C to (Ms point -50) °C is 10 °C / s or more,
In the heat treatment step,
If the Ms point is 250℃ or higher,
(Ms point +50) ~ 250 ° C. Residence time in the temperature range of 100 ~ 10000 s,
If the Ms point is less than 250°C,
(Ms point +80) ~ 100 ° C. Residence time in the temperature range of 100 ~ 50000 s,
Method of manufacturing steel plates.
However, the above Ms point (℃) and Ac 3 point (℃) are expressed by the following formula, and the element symbol in the formula represents the content (mass%) of each element in the steel sheet, and if it is not contained. shall be assigned 0.
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W)...(vi)
Ac 3 =910-203×C 0.5 +44.7(Si+Al)-30×Mn+700×P-15.2×Ni-26×Cu-11×Cr+31.5×Mo...(vii)
請求項1から請求項3までのいずれかに記載の鋼板の製造方法であって、
請求項1に記載の化学組成を有する鋳片に対して、熱間圧延工程、焼鈍工程および熱処理工程を順に施し、
前記熱間圧延工程において、圧延終了温度から650℃までの間の平均冷却速度を8℃/s以上として、室温まで冷却し、
前記焼鈍工程において、Ac~(Ac80)℃の温度範囲で3~90s保持し、かつ、
700℃から(Ms-50)℃までの間の平均冷却速度を10℃/s以上とし、
前記熱処理工程において、
Ms点が250℃以上の場合には、
(Ms+50)~250℃の温度範囲での滞留時間を100~10000sとし、
Ms点が250℃未満の場合には、
(Ms+80)~100℃の温度範囲での滞留時間を100~50000sとする、
鋼板の製造方法。
但し、上記のMs点(℃)およびAc点(℃)は、下記式によって表わされ、式中の元素記号は、各元素の鋼板中の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W) ・・・(vi)
Ac=910-203×C0.5+44.7(Si+Al)-30×Mn+700×P-15.2×Ni-26×Cu-11×Cr+31.5×Mo ・・・(vii)
A method for manufacturing a steel plate according to any one of claims 1 to 3,
A slab having the chemical composition according to claim 1 is sequentially subjected to a hot rolling process, an annealing process, and a heat treatment process,
In the hot rolling process, the average cooling rate from the rolling end temperature to 650 ° C. is 8 ° C. / s or more, and cooling to room temperature,
In the annealing step, a temperature range of Ac 3 to (Ac 3 + 80 )° C. is maintained for 3 to 90 seconds, and
The average cooling rate from 700°C to (Ms-50)°C is 10°C/s or more,
In the heat treatment step,
If the Ms point is 250℃ or higher,
The residence time in the temperature range of (Ms+50) to 250°C is 100 to 10,000 s,
If the Ms point is less than 250°C,
(Ms + 80) ~ 100 ° C. Residence time in the temperature range of 100 ~ 50000 s,
Method of manufacturing steel plates.
However, the above Ms point (℃) and Ac 3 point (℃) are expressed by the following formula, and the element symbol in the formula represents the content (mass%) of each element in the steel sheet, and if it is not contained. shall be assigned 0.
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W)...(vi)
Ac 3 =910-203×C 0.5 +44.7(Si+Al)-30×Mn+700×P-15.2×Ni-26×Cu-11×Cr+31.5×Mo...(vii)
請求項1から請求項3までのいずれかに記載の鋼板の製造方法であって、
請求項1に記載の化学組成を有する鋳片に対して、熱間圧延工程および熱処理工程を順に施し、
前記熱間圧延工程において、圧延終了温度をAr点以上とし、かつ、
圧延終了温度から(Ms-50)℃までの間の平均冷却速度を10℃/s以上とし、
前記熱処理工程において、
Ms点が250℃以上の場合には、
(Ms+50)~250℃の温度範囲での滞留時間を100~10000sとし、
Ms点が250℃未満の場合には、
(Ms+80)~100℃の温度範囲での滞留時間を100~50000sとする、
鋼板の製造方法。
但し、上記のMs点(℃)およびAr点(℃)は、下記式によって表わされ、式中の元素記号は、各元素の鋼板中の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W) ・・・(vi)
Ar=910-310×C+33×Si-80×Mn-55×Ni-20×Cu-15×Cr-80×Mo ・・・(viii)
A method for manufacturing a steel plate according to any one of claims 1 to 3,
A slab having the chemical composition according to claim 1 is sequentially subjected to a hot rolling process and a heat treatment process,
In the hot rolling step, the rolling end temperature is set to Ar 3 points or higher, and
The average cooling rate from the rolling end temperature to (Ms-50) °C is 10 °C / s or more,
In the heat treatment step,
If the Ms point is 250℃ or higher,
The residence time in the temperature range of (Ms+50) to 250°C is 100 to 10,000 s,
If the Ms point is less than 250°C,
(Ms + 80) ~ 100 ° C. Residence time in the temperature range of 100 ~ 50000 s,
Method of manufacturing steel plates.
However, the above Ms point (°C) and Ar 3 point (°C) are expressed by the following formula, and the element symbol in the formula represents the content (mass%) of each element in the steel sheet, and if it is not contained. shall be assigned 0.
Ms=546×exp(-1.362×C)-11×Si-30×Mn-18×Ni-20×Cu-12×Cr-8(Mo+W)...(vi)
Ar 3 =910-310×C+33×Si-80×Mn-55×Ni-20×Cu-15×Cr-80×Mo...(viii)
JP2021572738A 2020-01-22 2021-01-19 Steel plate and its manufacturing method Active JP7364942B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020008125 2020-01-22
JP2020008125 2020-01-22
PCT/JP2021/001658 WO2021149676A1 (en) 2020-01-22 2021-01-19 Steel sheet and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2021149676A1 JPWO2021149676A1 (en) 2021-07-29
JP7364942B2 true JP7364942B2 (en) 2023-10-19

Family

ID=76992405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021572738A Active JP7364942B2 (en) 2020-01-22 2021-01-19 Steel plate and its manufacturing method

Country Status (7)

Country Link
US (1) US20230065607A1 (en)
EP (1) EP4095272A4 (en)
JP (1) JP7364942B2 (en)
KR (1) KR20220127894A (en)
CN (1) CN115003839A (en)
MX (1) MX2022008976A (en)
WO (1) WO2021149676A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117062934A (en) * 2021-03-31 2023-11-14 杰富意钢铁株式会社 Steel sheet, component, and method for producing same
US20240158883A1 (en) * 2021-03-31 2024-05-16 Jfe Steel Corporation Steel sheet, member, and method for producing steel sheet, and method for producing member
KR20230089785A (en) * 2021-12-14 2023-06-21 주식회사 포스코 Ultra high strength steel sheet having excellent bendability, and method for manufacturing thereof
JP7320095B1 (en) 2022-03-02 2023-08-02 山陽特殊製鋼株式会社 Alloy tool steel for hot working
CN114875302B (en) * 2022-03-25 2022-11-29 广东省科学院新材料研究所 Low-alloy steel and preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031462A (en) 2010-07-29 2012-02-16 Jfe Steel Corp High strength hot dip zinc-coated steel sheet excellent in formability and impact resistance, and manufacturing method therefor
JP2016050343A (en) 2014-08-29 2016-04-11 新日鐵住金株式会社 Ultrahigh strength cold rolled steel sheet excellent in hydrogen embrittlement resistance and manufacturing method therefor
KR101620744B1 (en) 2014-12-05 2016-05-13 주식회사 포스코 Ultra high strength cold rolled steel sheet having high yield ratio and method for manufacturing the same
WO2018011978A1 (en) 2016-07-15 2018-01-18 新日鐵住金株式会社 Hot-dip galvanized steel sheet
WO2018055695A1 (en) 2016-09-21 2018-03-29 新日鐵住金株式会社 Steel sheet
JP2018518593A (en) 2015-05-06 2018-07-12 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Flat steel products and manufacturing method thereof
WO2018147400A1 (en) 2017-02-13 2018-08-16 Jfeスチール株式会社 High-strength steel plate and manufacturing method therefor
JP2020509161A (en) 2016-12-14 2020-03-26 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Hot rolled flat steel product and production method
WO2020075394A1 (en) 2018-10-10 2020-04-16 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3958842B2 (en) 1997-07-15 2007-08-15 新日本製鐵株式会社 Work-induced transformation-type high-strength steel sheet for absorbing automobile collision energy with excellent dynamic deformation characteristics
JP3839928B2 (en) 1997-07-15 2006-11-01 新日本製鐵株式会社 Dual phase type high strength steel plate with excellent dynamic deformation characteristics
JP4995109B2 (en) 2008-02-07 2012-08-08 新日本製鐵株式会社 High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same
JP5369712B2 (en) 2009-01-28 2013-12-18 Jfeスチール株式会社 Hot press member excellent in ductility, steel plate for hot press member, and method for producing hot press member
JP5487916B2 (en) 2009-11-30 2014-05-14 新日鐵住金株式会社 High-strength galvanized steel sheet having a tensile maximum strength of 900 MPa or more excellent in impact absorption energy and a method for producing the same
JP5856002B2 (en) 2011-05-12 2016-02-09 Jfeスチール株式会社 Collision energy absorbing member for automobiles excellent in impact energy absorbing ability and method for manufacturing the same
WO2013065346A1 (en) 2011-11-01 2013-05-10 Jfeスチール株式会社 High-strength hot-rolled steel sheet having excellent bending characteristics and low-temperature toughness and method for producing same
JP6237364B2 (en) 2014-03-17 2017-11-29 新日鐵住金株式会社 High strength steel plate with excellent impact characteristics and method for producing the same
KR20150142791A (en) * 2014-06-11 2015-12-23 주식회사 포스코 High strength cold rolled steel sheet excellent in shape freezability, and manufacturing method thereof
WO2018011973A1 (en) * 2016-07-15 2018-01-18 Eizo株式会社 Inspection system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031462A (en) 2010-07-29 2012-02-16 Jfe Steel Corp High strength hot dip zinc-coated steel sheet excellent in formability and impact resistance, and manufacturing method therefor
JP2016050343A (en) 2014-08-29 2016-04-11 新日鐵住金株式会社 Ultrahigh strength cold rolled steel sheet excellent in hydrogen embrittlement resistance and manufacturing method therefor
KR101620744B1 (en) 2014-12-05 2016-05-13 주식회사 포스코 Ultra high strength cold rolled steel sheet having high yield ratio and method for manufacturing the same
JP2018518593A (en) 2015-05-06 2018-07-12 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Flat steel products and manufacturing method thereof
WO2018011978A1 (en) 2016-07-15 2018-01-18 新日鐵住金株式会社 Hot-dip galvanized steel sheet
WO2018055695A1 (en) 2016-09-21 2018-03-29 新日鐵住金株式会社 Steel sheet
JP2020509161A (en) 2016-12-14 2020-03-26 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Hot rolled flat steel product and production method
WO2018147400A1 (en) 2017-02-13 2018-08-16 Jfeスチール株式会社 High-strength steel plate and manufacturing method therefor
WO2020075394A1 (en) 2018-10-10 2020-04-16 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
CN115003839A (en) 2022-09-02
JPWO2021149676A1 (en) 2021-07-29
KR20220127894A (en) 2022-09-20
EP4095272A4 (en) 2023-07-26
WO2021149676A1 (en) 2021-07-29
EP4095272A1 (en) 2022-11-30
US20230065607A1 (en) 2023-03-02
MX2022008976A (en) 2022-08-11

Similar Documents

Publication Publication Date Title
JP7364942B2 (en) Steel plate and its manufacturing method
JP6524810B2 (en) Steel plate excellent in spot weld resistance and its manufacturing method
JP6620474B2 (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and methods for producing them
KR102220940B1 (en) Steel plate and plated steel plate
JP5359168B2 (en) Ultra-high strength cold-rolled steel sheet with excellent ductility and method for producing the same
JP5668337B2 (en) Ultra-high-strength cold-rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
TWI412609B (en) High strength steel sheet and method for manufacturing the same
JP4484070B2 (en) High-tensile hot-rolled steel sheet and manufacturing method thereof
JP4682822B2 (en) High strength hot rolled steel sheet
CN115404406A (en) High-strength galvanized steel sheet, high-strength member, and method for producing same
JP5488129B2 (en) Cold rolled steel sheet and method for producing the same
JPWO2014077294A1 (en) Collision energy absorbing member for automobile and manufacturing method thereof
KR20210093992A (en) High-strength steel sheet with excellent formability, toughness and weldability, and manufacturing method thereof
JPWO2020121418A1 (en) A method for manufacturing a high-strength steel sheet having excellent formability and impact resistance, and a high-strength steel sheet having excellent formability and impact resistance.
CN111094612B (en) Hot-rolled steel sheet and method for producing same
JP2021531405A (en) High-strength steel plate with excellent collision resistance and its manufacturing method
JP4802682B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JPH10259448A (en) High strength steel sheet excellent in static absorbed energy and impact resistance and its production
JP2010126808A (en) Cold rolled steel sheet and method for producing the same
JP5682828B2 (en) Shear processed parts and manufacturing method thereof
JP5499956B2 (en) Hot-rolled steel sheet and manufacturing method thereof
EP4265764A1 (en) High strength steel sheet having excellent workability, and method for manufacturing same
JP2022061461A (en) High strength cold-rolled steel sheet, galvanized steel sheet and alloyed galvanized steel sheet, and method for manufacturing the same
US20230029040A1 (en) High strength steel sheet having superior workability and method for manufacturing same
US20230031278A1 (en) High strength steel sheet having excellent workability and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230918

R151 Written notification of patent or utility model registration

Ref document number: 7364942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151