JP4325503B2 - Steel material with excellent fatigue characteristics and method for producing the same - Google Patents

Steel material with excellent fatigue characteristics and method for producing the same Download PDF

Info

Publication number
JP4325503B2
JP4325503B2 JP2004233539A JP2004233539A JP4325503B2 JP 4325503 B2 JP4325503 B2 JP 4325503B2 JP 2004233539 A JP2004233539 A JP 2004233539A JP 2004233539 A JP2004233539 A JP 2004233539A JP 4325503 B2 JP4325503 B2 JP 4325503B2
Authority
JP
Japan
Prior art keywords
steel
less
steel material
fatigue
fatigue characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004233539A
Other languages
Japanese (ja)
Other versions
JP2005187934A (en
Inventor
登 誉田
和茂 有持
知哉 藤原
英男 堺堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004233539A priority Critical patent/JP4325503B2/en
Priority to KR1020067010451A priority patent/KR100774805B1/en
Priority to PCT/JP2004/017855 priority patent/WO2005054533A1/en
Publication of JP2005187934A publication Critical patent/JP2005187934A/en
Application granted granted Critical
Publication of JP4325503B2 publication Critical patent/JP4325503B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、疲労特性に優れた鋼材およびその製造方法に関する。より具体的には、本発明にかかる鋼材は、プラズマ切断部、レーザー切断部、大入熱溶接時のHAZ部の疲労特性に優れることから、本発明は、船舶、海洋構造物、橋梁、建築物、タンク等の構造物に、切断まま、溶接ままでも好適に使用することができる鋼材およびその製造方法に関する。    The present invention relates to a steel material having excellent fatigue characteristics and a method for producing the same. More specifically, the steel material according to the present invention is excellent in fatigue characteristics of a plasma cutting part, a laser cutting part, and a HAZ part at the time of large heat input welding. Therefore, the present invention can be applied to a ship, an offshore structure, a bridge, and an architecture. TECHNICAL FIELD The present invention relates to a steel material that can be suitably used for a structure such as an object or a tank, whether it is cut or welded, and a method for manufacturing the same.

例えば船舶、海洋構造物、橋梁、建築物、タンク等の構造物に使用される鋼材は、構造物を構成するに先立ってまず適当な切断法により所望の形状・寸法に切断される。このような切断法として、従来から用いられてきたガス切断に比較して数倍以上の高速切断が可能であることから、金属ノズルによる熱的ピンチ効果を利用して形成した高温・高速のプラズマ流を用いるプラズマ切断やレーザー切断が近年多用される。これらの切断法は切断精度も相当高いことから、切断された鋼材は、切断ままで使用される場合がある。   For example, steel materials used in structures such as ships, offshore structures, bridges, buildings, tanks, etc. are first cut into a desired shape and size by an appropriate cutting method prior to constructing the structure. As such a cutting method, high-speed cutting that is several times higher than conventional gas cutting is possible, so a high-temperature, high-speed plasma formed using the thermal pinch effect by a metal nozzle Recently, plasma cutting and laser cutting using a flow are frequently used. Since these cutting methods have considerably high cutting accuracy, the cut steel material may be used as it is cut.

しかしながら、このような切断による切断面近傍の冷却速度は大きくなるために切断面近傍の組織が硬化してしまう。このため、切断ままの鋼材を繰り返し応力が作用する部位に用いると、硬度が上昇した切断面近傍から疲労亀裂が発生し易くなり、この亀裂が起点となって疲労寿命が低下してしまう。   However, since the cooling rate in the vicinity of the cut surface by such cutting increases, the structure in the vicinity of the cut surface is hardened. For this reason, if the steel material as it is cut is used in a portion where the stress is repeatedly applied, fatigue cracks are likely to occur from the vicinity of the cut surface where the hardness has increased, and the fatigue life is reduced due to the crack as a starting point.

このため、切断された鋼材は、多くの場合、切断面近傍に例えば研削等の機械加工を仕上げ加工として行う必要があり、加工コストや加工時間の上昇は否めなかった。
このように切断・仕上げ加工された鋼材は溶接構造物として使用に供されることが多く、その際に用いられる溶接に関しては、溶接効率を向上させるためエレクトロガスまたはエレクトロスラグ溶接法等による大入熱溶接が行われるようになってきた。このような大入熱溶接の場合、溶接金属と母材の境界部では急激な温度上昇と急激な冷却速度で、境界部近傍での組織が硬化してしまう。従って、この部分に繰り返し応力が作用すると、硬度が上昇した境界部近傍から疲労亀裂が発生し易くなり、この亀裂が起点となって疲労寿命が低下してしまう。
For this reason, in many cases, it has been necessary to perform machining such as grinding as a finishing process in the vicinity of the cut surface in the cut steel material, and an increase in processing cost and processing time cannot be denied.
The steel material cut and finished in this way is often used as a welded structure. With regard to the welding used at that time, in order to improve the welding efficiency, a large amount of welding is performed by electrogas or electroslag welding. Thermal welding has been performed. In the case of such high heat input welding, the structure in the vicinity of the boundary portion is hardened at a boundary portion between the weld metal and the base metal with a rapid temperature rise and a rapid cooling rate. Therefore, when a repeated stress is applied to this portion, a fatigue crack is likely to be generated from the vicinity of the boundary where the hardness is increased, and the fatigue life is reduced starting from this crack.

ところで、鋼材の疲労寿命を改善する発明として、特許文献1には、ベイナイトと体積率10%以上の残留オーステナイトとを主相とする複合組織を有する鋼板の表面に、後処理としてショットピーニング処理を行って、表層部の残留オーステナイト相を歪誘起変態させる、鋼材の疲労特性改善方法が提案されている。この提案にかかる発明によれば、プラズマ切断された鋼材の切断面を含めて鋼材全体の疲労特性を改善することができる。   By the way, as invention which improves the fatigue life of steel materials, in patent document 1, the shot peening process is carried out as post-processing on the surface of the steel plate which has a composite structure which has a bainite and a retained austenite whose volume ratio is 10% or more as a main phase. There has been proposed a method for improving the fatigue properties of a steel material, in which the residual austenite phase in the surface layer is subjected to strain-induced transformation. According to the invention concerning this proposal, the fatigue characteristics of the whole steel material including the cut surface of the steel material cut by plasma can be improved.

またプラズマ切断面の疲労特性を向上させる方法として、特許文献2には、母材の成分の最適化を行い、焼入れ性指数とオーステナイト粒径を適正範囲に管理することによりプラズマ切断された鋼材の切断面の疲労強度を向上させる技術が開示されている。
特開平6−271930号公報 特開2001−107175号公報
In addition, as a method for improving the fatigue characteristics of the plasma cut surface, Patent Document 2 describes the optimization of the components of the base metal and the plasma cut steel material by managing the hardenability index and the austenite grain size within an appropriate range. A technique for improving the fatigue strength of a cut surface is disclosed.
JP-A-6-271930 Japanese Patent Laid-Open No. 2001-107175

しかし、特許文献1の発明によっても、鋼材に後処理を行う必要があるため、加工コストおよび加工時間の上昇は否めない。従って、この鋼材では、プラズマやレーザー切断ままでは繰り返し応力が作用する部位に構成部材として用いることができなかった。   However, according to the invention of Patent Document 1, since it is necessary to perform post-processing on the steel material, it is undeniable that the processing cost and the processing time are increased. Therefore, in this steel material, it cannot be used as a constituent member at a site where stress repeatedly acts as it is with plasma or laser cutting.

また特許文献2では、鋼材の後処理は不要で、切断面の疲労強度も向上するが、DI値を確保するための有効な対策として、C量の増加が考えられる。しかしながら、C量を増加することにより、切断部の硬度が顕著に上昇し、切断後の曲げ加工性が低下するという問題点があった。   Moreover, in patent document 2, although the post-process of steel materials is unnecessary and the fatigue strength of a cut surface improves, the increase in C amount can be considered as an effective measure for ensuring DI value. However, increasing the amount of C has a problem that the hardness of the cut portion is remarkably increased and the bending workability after cutting is lowered.

ここに、本発明の課題は、プラズマ切断やレーザー切断部および大入熱溶接時のHAZ部等の部位における疲労特性に優れた鋼材およびその製造方法を提供することである。
より具体的には、本発明の課題は、切断部や溶接HAZ部が疲労特性に優れることから、例えば船舶、海洋構造物、橋梁、建築物、タンク等の構成部材のうちで繰り返し応力が作用する部位に使用される構造部材に、切断後や溶接後に特別な後処理をしなくても好適に使用することができる鋼材およびその製造方法を提供することである。
Here, the subject of this invention is providing the steel material excellent in the fatigue characteristic in parts, such as a plasma cutting | disconnection, a laser cutting part, and a HAZ part at the time of high heat-input welding, and its manufacturing method.
More specifically, since the problem of the present invention is that the cut portion and the welded HAZ portion are excellent in fatigue characteristics, repeated stress acts among components such as ships, marine structures, bridges, buildings, and tanks. It is to provide a steel material that can be suitably used for a structural member used in a site to be used without special post-treatment after cutting or welding, and a method for manufacturing the same.

本発明者らは、鋼板全体ではなく切断部の疲労特性の改善に影響する因子を鋭意検討した結果、以下に列記する新規な知見を得て、本発明を完成した。
(i)焼入性指数DlとMn/C比の最適化を図ることにより、切断面の硬化層部の組織を細粒組織とすることができ、これにより、繰り返し応力の作用による転位の発生を抑制して、切断部の高疲労寿命化を図れる。
As a result of intensive studies on factors affecting the fatigue characteristics of the cut portion, not the entire steel sheet, the present inventors have obtained the new knowledge listed below and completed the present invention.
(I) By optimizing the hardenability index Dl and the Mn / C ratio, the structure of the hardened layer portion of the cut surface can be made into a fine-grained structure, thereby generating dislocations due to the action of repeated stress. It is possible to increase the fatigue life of the cut part.

(ii)切断部の組織は切断時の入熱による加熱によってオーステナイト化されるものの、NbやTi等を適正量添加して炭窒化物を形成することにより、オーステナイト粒の成長を抑制でき、これにより、切断面の硬化層部を細粒組織とすることができる。   (Ii) Although the structure of the cut part is austenitized by heating by heat input at the time of cutting, the growth of austenite grains can be suppressed by forming carbonitride by adding an appropriate amount of Nb, Ti, etc. Thereby, the hardened layer part of a cut surface can be made into a fine grain structure.

(iii)焼入性指数Dlを12以上に高めるには、C量およびMn量をいずれも増加させることが効果的ではあり鋼板自体の強度も上昇するが、一方で靱性が劣化する。そこで、鋼板の組成を適切に特定することによって、母材特性を劣化させることなく母材および切断部の特性をいずれも所望の程度に保つことができる。   (Iii) In order to increase the hardenability index Dl to 12 or more, it is effective to increase both the C content and the Mn content and the strength of the steel sheet itself is increased, but the toughness is deteriorated. Therefore, by appropriately specifying the composition of the steel plate, the characteristics of the base material and the cut portion can both be maintained at a desired level without deteriorating the base material characteristics.

(iv)上記の知見はプラズマ切断部における知見であるがレーザー切断でも同様のことが言え、また切断も溶接も急激な温度上昇と急激な冷却が加わることから、切断部も溶接部も母材に与える影響はほぼ同じである。   (Iv) The above knowledge is the knowledge in the plasma cutting part, but the same can be said in the laser cutting, and both the cutting part and the welding part are subjected to rapid temperature rise and rapid cooling. The effect on is almost the same.

(v)上記の知見に基づいて着想された鋼組成を有する鋼を用いることにより、切断面に機械加工等の後処理を行わなくとも、切断ままで高疲労特性を有する鋼材を得ることができ、これにより、加工コストおよび加工時間をいずれも短縮できる鋼材を提供できることを知った。   (V) By using a steel having a steel composition conceived based on the above knowledge, a steel material having high fatigue characteristics can be obtained without being subjected to post-processing such as machining on the cut surface. As a result, it has been found that it is possible to provide a steel material that can reduce both the processing cost and the processing time.

(vi)このような効果は大入熱溶接時でも得られ、大入熱溶接でも高疲労特性を有する鋼材を得ることができる。
本発明はこれらの知見を基にして完成されたものであり、その要旨は下記(1)〜(4)に記載の疲労強度に優れた鋼材、その製造方法、それを用いた鋼構造物である。
(Vi) Such an effect can be obtained even during high heat input welding, and a steel material having high fatigue characteristics can be obtained even with high heat input welding.
The present invention has been completed based on these findings. The gist of the present invention is a steel material having excellent fatigue strength described in the following (1) to (4), a method for producing the same, and a steel structure using the steel material. is there.

(1) 質量%で、C:0.01〜0.10 %; Si:0.01 〜0.6 %; Mn:0.4 〜2.0%; P:0.02%以下; S:0.01%以下; Cr:0.16〜0.6 %; Nb:0.005〜0.06%およびTi:0.005 〜0.03%の1種または2種; sol.Al:0.10%以下; N:0.01%以下; その他不可避的不純物および残部Feからなる鋼組成を有する鋼材であって、下記式により規定される焼入性指数Dlが12以上であって、Mn/Cが15以上であることを特徴とする疲労特性に優れたプラズマ切断用、レーザー切断用、または大入熱溶接用鋼材。 (1) By mass%, C: 0.01 to 0.10%; Si: 0.01 to 0.6%; Mn: 0.4 to 2.0%; P: 0.02% or less; S: 0.01% or less; Cr: 0.16 to 0.6%; Nb : One or two of 0.005 to 0.06% and Ti: 0.005 to 0.03%; sol.Al: 0.10% or less; N: 0.01% or less; Other steel material having a steel composition consisting of unavoidable impurities and the balance Fe The hardenability index Dl defined by the following formula is 12 or more, and Mn / C is 15 or more, and is excellent in fatigue characteristics, for plasma cutting, laser cutting, or high heat input welding use steel.

・ Mn:1.2%以下のとき
D1=0.311×√C×(1+0.7×Si)×(1+3.33×Mn)×(1+2.16×Cr)×(1+3×Mo)×25.4
・ Mn:1.2%超のとき
D1=0.311×√C×(1+0.7×Si)×(5+5.1×(Mn−1.2))×(1+2.16×Cr)×(1+3×Mo)×25.4
(2) 前記鋼組成が、Feの一部に代えて、質量%で、Mo:0.01〜0.5%、B:0.0003〜0.0030%およびW:0.05〜0.50%の1種または2種以上を含有する上記(1)に記載の疲労特性に優れた鋼材。
(3) 前記鋼組成が、Feの一部に代えて、質量%で、Cu:0.05〜0.6 %およびNi:0.05〜0.6 %の1種または2種を含有する上記(1)または(2) に記載の疲労特性に優れた鋼材。
・ When Mn is 1.2% or less
D1 = 0.311 × √C × (1 + 0.7 × Si) × (1 + 3.33 × Mn) × (1 + 2.16 × Cr) × (1 + 3 × Mo) × 25.4
・ When Mn exceeds 1.2%
D1 = 0.311 × √C × (1 + 0.7 × Si) × (5 + 5.1 × (Mn−1.2)) × (1 + 2.16 × Cr) × (1 + 3 × Mo) × 25.4
(2) The steel composition may be one or two of Mo: 0.01 to 0.5%, B: 0.0003 to 0.0030%, and W: 0.05 to 0.50% in mass% instead of part of Fe. A steel material having excellent fatigue properties as described in (1) above, containing the above.
(3) The above steel composition (1) or (2) , wherein the steel composition contains one or two of Cu: 0.05 to 0.6% and Ni: 0.05 to 0.6% in mass% instead of a part of Fe Steel material with excellent fatigue characteristics as described in 1.

(4) 前記鋼組成が、Feの一部に代えて、質量%で、V:0.005〜0.08%を含有する上記(1)ないし(3) のいずれかに記載の疲労特性に優れた鋼材 (4) The steel material having excellent fatigue characteristics according to any one of the above (1) to (3), wherein the steel composition contains V: 0.005 to 0.08% by mass% instead of part of Fe .

(5)上記(1) ないし(4)のいずれかに記載の鋼組成を有する鋼片を、1200℃以下の温度域に加熱して圧延を行ない、Ar3点以上の温度域で該圧延を終了した後、650〜500℃の間の平均冷却速度を5〜50℃/Sとする加速冷却を施し、該加速冷却を450℃以下で停止することを特徴とする疲労特性に優れたプラズマ切断用、レーザー切断用、または大入熱溶接用鋼材の製造方法。 (5) The steel slab having the steel composition described in any one of (1) to (4) above is heated to a temperature range of 1200 ° C. or lower and rolled, and the rolling is performed in a temperature range of Ar 3 or higher. After completion, plasma cutting with excellent fatigue characteristics is characterized by performing accelerated cooling with an average cooling rate between 650-500 ° C being 5-50 ° C / S and stopping the accelerated cooling at 450 ° C or less Of steel for laser, laser cutting or high heat input welding .

(6)上記(1)ないし(4)のいずれかに記載の化学組成を有する鋼片を1200℃以下の温度域に加熱して圧延を行ない、Ar3点以上の温度域で該圧延を終了した後、Ac点以上に再加熱した後650℃〜500℃の間の平均冷却速度を5℃/s以上とする冷却を行ない、該冷却を500℃以下で停止することを特徴とするプラズマ切断用、レーザー切断用、または大入熱溶接用鋼板の製造方法。 (6) The steel slab having the chemical composition according to any one of the above (1) to (4) is heated to a temperature range of 1200 ° C. or lower and rolled, and the rolling is completed at a temperature range of Ar 3 points or higher. After that, the plasma is reheated to Ac 1 point or higher, then cooled to an average cooling rate between 650 ° C. and 500 ° C. of 5 ° C./s or higher, and the cooling is stopped at 500 ° C. or lower. A method of manufacturing a steel sheet for cutting, laser cutting, or high heat input welding .

(7)上記(5)または(6)に加え、さらに450℃以下に加熱し焼戻すことを特徴とするプラズマ切断用、レーザー切断用、または大入熱溶接用鋼板の製造方法。
(8)上記(1) ないし(4) のいずれかに記載の鋼材を用いた構造物。
(7) A method for producing a steel sheet for plasma cutting, laser cutting or high heat input welding, characterized by heating to 450 ° C. or lower and tempering in addition to (5) or (6) above.
(8) A structure using the steel material according to any one of (1) to (4 ) above.

本発明により、切断部の疲労特性に優れることから、例えば船舶、海洋構造物、橋梁、建築物、タンク等の鋼構造物の構成部材のうちで繰り返し応力が作用する部材に、プラズマ、レーザー切断まま、大入熱溶接ままでも好適に使用することができる鋼材およびその製造方法を提供することが可能となった。   According to the present invention, since the fatigue characteristics of the cut portion are excellent, for example, plasma, laser cutting on a member on which a repeated stress acts among components of a steel structure such as a ship, an offshore structure, a bridge, a building, and a tank. As a result, it has become possible to provide a steel material that can be suitably used even with a high heat input welding and a method for producing the same.

次に、本発明にかかる切断部の疲労特性に優れた鋼材およびその製造方法の実施の形態を、詳細に説明する。なお、以降の説明では、鋼材が鋼板である場合を例にとるが、これは例示であり、本発明は鋼板以外の他の熱間圧延鋼材、例えば管材、棒材、形材さらには線材等に対しても、同様に適用される。   Next, an embodiment of a steel material excellent in fatigue characteristics of a cut portion and a manufacturing method thereof according to the present invention will be described in detail. In the following description, the case where the steel material is a steel plate is taken as an example, but this is an example, and the present invention is a hot-rolled steel material other than the steel plate, such as a tube material, a bar material, a shape material, and a wire material. The same applies to.

まず、本発明にかかる製造方法において、用いる鋼の組成を限定する理由を説明する。なお、本明細書において鋼組成を示す「%」は特にことわりがない限り、「質量%」である。   First, the reason for limiting the composition of the steel used in the production method according to the present invention will be described. In this specification, “%” indicating the steel composition is “% by mass” unless otherwise specified.

(鋼の組成)
C:0.01〜0.10 %
Cは、0.01%以上含有することにより鋼の強度および焼入れ性指数Dlを高める成分である。しかしながら、C含有量が0.10 %を超えると、必要な強度や靱性を確保すること
は困難になる。そこで、本発明では、C含有量は0.01%以上0.10%以下と限定する。後述する焼入れ性指数Dl、Mn/C比を確保し、かつ母材の靱性を確保するためには、C含有量の下限は0.03%、上限は0.08%であることが、それぞれ望ましい。
(Steel composition)
C: 0.01-0.10%
C is a component that increases the strength and hardenability index Dl of steel by containing 0.01% or more. However, if the C content exceeds 0.10%, it becomes difficult to ensure the necessary strength and toughness. Therefore, in the present invention, the C content is limited to 0.01% or more and 0.10% or less. In order to secure the hardenability index Dl and Mn / C ratio, which will be described later, and to ensure the toughness of the base material, it is desirable that the lower limit of the C content is 0.03% and the upper limit is 0.08%.

Si:0.01 〜0.6 %
Siは、0.01%以上含有することにより鋼の脱酸に寄与する。しかし、Si含有量が0.6 %を超えると鋼の靱性が損なわれる。そこで、本発明では、Si含有量は0.01%以上0.6 %以下と限定する。同様の観点から、Si含有量の下限は0.02%、上限は0.4 %であることが、それぞれ望ましい。
Si: 0.01-0.6%
Si contributes to deoxidation of steel by containing 0.01% or more. However, if the Si content exceeds 0.6%, the toughness of the steel is impaired. Therefore, in the present invention, the Si content is limited to 0.01% or more and 0.6% or less. From the same viewpoint, it is desirable that the lower limit of the Si content is 0.02% and the upper limit is 0.4%.

Mn:0.4 〜2.0%
Mnは、0.4 %以上含有することにより鋼の強度を向上させるとともに焼入れ性指数Dlを確保することができる。しかし、Mn含有量が2.0%を超えると、鋼の靱性および加工性
を損なう。そこで、本発明では、Mn含有量は0.4 %以上2.0%以下と限定する。同様の観
点から、Mn含有量の上限は1.50%であることが望ましい。
Mn: 0.4 to 2.0%
By containing 0.4% or more of Mn, the strength of the steel can be improved and the hardenability index Dl can be secured. However, if the Mn content exceeds 2.0%, the toughness and workability of the steel are impaired. Therefore, in the present invention, the Mn content is limited to 0.4% or more and 2.0% or less. From the same viewpoint, the upper limit of the Mn content is desirably 1.50%.

P:0.02 %以下
Pは不可避的不純物であり、中心偏析を助長するなど鋼の靭性を劣化させるため、本発明においては0.02 %を上限とする。望ましくは0.018 %以下とする。
P: 0.02% or less P is an unavoidable impurity and deteriorates the toughness of the steel, such as promoting central segregation. Therefore, in the present invention, 0.02% is made the upper limit. Desirably, it shall be 0.018% or less.

S:0.01%以下
Sは不可避的不純物であり、0.01%を越えて多量に存在する場合、溶接割れの原因となり、MnS等の割れの起点となり得る介在物を形成する。またHAZ 部靱性確保に影響のない程度に止めるためには望ましくは0.006 %以下、より望ましくは0.004 %以下とする。
S: 0.01% or less S is an inevitable impurity, and when it is present in a large amount exceeding 0.01%, it causes weld cracking and forms inclusions that can be the starting point of cracks such as MnS. In order to stop the HAZ toughness without affecting the toughness, it is preferably 0.006% or less, more preferably 0.004% or less.

Cr:0.01〜0.6 %
Crは、0.01%以上含有することにより、焼入れ性を向上させ強度を高める成分である。しかしながら、0.6 %超含有することにより著しい強度上昇が見られるが、それに対し靱性が劣化する。そこで、本発明では、Cr含有量は0.01%以上0.6 %以下と限定する。同様の観点から、Cr含有量の下限は0.03%、上限は0.5 %であることが、それぞれ望ましい。
Cr: 0.01-0.6%
Cr is a component that improves hardenability and increases strength by containing 0.01% or more. However, when the content exceeds 0.6%, a significant increase in strength is observed, but the toughness deteriorates. Therefore, in the present invention, the Cr content is limited to 0.01% or more and 0.6% or less. From the same viewpoint, it is desirable that the lower limit of Cr content is 0.03% and the upper limit is 0.5%.

Nb:0.005〜0.06%
Nbは、0.005%以上含有することにより炭窒化物を形成してフェライトおよびオーステ
ナイトの粒成長を抑制し、組織を細粒化し強度および靱性向上に効果がある。しかしながら、Nb含有量が0.06%を超えると、鋼の強度上昇が著しく、靱性が損なわれる。そこで、本発明では、Nb含有量は0.005%以上0.06%以下と限定する。同様の観点から、Nb含有量
の下限は0.01%、上限は0.05%であることが、それぞれ望ましい。
Nb: 0.005-0.06%
When Nb is contained in an amount of 0.005% or more, carbonitride is formed to suppress the grain growth of ferrite and austenite, and the structure is refined to improve the strength and toughness. However, if the Nb content exceeds 0.06%, the strength of the steel is remarkably increased and the toughness is impaired. Therefore, in the present invention, the Nb content is limited to 0.005% or more and 0.06% or less. From the same viewpoint, it is desirable that the lower limit of the Nb content is 0.01% and the upper limit is 0.05%.

Ti:0.005 〜0.03%
Tiは、0.005 %以上含有することによりNbと同様の効果を奏する元素であるが、Ti含有量が0.03%を超えると溶接割れが発生し易くなる。そこで、本発明では、Ti含有量は0.005 %以上0.03%以下と限定する。同様の観点から、Ti含有量の下限は0.01%、上限は0.02%であることが望ましい。
Ti: 0.005 to 0.03%
Ti is an element that exhibits the same effect as Nb when contained in an amount of 0.005% or more. However, if the Ti content exceeds 0.03%, weld cracking is likely to occur. Therefore, in the present invention, the Ti content is limited to 0.005% or more and 0.03% or less. From the same viewpoint, it is desirable that the lower limit of the Ti content is 0.01% and the upper limit is 0.02%.

本発明では、上述したNbおよびTiは、少なくとも一方が含有されていればよい。
Sol.Al:0.10%以下
Sol.Alは、Siと同様、脱酸に有効に寄与する。また、Alを添加することにより、組織が微細化及び均一化される為、疲労特性に対しても均一な特性を有する。0.10%を超えると鋼の清浄度が低下および組織の微細化が得られない、このため、sol.Alは0.10%を上限とする。好ましくは0.005〜0.08%である。
In the present invention, it is sufficient that at least one of the above-described Nb and Ti is contained.
Sol.Al: 0.10% or less
Sol.Al, like Si, contributes effectively to deoxidation. Moreover, since the structure is refined and uniformed by adding Al, it has uniform characteristics with respect to fatigue characteristics. If it exceeds 0.10%, the cleanliness of the steel is not lowered and the structure is not refined. For this reason, the upper limit of sol.Al is 0.10%. Preferably it is 0.005-0.08%.

N: 0.01%以下
Nは多量に存在する場合、母材、HAZ 部共に靱性を悪化させる。通常は、鋼にTiを添加してTiNの形で固定して無害化しているが、Nが0.01%を超えて鋼中に存在する場合は、HAZ 部において加熱時にTiNが鋼中に固溶して、HAZ 部の硬化を招き、靱性が劣悪化する。またNを添加することにより、鋼材の硬度を上げることが可能であり、硬度を上げることにより疲労特性は改善されるが、0.01%を超える場合は、著しい硬度上昇により、靱性が劣悪化する。このため、Nは0.01%を上限とする。好ましくは0.0005〜0.008%である。
N: 0.01% or less When N is present in a large amount, both the base material and the HAZ part deteriorate the toughness. Usually, Ti is added to steel and fixed in the form of TiN to make it harmless. However, when N is present in steel exceeding 0.01%, TiN is dissolved in steel during heating in the HAZ part. As a result, the HAZ portion is hardened and the toughness deteriorates. Further, by adding N, it is possible to increase the hardness of the steel material. By increasing the hardness, the fatigue characteristics are improved, but when it exceeds 0.01%, the toughness deteriorates due to a significant increase in hardness. For this reason, N sets 0.01% as an upper limit. Preferably it is 0.0005 to 0.008%.

また、本発明では、これらの元素以外に品質向上を図るために、Cu、Ni、V、Mo、BおよびWを任意添加元素として、CuおよびNiの1種または2種、あるいはVを単独で, もしくはMo、BおよびWの1種または2種以上、またはそれらを2種以上組み合わせて含有してもよい。   In the present invention, in addition to these elements, in order to improve the quality, Cu, Ni, V, Mo, B and W are arbitrarily added elements, and one or two of Cu and Ni, or V alone. , Or one or more of Mo, B and W, or a combination of two or more thereof.

そこで、これらの任意添加元素についても説明する。
Cu:0.05〜0.6 %
Cuは、鋼材が腐食環境下で使用される場合に、必要に応じ0.05%以上添加されることにより耐食性を向上することができる。しかしながら、Cu含有量が0.6 %を超えると、これらの効果が飽和するとともに鋼の強度が過剰に上昇し過ぎ、靱性が損なわれる。そこで、Cuを添加する場合には、その含有量は0.05%以上0.6%以下と限定することが望ましい。
同様の観点から、Cu含有量の下限は0.1 %、上限は0.5 %であることが、それぞれ望ましい。
Therefore, these optional additive elements will also be described.
Cu: 0.05-0.6%
When steel is used in a corrosive environment, Cu can improve corrosion resistance by adding 0.05% or more as necessary. However, if the Cu content exceeds 0.6%, these effects are saturated and the strength of the steel is excessively increased, and the toughness is impaired. Therefore, when Cu is added, its content is desirably limited to 0.05% or more and 0.6% or less.
From the same viewpoint, it is desirable that the lower limit of the Cu content is 0.1% and the upper limit is 0.5%.

Ni:0.05〜0.6 %
Niは、0.05%以上添加されることにより腐食環境下での耐食性向上の効果を示す。しかしながら、Ni含有量が0.6 %を超えると、これらの効果が飽和するとともに鋼の強度が過剰に上昇し過ぎ、靱性が損なわれる。そこで、Niを添加する場合には、その含有量は0.05%以上0.6 %以下と限定することが望ましい。同様の観点から、Ni含有量の下限は0.1 %、上限は0.5 %であることが、それぞれ望ましい。
Ni: 0.05-0.6%
Ni is added at 0.05% or more to show the effect of improving the corrosion resistance in a corrosive environment. However, if the Ni content exceeds 0.6%, these effects are saturated and the strength of the steel is excessively increased, and the toughness is impaired. Therefore, when Ni is added, its content is desirably limited to 0.05% or more and 0.6% or less. From the same viewpoint, it is desirable that the lower limit of Ni content is 0.1% and the upper limit is 0.5%.

V:0.005〜0.08%
Vは、0.005%以上添加されることにより組織を細粒化して鋼材の疲労強度の上昇に寄
与する。しかしながら、V含有量が0.08%を超えると効果が飽和するとともに強度が過剰に上昇し過ぎ、靱性が損なわれる。そこで、Vを添加する場合には、その含有量は0.005
%以上0.08%以下と限定することが望ましい。同様の観点から、V含有量の下限は0.01%、上限は0.06%であることが、それぞれ望ましい。
V: 0.005-0.08%
When V is added in an amount of 0.005% or more, the structure is refined and contributes to an increase in the fatigue strength of the steel material. However, if the V content exceeds 0.08%, the effect is saturated and the strength is excessively increased, and the toughness is impaired. Therefore, when V is added, its content is 0.005.
It is desirable to limit it to not less than% and not more than 0.08%. From the same viewpoint, it is desirable that the lower limit of the V content is 0.01% and the upper limit is 0.06%.

Mo:0.01〜0.5 %
Moは、0.01%以上含有することにより、焼入れ性を上げ強度を高める成分である。しかしながら、Mo含有量が0.5 %を超えると、著しい強度上昇が見られるが、それに対し靱性が劣化する。そこで、本発明では、Mo含有量は0.01%以上0.5%以下と限定する。同様の
観点から、Mo含有量の下限は0.02%、上限は0.4 %であることが、それぞれ望ましい。
Mo: 0.01-0.5%
Mo is a component that increases hardenability and strength by containing 0.01% or more. However, when the Mo content exceeds 0.5%, a significant increase in strength is observed, but the toughness deteriorates. Therefore, in the present invention, the Mo content is limited to 0.01% to 0.5%. From the same viewpoint, it is desirable that the lower limit of the Mo content is 0.02% and the upper limit is 0.4%.

B:0.0003 〜0.0030%
Bは微量でもγ粒界の焼き入れ性を増し、母材強度を高めるためには有効な元素である。この効果を得るには0.0003%以上添加することが必要である、しかし0.0030 %を超え
ると熱影響部の硬化を招くため、上限を 0.0030%とした。
B: 0.0003 to 0.0030%
B is an effective element for increasing the hardenability of the γ grain boundary and increasing the strength of the base material even in a small amount. In order to obtain this effect, it is necessary to add 0.0003% or more. However, if it exceeds 0.0030%, the heat affected zone is hardened, so the upper limit was made 0.0030%.

W:0.05〜0.50%
Wは母材強度を高め耐食性を向上させるためには有効な元素である。この効果を得るには0.05%以上添加することが必要である。しかし0.50%を超えると靭性の劣化をきたす。
W: 0.05-0.50%
W is an effective element for increasing the strength of the base material and improving the corrosion resistance. In order to obtain this effect, it is necessary to add 0.05% or more. However, if it exceeds 0.50%, the toughness deteriorates.

焼入性指数Dl:12以上
焼入性指数Dlは、本発明者らが焼入れ性を表示するために規定した特性値である。すなわち、焼入性指数Dlは、太さが異なる多種の試料 (丸棒) を、同じ条件で水焼入れしてその断面を検鏡することにより、試料の中心部の組織の50%がマルテンサイトになる限界の太さ (直径) を示している。焼入性指数Dlは、前述の(1) 式により規定される。
Hardenability index Dl: 12 or more The hardenability index Dl is a characteristic value defined by the present inventors for indicating the hardenability. That is, the hardenability index Dl is obtained by water quenching various samples (round bars) with different thicknesses and examining the cross section of the samples, so that 50% of the structure in the center of the sample is martensite. The limit thickness (diameter) is shown. The hardenability index Dl is defined by the above equation (1).

焼入性指数Dlが12以上、かつMn/Cが15以上であれば、切断における熱により形成される硬化組織がマルテンサイト化される。このため、繰り返し応力に伴う転位の発生が抑制されて高疲労寿命化され、疲労限度が向上する。一方、焼入性指数Dlが12未満であると、疲労限度が従来レベルとなる。そこで、本発明では、焼入性指数Dlを12以上と限定する。なお、焼入れ性指数D1を示す式における各元素記号は鋼組成における含有量(質量%)を表す。   When the hardenability index Dl is 12 or more and Mn / C is 15 or more, the hardened structure formed by heat in cutting is martensitic. For this reason, the occurrence of dislocation associated with repetitive stress is suppressed, the fatigue life is increased, and the fatigue limit is improved. On the other hand, if the hardenability index Dl is less than 12, the fatigue limit becomes the conventional level. Therefore, in the present invention, the hardenability index Dl is limited to 12 or more. In addition, each element symbol in the formula which shows the hardenability index | exponent D1 represents content (mass%) in steel composition.

なお、好ましい範囲は12.5以上である。
Mn/C比:15以上
DI値を一定以上確保することにより、飛躍的に疲労特性が改善されるものの、C量の増
加に伴うDI値増加には、切断部硬度の顕著な上昇により、切断後の曲げ加工性が劣ることが確認された。そこで本発明では、Mn/C比を15以上にすることにより、切断後の曲げ加
工性を損なわず、高疲労寿命化を達成しようとするものである。なお、「Mn」、「C」はそれぞれの元素の鋼組成における含有量(質量%)を表す。なお、好ましい範囲は16以上である。
A preferred range is 12.5 or more.
Mn / C ratio: 15 or more
Fatigue characteristics are dramatically improved by securing a DI value above a certain level, but the increase in the DI value associated with an increase in the amount of C results in poor bending workability after cutting due to a significant increase in the hardness of the cutting part. It was confirmed. Therefore, in the present invention, by increasing the Mn / C ratio to 15 or more, an attempt is made to achieve a high fatigue life without impairing the bending workability after cutting. “Mn” and “C” represent the content (mass%) of each element in the steel composition. A preferred range is 16 or more.

特許文献2においては所定の焼入性指数を確保したうえで切断時の残留オーステナイト粒径を規定することで疲労特性の改善を図っている。しかし、本発明においては、Mn/Cを15以上に規定することで、特許文献2で考慮されたことがない曲げ特性を確保するとともに、疲労強度の改善を図るのである。   In Patent Document 2, fatigue characteristics are improved by prescribing a retained austenite grain size at the time of cutting after securing a predetermined hardenability index. However, in the present invention, by defining Mn / C to be 15 or more, the bending characteristics that have not been considered in Patent Document 2 are secured and the fatigue strength is improved.

またMn/Cが大きくなると、鋼の組織の中でベイナイトの占める比率が高くなる。疲労強度を向上させるにはこのベイナイト分率を好ましくは30%以上とすればよいが、このためにもMn/Cで管理し、15以上とする。   Moreover, when Mn / C increases, the proportion of bainite in the steel structure increases. In order to improve the fatigue strength, the bainite fraction is preferably set to 30% or more. For this reason, it is also controlled by Mn / C and set to 15 or more.

ベイナイト分率が増加すると、疲労き裂進展の抑制に効果がある理由は以下の通りである。
ベイナイトは疲労き裂進展試験のような繰り返し変形を受けると加工軟化することが知られている。これは変態によって導入された転位が、繰り返し変形によって合体・消滅するためであり、これによって疲労き裂先端に蓄積する歪が緩和される。すなわち加工軟化特性によってき裂進展駆動力が低下することもベイナイトがき裂進展の抑制に有効であると考えられる。
The reason why an increase in the bainite fraction is effective in suppressing fatigue crack growth is as follows.
It is known that bainite softens when subjected to repeated deformation as in a fatigue crack growth test. This is because the dislocations introduced by the transformation coalesce and disappear due to repeated deformations, thereby relaxing the strain accumulated at the fatigue crack tip. In other words, it is considered that bainite is effective in suppressing crack growth because the crack growth driving force decreases due to work softening characteristics.

ここで、本発明にかかる鋼材の製造方法について説明すると次の通りである。
(鋼加熱)
本発明では、かかる鋼組成および焼入性指数Dlを有する鋼材を製造するには、慣用の溶製手段によりまた加工手段でもって、鋼片(スラブ)とし、これを例えば圧延加工によって鋼材とすればよい。鋼材が圧延鋼材の場合、圧延に先立って、その鋼片を1200℃以下の温度域に加熱する。鋼片を1200℃を超える高温に加熱すると、鋼のオーステナイト粒の粗大化が著しくなり、鋼の靱性を阻害する。そこで、圧延に先立つ鋼加熱温度は1200℃以下と限定する。
Here, it will be as follows if the manufacturing method of the steel materials concerning this invention is demonstrated.
(Steel heating)
In the present invention, in order to manufacture a steel material having such a steel composition and hardenability index Dl, a steel piece (slab) is formed by a conventional melting means or a processing means, and this is turned into a steel material by rolling, for example. That's fine. When the steel material is a rolled steel material, the steel slab is heated to a temperature range of 1200 ° C. or lower prior to rolling. When the steel slab is heated to a high temperature exceeding 1200 ° C., the austenite grains of the steel become very coarse, which impairs the toughness of the steel. Therefore, the steel heating temperature prior to rolling is limited to 1200 ° C. or less.

(圧延)
このようにして加熱した鋼に対し、圧延を行う。圧延は、Ar3 点以上の温度域で終了させる。鋼の靱性を向上させるには未再結晶域での熱間圧延が好ましく、未再結晶域以外の圧延では、鋼の組織が粗大化して靱性を劣化させるからである。
(rolling)
The steel thus heated is rolled. The rolling is finished in a temperature range of Ar 3 points or higher. This is because hot rolling in the non-recrystallized region is preferable for improving the toughness of the steel, and in rolling other than the non-recrystallized region, the steel structure becomes coarse and deteriorates the toughness.

なお、Ar3点は各種算出方法はあるが、本発明では以下の式で計算する。
Ar3=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo+0.35(t−8)
ここで、記号は各元素の鋼組成における含有量(質量%)、tは板厚(mm)である。
Although there are various calculation methods for the Ar 3 point, in the present invention, the calculation is performed using the following formula.
Ar 3 = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo + 0.35 (t-8)
Here, the symbol is the content (% by mass) of each element in the steel composition, and t is the plate thickness (mm).

この式は「鉄と鋼」第67年(1981)第1号、P143、大内ら、「熱間圧延後のフェライト変態開始温度に及ぼす圧延条件と化学成分の影響」を参照した。
(冷却)
このようにして圧延を終了した後に、650〜500℃の間の平均冷却速度を5〜50℃/sとする加速冷却を施し、このときの加速冷却は450℃以下で停止する。
This formula referred to "Iron and Steel" 67th (1981) No. 1, P143, Ouchi et al., "Effects of rolling conditions and chemical composition on ferrite transformation start temperature after hot rolling".
(cooling)
After rolling is completed in this manner, accelerated cooling is performed with an average cooling rate between 650-500 ° C. being 5-50 ° C./s, and the accelerated cooling at this time stops at 450 ° C. or less.

冷却停止温度を450℃以下とするとは、例えば鋼板内温度ムラを少なくするために、常温近くまで冷却することも含めるという意味である。
本発明の1態様では熱間圧延直後に加速冷却を行ってもよい。いわゆるTMCP型の製造方法である。
When the cooling stop temperature is set to 450 ° C. or lower, for example, in order to reduce the temperature unevenness in the steel sheet, it means to include cooling to near normal temperature.
In one aspect of the present invention, accelerated cooling may be performed immediately after hot rolling. This is a so-called TMCP type manufacturing method.

本発明の別の態様では、圧延直後に加速冷却はせず、一旦放冷後に、再度鋼板を加熱し、焼き入れを行ってもよい。このときの加熱温度はAc点以上が好ましい。Ac点を下回ると焼入れによる変態が生じない。 In another aspect of the present invention, accelerated cooling may not be performed immediately after rolling, and the steel sheet may be heated again after quenching and then quenched. The heating temperature at this time is preferably at least one Ac point. If it is less than 1 Ac, transformation by quenching does not occur.

また、焼戻し温度を450℃以下に限定する。450℃以下にて特性を満足する組織および機械的特性が得られるためであり、それを超えた温度にて焼戻しを実施すると特性が失われてしまうため、焼戻し温度は450℃以下が好ましい。   Further, the tempering temperature is limited to 450 ° C. or less. This is because a structure and mechanical properties satisfying the characteristics can be obtained at 450 ° C. or lower, and the properties are lost when tempering is performed at a temperature exceeding the above properties. Therefore, the tempering temperature is preferably 450 ° C. or lower.

本発明にかかる製造方法を鋼板を例にとり説明したが、線材、棒材、形材さらには管材等の鋼材についても同様な製造条件で製造可能であり、この点、本発明は特に制限されない。   Although the manufacturing method according to the present invention has been described using a steel plate as an example, steel materials such as wire rods, rods, shapes and pipes can be manufactured under similar manufacturing conditions, and the present invention is not particularly limited in this respect.

このようにして、本発明により、疲労特性に優れた鋼材およびその製造方法、より具体的には、プラズマやレーザー切断部または大入熱溶接部の疲労特性に優れることから、例えば船舶、海洋構造物、橋梁、建築物、タンク等のいわゆる鋼構造物の構成部材のうちで例えば船舶部材のロンジ材のように繰り返し応力が作用する部材に、切断まま、溶接ままでも好適に使用することができる鋼材およびその製造方法が提供される。このため、本発明によれば加工コストおよび加工時間をいずれも低減することができる。   Thus, according to the present invention, a steel material excellent in fatigue characteristics and a method for producing the same, and more specifically, excellent in fatigue characteristics of plasma or laser cutting parts or large heat input welds, for example, ships, marine structures Among structural members of so-called steel structures such as objects, bridges, buildings, tanks, etc., it can be suitably used as it is cut or welded to a member that repeatedly undergoes stress, such as a longi material of a ship member. A steel material and a method for manufacturing the same are provided. For this reason, according to this invention, both processing cost and processing time can be reduced.

次に、本発明を実施例を参照しながらその作用効果をより具体的に説明する。
(実施例1)
表1に示す鋼組成、焼入性指数DlおよびMn/Cを有する供試材a〜供試材jを用いて、表2に示す製造条件より、SM490A規格に準ずる強度と25mmの板厚の供試材をNo.1から10まで製造した。
Next, the effects of the present invention will be described more specifically with reference to examples.
Example 1
Using the test materials a to j having the steel composition, hardenability index Dl and Mn / C shown in Table 1, according to the manufacturing conditions shown in Table 2, the strength conforming to the SM490A standard and the thickness of 25 mm Test materials were manufactured from No. 1 to No. 10.

各供試材より図1に示す寸法(単位:mm)および形状の軸力疲労試験片を、表3に示す切断条件のプラズマ切断で切断した後、図2に示す軸力疲労試験機を用いて、軸力疲労試験を行った。   Axial force fatigue test pieces of the dimensions (unit: mm) and shape shown in FIG. 1 are cut from each test material by plasma cutting under the cutting conditions shown in Table 3, and then the axial force fatigue tester shown in FIG. 2 is used. An axial force fatigue test was conducted.

すなわち、図1に示す平面形状・寸法を有する軸力疲労試験片をプラズマ切断によって作製し、図2に示す20トン電気油圧式疲労試験機を用いて室温で繰り返し周波数5Hz、応力比0.1、応力振幅284〜421N/mm2の軸力片振り引張り荷重制御方式により、疲労試験を行った。なお、図2における符号1は軸力疲労試験片であり、符号2は荷重を検出するロードセルであり、符号3は軸力疲労試験片1に荷重を与える油圧シリンダであり、符号4は波形発生器であり、符号5は負荷制御器であり、符号6はサーボバルブであり、さらに符号7は油圧源である。 That is, an axial force fatigue test piece having the planar shape and dimensions shown in FIG. 1 is produced by plasma cutting, and a 20-ton electrohydraulic fatigue tester shown in FIG. the axial force pulsating tensile load control method of the amplitude 284~421N / mm 2, were subjected to fatigue tests. 2, reference numeral 1 is an axial force fatigue test piece, reference numeral 2 is a load cell for detecting a load, reference numeral 3 is a hydraulic cylinder for applying a load to the axial fatigue test piece 1, and reference numeral 4 is a waveform generation. Reference numeral 5 denotes a load controller, reference numeral 6 denotes a servo valve, and reference numeral 7 denotes a hydraulic pressure source.

そして、この軸力疲労試験において、破断繰り返し数が107回となる応力振幅を疲労限度Δσwとして測定した。測定結果を表2に併せて示す。
また、図3に示す試験片側面部にプラズマ切断面を有した試験片30を使って曲げ試験(曲げ半径1.0t;ここでtは板厚)を実施し、曲げ加工性の優位性を確認した。結果は同じく表2に示す。なお、図中の側面部32がプラズマ切断面である。
In this axial force fatigue test, the stress amplitude at which the number of repetitions of fracture was 107 was measured as the fatigue limit Δσw. The measurement results are also shown in Table 2.
Further, a bending test (bending radius: 1.0 t; where t is a plate thickness) was performed using a test piece 30 having a plasma cut surface on the side surface portion of the test piece shown in FIG. 3, and the superiority of bending workability was confirmed. . The results are also shown in Table 2. In addition, the side part 32 in a figure is a plasma cut surface.

表2におけるNo.1〜8は、いずれも、本発明の範囲を満足する本発明例であり、疲労限度Δσw が 457〜418(N/mm2)と、高い値を示し且つ曲げ試験においても割れの発生は無く良好な結果を示す。 Nos. 1 to 8 in Table 2 are examples of the present invention that satisfy the scope of the present invention, and the fatigue limit Δσw is a high value of 457 to 418 (N / mm 2 ). Good results are obtained with no cracking.

これに対し、No.9は、Mn/Cが本発明の範囲の下限を下回っているため、疲労強度Δσw が 321 (N/mm2) と劣化且つ曲げ試験においても割れが発生している。
No.9は、Mn/Cおよび焼入性指数DIが本発明の範囲の下限を下回っているため、疲労強度Δσw が 297(N/mm2) と劣化且つ曲げ試験においても割れが発生している。
On the other hand, in No. 9, since Mn / C is below the lower limit of the range of the present invention, the fatigue strength Δσw is 321 (N / mm 2 ), and cracking occurs in the bending test.
In No. 9, since Mn / C and the hardenability index DI are below the lower limit of the range of the present invention, the fatigue strength Δσw is 297 (N / mm 2 ), and cracking occurs in the bending test. Yes.

No.11は、Mn/Cが本発明の範囲の下限を下回っているため、疲労強度Δσw が 324 (N/mm2) と劣化且つ曲げ試験においても割れが発生している。
No.12は、Mn/Cが本発明の範囲の下限を下回っているため、疲労強度Δσw が 319 (N/mm2) と劣化且つ曲げ試験においても割れが発生している。
In No. 11, since Mn / C is below the lower limit of the range of the present invention, the fatigue strength Δσw is 324 (N / mm 2 ), and cracks are also generated in the bending test.
In No. 12, since Mn / C is below the lower limit of the range of the present invention, the fatigue strength Δσw is 319 (N / mm 2 ), and the crack is generated in the bending test.

(実施例2)
表4に示す鋼組成、焼入性指数DIおよびMn/Cを有する供試材K〜供試材Oを用いて、表5に示す製造条件より、SM490A規格に準ずる強度と25mmの板厚の供試材をNo.13からNo.17まで製造した。各供試材より表6に示す溶接条件にて溶接継手を作成した。
(Example 2)
Based on the manufacturing conditions shown in Table 5, using the steel composition, hardenability index DI and Mn / C shown in Table 4, the strength according to the SM490A standard and the plate thickness of 25 mm Sample materials were manufactured from No.13 to No.17. A welded joint was prepared from each specimen under the welding conditions shown in Table 6.

図4に示す寸法(単位:mm)、形状の試験片形状に加工後、図2に示す軸力疲労試験機を用いて、溶接継ぎ手部の軸力疲労試験を行った。図4(a) は試験片の側面図、図4(b) は平面図である。図中、黒塗り部分が溶接部を示す。   After processing into a test piece shape having the dimensions (unit: mm) and shape shown in FIG. 4, an axial force fatigue test of the welded joint portion was performed using an axial force fatigue tester shown in FIG. 4A is a side view of the test piece, and FIG. 4B is a plan view. In the figure, the blackened portion indicates the welded portion.

この軸力疲労試験において、破断繰り返し数Nfが 107回となる応力振幅を疲労限度Δσw としてを測定した。測定結果を表5に併せて示す。
表5におけるNo.13〜15は、いずれも、本発明の範囲を満足する本発明例であり、溶接
継手部の疲労限度Δσw が 421〜408(N/mm2)と、高い値を示し且つ曲げ試験においても割れの発生はなく良好な結果を示す。
In this axial force fatigue test, the stress amplitude at which the number of repeated fractures Nf was 107 was measured as the fatigue limit Δσw. The measurement results are also shown in Table 5.
Nos. 13 to 15 in Table 5 are all examples of the present invention satisfying the scope of the present invention, and the fatigue limit Δσw of the welded joint portion is 421 to 408 (N / mm 2 ), indicating a high value and Even in the bending test, no cracks are generated and good results are shown.

これに対し、表5におけるNo.16 は、Mn/Cが本発明の範囲の下限を下回り焼入れ性が不足しているため、溶接継手部の疲労限度Δσw が 296(N/mm2) と劣化且つ曲げ試験においても割れが発生している。 On the other hand, in No. 16 in Table 5, since the Mn / C is below the lower limit of the range of the present invention and the hardenability is insufficient, the fatigue limit Δσw of the welded joint is 296 (N / mm 2 ) and deteriorated. In addition, cracks also occur in the bending test.

同じくNo.17は、Mn/Cが本発明の範囲の下限を下回っているため、疲労限度Δσw
が 264(N/mm2) と劣化且つ曲げ試験においても割れが発生している。
Similarly, in No. 17, since Mn / C is below the lower limit of the range of the present invention, the fatigue limit Δσw
However, it deteriorated to 264 (N / mm 2 ) and cracking occurred in the bending test.

Figure 0004325503
Figure 0004325503

Figure 0004325503
Figure 0004325503

Figure 0004325503
Figure 0004325503

Figure 0004325503
Figure 0004325503

Figure 0004325503
Figure 0004325503

Figure 0004325503
Figure 0004325503

軸力疲労試験片の形状を示す平面図である。It is a top view which shows the shape of an axial-force fatigue test piece. 軸力疲労試験機の模式的説明図である。It is a typical explanatory view of an axial force fatigue testing machine. 曲げ試験片の形状を示す平面図である。It is a top view which shows the shape of a bending test piece. 図4(a) は溶接継手疲労試験片の形状を示す側面図、図4(b) は同じく平面図である。FIG. 4 (a) is a side view showing the shape of a welded joint fatigue test piece, and FIG. 4 (b) is a plan view of the same.

Claims (8)

質量%で、C:0.01〜0.10 %; Si:0.01 〜0.6 %; Mn:0.4 〜2.0%; P:0.02%以下; S:0.01%以下; Cr:0.16〜0.6 %; Nb:0.005〜0.06%およびTi:0.005 〜0.03%の1種または2種; sol.Al:0.10%以下; N:0.01%以下; その他不可避的不純物および残部Feからなる鋼組成を有する鋼材であって、下記式により規定される焼入性指数Dlが12以上であって、Mn/Cが15以上であることを特徴とする疲労特性に優れたプラズマ切断用、レーザー切断用、または大入熱溶接用鋼材。
Mn:1.2%以下のとき
D1=0.311×√C×(1+0.7×Si)×(1+3.33×Mn)×(1+2.16×Cr)×(1+3×Mo)×25.4
Mn:1.2%超のとき
D1=0.311×√C×(1+0.7×Si)×(5+5.1×(Mn−1.2))×(1+2.16×Cr)×(1+3×Mo)×25.4
In mass%, C: 0.01 to 0.10%; Si: 0.01 to 0.6%; Mn: 0.4 to 2.0%; P: 0.02% or less; S: 0.01% or less; Cr: 0.16 to 0.6%; Nb: 0.005 to 0.06% and Ti: 0.005 1 kind or two kinds of ~0.03%; sol.Al:0.10% less; N: 0.01% or less; other a steel having a steel composition consisting of incidental impurities and the balance Fe, the following formula A steel material for plasma cutting, laser cutting, or high heat input welding with excellent fatigue characteristics, characterized by having a hardenability index Dl of 12 or more and Mn / C of 15 or more.
When Mn: 1.2% or less
D1 = 0.311 × √C × (1 + 0.7 × Si) × (1 + 3.33 × Mn) × (1 + 2.16 × Cr) × (1 + 3 × Mo) × 25.4
When Mn exceeds 1.2%
D1 = 0.311 × √C × (1 + 0.7 × Si) × (5 + 5.1 × (Mn−1.2)) × (1 + 2.16 × Cr) × (1 + 3 × Mo) × 25.4
前記鋼組成が、Feの一部に代えて、質量%で、Mo:0.01〜0.5%、B:0.0003〜0.0030%およびW:0.05〜0.50%の1種または2種以上を含有する請求項に記載の疲労特性に優れた鋼材。 The steel composition is in place of a part of Fe , in mass%, Mo: 0.01 to 0.5%, B: 0.0003 to 0.0030% and W: 0.05 to 0.50%. The steel material excellent in fatigue characteristics according to claim 1 , containing one or more kinds. 前記鋼組成が、Feの一部に代えて、質量%で、Cu:0.05〜0.6%およびNi:0.05〜0.6%の1種または2種を含有する請求項に記載の疲労特性に優れた鋼材。 The steel composition, instead of a part of Fe, by mass%, Cu: from 0.05 to 0.6% and Ni: containing from 0.05 to 0.6% of one or claim 2 Steel material with excellent fatigue characteristics as described in 1. 前記鋼組成が、Feの一部に代えて、質量%で、V:0.005〜0.08%を含有する請求項またはに記載の疲労特性に優れた鋼材。 The steel material with excellent fatigue characteristics according to claim 2 or 3 , wherein the steel composition contains V: 0.005 to 0.08% in mass% instead of a part of Fe . 請求項1ないし4のいずれかに記載の鋼組成を有する鋼片を、1200℃以下の温度域に加熱して圧延を行ない、Ar点以上の温度域で該圧延を終了した後、650〜500℃の間の平均冷却速度を5〜50℃/Sとする加速冷却を施し、該加速冷却を450℃以下で停止することを特徴とする疲労特性に優れたプラズマ切断用、レーザー切断用、または大入熱溶接用鋼材の製造方法。 The steel slab having the steel composition according to any one of claims 1 to 4 is heated to a temperature range of 1200 ° C or lower and rolled, and after the rolling is finished at a temperature range of Ar 3 or higher, 650 to For plasma cutting and laser cutting excellent in fatigue characteristics, characterized by performing accelerated cooling with an average cooling rate between 500 ° C. and 5 to 50 ° C./S, and stopping the accelerated cooling at 450 ° C. or less , Or the manufacturing method of the steel material for large heat input welding . 請求項1ないし4のいずれかに記載の化学組成を有する鋼片を1200℃以下の温度域に加熱して圧延を行ない、Ar点以上の温度域で該圧延を終了した後、Ac1点以上に再加熱した後650℃〜500℃の間の平均冷却速度を5℃/s以上とする冷却を行ない、該冷却を500℃以下で停止することを特徴とするプラズマ切断用、レーザー切断用、または大入熱溶接用鋼板の製造方法。 The steel slab having the chemical composition according to any one of claims 1 to 4 is heated to a temperature range of 1200 ° C or lower and rolled, and after the rolling is finished at a temperature range of Ar 3 points or higher, the Ac 1 point or higher is reached. After reheating to 650 ° C to 500 ° C, the average cooling rate is cooled to 5 ° C / s or more, and the cooling is stopped at 500 ° C or less, for plasma cutting, for laser cutting, Or the manufacturing method of the steel plate for high heat input welding . 前記冷却に続いて、さらに450℃以下に加熱して焼戻を行うことを特徴とする請求項5または6に記載のプラズマ切断用、レーザー切断用、または大入熱溶接用鋼板の製造方法。 The method for producing a steel sheet for plasma cutting, laser cutting, or high heat input welding according to claim 5 or 6, wherein the tempering is performed by further heating to 450 ° C or less following the cooling. 請求項1ないしのいずれかに記載の鋼材を用いた構造物。 A structure using the steel material according to any one of claims 1 to 4 .
JP2004233539A 2003-12-01 2004-08-10 Steel material with excellent fatigue characteristics and method for producing the same Expired - Fee Related JP4325503B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004233539A JP4325503B2 (en) 2003-12-01 2004-08-10 Steel material with excellent fatigue characteristics and method for producing the same
KR1020067010451A KR100774805B1 (en) 2003-12-01 2004-12-01 Steel product excellent in fatigue characteristics and method for production thereof
PCT/JP2004/017855 WO2005054533A1 (en) 2003-12-01 2004-12-01 Steel product excellent in fatigue characteristics and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003401780 2003-12-01
JP2004233539A JP4325503B2 (en) 2003-12-01 2004-08-10 Steel material with excellent fatigue characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005187934A JP2005187934A (en) 2005-07-14
JP4325503B2 true JP4325503B2 (en) 2009-09-02

Family

ID=34656187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004233539A Expired - Fee Related JP4325503B2 (en) 2003-12-01 2004-08-10 Steel material with excellent fatigue characteristics and method for producing the same

Country Status (3)

Country Link
JP (1) JP4325503B2 (en)
KR (1) KR100774805B1 (en)
WO (1) WO2005054533A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5629279B2 (en) * 2005-08-08 2014-11-19 株式会社神戸製鋼所 Welded joints and welded structures with excellent corrosion resistance
JP2007191781A (en) * 2005-12-19 2007-08-02 Kobe Steel Ltd Steel sheet having superior resistance to propagation of fatigue crack
JP4676871B2 (en) * 2005-12-19 2011-04-27 株式会社神戸製鋼所 Steel sheet with excellent fatigue crack growth control
JP4687531B2 (en) * 2006-03-27 2011-05-25 Jfeスチール株式会社 Steel for crude oil tank and method for producing the same
JP4072191B1 (en) * 2006-09-04 2008-04-09 新日本製鐵株式会社 Refractory steel material excellent in high temperature strength, toughness and reheat embrittlement resistance, and production method thereof
JP4741528B2 (en) * 2007-02-09 2011-08-03 新日本製鐵株式会社 Steel plates and steel pipes for steam transport piping having excellent high temperature characteristics and methods for producing them
CN100588734C (en) * 2007-11-27 2010-02-10 湖南华菱湘潭钢铁有限公司 High-strength shipbuilding section and production method thereof
JP5353256B2 (en) * 2008-01-21 2013-11-27 Jfeスチール株式会社 Hollow member and manufacturing method thereof
CN102121081B (en) * 2010-12-29 2012-07-18 中国海洋石油总公司 Method for manufacturing delivery steel pipe serving acid environment
KR101639845B1 (en) * 2013-12-24 2016-07-14 주식회사 포스코 High strength thick sheet with cutting crack resistance and method for manufacturing the same
JP6926409B2 (en) * 2016-07-29 2021-08-25 日本製鉄株式会社 Manufacturing method of high-strength steel plate and welded joint

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2768062B2 (en) * 1991-06-17 1998-06-25 株式会社神戸製鋼所 Manufacturing method of high strength tough steel
JPH1060575A (en) * 1996-08-22 1998-03-03 Sumitomo Metal Ind Ltd Thick steel plate excellent in fatigue crack arrest characteristic
JP2001107175A (en) * 1999-10-12 2001-04-17 Sumitomo Metal Ind Ltd Steel excellent in fatigue characteristic of plasma-cut part and its producing method
JP3705171B2 (en) * 2000-08-21 2005-10-12 住友金属工業株式会社 Laser welded steel structural member and steel material used for the steel structural member
JP5266608B2 (en) * 2001-08-21 2013-08-21 新日鐵住金株式会社 Steel sheet with excellent fatigue crack growth resistance

Also Published As

Publication number Publication date
JP2005187934A (en) 2005-07-14
KR100774805B1 (en) 2007-11-07
WO2005054533A1 (en) 2005-06-16
KR20060086445A (en) 2006-07-31

Similar Documents

Publication Publication Date Title
JP5223511B2 (en) Steel sheet for high strength sour line pipe, method for producing the same and steel pipe
JP4926406B2 (en) Steel sheet with excellent fatigue crack propagation characteristics
KR101321681B1 (en) Hollow member and method for manufacturing same
JP5092358B2 (en) Manufacturing method of high strength and tough steel sheet
EP2505681A1 (en) Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same
JP5509923B2 (en) Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding
JP5096088B2 (en) Welded joints with excellent toughness and fatigue cracking suppression properties
RU2677554C1 (en) Steel plates for construction pipes or tubes, steel plates for construction pipes or tubes manufacturing method, and construction pipes or tubes
JP4848966B2 (en) Thick-wall high-tensile steel plate and manufacturing method thereof
EP3276026A1 (en) Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe
JP5991175B2 (en) High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
JP2005336514A (en) Steel sheet having excellent fatigue crack propagation resistance and its production method
WO2015151468A1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
JP4325503B2 (en) Steel material with excellent fatigue characteristics and method for producing the same
JP4645461B2 (en) High-strength steel material excellent in ductile crack initiation characteristics and fatigue crack propagation characteristics and method for producing the same
JP5716419B2 (en) Steel plate with excellent fatigue resistance and method for producing the same
JP4923968B2 (en) Steel material with excellent fatigue crack propagation resistance
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP2007197776A (en) High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor
JP5360185B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance
JP4645462B2 (en) A high-strength steel material excellent in fatigue crack propagation characteristics with low strength dependence and a method for producing the same.
JP5874290B2 (en) Steel material for welded joints excellent in ductile crack growth characteristics and method for producing the same
CN115210396A (en) Steel pipe and steel plate
JP2007277697A (en) High tensile strength thick steel plate having excellent fatigue crack propagation resistance and brittle crack propagation arrest property and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4325503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees