JP4923968B2 - Steel material with excellent fatigue crack propagation resistance - Google Patents

Steel material with excellent fatigue crack propagation resistance Download PDF

Info

Publication number
JP4923968B2
JP4923968B2 JP2006308977A JP2006308977A JP4923968B2 JP 4923968 B2 JP4923968 B2 JP 4923968B2 JP 2006308977 A JP2006308977 A JP 2006308977A JP 2006308977 A JP2006308977 A JP 2006308977A JP 4923968 B2 JP4923968 B2 JP 4923968B2
Authority
JP
Japan
Prior art keywords
less
fatigue crack
crack propagation
phase
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006308977A
Other languages
Japanese (ja)
Other versions
JP2008121092A (en
Inventor
圭治 植田
章夫 大森
茂 遠藤
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006308977A priority Critical patent/JP4923968B2/en
Publication of JP2008121092A publication Critical patent/JP2008121092A/en
Application granted granted Critical
Publication of JP4923968B2 publication Critical patent/JP4923968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は,耐疲労亀裂伝播特性に優れた鋼材に関し、船体,海洋構造物,橋梁,建築構造物,建設機械,産業機械等の素材に供する厚鋼板に好適なものに関する。   The present invention relates to a steel material excellent in fatigue crack propagation resistance, and relates to a steel material suitable for a thick steel plate used for materials such as a hull, an offshore structure, a bridge, a building structure, a construction machine, and an industrial machine.

一般に,鋼構造物は,溶接施工により所望の構造に組み立てられる。鋼構造物が,使用環境下で繰返し応力を受ける場合には,溶接止端部などの大きな形状不連続部に応力が集中し,疲労亀裂の発生・進展を生じ,最終的には貫通・破断に至り大事故を引き起こす場合がある。   Generally, a steel structure is assembled into a desired structure by welding. When steel structures are subjected to repeated stresses in the usage environment, the stress concentrates on large shape discontinuities such as weld toes, causing fatigue cracks to develop and eventually penetrate and break. Can lead to major accidents.

溶接構造物の寿命は疲労の進行により決定される場合が多く,ライフサイクルコスト低減の観点から,疲労破壊の抑制が要望されている。また,船体,海洋構造物,橋梁等の溶接構造物の破壊は,人命が危険に晒されことから,安全上の観点からも疲労亀裂の発生・進展を抑制することが求められている。   In many cases, the life of a welded structure is determined by the progress of fatigue, and from the viewpoint of reducing the life cycle cost, suppression of fatigue fracture is desired. In addition, the destruction of welded structures such as hulls, offshore structures, bridges, etc., exposes human lives to danger, and from the viewpoint of safety, it is required to suppress the occurrence and progression of fatigue cracks.

従来から,疲労亀裂の発生を抑制するための手段として,溶接止端部の形状を不連続なく,滑らかな形状とし,応力集中を避けるための溶接施工法の工夫がなされているが、溶接施工に多大な時間を要し,施工能率の低下や製造コスト上昇が問題となる。   Conventionally, as a means to suppress the occurrence of fatigue cracks, the welding toe has a smooth shape with no discontinuities, and a welding method has been devised to avoid stress concentration. Therefore, it takes a lot of time, which causes problems such as reduced construction efficiency and increased manufacturing costs.

また,構造物の設計が複雑な場合には,施工の工夫だけでは応力集中が避けがたく,必ずしも,疲労亀裂の発生を抑制するために有効な対策が講じられないのが現状である。   In addition, when the design of a structure is complicated, stress concentration is unavoidable only by construction measures, and it is not always possible to take effective measures to suppress the occurrence of fatigue cracks.

このような問題に対し,鋼材に疲労亀裂が発生した場合,疲労亀裂の伝播速度を低減することにより,疲労亀裂の進展を抑制することが有効である。疲労亀裂伝播速度が遅ければ,疲労亀裂が発生しても,構造物の破壊を生じる前に,定期点検等で亀裂を発見し補修することができる。   For such problems, when fatigue cracks occur in steel, it is effective to suppress the growth of fatigue cracks by reducing the propagation speed of fatigue cracks. If the fatigue crack propagation speed is slow, even if a fatigue crack occurs, the crack can be found and repaired by periodic inspections before the structure breaks down.

また,鋼材の疲労亀裂伝播速度を遅くすることができれば,定期点検の頻度,すなわち補修の頻度を低減することができ,鋼材のライフサイクルコスト的にも有利になる.
このような要望に対して、特許文献1,特許文献2,特許文献3,特許文献4,特許文献5には,疲労亀裂伝播速度を低減するための鋼板と製造方法が提案されている。
If the fatigue crack propagation rate of steel can be slowed, the frequency of periodic inspections, that is, the frequency of repairs can be reduced, which is advantageous in terms of the life cycle cost of the steel.
In response to such a demand, Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and Patent Document 5 propose a steel plate and a manufacturing method for reducing the fatigue crack propagation rate.

特許文献1および特許文献2に記載された技術は,フェライト母相中にベイナイト,マルテンサイト等の硬質第2相を分散させる方法である。   The technique described in Patent Document 1 and Patent Document 2 is a method of dispersing a hard second phase such as bainite and martensite in a ferrite matrix.

特許文献3に記載された技術は,フェライトの結晶方位を制御することによって,板厚方向の亀裂伝播速度を低減する方法が示されているが,
特許文献4に記載された技術は,フェライト粒径を1〜3μmに微細化することによって疲労特性を向上する技術が示されている。
The technique described in Patent Document 3 shows a method for reducing the crack propagation speed in the plate thickness direction by controlling the crystal orientation of ferrite.
The technique described in Patent Document 4 shows a technique for improving fatigue characteristics by reducing the ferrite grain size to 1 to 3 μm.

この方法では,結晶粒を微細化することによって同時に靭性も向上することができるが,通常の熱間圧延温度よりも低温域のオーステナイト/フェライト2相域において50%以上という大きな累積圧下率の圧延を行う必要がある。   In this method, the toughness can be improved at the same time by refining the crystal grains, but rolling with a large rolling reduction of 50% or more in the austenite / ferrite two-phase region at a lower temperature than the normal hot rolling temperature. Need to do.

特許文献5には,SiまたはAlの含有量を高めることによって鋼中に残留オーステナイトを含有させて疲労亀裂伝播特性を向上させる技術が示されている。
特開平10−60575号公報 特開平11−310846号公報 特開平8−199286号公報 特開2002−363644号公報 特開2004−76156号公報
Patent Document 5 discloses a technique for improving fatigue crack propagation characteristics by increasing the content of Si or Al so that retained austenite is contained in the steel.
Japanese Patent Laid-Open No. 10-60575 JP-A-11-310846 JP-A-8-199286 JP 2002-363644 A JP 2004-76156 A

しかしながら,特許文献1および特許文献2に記載された技術は,疲労亀裂の伝播を十分に抑制できない場合があり,また,靭性の劣化を招くことが懸念される。   However, the techniques described in Patent Document 1 and Patent Document 2 may not be able to sufficiently suppress the propagation of fatigue cracks, and there is a concern that toughness may be deteriorated.

特許文献3に記載された技術は,板厚方向以外に進展する疲労亀裂伝播特性を向上することができない懸念がある。   There is a concern that the technique described in Patent Document 3 cannot improve the fatigue crack propagation characteristics that develop in directions other than the plate thickness direction.

特許文献4に記載された技術は、圧延機の負荷が大きくなることや,圧延機の占有時間が長くなり,圧延能率が低下することが懸念される。特許文献5に記載された技術は,SiやAlの含有量を高めるので,母材および溶接熱影響部の靭性が劣化することが懸念される。   The technique described in Patent Document 4 has a concern that the load on the rolling mill is increased, the occupation time of the rolling mill is increased, and the rolling efficiency is reduced. Since the technique described in Patent Document 5 increases the content of Si and Al, there is a concern that the toughness of the base material and the weld heat affected zone deteriorates.

そこで、本発明は上述した従来技術の問題を解決する、耐疲労亀裂伝播特性に優れた鋼板およびその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a steel plate having excellent fatigue crack propagation characteristics and a method for manufacturing the same, which solve the above-described problems of the prior art.

本発明者らは,上記した課題を達成するために,疲労亀裂伝播特性および機械的特性に及ぼす各種要因について鋭意研究し、以下の知見を得た。
(1) 耐疲労亀裂伝播特性の向上には、鋼板の構成組織を,軟質相として硬さの上限を規定したフェライト相と、硬質相として硬さの下限を規定した焼もどしマルテンサイト相とし、さらに混合組織の面積分率を制御することが重要である。
(2)この混合組織制御による耐疲労亀裂伝播特性を最大限に発揮するためには,厳格な成分調整が必須であり,フェライト相の硬さを上昇させることなく,オーステナイト域からの焼入れ時にはマルテンサイト生成を促進するCrの添加することが肝要である。
(3)更には,焼もどし軟化抵抗の高いMoあるいはVのうち少なくとも1種の添加と組み合わせると,なお良い結果が得られる。
(4)また,上記のように成分調整した鋼素材に熱間圧延を施した後,加熱温度および冷却速度を適正化した再加熱処理と,焼もどし処理を実施することにより,上記のミクロ組織要件を達成し,優れた疲労亀裂伝播特性と機械的特性を兼備することができる。
In order to achieve the above-described problems, the present inventors diligently studied various factors affecting fatigue crack propagation characteristics and mechanical characteristics, and obtained the following knowledge.
(1) To improve fatigue crack propagation resistance, the steel sheet is composed of a ferrite phase that defines the upper limit of hardness as the soft phase and a tempered martensite phase that defines the lower limit of hardness as the hard phase. Furthermore, it is important to control the area fraction of the mixed tissue.
(2) In order to maximize the fatigue crack propagation characteristics by this mixed structure control, strict component adjustment is indispensable, and it does not increase the hardness of the ferrite phase. It is important to add Cr that promotes site formation.
(3) Furthermore, when it is combined with the addition of at least one of Mo or V having a high tempering and softening resistance, even better results can be obtained.
(4) In addition, after subjecting the steel material whose components are adjusted as described above to hot rolling, the above microstructure is obtained by performing reheating treatment and tempering treatment with optimized heating temperature and cooling rate. It can achieve the requirements and combine excellent fatigue crack propagation properties and mechanical properties.

本発明は、上記知見に基づき、さらに検討を加えて完成されたもので、すなわち、本発明は、
1.鋼組成が,質量%で,
C:0.05〜0.30%,
Si:0.03〜0.35%,
Cr:0.05〜2.0%,
P:0.03%以下
S:0.003%以下
Al:0.1%以下
を含有し,残部がFeおよび不可避的不純物からなり、金属組織が,ビッカース硬さで8
5以上130以下のフェライト相と,面積分率が15〜85%のビッカース硬さで340
以上440以下の焼もどしマルテンサイト相の混合組織である耐疲労亀裂伝播特性に優れた鋼材。
2.鋼組成に,質量%でさらに,
Mo:0.05〜1.0%,
V:0.01〜0.3%
の1種または2種を含有する1に記載した耐疲労亀裂伝播特性に優れた鋼材。
3.鋼組成に加えて,質量%でさらに,
Mn:1.2%以下
Cu:0.8%以下
Ni:1.0%以下
Nb:0.1%以下
Ti:0.03%以下
B:0.005%以下
Ca:0.005%以下
REM:0.02%以下
Mg:0.005%以下
の1種または2種以上を含有する1または2に記載の耐疲労亀裂伝播特性に優れた鋼材。
The present invention has been completed based on the above findings and further studies, that is, the present invention,
1. Steel composition is mass%,
C: 0.05-0.30%,
Si: 0.03 to 0.35%,
Cr: 0.05 to 2.0%,
P: 0.03% or less S: 0.003% or less Al: 0.1% or less, with the balance being Fe and inevitable impurities, the metal structure being 8 Vickers hardness
340 with 5 to 130 ferrite phase and Vickers hardness of 15 to 85% area fraction
A steel material excellent in fatigue crack propagation resistance, which is a mixed structure of tempered martensite phase of 440 or less.
2. In addition to the steel composition,
Mo: 0.05-1.0%,
V: 0.01 to 0.3%
The steel material which was excellent in the fatigue crack propagation characteristics described in 1 containing 1 type or 2 types.
3. In addition to the steel composition,
Mn: 1.2% or less Cu: 0.8% or less Ni: 1.0% or less Nb: 0.1% or less Ti: 0.03% or less B: 0.005% or less Ca: 0.005% or less REM : 0.02% or less Mg: Steel material excellent in fatigue crack propagation characteristics according to 1 or 2 containing one or more of 0.005% or less.

本発明によれば,耐疲労亀裂伝播特性に優れた厚鋼板を安定して製造することができ,鋼構造物の信頼性向上,ライフサイクルコストの低減に大きく寄与し,産業上格段の効果を奏する。   According to the present invention, it is possible to stably produce a thick steel plate having excellent fatigue crack propagation resistance, greatly contributing to the improvement of the reliability of the steel structure and the reduction of the life cycle cost, and a remarkable industrial effect. Play.

本発明では金属組織、成分組成及び製造条件を規定する。以下、それらの限定理由について具体的に説明する.
[金属組織]
本発明では,硬質相の硬さ、分散量だけでなく,軟質相の硬さを規定する。優れた耐疲労亀裂伝播特性と機械的特性を安定して達成するため,金属組織における硬質相を面積分率が15〜85%でビッカース硬さHV340以上の焼きもどしマルテンサイト相とするとともに、さらに,軟質相のビッカース硬さをHV130以下に制限したフェライト相とした混合組織とする。
In the present invention, the metal structure, component composition and production conditions are defined. The reasons for these limitations will be explained in detail below.
[Metal structure]
In the present invention, not only the hardness and dispersion amount of the hard phase but also the hardness of the soft phase is specified. In order to stably achieve excellent fatigue crack propagation characteristics and mechanical properties, the hard phase in the metal structure is made into a tempered martensite phase with an area fraction of 15 to 85% and a Vickers hardness of HV340 or more, and The mixed structure is a ferrite phase in which the Vickers hardness of the soft phase is limited to HV130 or less.

フェライト相の硬さの低減は,疲労亀裂先端の歪領域拡大,および繰返し負荷歪時の加工硬化抑制により,疲労亀裂進展速度を低下させる。また,フェライト相を進展した主亀裂が焼もどしマルテンサイト相のごく近傍に到達したとき,主亀裂から微小亀裂を発生させ,主亀裂を屈曲、分岐させて疲労亀裂進展速度を低下させる。   Reducing the hardness of the ferrite phase decreases the fatigue crack growth rate by expanding the strain region at the tip of the fatigue crack and suppressing work hardening during repeated load strain. In addition, when the main crack that has propagated through the ferrite phase is tempered and reaches very close to the martensite phase, a microcrack is generated from the main crack, and the main crack is bent and branched to reduce the fatigue crack growth rate.

この効果を得るため,フェライト相のビッカース硬さHV85以上130以下の範囲に限定する。なお,好ましくは,HV95以上120以下とする。   In order to obtain this effect, the Vickers hardness of the ferrite phase is limited to the range of HV85 to 130. In addition, Preferably, it is set as HV95 or more and 120 or less.

また,焼もどしマルテンサイト相のビッカース硬さHVは340以上440以下に限定する。なお,好ましくは,HV350以上420以下とする。   Further, the Vickers hardness HV of the tempered martensite phase is limited to 340 or more and 440 or less. In addition, Preferably, it is set as HV350-420.

焼もどしマルテンサイト相の面積分率が15%未満、もしくは85%より多い場合には,上記のような,疲労亀裂伝播の遅延効果が得られないため,焼もどしマルテンサイト相の面積分率は15〜85%の範囲に限定する。なお,好ましくは,20〜80%である。   If the area fraction of the tempered martensite phase is less than 15% or more than 85%, the effect of delaying fatigue crack propagation as described above cannot be obtained, so the area fraction of the tempered martensite phase is It is limited to a range of 15 to 85%. In addition, Preferably, it is 20 to 80%.

なお,硬さの規定は,硬さ試験片のフェライト相および焼もどしマルテンサイト相について,微小ビッカース硬さ計を用いて,ビッカース硬さを求めて行う。荷重は0.49N(50gf)を用いるが,0.098N(10gf)〜0.98N(100gf)の範囲であれば,試験条件による誤差は無視できることから,いずれの条件を用いてもよい。   The hardness is specified by determining the Vickers hardness of the ferrite phase and tempered martensite phase of the hardness test piece using a micro Vickers hardness tester. The load is 0.49N (50 gf), but any error may be used because the error due to the test condition can be ignored as long as it is in the range of 0.098N (10 gf) to 0.98N (100 gf).

フェライト相,焼もどしマルテンサイト相それぞれについて,少なくとも10個の粒について硬さ測定を行い,その平均値を硬さとする。   For each of the ferrite phase and the tempered martensite phase, the hardness is measured for at least 10 grains, and the average value is taken as the hardness.

なお,フェライト相と焼もどしマルテンサイト相を除く第3相として,ベイナイトおよびパーライト等の組織が混在する場合には,耐疲労亀裂伝播特性が劣化するため,第3相の面積分率は少ない方が良い。   As the third phase excluding the ferrite phase and tempered martensite phase, when the structure such as bainite and pearlite coexists, the fatigue crack propagation characteristics deteriorate, so the area fraction of the third phase is smaller. Is good.

ただし,ベイナイトおよびパーライト等の組織が体積分率で5%以下の場合には影響が無視できる。また,硬質相が焼入れままのマルテンサイト相の場合は,母材の延性および靭性が劣化するため,焼もどし処理が必須である。   However, when the structure of bainite and pearlite is less than 5% in volume fraction, the influence can be ignored. In addition, when the hard phase is an as-quenched martensite phase, tempering is essential because the ductility and toughness of the base metal deteriorate.

次に,本発明で使用する鋼素材の組成限定理由について具体的に説明する。
[成分組成]
成分に関する「%」表示は特に断らない限り質量%を意味するものとする.
C:0.05〜0.30%
Cは,鋼の強度を増加させ,構造用鋼材として必要な強度を確保するのに有用な元素である。また,上記したビッカース硬さが340以上の焼もどしマルテンサイト相の第2相組織を得るためには,0.05%以上の含有を必要とする。
Next, the reason for limiting the composition of the steel material used in the present invention will be specifically described.
[Ingredient composition]
Unless otherwise specified, the “%” label for ingredients means mass%.
C: 0.05-0.30%
C is an element useful for increasing the strength of steel and ensuring the strength necessary for structural steel. Further, in order to obtain the second phase structure of the tempered martensite phase having a Vickers hardness of 340 or more, the content of 0.05% or more is required.

一方,0.30%を超える含有は,HAZ靭性,耐溶接割れ性を劣化させるとともに,母材の靭性を劣化させる。このため,Cは0.05〜0.30%の範囲に限定する。なお,好ましくは,0.08〜0.25%である。   On the other hand, if the content exceeds 0.30%, the HAZ toughness and weld crack resistance deteriorate, and the toughness of the base material deteriorates. For this reason, C is limited to a range of 0.05 to 0.30%. In addition, Preferably, it is 0.08 to 0.25%.

Si:0.03〜0.35%
Siは,脱酸材として作用し,また,セメンタイトの生成を抑制することにより,オーステナイト中へCを濃縮し,焼入れ時のマルテンサイト生成を促進する。さらに,焼もどし時には,マルテンサイト相の焼もどし軟化抵抗を高める作用がある。このためには,少なくとも0.03%必要である。
Si: 0.03-0.35%
Si acts as a deoxidizer and suppresses the formation of cementite, thereby concentrating C into austenite and promoting martensite formation during quenching. Furthermore, during tempering, it has the effect of increasing the temper softening resistance of the martensite phase. This requires at least 0.03%.

一方,0.35%を超えて含有すると,フェライト相の硬さを上昇させて,耐疲労亀裂伝播特性を低下させる。また,母材の靭性が劣化するとともに,溶接性,HAZ靭性が顕著に劣化する。このため,Siは0.03〜0.35%の範囲に限定する。なお,好ましくは,0.05〜0.25%である。   On the other hand, if the content exceeds 0.35%, the hardness of the ferrite phase is increased, and the fatigue crack propagation resistance is decreased. In addition, the toughness of the base material deteriorates, and the weldability and HAZ toughness deteriorate significantly. For this reason, Si is limited to the range of 0.03 to 0.35%. In addition, Preferably, it is 0.05 to 0.25%.

Cr:0.05〜2.0%
Crは本発明において重要な合金元素であり,多量に添加してもAr変態点に対する影響が小さく,またα-Feと同じ体心立方構造で原子半径がFeに近いため固溶強化能が極めて小さく、フェライト相の硬さを上昇させない。一方,オーステナイト域からの焼入れ時には,オーステナイトの焼入れ性を増大させ、第2相組織としてマルテンサイト相の生成を促進する。
Cr: 0.05-2.0%
Cr is an important alloying element in the present invention. Even if it is added in a large amount, the effect on the Ar 3 transformation point is small, and the same body-centered cubic structure as α-Fe has an atomic radius close to that of Fe. Very small and does not increase the hardness of the ferrite phase. On the other hand, at the time of quenching from the austenite region, the hardenability of austenite is increased and the formation of a martensite phase as a second phase structure is promoted.

さらに,焼もどし時には,マルテンサイト相の焼もどし軟化抵抗を高める作用があり,疲労亀裂伝播速度の低減に有効である。本発明では,この効果を得るために,0.05%以上の含有を必要とする。一方,2.0%を超えて含有すると,耐溶接割れ性およびHAZ靭性が著しく劣化する。このため,Crは0.05〜2.0%の範囲に限定する。なお,好ましくは,0.1〜1.5%である。   Furthermore, during tempering, it has the effect of increasing the temper softening resistance of the martensite phase and is effective in reducing the fatigue crack propagation rate. In this invention, in order to acquire this effect, 0.05% or more of containing is required. On the other hand, if the content exceeds 2.0%, the weld crack resistance and the HAZ toughness deteriorate significantly. For this reason, Cr is limited to a range of 0.05 to 2.0%. In addition, Preferably, it is 0.1 to 1.5%.

P:0.03%以下
Pは,鋼の強度を増加させ靭性を劣化させる元素であり,とくに溶接部の靭性を劣化させるので,できるだけ低減することが望ましい。Pが0.03%を超えて含有されると,この傾向が顕著となるため,上限とする。なお,過度のP低減は精錬コストを高騰させ経済的に不利となるため,0.003%以上とすることが望ましい。
P: 0.03% or less P is an element that increases the strength of steel and deteriorates toughness, and particularly deteriorates the toughness of welds. Therefore, it is desirable to reduce it as much as possible. If P is contained in excess of 0.03%, this tendency becomes remarkable, so the upper limit is set. In addition, excessive P reduction raises the refining cost and is economically disadvantageous, so 0.003% or more is desirable.

S:0.0050%以下
Sは母材および溶接部の靭性を劣化させる元素であり,できるだけ低減することが望ましい。Sが0.0050%を超えて含有されると,この傾向が顕著となるため,上限とする。
S: 0.0050% or less S is an element that deteriorates the toughness of the base metal and the welded portion, and is desirably reduced as much as possible. If S is contained in excess of 0.0050%, this tendency becomes remarkable, so the upper limit is set.

Al:0.1%以下
Alは,脱酸剤として作用し,高張力鋼の溶鋼脱酸プロセスに於いて,もっとも汎用的に使われる。また,鋼中のNをAlNとして固定し,母材の靭性向上に寄与する.一方,0.1%を超える含有は,母材の靭性が低下するとともに,溶接時に溶接金属部に混入して,靭性を劣化させる.このため,Alは0.1%以下に限定した.なお、好ましくは0.01〜0.07%である。
Al: 0.1% or less Al acts as a deoxidizer and is most commonly used in the molten steel deoxidation process of high-strength steel. Also, N in the steel is fixed as AlN, which contributes to improvement of the toughness of the base metal. On the other hand, if the content exceeds 0.1%, the toughness of the base metal decreases, and it is mixed into the weld metal during welding to deteriorate the toughness. For this reason, Al was limited to 0.1% or less. In addition, Preferably it is 0.01 to 0.07%.

本発明では,上記した基本成分系に加えて,必要に応じ,Mo:0.05〜1.0%,V:0.01〜0.3%、Mn:1.2%以下、Cu:0.8%以下,Ni:1.0%以下, Nb:0.1%以下,Ti:0.03%以下,B:0.005%以下,Ca:0.005%以下,REM:0.02%以下およびMg:0.005%以下のうちから選ばれた1種または2種以上を含有することができる。     In the present invention, in addition to the basic component system described above, Mo: 0.05 to 1.0%, V: 0.01 to 0.3%, Mn: 1.2% or less, Cu: 0 if necessary. 0.8% or less, Ni: 1.0% or less, Nb: 0.1% or less, Ti: 0.03% or less, B: 0.005% or less, Ca: 0.005% or less, REM: 0.02 % Or less and Mg: One or more selected from 0.005% or less can be contained.

Mo:0.05〜1.0%
Moは焼入れ時に,オーステナイトの焼入れ性を増大させ、第2相組織としてマルテンサイト相の生成を促進するとともに、焼きもどし時には炭化物を生成することにより、マルテンサイト相の焼きもどし軟化を顕著に抑制し、疲労亀裂伝播速度の低減に有効である。この効果を発揮するためには0.05%以上の添加が必要である。一方、1.0%を超えて添加すると、靭性に悪影響を及ぼす。このため、Moは0.05〜1.0%の範囲に限定する。
Mo: 0.05-1.0%
Mo enhances the hardenability of austenite during quenching, promotes the formation of martensite phase as a second phase structure, and significantly reduces temper softening of the martensite phase by generating carbides during tempering. It is effective in reducing the fatigue crack propagation rate. In order to exhibit this effect, addition of 0.05% or more is necessary. On the other hand, if added over 1.0%, the toughness is adversely affected. For this reason, Mo is limited to the range of 0.05 to 1.0%.

V:0.01〜0.3%
Vは焼入れ時に,オーステナイトの焼入れ性を増大させ、第2相組織としてマルテンサイト相の生成を促進するとともに、焼きもどし時には炭化物を生成することにより、マルテンサイト相の焼きもどし軟化を顕著に抑制し、疲労亀裂伝播速度の低減に有効である。
V: 0.01 to 0.3%
V increases the hardenability of austenite during quenching, promotes the formation of martensite phase as a second phase structure, and significantly reduces temper softening of the martensite phase by generating carbides during tempering. It is effective in reducing the fatigue crack propagation rate.

この効果を得るためには0.01%以上の添加が必要である。一方、0.3%を超えて添加すると、靭性に悪影響を及ぼす。このため、Vは0.01〜0.3%の範囲に限定する。   In order to obtain this effect, addition of 0.01% or more is necessary. On the other hand, if added over 0.3%, the toughness is adversely affected. For this reason, V is limited to the range of 0.01 to 0.3%.

Mn:1.2%以下
Mnは,鋼の強度を増加させる効果を有している。一方,1.2%を超えて含有すると,フェライト相の硬さが上昇し、疲労亀裂伝播の遅延効果が劣化する.このため,Mnは1.2%以下に限定する。
Mn: 1.2% or less Mn has the effect of increasing the strength of steel. On the other hand, if the content exceeds 1.2%, the ferrite phase hardness increases and the fatigue crack propagation delay effect deteriorates. For this reason, Mn is limited to 1.2% or less.

Cu:0.8%以下
Cuは,高靭性を保ちつつ強度を増加させることが可能な元素であり,HAZ靭性への影響も小さく,高強度化のために有用で,必要に応じ選択して含有できる。
Cu: 0.8% or less Cu is an element that can increase strength while maintaining high toughness, has little influence on HAZ toughness, is useful for increasing strength, and can be selected as necessary. Can be contained.

一方、含有量が0.8%を超えると熱間脆性を生じて鋼板の表面性状を劣化させるとともに、フェライト相の硬さが上昇し、疲労亀裂伝播の遅延効果が劣化する。このため、Cuは0.8%以下に限定する。   On the other hand, when the content exceeds 0.8%, hot brittleness is caused to deteriorate the surface properties of the steel sheet, the hardness of the ferrite phase is increased, and the fatigue crack propagation delay effect is deteriorated. For this reason, Cu is limited to 0.8% or less.

Ni:1.0%以下
Niは,高靭性を保ちつつ強度を増加させることが可能な元素であり,HAZ靭性への影響も小さく,高強度化のために有用で,必要に応じ選択して含有できる。しかし、1.0%を超えて含有しても,効果が飽和し,含有量に見合う効果が期待できなくなり,経済的に不利になるとともに、フェライト相の硬さが上昇し、疲労亀裂伝播の遅延効果が劣化する。このため,Niは1.0%以下に限定する。
Ni: 1.0% or less Ni is an element that can increase strength while maintaining high toughness, has little effect on HAZ toughness, is useful for increasing strength, and can be selected as necessary. Can be contained. However, even if the content exceeds 1.0%, the effect is saturated, the effect commensurate with the content cannot be expected, and it becomes economically disadvantageous, the hardness of the ferrite phase increases, and fatigue crack propagation Delay effect deteriorates. For this reason, Ni is limited to 1.0% or less.

Nb:0.1%以下
Nbは,強度向上に寄与する元素であるが,0.1%を超える含有は,母材靭性およびHAZ靭性を劣化させる。このため,Nbは0.1%以下に限定する。
Nb: 0.1% or less Nb is an element that contributes to strength improvement, but inclusion exceeding 0.1% degrades the base metal toughness and the HAZ toughness. For this reason, Nb is limited to 0.1% or less.

Ti:0.03%以下
Tiは,強度向上に寄与し,また,Nとの親和力が強く凝固時にTiNとして析出し,HAZでのオーステナイト粒の粗大化抑制してHAZの高靭化に寄与する。一方,0.03%を超えて含有すると,母材靭性を劣化させる。このため,Tiは0.03%以下に限定することが望ましい。
Ti: 0.03% or less Ti contributes to strength improvement, and also has a strong affinity with N, precipitates as TiN during solidification, and suppresses coarsening of austenite grains in HAZ, thereby contributing to toughening of HAZ. . On the other hand, if it exceeds 0.03%, the toughness of the base metal is deteriorated. For this reason, it is desirable to limit Ti to 0.03% or less.

B:0.0050%以下
Bは,焼入れ性の向上を介して,鋼の強度を増加させる作用を有する.一方,0.0050%を超える含有は焼入れ性を著しく増加させ,母材の靭性,延性の劣化をもたらす.このため,Bは0.0050%以下に限定する。
B: 0.0050% or less B has an effect of increasing the strength of steel through improving hardenability. On the other hand, if the content exceeds 0.0050%, the hardenability is remarkably increased and the toughness and ductility of the base metal are deteriorated. For this reason, B is limited to 0.0050% or less.

Ca:0.005%以下
Caは,結晶粒の微細化を介して靭性を向上させる有用な元素であるが、0.005%を超えて含有しても効果が飽和するため,0.005%を上限とする。
Ca: 0.005% or less Ca is a useful element that improves toughness through refinement of crystal grains, but the effect is saturated even if contained over 0.005%, so 0.005% Is the upper limit.

REM:0,02%以下
REMは,靭性向上に寄与する元素であるが、0.02%を超えて含有しても効果が飽和するため,0.02%を上限とする。
REM: 0.02% or less REM is an element that contributes to improvement of toughness, but even if contained over 0.02%, the effect is saturated, so 0.02% is made the upper limit.

Mg
Mgは,結晶粒の微細化を介して靭性を向上させる有用な元素であるが、0.005%を超えて含有しても効果が飽和するため,0.005%を上限とする。
Mg
Mg is a useful element that improves toughness through refinement of crystal grains, but even if contained over 0.005%, the effect is saturated, so 0.005% is made the upper limit.

なお,上記した成分以外の残部は,Feおよび不可避的不純物である。次に,本発明における厚鋼板の製造方法について説明する。
[製造条件]
説明において、温度に関する「℃」表示は特に断らない限り板厚1/2t部の温度を意味するものとする。
再加熱温度
本発明で使用する鋼素材は,上記した組成の溶鋼を,転炉,電気炉,真空溶解炉等,通常公知の方法で溶製し,これらの鋼素材を1000℃〜1300℃に再加熱する。
The balance other than the components described above is Fe and inevitable impurities. Next, the manufacturing method of the thick steel plate in this invention is demonstrated.
[Production conditions]
In the description, “° C.” related to the temperature means a temperature of 1/2 t part thickness unless otherwise specified.
Reheating temperature The steel material used in the present invention is prepared by melting molten steel having the above composition by a generally known method such as a converter, an electric furnace, a vacuum melting furnace or the like, and bringing these steel materials to 1000 ° C to 1300 ° C. Reheat.

再加熱温度が1000℃未満では,熱間圧延での変形抵抗が高くなり,1パス当たりの圧下量が大きく取れなくなることから,圧延パス数が増加し,圧延能率の低下を招くとともに,鋼素材(スラブ)中の鋳造欠陥を圧着することができない場合がある。   If the reheating temperature is less than 1000 ° C, the deformation resistance in hot rolling becomes high and the amount of rolling reduction per pass cannot be made large. Therefore, the number of rolling passes increases and the rolling efficiency decreases, and the steel material The casting defect in (slab) may not be crimped.

一方,再加熱温度が1300℃を超えると,加熱時のスケールによって表面疵が生じやすく,圧延後の手入れ負荷が増大する。このため,鋼素材の再加熱温度は1000〜1300℃の範囲とするのが好ましい。
熱間圧延条件
再加熱された鋼素材は,圧延終了温度をAr3変態点以上となる熱間圧延を施す。熱間圧延条件は,圧延終了温度をAr3変態点以上とする以外には,所定の板厚および形状を満足できればよく,その他の条件はとくに規定しない。
On the other hand, when the reheating temperature exceeds 1300 ° C., surface flaws are likely to occur due to the scale during heating, and the maintenance load after rolling increases. For this reason, it is preferable to make the reheating temperature of a steel raw material into the range of 1000-1300 degreeC.
Hot Rolling Conditions The reheated steel material is hot rolled so that the rolling end temperature is equal to or higher than the Ar3 transformation point. The hot rolling conditions are not particularly limited as long as a predetermined plate thickness and shape can be satisfied except that the rolling end temperature is not less than the Ar3 transformation point.

なお,板厚が80mmを超える極厚鋼板の場合には,ザク圧着のために1パスあたりの圧下率が15%以上となる圧延パスを少なくとも1パス以上確保することが望ましい。圧延終了温度がAr3変態点未満では,変形抵抗が高くなりすぎて,圧延荷重が増大し,圧延機への負担が大きくなる。   In the case of an extremely thick steel plate having a plate thickness of more than 80 mm, it is desirable to secure at least one rolling pass with a reduction rate of 15% or more per pass for zaku pressure bonding. If the rolling end temperature is less than the Ar3 transformation point, the deformation resistance becomes too high, the rolling load increases, and the burden on the rolling mill increases.

また,厚肉材をAr3変態点未満まで圧延温度を低下させるためには,圧延途中で待機する必要があり,生産性を大きく阻害する.このため,圧延終了温度をAr3変態点以上とした。熱間圧延後の冷却は、空冷でも加速冷却でもよい。   In addition, in order to reduce the rolling temperature of thick materials to below the Ar3 transformation point, it is necessary to wait in the middle of rolling, which greatly hinders productivity. For this reason, the rolling end temperature is set to the Ar3 transformation point or higher. The cooling after hot rolling may be air cooling or accelerated cooling.

なお,Ar3点は化学組成との相関が概ね次(1)式で整理できる.
Ar3=868−396C+25Si−68Mn−21Cu−36Ni−25Cr−30Mo (1)
(ただし,C,Si,Mn,Cu,Ni,Cr,Mo:各合金元素の含有量(mass%))
熱処理
熱間圧延し、冷却後、本発明の重要なプロセスである,熱処理を行う。熱処理は、Ac1変態点+10℃〜Ac3変態点−10℃の2相域温度範囲に再加熱保持後,5℃/s以上の平均冷却速度で焼入れる。
The correlation with the chemical composition of the Ar3 point can be roughly organized by the following equation (1).
Ar3 = 868-396C + 25Si-68Mn-21Cu-36Ni-25Cr-30Mo (1)
(However, C, Si, Mn, Cu, Ni, Cr, Mo: Content of each alloy element (mass%))
Heat treatment After hot rolling and cooling, heat treatment, which is an important process of the present invention, is performed. In the heat treatment, after reheating and holding in a two-phase temperature range of Ac1 transformation point + 10 ° C. to Ac3 transformation point−10 ° C., quenching is performed at an average cooling rate of 5 ° C./s or more.

保持時間について規定していないが,この温度域での保持は,鋼板内の温度均一化を図り,特性ばらつきを抑えるためであり,5min.以上が好ましい。   Although the holding time is not specified, the holding in this temperature range is intended to equalize the temperature in the steel sheet and to suppress the characteristic variation, and for 5 min. The above is preferable.

また,保持時間が1hr以上になるとオーステナイト粒の粗大化により,母材の靭性が劣化するので,1hr以内が望ましい。また,平均冷却速度が5℃/s以下になると,鋼板の焼入れ性の低減により,硬質相としてパーライトあるいはベイナイト相が生成し、目標のマルテンサイト組織を達成できない。   Further, if the holding time is 1 hr or longer, the toughness of the base material deteriorates due to the coarsening of austenite grains, so that it is preferably within 1 hr. On the other hand, when the average cooling rate is 5 ° C./s or less, the hardenability of the steel sheet is reduced, so that a pearlite or bainite phase is generated as a hard phase, and the target martensite structure cannot be achieved.

平均冷却速度の上限については特に規定しないが,条切り歪を低減するという観点からは80℃/s以下とすることが望ましい。   The upper limit of the average cooling rate is not particularly specified, but is preferably 80 ° C./s or less from the viewpoint of reducing the cut strain.

また,この熱処理で温度範囲をAc1変態点+10℃〜Ac3変態点−10℃と規定する理由は,Cのオーステナイト地への濃化と,フェライト地の希釈軟化を効率的に促進することにより,焼入れ後の組織が,硬質のマルテンサイトと軟質のフェライトの混合組織となり,耐疲労亀裂伝播特性に有効に作用するためである。   In addition, the reason why the temperature range of this heat treatment is defined as Ac1 transformation point + 10 ° C. to Ac3 transformation point−10 ° C. is by efficiently promoting the concentration of C to austenite and the dilution softening of ferrite. This is because the structure after quenching becomes a mixed structure of hard martensite and soft ferrite, which effectively acts on fatigue crack propagation resistance.

Ac1変態点+10℃以下の温度で保持をすると,オーステナイト相の分率が低いため,焼入れ後の組織中のマルテンサイト分率が少なく、また,Ac3変態点−30℃以上の温度で保持をすると,フェライト相の分率が低下するだけでなく,オーステナイト相へのC等,合金元素の濃化が促進せず,焼入れ後のマルテンサイト組織の硬さが低下し,耐疲労亀裂伝播特性が劣化する。このため,2相域加熱の温度範囲は,Ac1変態点+10℃〜Ac3変態点−10℃と限定する。   If held at a temperature of Ac1 transformation point + 10 ° C or lower, the austenite phase fraction is low, so the martensite fraction in the structure after quenching is small, and if held at a temperature of Ac3 transformation point -30 ° C or higher Not only does the ferrite phase fraction decrease, it does not promote the concentration of alloy elements such as C in the austenite phase, the hardness of the martensite structure after quenching decreases, and fatigue crack propagation resistance deteriorates. To do. For this reason, the temperature range of two-phase region heating is limited to Ac1 transformation point + 10 ° C. to Ac3 transformation point−10 ° C.

なお,Ac1点およびAc3点は化学組成との相関が概ね次(2)および(3)式で整理できる.
Ac1=723−14Mn+22Si−14.4Ni+23.3Cr (2)
Ac3=854−180C+44Si−14Mn−17.8Ni−1.7Cr (3)
(ただし,C,Si,Mn, Ni,Cr:各合金元素の含有量(mass%))
本発明では,鋼板を2相域加熱、焼入れ後,更に、焼もどし処理を施す。再加熱温度400℃以上Ac1点以下の焼もどし処理により,母材の靭性および延性を向上させる。このような効果を得るためには,焼もどし温度を400℃以上とする必要があるが,Ac1点を超えると焼もどしマルテンサイト相の硬さが低下し、疲労亀裂伝播の遅延効果が劣化する。
Incidentally, the points Ac1 and Ac3 can be roughly correlated with the chemical composition by the following equations (2) and (3).
Ac1 = 723-14Mn + 22Si-14.4Ni + 23.3Cr (2)
Ac3 = 854-180C + 44Si-14Mn-17.8Ni-1.7Cr (3)
(However, C, Si, Mn, Ni, Cr: Content of each alloy element (mass%))
In the present invention, the steel sheet is subjected to tempering treatment after two-phase region heating and quenching. The toughness and ductility of the base material are improved by tempering at a reheating temperature of 400 ° C. or higher and an Ac1 point or lower. In order to obtain such an effect, the tempering temperature needs to be 400 ° C. or higher. However, if the Ac1 point is exceeded, the hardness of the tempered martensite phase decreases, and the fatigue crack propagation delay effect deteriorates. .

このため,焼もどし処理は,400℃〜Ac1点で行うことが望ましい。保持時間について規定しないが、1hr以上になると、焼もどしマルテンサイト相の硬さが低下し、疲労亀裂伝播の遅延効果が劣化するので、1hr以内が望ましく,熱処理炉内の均熱が良ければ,短時間の保持でもかまわない。   For this reason, it is desirable to perform the tempering process at 400 ° C. to Ac1 point. Although the holding time is not specified, if it becomes 1 hr or more, the hardness of the tempered martensite phase decreases and the delay effect of fatigue crack propagation deteriorates. It can be held for a short time.

なお、本発明では熱間圧延と2相域熱処理の間に,再加熱、焼きならし、もしくは焼入れ処理を施してもよい。厚鋼板をAc3変態点以上の温度域に再加熱して保持することにより,厚鋼板内部まで均一なオーステナイト相とした後,空冷もしくは加速冷却を行うと,厚鋼板内の組織が一層、均質化および微細化される。   In the present invention, reheating, normalizing, or quenching may be performed between the hot rolling and the two-phase region heat treatment. By reheating the steel plate to a temperature range above the Ac3 transformation point and maintaining it, a uniform austenite phase is formed to the inside of the steel plate, and then air cooling or accelerated cooling is performed to further homogenize the structure in the steel plate. And refined.

加熱温度の上限については規定していないが,1100℃以上になると鋼板表面性状が劣化するために,好ましくは1100℃以下とする。また,保持時間についても規定していないが,1hr以上になるとオーステナイト粒の粗大化により,母材の靭性が劣化するので1hr以内が望ましく,熱処理炉内の均熱が良ければ,短時間の保持でも良い。   Although the upper limit of the heating temperature is not specified, the surface property of the steel sheet deteriorates when it is 1100 ° C. or higher. Also, the holding time is not specified, but if it exceeds 1 hr, the toughness of the base material deteriorates due to the coarsening of the austenite grains. Therefore, it is preferably within 1 hr. But it ’s okay.

上記した組成の鋼素材を用いて,上記した条件の熱間圧延後の2相域熱処理、および焼もどし処理条件により、鋼板の金属組織として,ビッカース硬さで130以下のフェライト相と,面積分率が15〜85%のビッカース硬さで340以上の焼もどしマルテンサイト相の混合組織が得られ,耐疲労亀裂伝播特性に優れた鋼板を製造することができる。   Using the steel material having the above composition, the ferrite structure having a Vickers hardness of 130 or less as the metal structure of the steel sheet according to the two-phase region heat treatment and tempering treatment conditions after hot rolling under the above-described conditions, A mixed structure of tempered martensite phase of 340 or more with a Vickers hardness of 15 to 85% can be obtained, and a steel plate having excellent fatigue crack propagation resistance can be produced.

転炉−取鍋精錬−連続鋳造法で,表1に示す組成に調製された鋼素材を,表2に示す条件の熱間圧延−再加熱焼入れ−焼もどしにより表2に示す板厚の厚鋼板とした。   Thickness of the plate thickness shown in Table 2 by hot rolling-reheating quenching-tempering of steel materials prepared in the composition shown in Table 1 by the converter-ladle refining-continuous casting method. A steel plate was used.

組織分率の調査は,得られた各鋼板の圧延方向と平行な断面について,ミクロ組織観察用サンプルを採取し,ナイタール腐食の後,光学顕微鏡組織を撮影し,画像解析装置を用いて組織分率を求めた。   For the investigation of the texture fraction, a sample for microstructural observation was taken on the cross section parallel to the rolling direction of each steel plate obtained, and after taking Nital corrosion, the optical microstructure was photographed, and the texture fraction was analyzed using an image analyzer. The rate was determined.

本発明範囲は,引張強さ440N/mm2以上,全伸び22%以上を有する鋼材で靭性は,JIS Z2242(2006)に準拠した2mmVノッチ試験片を用いたシャルピー衝撃試験により,−20℃での吸収エネルギーが100J以上有する鋼材とする。   The scope of the present invention is a steel material having a tensile strength of 440 N / mm 2 or more and a total elongation of 22% or more, and the toughness is measured at −20 ° C. by a Charpy impact test using a 2 mm V notch specimen in accordance with JIS Z2242 (2006). The steel material has an absorption energy of 100 J or more.

得られた各鋼板の板厚1/2位置からJIS4号引張試験片,あるいはJIS5号全厚引張試験片を採取し,JIS Z 2241(2006)の既定に準拠して引張試験を実施し,引張特性を調査した。   JIS No. 4 tensile test piece or JIS No. 5 full thickness tensile test piece is taken from the position of 1/2 thickness of each obtained steel plate, and tensile test is carried out according to the standard of JIS Z 2241 (2006). The characteristics were investigated.

また,得られた各鋼板の板厚1/2位置から,JIS Z 2202(2006)の規定に準拠してVノッチ試験片を採取し,JIS Z 2242(2006)の規定に準拠してシャルピー衝撃試験を実施し,−20℃における吸収エネルギー(vE−20)を求め,母材靭性を評価した。 In addition, V-notch test specimens were collected from the obtained steel plate thickness 1/2 position in accordance with the provisions of JIS Z 2202 (2006), and Charpy impacts were obtained in accordance with the provisions of JIS Z 2242 (2006). A test was conducted to determine the absorbed energy (vE- 20 ) at -20 ° C, and the base material toughness was evaluated.

疲労亀裂伝播特性の調査は,各鋼板から,荷重負荷方向が圧延方向と平行になるようASTM E 647に準拠したCT試験片を採取し,クラックゲージ法で疲労亀裂伝播試験を実施し,伝播速度を求めた。   To investigate the fatigue crack propagation characteristics, CT specimens based on ASTM E 647 were collected from each steel plate so that the load direction was parallel to the rolling direction, and fatigue crack propagation tests were conducted using the crack gauge method. Asked.

本発明における優れた疲労亀裂伝播特性の鋼材とは,応力拡大係数ΔK:15MPa/√mにおける疲労亀裂伝播速度(da/dN)が8×10−9(m/cycle)以下を有する鋼材とする。 The steel material having excellent fatigue crack propagation characteristics in the present invention is a steel material having a fatigue crack propagation rate (da / dN) of 8 × 10 −9 (m / cycle) or less at a stress intensity factor ΔK: 15 MPa / √m. .

得られた結果を表3に示す。本発明例は,いずれも,応力拡大係数ΔK:15MPa/√mにおける疲労亀裂伝播速度(da/dN)が8×10−9(m/cycle)以下と極めて遅く,優れた耐疲労亀裂伝播特性を有する。 The obtained results are shown in Table 3. In all of the examples of the present invention, the fatigue crack propagation rate (da / dN) at a stress intensity factor ΔK: 15 MPa / √m is extremely slow as 8 × 10 −9 (m / cycle) or less, and excellent fatigue crack resistance characteristics. Have

さらに,引張強さ440MPa以上,全伸び22%以上,および−20℃での吸収エネルギー vE−20>100Jの高強度,高延性,高靭性の母材特性を有する。   Furthermore, it has a base material property of tensile strength of 440 MPa or more, total elongation of 22% or more, and high strength, high ductility, and high toughness of absorbed energy vE-20> 100 J at −20 ° C.

一方,本発明の範囲を外れる比較例は,疲労亀裂伝播特性および機械的特性のうち,いずれか,あるいは複数の特性が目標値を満足していない。   On the other hand, in the comparative example outside the scope of the present invention, one or more of the fatigue crack propagation characteristics and mechanical characteristics do not satisfy the target value.

Figure 0004923968
Figure 0004923968

Figure 0004923968
Figure 0004923968

Figure 0004923968
Figure 0004923968

Claims (3)

鋼組成が,質量%で,
C:0.05〜0.30%,
Si:0.03〜0.35%,
Cr:0.05〜2.0%,
P:0.03%以下
S:0.003%以下
Al:0.1%以下
を含有し,残部がFeおよび不可避的不純物からなり、金属組織が,ビッカース硬さで8
5以上130以下のフェライト相と,面積分率が15〜85%のビッカース硬さで340
以上440以下の焼もどしマルテンサイト相の混合組織である耐疲労亀裂伝播特性に優れた鋼材。
Steel composition is mass%,
C: 0.05-0.30%,
Si: 0.03 to 0.35%,
Cr: 0.05 to 2.0%,
P: 0.03% or less S: 0.003% or less Al: 0.1% or less, with the balance being Fe and inevitable impurities, the metal structure being 8 Vickers hardness
340 with 5 to 130 ferrite phase and Vickers hardness of 15 to 85% area fraction
A steel material excellent in fatigue crack propagation resistance, which is a mixed structure of tempered martensite phase of 440 or less.
鋼組成に,質量%でさらに,
Mo:0.05〜1.0%,
V:0.01〜0.3%
の1種または2種を含有する請求項1に記載した耐疲労亀裂伝播特性に優れた鋼材。
In addition to the steel composition,
Mo: 0.05-1.0%,
V: 0.01 to 0.3%
A steel material excellent in fatigue crack propagation resistance according to claim 1, comprising one or two of the following.
鋼組成に加えて,質量%でさらに,
Mn:1.2%以下
Cu:0.8%以下
Ni:1.0%以下
Nb:0.1%以下
Ti:0.03%以下
B:0.005%以下
Ca:0.005%以下
REM:0.02%以下
Mg:0.005%以下
の1種または2種以上を含有する請求項1または請求項2に記載の耐疲労亀裂伝播特性に優れた鋼材
In addition to the steel composition,
Mn: 1.2% or less Cu: 0.8% or less Ni: 1.0% or less Nb: 0.1% or less Ti: 0.03% or less B: 0.005% or less Ca: 0.005% or less REM : 0.02% or less Mg: The steel material excellent in the fatigue crack propagation characteristic of Claim 1 or Claim 2 containing 1 type or 2 types or less of 0.005% or less .
JP2006308977A 2006-11-15 2006-11-15 Steel material with excellent fatigue crack propagation resistance Active JP4923968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006308977A JP4923968B2 (en) 2006-11-15 2006-11-15 Steel material with excellent fatigue crack propagation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308977A JP4923968B2 (en) 2006-11-15 2006-11-15 Steel material with excellent fatigue crack propagation resistance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011259965A Division JP5360185B2 (en) 2011-11-29 2011-11-29 Manufacturing method of steel material with excellent fatigue crack propagation resistance

Publications (2)

Publication Number Publication Date
JP2008121092A JP2008121092A (en) 2008-05-29
JP4923968B2 true JP4923968B2 (en) 2012-04-25

Family

ID=39506165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308977A Active JP4923968B2 (en) 2006-11-15 2006-11-15 Steel material with excellent fatigue crack propagation resistance

Country Status (1)

Country Link
JP (1) JP4923968B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4924047B2 (en) * 2007-01-16 2012-04-25 Jfeスチール株式会社 Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP5712484B2 (en) * 2008-12-26 2015-05-07 Jfeスチール株式会社 A steel material excellent in ductile crack initiation characteristics of a weld heat-affected zone and a base metal zone, and a method for producing the same.
JP5493986B2 (en) * 2009-04-27 2014-05-14 Jfeスチール株式会社 High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them
CN104406003B (en) * 2014-09-11 2016-09-14 河南万里路桥集团股份有限公司 A kind of drainage pipeline no-dig technique mud jacking method for repairing and constructing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125481A (en) * 1991-11-01 1993-05-21 Sumitomo Metal Ind Ltd High tensile strength steel material having high toughness and low yield ratio and its production
JPH1060575A (en) * 1996-08-22 1998-03-03 Sumitomo Metal Ind Ltd Thick steel plate excellent in fatigue crack arrest characteristic
JP3434434B2 (en) * 1997-06-10 2003-08-11 新日本製鐵株式会社 Steel material excellent in fatigue crack propagation characteristics and method of manufacturing the same
JP2002121640A (en) * 2000-10-16 2002-04-26 Sumitomo Metal Ind Ltd Steel sheet having suppressing effect on fatigue crack propagation
JP3860763B2 (en) * 2002-02-19 2006-12-20 新日本製鐵株式会社 Thick steel plate with excellent fatigue strength and its manufacturing method
JP3785392B2 (en) * 2002-10-23 2006-06-14 新日本製鐵株式会社 Thick steel with excellent fatigue crack propagation characteristics and its manufacturing method
JP2005298877A (en) * 2004-04-08 2005-10-27 Nippon Steel Corp Steel plate with excellent fatigue crack propagation characteristic, and its manufacturing method

Also Published As

Publication number Publication date
JP2008121092A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
JP5573265B2 (en) High strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more and method for producing the same
JP4897125B2 (en) High-strength steel sheet and its manufacturing method
JP5842358B2 (en) Non-tempered low yield ratio high tensile steel plate and method
JP4730088B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP5509923B2 (en) Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP2018053281A (en) Rectangular steel tube
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP2010132945A (en) High-strength thick steel plate having excellent delayed fracture resistance and weldability, and method for producing the same
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP5842359B2 (en) Non-tempered low yield ratio high tensile steel sheet and method for producing the same
JP2010121191A (en) High-strength thick steel plate having superior delayed fracture resistance and weldability, and method for manufacturing the same
JPH05186823A (en) Production of cu-containing high tensile strength steel with high toughness
JP4923968B2 (en) Steel material with excellent fatigue crack propagation resistance
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP6277679B2 (en) High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness
JP5368820B2 (en) 780 MPa class low yield ratio circular steel pipe for building structure having excellent earthquake resistance and method for producing the same
JP5360185B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance
JP5200600B2 (en) Manufacturing method of high strength and low yield ratio steel
JP6210112B2 (en) High strength steel material with excellent fatigue characteristics and method for producing the same
JP2007197777A (en) High-strength steel material superior in ductile-crack initiation resistance and fatigue-crack propagation resistance, and manufacturing method therefor
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same
JP5245414B2 (en) Steel plate for low yield ratio high strength steel pipe, its manufacturing method and low yield ratio high strength steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4923968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250