JP2000144309A - Steel excellent in corrosion resistance for structural purpose and its production - Google Patents

Steel excellent in corrosion resistance for structural purpose and its production

Info

Publication number
JP2000144309A
JP2000144309A JP31221998A JP31221998A JP2000144309A JP 2000144309 A JP2000144309 A JP 2000144309A JP 31221998 A JP31221998 A JP 31221998A JP 31221998 A JP31221998 A JP 31221998A JP 2000144309 A JP2000144309 A JP 2000144309A
Authority
JP
Japan
Prior art keywords
steel
less
corrosion resistance
surface layer
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31221998A
Other languages
Japanese (ja)
Inventor
Toshihiko Koseki
敏彦 小関
Hidesato Mabuchi
秀里 間渕
Masanori Minagawa
昌紀 皆川
Tadashi Ishikawa
忠 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31221998A priority Critical patent/JP2000144309A/en
Publication of JP2000144309A publication Critical patent/JP2000144309A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the corrosion resistance of steel for structural purpose, particularly the corrosion resistance in a water environment contg. chlorine or chloride by controlling the structure of steel. SOLUTION: As to the steel for structural purpose excellent in corrosion resistance and a method for producing it, the structure in which the ferrite crystal grain boundaries and/or crystal sub-grain boundaries in the surface layer part of steel or the surface and back layer parts of a steel sheet are provided with cementite and/or the carbonitrides of Nb, Ti and Ta of <=0.5 μm, and in which the pearlite fractional ratio is controlled to <=10% and the balance is essentially composed of ferrite or bainite with <=3 μm average grain size is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高張力棒鋼・線材・
機械構造用鋼、又は造船、建築、橋梁・橋脚、タンク、
圧力容器、海洋・港湾構造物、及び化学プラント等の大
型鋼構造物向け溶接構造用鋼、等に適用される耐食性に
優れた構造用鋼又は溶接用構造用鋼及びその製造方法に
関するものである。
TECHNICAL FIELD The present invention relates to a high-strength steel bar, wire rod,
Steel for machine structural use, or shipbuilding, construction, bridges / piers, tanks,
The present invention relates to a structural steel or a welding structural steel excellent in corrosion resistance and applied to a welding steel for a large steel structure such as a pressure vessel, an marine / port structure, and a chemical plant, and a method for producing the same. .

【0002】[0002]

【従来の技術】腐食は単独で、あるいは、疲労破壊、不
安定破壊、脆性破壊の起点となって、鋼構造物の重大損
傷を引き起こす。腐食及び腐食を起点とする損傷事例は
鋼構造物全体の損傷事例の大きな割合を占めるため、そ
の改善は極めて重要である。
BACKGROUND OF THE INVENTION Corrosion, alone or as a starting point for fatigue, unstable and brittle fractures, causes severe damage to steel structures. Corrosion and damage cases originating from corrosion account for a large proportion of the damage cases of the entire steel structure, and therefore its improvement is extremely important.

【0003】鋼構造物の使用環境は幅広いが、特に腐
食、腐食疲労が問題となるのは、海水環境はじめとする
塩素あるいは塩化物を含む水環境である。これに対し
て、例えば日本鉄鋼協会第159回西山記念講座(19
96)p.123にまとめられているように、従来、マ
リーナースチールはじめ、Cu、Ni、Cr、Pなどの
合金成分を添加・増量し耐海水性を高めた鋼材がこれま
で開発されてきた。更に、鋼の耐食性は、鋼中の合金成
分によって決まり、鋼の組織への依存性はないというの
が、これまでの知見であった。従って鋼に耐食性を付与
する為には前述のような合金元素の添加が必要となる
が、それによって、構造用鋼としてコスト上昇するとと
もに、多量の合金元素の含有により、構造用鋼として必
要な溶接性や加工性が低下する問題があった。
[0003] The use environment of steel structures is wide, but corrosion and corrosion fatigue are particularly problematic in seawater environments and other water environments containing chlorine or chloride. On the other hand, for example, the 159th Nishiyama Memorial Lecture by the Iron and Steel Institute of Japan (19
96) p. As summarized in No. 123, heretofore, steel materials having improved seawater resistance by adding and increasing alloy components such as Cu, Ni, Cr, and P, including Mariner steel, have been developed. Further, it has been found that the corrosion resistance of steel is determined by the alloy composition in the steel and does not depend on the structure of the steel. Therefore, in order to impart corrosion resistance to steel, it is necessary to add an alloying element as described above, but this increases the cost as a structural steel, and contains a large amount of alloying elements, which makes it necessary as a structural steel. There was a problem that weldability and workability deteriorated.

【0004】[0004]

【発明が解決しようとする課題】以上のような背景か
ら、本発明の課題は、鋼材組織を制御する事によって、
構造用鋼の耐食性、特に塩素あるいは塩化物を含む水環
境での耐食性を向上させるものである。即ち、従来の構
造用鋼に対しては、上述のような耐食性に有効な合金元
素を添加する事なく、コスト上昇を抑え、且つ、溶接性
を確保しながら、耐食性を向上する事を課題とするとと
もに、更に、従来の耐食構造用鋼に対しては、合金元素
の節減・溶接性向上、あるいは同成分系で、従来の耐食
性を更に大幅に向上させる事も課題とする。
SUMMARY OF THE INVENTION In view of the above background, an object of the present invention is to control a steel structure by
It is intended to improve the corrosion resistance of structural steel, particularly in a water environment containing chlorine or chloride. That is, it is an object of the present invention to improve the corrosion resistance of conventional structural steels without adding an alloying element effective for the corrosion resistance as described above, while suppressing the cost increase and securing the weldability. Further, it is another object of the present invention to reduce the alloying elements and improve the weldability of the conventional corrosion-resistant structural steel, or to further greatly improve the conventional corrosion resistance by using the same component system.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を達成
する為に、鋼の表層部又は鋼板の表・裏層部におけるフ
ェライト結晶粒界及び/又は結晶亜粒界に0.5μm以
下のセメンタイト及び/又はNb・Ti・Taの炭窒化
物を析出させ、フェライト又はベーナイトを主体とする
組織を平均粒径で3μm以下の超微細粒に改質するとと
もにパーライト分率を10%以下とする事によって、耐
食性に優れた構造用鋼(溶接用構造用鋼を含む)及びそ
の製造方法を提供するものである。
In order to achieve the above-mentioned object, the present invention provides a ferrite grain boundary and / or a sub-grain boundary of 0.5 μm or less in the surface layer of steel or the front and back layers of steel sheet. Precipitate cementite and / or Nb-Ti-Ta carbonitride to modify the structure mainly composed of ferrite or bainite to ultrafine particles having an average particle size of 3 µm or less, and reduce the pearlite fraction to 10% or less. Accordingly, the present invention provides a structural steel (including a structural steel for welding) having excellent corrosion resistance and a method for producing the same.

【0006】本発明の要旨とするところは、以下の通り
である。
The gist of the present invention is as follows.

【0007】(1) 重量%で、C:0.04〜0.2
5%、Si:0.01〜1.0%、Mn:0.3〜2.
0%、S:0.01%以下を含有し、残部鉄及び不可避
的不純物からなり、鋼の表層又は鋼板の表・裏層からそ
れぞれ鋼の径又は厚さの5%以上の領域における結晶粒
界及び/又は結晶亜粒界に0.5μm以下のセメンタイ
ト相を有し、且つパーライト分率が10%以下で、平均
結晶粒径が3μm以下のフェライト若しくはベーナイト
を主体とする組織で構成される事を特徴とする耐食性に
優れた構造用鋼。
(1) C: 0.04 to 0.2% by weight
5%, Si: 0.01-1.0%, Mn: 0.3-2.
0%, S: 0.01% or less, the balance consisting of iron and unavoidable impurities, and crystal grains in the region of 5% or more of the diameter or thickness of the steel from the surface layer of the steel or the front and back layers of the steel sheet, respectively. It has a cementite phase of 0.5 μm or less at the grain boundaries and / or subgrain boundaries, and has a pearlite fraction of 10% or less and an average crystal grain size of 3 μm or less, and is mainly composed of ferrite or bainite. Structural steel with excellent corrosion resistance.

【0008】(2) 重量%で、C:0.04〜0.2
5%、Si:0.01〜1.0%、Mn:0.3〜2.
0%、S:0.01%以下、Al:0.005〜0.6
%を含有し、更に、Nb:0.005〜0.1%、T
i:0.005〜0.05%、Ta:0.005〜0.
05%の1種又は2種以上を含有し、残部鉄及び不可避
的不純物からなり、鋼の表層又は鋼板の表・裏層からそ
れぞれ鋼の径又は厚さの5%以上の領域における結晶粒
界及び/又は結晶亜粒界に0.5μm以下のセメンタイ
ト相、及び/又はNb・Ti・Taの炭窒化物相を有
し、且つパーライト分率が10%以下で、平均結晶粒径
が3μm以下のフェライト若しくはベーナイトを主体と
する組織で構成される事を特徴とする耐食性に優れた構
造用鋼。
(2) C: 0.04 to 0.2% by weight
5%, Si: 0.01-1.0%, Mn: 0.3-2.
0%, S: 0.01% or less, Al: 0.005 to 0.6
%, Nb: 0.005 to 0.1%, T
i: 0.005 to 0.05%, Ta: 0.005 to 0.
Grain boundaries in the region containing 5% or more of the steel diameter or thickness from the surface layer of steel or the front and back layers of steel sheet, respectively, containing one or more kinds of nickel of 0.05%, the balance being iron and unavoidable impurities. And / or a cementite phase of 0.5 μm or less and / or a carbonitride phase of Nb · Ti · Ta at a subgrain boundary and a pearlite fraction of 10% or less and an average crystal grain size of 3 μm or less Structural steel with excellent corrosion resistance, characterized in that the structural steel is mainly composed of ferrite or bainite.

【0009】(3) 更に、重量%で、Cu:0.05
〜1.0%、Ni:0.1〜2.0%、Cr:0.03
〜3.0%、Mo:0.05〜1.0%、V:0.01
〜0.4%、B:0.0002〜0.002%、P:
0.15%以下の1種又は2種以上を含有する事を特徴
とする上記(1)又は(2)の何れかに記載の耐食性に
優れた構造用鋼。
(3) Further, by weight%, Cu: 0.05
1.0%, Ni: 0.1 to 2.0%, Cr: 0.03
3.0%, Mo: 0.05-1.0%, V: 0.01
~ 0.4%, B: 0.0002-0.002%, P:
The structural steel excellent in corrosion resistance according to any one of the above (1) or (2), which contains one or more kinds of 0.15% or less.

【0010】(4) 更に、重量%で、Ca:0.00
01〜0.02%、Mg:0.0001〜0.02%、
REM:0.001%〜0.2%の1種又は2種以上を
含有する事を特徴とする上記(1)〜(3)の何れか1
つに記載の耐食性に優れた構造用鋼。
(4) Further, Ca: 0.00% by weight.
01-0.02%, Mg: 0.0001-0.02%,
REM: any one of the above (1) to (3), characterized by containing one or more of 0.001% to 0.2%.
Structural steel excellent in corrosion resistance described in (1).

【0011】(5) 重量%で、C:0.04〜0.2
5%、Si:0.01〜1.0%、Mn:0.3〜2.
0%、S:0.01%以下を含有し、残部鉄及び不可避
的不純物からなる鋼又は鋼の素材をAc3点以上に加熱
しCを固溶させた後、熱間加工の前又は途中において、
鋼の表層又は鋼板の表・裏層からそれぞれ鋼の径又は厚
さの5%以上の領域を3℃/秒以上の冷却速度でフェラ
イト分率が50%以上となる温度まで急冷した後、当該
表層又は表・裏層領域を復熱させる過程において、(A
1点−150)℃以上の温度で熱間加工を開始又は再
開して、(Ac1点−50)℃〜(Ac3点)℃の温度範
囲で熱間加工を終了し、引き続いて当該表層又は表・裏
層領域をAc3点以上に復熱する前に冷却して、鋼の表
層又は鋼板の表・裏層からそれぞれ鋼の径又は厚さの5
%以上の領域における結晶粒界及び/又は結晶亜粒界に
0.5μm以下のセメンタイト相を有し、且つパーライ
ト分率が10%以下で、平均結晶粒径が3μm以下のフ
ェライト若しくはベーナイトを主体とする組織で構成さ
れる事を特徴とする耐食性に優れた構造用鋼の製造方
法。
(5) C: 0.04 to 0.2% by weight
5%, Si: 0.01-1.0%, Mn: 0.3-2.
0%, S: 0.01% or less, steel or steel material consisting of iron and unavoidable impurities is heated to more than 3 points of Ac to form a solid solution of C, before or during hot working At
After quenching a region of 5% or more of the diameter or thickness of the steel from the surface layer of the steel or the front and back layers of the steel plate at a cooling rate of 3 ° C./sec or more to a temperature at which the ferrite fraction becomes 50% or more, In the process of reheating the surface layer or the front / back layer region, (A
The hot working is started or restarted at a temperature of c 1 point-150) ° C. or more, and the hot working is completed in a temperature range of (Ac 1 point−50) ° C. to (Ac 3 points) ° C. Before the surface layer or the front / back layer region is reheated to Ac 3 or more points, the surface layer or the front / back layer of the steel sheet is cooled to 5 mm in diameter or thickness of the steel, respectively.
% Ferrite or bainite having a cementite phase of 0.5 μm or less at a grain boundary and / or a sub-grain boundary in a region of at least 10% and a pearlite fraction of 10% or less and an average crystal grain size of 3 μm or less. A method for producing a structural steel having excellent corrosion resistance, characterized by comprising a structure having the following structure.

【0012】(6) 重量%で、C:0.04〜0.2
5%、Si:0.01〜1.0%、Mn:0.3〜2.
0%、S:0.01%以下、Al:0.005〜0.6
%を含有し、更に、Nb:0.005〜0.1%、T
i:0.005〜0.05%、Ta:0.005〜0.
05%の1種又は2種以上を含有し、残部鉄及び不可避
的不純物からなる鋼又は鋼の素材をAc3点以上に加熱
しC及びNb・Ti・Taの1種又は2種以上を固溶さ
せた後、熱間加工の前又は途中において、鋼の表層又は
鋼板の表・裏層からそれぞれ鋼の径又は厚さの5%以上
の領域を3℃/秒以上の冷却速度でフェライト分率が5
0%以上となる温度まで急冷した後に、当該表層又は表
・裏層領域を復熱させる過程において、(Ac1点−1
50)℃以上の温度で熱間加工を開始又は再開して、
(Ac1点−50)℃〜Ac3点の温度範囲で熱間加工を
終了し、 引き続いて当該表層又は表・裏層領域をAc3
点以上に復熱する前に冷却して、鋼の表層又は鋼板の表
・裏層からそれぞれ鋼の径又は厚さの5%以上の領域に
おける結晶粒界及び/又は結晶亜粒界に0.5μm以下
のセメンタイト相、及び/又はNb・Ti・Taの炭窒
化物相を有し、且つパーライト分率が10%以下で、平
均結晶粒径が3μm以下のフェライト若しくはベーナイ
トを主体とする組織で構成される事を特徴とする耐食性
に優れた構造用鋼の製造方法。
(6) C: 0.04-0.2% by weight
5%, Si: 0.01-1.0%, Mn: 0.3-2.
0%, S: 0.01% or less, Al: 0.005 to 0.6
%, Nb: 0.005 to 0.1%, T
i: 0.005 to 0.05%, Ta: 0.005 to 0.
A steel or steel material containing 0.05% or more of one or more kinds and the balance consisting of iron and unavoidable impurities is heated to three or more Ac to solidify one or more of C and Nb.Ti.Ta. After melting, before or during hot working, the area of 5% or more of the diameter or thickness of the steel from the surface layer of steel or the front and back layers of steel sheet, respectively, is cooled at a cooling rate of 3 ° C / sec or more. Rate 5
After rapidly cooling to a temperature of 0% or more, in the process of reheating the surface layer or the front / back layer region, (Ac 1 point-1
50) Start or restart hot working at a temperature of not less than ℃,
The hot working is completed in the temperature range of (Ac 1 point -50) ° C. to Ac 3 points, and then the surface layer or the front / back layer region is Ac 3
Cooling is performed before the heat is recovered to a point or more, and the temperature is reduced from the surface layer of steel or the front and back layers of steel sheet to grain boundaries and / or sub-grain boundaries in a region of 5% or more of the diameter or thickness of steel, respectively. A structure mainly composed of ferrite or bainite having a cementite phase of 5 μm or less and / or a carbonitride phase of Nb · Ti · Ta and having a pearlite fraction of 10% or less and an average crystal grain size of 3 μm or less. A method for producing a structural steel having excellent corrosion resistance, characterized by being constituted.

【0013】(7) 熱間加工の終了後、引き続いて当
該表層又は表・裏層領域をAc3点以上に復熱させる前
に、冷却速度が5℃/秒以上で加速冷却又は直接焼き入
れする事を特徴とする上記(5)又は(6)の何れかに
記載の耐食性に優れた構造用鋼の製造方法。
(7) After the completion of the hot working, before the surface layer or the front and back layer regions are reheated to three or more Ac points, accelerated cooling or direct quenching at a cooling rate of 5 ° C./sec or more. The method for producing a structural steel having excellent corrosion resistance according to any one of the above (5) and (6), characterized in that:

【0014】(8) 加速冷却又は直接焼き入れ終了後
に引き続いて、焼戻しする事を特徴とする上記(7)に
記載の耐食性に優れた構造用鋼の製造方法。
(8) The method for producing a structural steel having excellent corrosion resistance according to the above (7), wherein tempering is performed after the completion of accelerated cooling or direct quenching.

【0015】(9) 更に、重量%で、Cu:0.05
〜1.0%、Ni:0.1〜2.0%、Cr:0.03
〜3.0%、Mo:0.05〜1.0%、V:0.01
〜0.4%、B:0.0002〜0.002%、P:
0.15%以下の1種又は2種以上を含有する事を特徴
とする上記(5)〜(8)の何れか1つに記載の耐食性
に優れた構造用鋼の製造方法。
(9) Further, by weight%, Cu: 0.05
1.0%, Ni: 0.1 to 2.0%, Cr: 0.03
3.0%, Mo: 0.05-1.0%, V: 0.01
~ 0.4%, B: 0.0002-0.002%, P:
The method for producing a structural steel excellent in corrosion resistance according to any one of the above (5) to (8), wherein one or more kinds of the steels are contained in an amount of 0.15% or less.

【0016】(10) 更に、重量%で、Ca:0.0
001〜0.02%、Mg:0.0001〜0.02
%、REM:0.001%〜0.2%の1種又は2種以
上を含有する事を特徴とする上記(5)〜(9)の何れ
か1つに記載の耐食性に優れた構造用鋼の製造方法。
(10) Further, by weight%, Ca: 0.0
001-0.02%, Mg: 0.0001-0.02
%, REM: 0.001% to 0.2% of one or more of the above (5) to (9) for a structure having excellent corrosion resistance. Steel production method.

【0017】[0017]

【発明の実施の形態】以下本発明について詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0018】本発明者が種々の鋼の塩素を含む水環境、
湿潤環境、乾湿繰り返し環境での耐食性を詳細に検討し
た結果、鋼組織において、フェライト又はベーナイトを
非常に微細化し、且つ、セメンタイト及び/又はNb・
Ti・Taの1種又は2種以上の炭窒化物相をそれらの
結晶粒界及び/又は結晶亜粒界に0.5μm以下に析出
させる事で鋼の耐食性が大きく向上する事を見出した。
The present inventor has proposed a water environment containing chlorine of various steels,
As a result of detailed examination of the corrosion resistance in a wet environment and a dry / wet repeated environment, it was found that ferrite or bainite was extremely fine in a steel structure, and that cementite and / or Nb.
It has been found that the corrosion resistance of steel is significantly improved by precipitating one or two or more types of carbonitride phases of Ti and Ta at a grain boundary and / or a sub-grain boundary thereof at 0.5 μm or less.

【0019】また、フェライト結晶粒界及び/又は結晶
亜粒界にセメンタイト及び/又はNb・Ti・Taの1
種又は2種以上の炭窒化物相を0.5μm以下に析出さ
せる為には、C及び/又はNb・Ti・Taの1種又は
2種以上を含有する鋼の素材又は鋼をAc3点以上に加
熱してC及び/又はNb・Ti・Taの1種又は2種以
上を固溶させた状態で、制御圧延等の熱間加工の前又は
途中でフェライト分率が50%以上となる温度まで急冷
して、C及び/又はNb・Ti・Taの1種又は2種以
上を過飽和に固溶せしめたる後に、該鋼を復熱させる過
程において熱間加工を開始又は再開してAc3点以下で
熱間加工を終了し、引き続いてAc3点以上に復熱させ
ないで冷却する事が平均粒径が3μm以下のフェライト
若しくはベーナイトを主体とする組織を効果的に確保す
る上で不可欠であるとの技術を発明するに至ったもので
ある。
Further, cementite and / or Nb-Ti-Ta may be present at ferrite grain boundaries and / or sub-grain boundaries.
In order to precipitate one or more kinds of carbonitride phases to 0.5 μm or less, a steel material or steel containing one or more kinds of C and / or Nb · Ti · Ta is required to have three points of Ac. In the state where one or two or more of C and / or Nb / Ti / Ta are solid-dissolved by heating as described above, the ferrite fraction becomes 50% or more before or during hot working such as controlled rolling. After rapidly cooling to a temperature and dissolving one or more of C and / or Nb.Ti.Ta in a supersaturated state, hot working is started or restarted in the process of reheating the steel, and Ac 3 It is indispensable to end the hot working below the point and cool down without reheating to more than the Ac point 3 in order to effectively secure a structure mainly composed of ferrite or bainite having an average grain size of 3 μm or less. The inventor invented a certain technology.

【0020】以下に本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0021】Cは本発明では過飽和固溶状態から0.5
μm以下にフェライト結晶粒界又は結晶亜粒界に析出さ
せたセメンタイトによって超微細粒フェライトをピンニ
ングする必須元素であり安価に強度を向上するのに最も
有効な元素であるが、0.25%を越えると低温靭性を
阻害するとともに本発明法による鋼の表層部又は鋼板の
表・裏層部においてもパーライト分率が10%を越え、
0.04%未満ではピンニングに必要なセメンタイト量
が不足する為に、0.04〜0.25%に限定する。
尚、溶接用構造用鋼の場合には0.2%を越えると溶接
性(溶接部靭性)が劣化する為に0.04〜0.2%に
するのが好ましい。
C is 0.5% from the supersaturated solid solution state in the present invention.
It is an essential element for pinning ultra-fine grain ferrite by cementite precipitated at the ferrite grain boundary or sub-grain boundary below μm and is the most effective element to improve strength at low cost, but 0.25% If it exceeds, the low-temperature toughness is impaired and the pearlite fraction exceeds 10% even in the surface layer portion of the steel or the front and back layer portions of the steel plate according to the present invention,
If the content is less than 0.04%, the amount of cementite necessary for pinning becomes insufficient, so the content is limited to 0.04 to 0.25%.
In the case of structural steel for welding, if it exceeds 0.2%, the weldability (weld part toughness) deteriorates, so it is preferable to set it to 0.04 to 0.2%.

【0022】Siは強度向上元素として有効であり安価
な溶鋼の脱酸元素としても有用であるが、1.0%を越
えると溶接性が劣化し、0.01%未満では脱酸効果が
不十分でTiやAl等の高価な脱酸元素を多用する必要
がある為に、0.01〜1.0%に限定する。
Si is effective as a strength improving element and also useful as an inexpensive deoxidizing element for molten steel. However, if it exceeds 1.0%, the weldability deteriorates, and if it is less than 0.01%, the deoxidizing effect is not sufficient. Since it is necessary to use a large amount of expensive deoxidizing elements such as Ti and Al, the content is limited to 0.01 to 1.0%.

【0023】Mnは強度を向上する有用な元素であ
り、、その必要下限から0.3%以上として、2.0%
超の添加は母材靭性・溶接性を阻害するとともにAr3
変態点を低下させる結果、二相域圧延等の熱間圧延をを
困難にする為に0.3〜2.0%に限定した。
Mn is a useful element for improving the strength.
Ar 3 with the addition of ultra inhibit matrix toughness, weldability
As a result of lowering the transformation point, it is limited to 0.3 to 2.0% in order to make hot rolling such as two-phase rolling difficult.

【0024】Sは耐食性、靭性の観点から0.01%以
下に限定した。MnSが塩素あるいは塩化物を含む水環
境で溶解し、選択的な腐食起点となる事はよく知られて
おり、その観点から、Sは出来るだけ低いほど好まし
い。
S is limited to 0.01% or less from the viewpoint of corrosion resistance and toughness. It is well known that MnS dissolves in an aqueous environment containing chlorine or chloride and becomes a selective corrosion starting point. From that viewpoint, it is preferable that S is as low as possible.

【0025】Nbは加工熱処理(TMCP)鋼において
Tiとともに最も有用な元素であり、NbC又はNb
(C,N)(Carbo−nitride)として鋼材
の再加熱時のγ粒成長の抑制・制御圧延時の未再結晶域
温度域の拡大・圧延時の変形帯における析出強化・大入
熱溶接時の溶接熱影響部(HAZ)におけるHAZ軟化
の防止の効果が一般的に知られている。更に、本発明者
の仔細な検討から超微細析出させたセメンタイトの熱的
な安定性及びフェライト粒の成長抑制効果が著しく増加
する事を知見した。従って、0.005%未満では過飽
和固溶状態から0.5μm以下にフェライト結晶粒界又
は結晶亜粒界に析出させるNbC又はNb(C,N)量が
不足するとともに0.5μm以下に析出させたセメンタ
イトの熱的な安定性も不足して、0.1%以上では溶接
性を損なう為に0.005〜0.1%に限定する。
Nb is the most useful element together with Ti in thermomechanical processing (TMCP) steel, and NbC or Nb
As (C, N) (Carbo-nitride), suppression of γ-grain growth during reheating of steel material, expansion of non-recrystallization temperature range during controlled rolling, precipitation strengthening in deformation zone during rolling, large heat input welding The effect of preventing HAZ softening in the heat affected zone (HAZ) is generally known. Further, from the detailed studies by the present inventors, it was found that the thermal stability of the ultrafine precipitated cementite and the effect of suppressing the growth of ferrite grains were significantly increased. Therefore, if it is less than 0.005%, the amount of NbC or Nb (C, N) precipitated from the supersaturated solid solution state to 0.5 μm or less at the ferrite crystal grain boundary or crystal sub-grain boundary becomes insufficient, and the precipitation becomes 0.5 μm or less. In addition, the thermal stability of cementite is also insufficient. If the content is 0.1% or more, the weldability is impaired, so that the content is limited to 0.005 to 0.1%.

【0026】TiもまたTMCP鋼においてNbととも
に最も有用な元素であり、TiC又はTi(C,N)とし
て鋼材の再加熱時のγ粒成長の抑制・制御圧延時の未再
結晶域温度域の拡大・圧延時の析出強化・大入熱溶接時
のHAZ靭性向上の効果が一般的に知られている。更
に、本発明者の仔細な検討からNbと同様に超微細析出
させたセメンタイトの熱的な安定性及びフェライト粒の
成長抑制効果が改善する事を見出した。従って、0.0
05%未満では過飽和固溶状態から0.5μm以下にフ
ェライト結晶粒界又は結晶亜粒界に析出させるTiC又
はTiCN量が不足するとともに0.5μm以下に析出
させたセメンタイトの熱的な安定性も不足して、0.0
5%以上では溶接性を損なう為に、0.005〜0.0
5%に限定する。
Ti is also the most useful element together with Nb in the TMCP steel. As TiC or Ti (C, N), the suppression of γ grain growth during reheating of the steel material and the temperature in the unrecrystallized region during controlled rolling are controlled. The effects of precipitation strengthening during expansion / rolling and HAZ toughness improvement during large heat input welding are generally known. Further, from the detailed examination by the present inventors, it has been found that, similarly to Nb, the thermal stability and the effect of suppressing the growth of ferrite grains of the ultrafine precipitated cementite are improved. Therefore, 0.0
If it is less than 0.05%, the amount of TiC or TiCN precipitated from the supersaturated solid solution state to 0.5 μm or less at the ferrite grain boundary or sub-grain boundary is insufficient, and the thermal stability of the cementite precipitated to 0.5 μm or less is also reduced. Shortage, 0.0
If it is more than 5%, the weldability is impaired.
Limited to 5%.

【0027】TaはTaC又はTa(C,N)として鋼材
の再加熱時のγ粒成長の抑制・大入熱時のHAZ靭性向
上の効果が知られているが、高価な為にそれ程一般的に
使われてはいない。然し、本発明者の仔細な検討からN
b・Tiと同様に超微細析出させたセメンタイトの熱的
な安定性及びフェライト粒の成長抑制効果が改善する事
を見出した。従って、0.005%未満では過飽和固溶
状態から0.5μm以下にフェライト結晶粒界又は結晶
亜粒界に析出させるTaC又はTaCN量が不足すると
ともに0.5μm以下に析出させたセメンタイトの熱的
な安定性も不足して、0.05%以上では溶接性を損な
う為に、0.005〜0.05%に限定する。
Ta is known as TaC or Ta (C, N), which has the effect of suppressing the growth of γ grains during reheating of steel and improving the HAZ toughness at the time of large heat input. Not used for However, from the in-depth study of the inventor, N
As in the case of b.Ti, it has been found that the thermal stability and the effect of suppressing the growth of ferrite grains of the ultrafine precipitated cementite are improved. Therefore, if the content is less than 0.005%, the amount of TaC or TaCN precipitated from the supersaturated solid solution state to 0.5 μm or less at the ferrite crystal grain boundary or sub-grain boundary is insufficient, and the thermal behavior of cementite precipitated to 0.5 μm or less is insufficient. The stability is insufficient, and if the content is 0.05% or more, the weldability is impaired. Therefore, the content is limited to 0.005 to 0.05%.

【0028】AlはSi同様に脱酸上必要な元素であ
り、本発明の技術思想からTi・Ta又はNbを微量添
加する時にはその酸化を防止するのにSi単独の脱酸で
は不十分な為に0.005%以上添加が必要である。更
に本発明者はAlの添加が本発明鋼の耐食性に対しても
有効である事を知見した。ただし0.6%以上の過度の
添加はHAZ靭性を損なう為に、0.005〜0.6%
に限定した。
Al is an element necessary for deoxidation similarly to Si, and from the technical idea of the present invention, when a small amount of Ti.Ta or Nb is added, deoxidation of Si alone is insufficient to prevent its oxidation. Must be added in an amount of 0.005% or more. Furthermore, the present inventors have found that the addition of Al is also effective for the corrosion resistance of the steel of the present invention. However, excessive addition of 0.6% or more impairs the HAZ toughness, so that 0.005 to 0.6%
Limited to.

【0029】以上が本発明が対象とする鋼の基本成分で
あるが、更に、母材強度の向上や低温靭性・溶接性の改
善を目的とした低炭素等量化の為に、要求される品質特
性又は鋼材の大きさ・鋼板厚に応じて、強度・低温靭性
・溶接性を向上する観点からCu、Ni、Cr、Mo、
V、BをCu:0.05〜1.0%、Ni:0.1〜
2.0%、Cr:0.03〜3.0%、Mo:0.05
〜1.0%、V:0.01〜0.4%、B:0.000
2〜0.002%の範囲で、1種又は2種以上添加して
も本発明の効果は何ら損なわれる事はない。また、C
u、Ni、Crは従来から、海水など塩素あるいは塩化
物を含む水環境で鋼の耐食性を向上させる元素として知
られているが、本発明において、これら元素を鋼中に含
有させる事により、さらなる耐食性向上が得られる。
The above are the basic components of the steel to which the present invention is directed. Furthermore, in order to improve the strength of the base material and the low carbon equivalent for the purpose of improving the low temperature toughness and weldability, the quality required is reduced. Cu, Ni, Cr, Mo, from the viewpoint of improving the strength, low-temperature toughness, and weldability according to the characteristics or the size of the steel material and the thickness of the steel sheet.
V, B: Cu: 0.05-1.0%, Ni: 0.1-
2.0%, Cr: 0.03 to 3.0%, Mo: 0.05
1.0%, V: 0.01-0.4%, B: 0.000
The effect of the present invention is not impaired even if one or more kinds are added in the range of 2 to 0.002%. Also, C
Although u, Ni, and Cr are conventionally known as elements that improve the corrosion resistance of steel in an aqueous environment containing chlorine or chloride such as seawater, in the present invention, by including these elements in steel, it is possible to further improve the corrosion resistance. Improved corrosion resistance is obtained.

【0030】更に、P添加も耐食性に有効であり、本発
明においても、単独で、又は上記のCu、Ni、Cr、
Mo、V、Bの元素と併せて、添加が可能であるが、た
だし0.15%を越える添加は、靭性、溶接性を著しく
低下させる事から、Pの含有量は0.15%以下と限定
した。
Further, the addition of P is also effective for the corrosion resistance. In the present invention, the addition of P alone or the above Cu, Ni, Cr,
Mo, V, and B can be added together with the elements. However, if added in excess of 0.15%, the toughness and weldability are significantly reduced, so that the P content is 0.15% or less. Limited.

【0031】更に、前述のように塩素あるいは塩化物を
含む水環境ではMnSは腐食の起点として有害であり、
これを低減する為に、鋼中硫化物の形態・分散制御の観
点からCa、Mg、REMを、Ca:0.0001〜
0.02%、Mg:0.0001〜0.02%、RE
M:0.001%〜0.2%の範囲で、1種又は2種以
上添加する事は、本発明の効果と重畳して有効である。
Further, as described above, in an aqueous environment containing chlorine or chloride, MnS is harmful as a starting point of corrosion,
In order to reduce this, from the viewpoint of controlling the morphology and dispersion of sulfide in steel, Ca, Mg, and REM are changed from Ca: 0.0001 to
0.02%, Mg: 0.0001-0.02%, RE
M: Addition of one or more kinds in the range of 0.001% to 0.2% is effective in superimposition with the effects of the present invention.

【0032】次に、本発明の技術思想である結晶組織を
規定する理由について述べる。
Next, the reason for defining the crystal structure, which is the technical idea of the present invention, will be described.

【0033】本発明者の仔細な調査により、ベーナイト
を含むフェライト・パーライト鋼では、フェライト粒径
を5μm以下にしても耐食性は必ずしも改善しなく、そ
れは、フェライト粒径が5μm以下でも、パーライトコ
ロニーを含む場合は、塩素あるいは塩化物を含む水環境
での腐食孔発生頻度が高く、且つ腐食深さが大きい事が
判明した。更に、微細なセメンタイトを含んでパーライ
ト分率を10%以下にした場合にのみ、耐食性はフェラ
イト粒径の細粒化とともに改善して、3μm以下で特段
の効果がある事も知見した。
According to a detailed investigation by the present inventors, in ferrite-pearlite steel containing bainite, even if the ferrite grain size is 5 μm or less, the corrosion resistance is not necessarily improved. When it contained, it was found that the frequency of occurrence of corrosion pits in a water environment containing chlorine or chloride was high and the corrosion depth was large. Further, it was also found that the corrosion resistance was improved along with the refinement of the ferrite grain size only when the pearlite fraction was reduced to 10% or less, including fine cementite, and that the effect was particularly significant at 3 μm or less.

【0034】一方、単に微細なセメンタイト又は炭窒化
物相から構成される組織だけでは、フェライト若しくは
ベーナイトを主体とする組織の平均粒径を3μm以下に
安定して達成できず、フェライト結晶粒の成長抑制が必
要不可欠である事も見い出した。即ち、フェライト結晶
粒界又は結晶亜粒界に0.5μm以下のセメンタイトを
析出させる事によって初めてフェライト若しくはベーナ
イトをピンニングしてその成長を効果的に抑制できる。
また、0.5μm以下のNb・Ti・Taの炭窒化物を
フェライト結晶粒界又は結晶亜粒界に析出させるとセメ
ンタイトと同様のピンニング効果が認められるととも
に、更にフェライト結晶粒界又は結晶亜粒界に超微細に
析出させたセメンタイト自体の熱的な安定性が増す事も
分かった。
On the other hand, the structure composed mainly of fine cementite or carbonitride phase cannot stably achieve the average grain size of the structure mainly composed of ferrite or bainite of 3 μm or less, and the growth of ferrite crystal grains is not achieved. They also found that suppression was essential. That is, fermentation can be effectively suppressed by pinning ferrite or bainite for the first time by depositing cementite of 0.5 μm or less at the ferrite crystal grain boundary or crystal sub-grain boundary.
Further, when Nb-Ti-Ta carbonitride of 0.5 μm or less is precipitated at the ferrite crystal grain boundary or crystal sub-grain boundary, the same pinning effect as cementite is recognized, and further, the ferrite crystal grain boundary or crystal sub-grain is observed. It has also been found that the thermal stability of cementite itself, which is ultrafinely precipitated in the field, increases.

【0035】他方、鋼の表層部又は鋼板の表・裏層部の
それぞれで超細粒組織の割合が鋼の径又は厚さの5%未
満では、長時間側の耐食性にばらつきがみられ顕著に改
善しない為に5%以上に限定した。超細粒組織の占める
割合が大きいほど耐食性が向上して好ましくその上限は
規定しないが、過度の増加は製造コストの上昇につなが
る。
On the other hand, when the ratio of the ultrafine grain structure is less than 5% of the diameter or thickness of the steel in each of the surface layer portion of the steel and the front and back layer portions of the steel plate, the corrosion resistance on the long-time side is remarkably varied. 5% or more in order to avoid improvement. The higher the proportion of the ultrafine grain structure is, the better the corrosion resistance is, and the upper limit is not preferably defined. However, an excessive increase leads to an increase in manufacturing cost.

【0036】上述の理由から、本発明の結晶組織は、鋼
の表層又は鋼板の表・裏層からそれぞれ鋼の径又は厚さ
の5%以上の領域における結晶粒界及び/又は結晶亜粒
界に0.5μm以下のセメンタイト相、及び/又はNb
・Ti・Taの炭窒化物相を有し、且つパーライト分率
が10%以下で、平均結晶粒径が3μm以下のフェライ
ト若しくはベーナイトを主体とする組織で構成される事
を要件とするものである。
For the above-mentioned reasons, the crystal structure of the present invention is obtained by forming a crystal grain boundary and / or a crystal sub-grain boundary in a region of not less than 5% of the diameter or thickness of the steel from the surface layer of the steel or the front and back layers of the steel sheet, respectively. 0.5 μm or less cementite phase and / or Nb
-It must have a structure mainly composed of ferrite or bainite having a Ti-Ta carbonitride phase, a pearlite fraction of 10% or less, and an average crystal grain size of 3 µm or less. is there.

【0037】次に、本発明で鋼の表層部又は鋼板の表・
裏層部における超微細粒組織を実現する製造方法を規定
する理由について述べる。
Next, in the present invention, the surface layer of steel or the surface of steel sheet
The reason for defining the manufacturing method for realizing the ultrafine grain structure in the back layer will be described.

【0038】本発明の鋼の素材又は鋼の再加熱時におけ
る加熱温度は、C及び/又はNb・Ti・Taの1種又
は2種以上を固溶させるためにAc3点以上に限定す
る。
The heating temperature at the time of reheating the steel material or steel of the present invention is limited to three or more Ac in order to dissolve one or more of C and / or Nb.Ti.Ta.

【0039】更に、Nb・Ti・Taの1種又は2種以
上を充分に固溶させるためには、加熱温度を1000℃
以上にする事が好ましく、また、加熱時におけるγ粒の
粗大化を防止する為には、加熱温度を1200℃以下と
する事が好ましい。
Further, in order to sufficiently dissolve one or more of Nb, Ti, and Ta, a heating temperature of 1000 ° C.
The heating temperature is preferably set to 1200 ° C. or lower in order to prevent the γ grains from becoming coarse during heating.

【0040】本発明の鋼の表層又は鋼板の表・裏層から
それぞれ鋼の径又は厚さの5%以上の領域において、フ
ェライト結晶粒界及び/又は結晶亜粒界に0.5μm以
下の超微細なセメンタイト及び/又はNb・Ti・Ta
の1種又は2種以上の炭窒化物を析出させるには、C及
び/又はNb・Ti・Taの1種又は2種以上を鋼中に
固溶させた状態で、当該表層又は表・裏層領域を3℃/
秒以上の冷却速度で冷却する事によって該成分を鋼中に
過飽和に固溶せしめ、その後、この冷却によっても温度
低下の少ない鋼の中心部の顕熱を利用して復熱させる過
程によりなされるものである。
In the region of 5% or more of the diameter or thickness of the steel from the surface layer of the steel of the present invention or the front and back layers of the steel sheet, respectively, a ferrite grain boundary and / or a crystal sub-grain boundary has a superfineness of 0.5 μm or less. Fine cementite and / or Nb-Ti-Ta
In order to precipitate one or two or more carbonitrides, one or two or more of C and / or Nb.Ti.Ta are dissolved in steel in a solid solution, and 3 ° C /
By cooling at a cooling rate of at least 2 seconds, the component is dissolved in the steel in a supersaturated manner, and thereafter, the process is performed by using the sensible heat of the central portion of the steel, which has a small temperature drop even by this cooling, to recover the temperature. Things.

【0041】本発明の鋼の表層又は鋼板の表・裏層から
それぞれ鋼の径又は厚さの5%以上の領域において、フ
ェライト又はベーナイトを主体とする組織の平均粒径を
3μm以下とするには、鋼又は鋼の素材をAc3点以上
に加熱した後、熱間加工の前又は途中で当該表層又は表
・裏層領域を3℃/秒以上の冷却速度でフェライト分率
が50%以上となる温度まで急冷し、その後、この冷却
によっても温度低下の少ない鋼の中心部の顕熱を利用し
て当該表層又は表・裏層領域を復熱させる過程で、(A
1点−150℃)以上の温度から熱間加工を開始又は
再開して、(Ac1点−50℃)〜Ac3点の範囲で熱間
加工を終了する事によってフェライトの回復・再結晶を
惹起せしめて結晶組織を超微細粒化し、更に当該表層又
は表・裏層領域をAc3点以上に復熱する事なく冷却す
るとともに、フェライト結晶粒界及び/又は結晶亜粒界
に析出する0.5μm以下の超微細なセメンタイト及び
/又はNb・Ti・Taの1種又は2種以上の炭窒化物
によるピンニングを効果的に活用し、その超微細粒組織
の成長を防止する事によってなされるものである。
In the region of 5% or more of the diameter or thickness of the steel from the surface layer of the steel of the present invention or the front and back layers of the steel plate, respectively, the average grain size of the structure mainly composed of ferrite or bainite is 3 μm or less. After heating a steel or a steel material to an Ac point of 3 or more, before or during hot working, the surface layer or the front and back layers are cooled at a rate of 3 ° C./sec or more, and the ferrite fraction is 50% or more. Quenched to a temperature at which the surface layer or the front / back layer region is re-heated by utilizing the sensible heat of the central portion of the steel, the temperature of which is small even by this cooling.
Recovery / recrystallization of ferrite by starting or restarting hot working from a temperature of c 1 point-150 ° C. or higher and ending hot working in the range of (Ac 1 point-50 ° C.) to Ac 3 points. To make the crystal structure ultra-fine, further cool the surface layer or the front / back layer region without reheating to three or more Ac points, and precipitate at the ferrite crystal grain boundary and / or crystal sub-grain boundary. This is achieved by effectively utilizing the pinning of one or more carbonitrides of ultrafine cementite of 0.5 μm or less and / or Nb · Ti · Ta to prevent the growth of the ultrafine grain structure. Things.

【0042】また、本発明の熱間加工の前又は途中にお
いて前記する表層又は表・裏層部をAr3点以下に冷却
し、その後、鋼内部の顕熱による復熱過程において、熱
間加工を実施すると、鋼の中心部では未再結晶温度域で
の加工となって、鋼の低温靭性は著しく向上する。
Further, before or during the hot working of the present invention, the above-mentioned surface layer or front / back layer portion is cooled to a point of Ar 3 or less, and then, in the recuperation process by sensible heat inside the steel, hot working is performed. Is carried out in the non-recrystallization temperature range at the center of the steel, and the low-temperature toughness of the steel is significantly improved.

【0043】本発明の熱間加工としては、圧延・押し出
し・引き抜き等の一般的な熱間加工を対象とする。ま
た、鋼の素材の寸法が大きく、加熱温度が1170℃以
上の高い温度になる場合や製品の低温靭性の要求が厳し
い場合には、Nb・Ti・Taの添加及び加熱後の制御
圧延の実施により、鋼の表層部又は鋼板の表・裏層部を
冷却する前に予め初期γ粒径を細かくする事が好まし
い。更に、鋼の加熱後に熱間加工を行わずに冷却する場
合には、低温加熱及びNb・Ti・Taの添加を行う事
により鋼の初期γ粒を細かくするか、若しくは予め初期
γ粒の細かな熱間加工半製品を使用するのが好ましい。
The hot working of the present invention is intended for general hot working such as rolling, extrusion and drawing. When the size of the steel material is large and the heating temperature is as high as 1170 ° C. or when the low temperature toughness of the product is strict, the addition of Nb, Ti, and Ta and the controlled rolling after heating are performed. Therefore, it is preferable to reduce the initial γ grain size before cooling the surface portion of the steel or the front and back layers of the steel plate. Further, in the case where the steel is cooled without being subjected to hot working after heating, the initial γ grains of the steel may be reduced by heating at a low temperature and adding Nb, Ti, and Ta, or the initial γ grains may be reduced in advance. It is preferable to use a hot-worked semi-finished product.

【0044】熱間圧延により、鋼の表層部又は鋼板の表
・裏層部を超微細粒化した後に、鋼又は鋼板中心部の顕
熱によってAc3点以上に復熱すると当該表層部を超微
細粒化した効果が損なわれるばかりでなく、フェライト
結晶粒界又は結晶亜粒界に微細析出させたセメンタイト
がγに再固溶してピンニング効果が失われてしまう。従
って、本発明では、熱間圧延後に、当該表層又は表・裏
層部がAc3点以上に復熱する事のないように、鋼の径
又は鋼板厚が18mm未満の場合には空冷を行い、それ
以上の径又は鋼板厚の場合には、2℃/秒以上の冷却速
度で加速冷却する事が好ましい。
After the surface layer portion of the steel or the front and back layers of the steel sheet is ultrafine-grained by hot rolling, when the steel or the steel sheet is returned to three or more Ac points by sensible heat at the center, the surface layer becomes superfine. Not only does the effect of fine graining be impaired, but also the cementite finely precipitated at the ferrite crystal grain boundary or crystal sub-grain boundary re-dissolves in γ to lose the pinning effect. Therefore, in the present invention, after hot rolling, so that the surface layer or the front and back layer portion does not reheat to more than Ac 3 points, if the diameter of the steel or the steel plate thickness is less than 18 mm, air cooling is performed When the diameter or the thickness of the steel sheet is larger than that, it is preferable to perform accelerated cooling at a cooling rate of 2 ° C./sec or more.

【0045】鋼又は鋼板を更に高強度化する為には、要
求強度レベルに応じて添加成分の調整、及び/又は熱間
加工の終了後にAc3点以上に復熱させる事なく、5℃
/秒以上の冷却速度で加速冷却又は直接焼き入れを実施
すればよい。
[0045] To further increase the strength of the steel or steel sheet, the strength required level adjustment additive components in accordance with, and / or after completion of the hot working without causing recuperation than Ac 3 point, 5 ° C.
Accelerated cooling or direct quenching may be performed at a cooling rate of at least / sec.

【0046】本発明では、熱間圧延後の加速冷却又は直
接焼き入れに引き続いて、更に通常の熱処理設備を用い
て鋼又は鋼板の焼戻しを行ってもよい。尚、TMCP設
備を用いた加速冷却やDQ設備を用いた直接焼き入れの
場合には、加速冷却又は直接焼き入れ時の水冷を途中停
止するオートテンパーで代替しても構わない。
In the present invention, subsequent to the accelerated cooling or the direct quenching after the hot rolling, the steel or the steel sheet may be further tempered using ordinary heat treatment equipment. In the case of accelerated cooling using a TMCP facility or direct quenching using a DQ facility, an auto-temper that stops water cooling during accelerated cooling or direct quenching may be used instead.

【0047】[0047]

【実施例】本発明の実施例を以下に示す。Embodiments of the present invention will be described below.

【0048】まず、表1に示す化学成分の鋼を溶製・鋳
造して得た鋼片を用いた。表1において、鋼A〜鋼Eが
本発明の成分及びその含有量を満足する本発明例であ
り、鋼FはC、Sが本発明の範囲から外れる比較例であ
る。
First, a steel slab obtained by melting and casting steel having the chemical components shown in Table 1 was used. In Table 1, steels A to E are examples of the present invention satisfying the components and contents of the present invention, and steel F is a comparative example in which C and S are out of the range of the present invention.

【0049】次に、表1に示す成分の鋼片を表2に示す
ような製造条件によって鋼板を製造した。表3に製造し
て得られた鋼板におけるα粒径(フェライト及び/又は
ベーナイトの粒径)、析出物寸法、耐食性評価結果を示
す。
Next, steel slabs having the components shown in Table 1 were manufactured under the manufacturing conditions shown in Table 2. Table 3 shows the α grain size (grain size of ferrite and / or bainite), precipitate size, and corrosion resistance evaluation results of the steel sheets produced and obtained.

【0050】表3において、A−1、B−1、C−1、
D−1、E−1が本発明例である。一方、表3におい
て、A−2は鋼板の熱間圧延途中で表層領域を冷却する
際に、その冷却速度が遅く鋼板内部の温度が高かった為
に、圧延終了後に表層領域がAc3点以上に復熱してし
まった比較例である。B−2は、熱間圧延途中での冷却
の際は、十分な冷却速度であったが、その冷却時間が短
くα分率が50%以上となる表層領域の厚さが鋼板の5
%未満と小さかった比較例である。C−2及びD−2
は、それぞれ熱間圧延途中での冷却を実施しなかったた
め、表層に細粒層の形成がなかった鋼板の比較例であ
り、E−2は熱間圧延途中での冷却が不十分で、圧延終
了温度が高かった鋼板の比較例である。最後にF−1は
本発明例のC−1と概ね同じ製造条件であるが、その主
要な成分であるC、Sが本発明の範囲から外れた比較例
である。
In Table 3, A-1, B-1, C-1,
D-1 and E-1 are examples of the present invention. Meanwhile, in Table 3, when A-2 is to cool the surface layer region in the middle hot-rolled steel plate, the because the cooling rate was high temperature inside slow steel sheet, the surface layer region Ac 3 point or more after the end of rolling This is a comparative example that has regained its temperature. B-2 had a sufficient cooling rate at the time of cooling during hot rolling, but the cooling time was short and the thickness of the surface layer region where the α fraction was 50% or more was 5%.
%. C-2 and D-2
Is a comparative example of a steel sheet having no fine grain layer formed on the surface layer because cooling was not performed during hot rolling, and E-2 was insufficiently cooled during hot rolling. It is a comparative example of the steel plate whose end temperature was high. Finally, F-1 is a comparative example in which the production conditions are almost the same as C-1 of the present invention, but the main components C and S are out of the scope of the present invention.

【0051】表3に、表2の製造条件で得られたそれぞ
れの鋼板の耐食性評価結果を示す。評価法としては、塩
水散布暴露試験、及び海水浸漬試験を行った。塩水散布
暴露試験は鋼板表層から採取した150mm長×50m
m幅×5mm厚さの試験片を屋外暴露し、5%NaCl
水溶液を一日一回噴霧器にて試験面に散布して、試験面
の腐食の発生に伴う板厚減、重量減を測定するものであ
る。暴露期間は3ヶ月と6ヶ月、それぞれの期間、各鋼
種、3試験片ずつ供試した。また、海水浸漬試験は海水
相当の3.5%NaClの50℃の水溶液に150mm
長×50mm幅×5mm厚さの試験片を浸漬し、腐食の
発生に伴う板厚減、重量減を測定するものである。浸漬
期間は1ヶ月と3ヶ月、それぞれの期間、各鋼種、3試
験片ずつ供試した。表3の結果はいずれの試験も3試験
片の平均値である。
Table 3 shows the results of evaluating the corrosion resistance of each steel sheet obtained under the manufacturing conditions shown in Table 2. As an evaluation method, a salt water spray exposure test and a seawater immersion test were performed. The salt water spray exposure test was 150 mm long x 50 m collected from the surface layer of the steel plate.
A test piece having a width of 5 m and a thickness of 5 mm was exposed outdoors to 5% NaCl.
The aqueous solution is sprayed on the test surface once a day using a sprayer, and the thickness loss and weight loss due to the corrosion of the test surface are measured. The exposure period was 3 months and 6 months. Each period, each steel type, and 3 test pieces were tested. In addition, the seawater immersion test was conducted by adding 150% aqueous solution of 3.5% NaCl equivalent to seawater at 50 ° C.
A test piece having a length of 50 mm, a width of 5 mm and a thickness of 5 mm is immersed in the test piece to measure a decrease in thickness and a decrease in weight due to occurrence of corrosion. The immersion period was one month and three months, and each period, each steel type, and three test pieces were tested. The results in Table 3 are the average values of three test pieces in each test.

【0052】表3に示される評価結果から、鋼A〜鋼E
のいずれの鋼板においても、本発明例であるA−1〜E
−1は、表層の組織が本発明の要件を満足しており、そ
の結果、比較例と比べて暴露試験、浸漬試験とも明らか
に耐食性に優れている。例えば本発明例のA−1におい
ては、表層のα粒、析出物ともに比較例のA−2と比べ
て半分以下のサイズであり、それに伴い腐食減量も半分
以下に改善されている。比較例のA−2はAc3点以上
に復熱した事によって微細化したα粒がγに逆変態する
とともに超微細析出したセメンタイトもγに再固溶する
結果、表層部のα粒・セメンタイトも粗大化するととも
にパーライト分率が10%以上となったものである。そ
れに対応して、鋼板表面に発生した腐食ピットは、A−
1よりA−2の方が大きく、且つ深い。
From the evaluation results shown in Table 3, the steels A to E
A-1 to E of the present invention examples
In the case of -1, the surface structure satisfies the requirements of the present invention, and as a result, the exposure test and the immersion test are clearly superior in corrosion resistance as compared with the comparative example. For example, in A-1 of the present invention, both α grains and precipitates in the surface layer are smaller than half the size of A-2 of the comparative example, and accordingly, the corrosion loss is improved to less than half. In the comparative example A-2, the α grains refined by reheating to the Ac3 point or more are inversely transformed into γ, and the cementite precipitated ultra-finely re-dissolves in γ. As a result, the α grains and cementite in the surface layer are also reduced. The pearlite fraction became 10% or more while coarsening. Correspondingly, corrosion pits generated on the steel sheet surface
A-2 is larger and deeper than 1.

【0053】また、Nb・Ti・Taを添加したB−
1、C−1ではフェライト結晶粒界及び結晶亜粒界にセ
メンタイト又は炭窒化物が極めて微細に析出してフェラ
イト若しくは一部ベーナイトの成長を効果的に抑制する
結果、その平均粒径も本発明例であるA−1に比べても
極めて安定しており、その結果、腐食ピットも更に微細
化し、腐食減量の点でも一段と優れる。一方、比較例の
B−2は仕上げ圧延前の圧延途中での冷却条件が不十分
で細粒層の厚さが5%未満と本発明に不足する為に、α
粒径・析出物寸法が本発明を満足せず耐食性は本発明例
よりも大きく劣っている。熱間圧延の途中で冷却を実施
しなかった比較例である鋼板C−2は当然の事ながら本
発明例よりもその特性が劣っている。同様の傾向は、D
−1とD−2、E−1とE−2の間にも認められた。
Also, B- to which Nb.Ti.Ta is added
In the case of C-1 and C-1, cementite or carbonitride precipitates extremely finely at the ferrite crystal grain boundary and the crystal sub-grain boundary to effectively suppress the growth of ferrite or partially bainite. It is extremely stable as compared with A-1 as an example, and as a result, corrosion pits are further miniaturized, and the corrosion loss is further improved. On the other hand, in Comparative Example B-2, the cooling conditions during the rolling before the finish rolling were insufficient, and the thickness of the fine grain layer was less than 5%, which was insufficient for the present invention.
The particle size and precipitate size do not satisfy the present invention, and the corrosion resistance is greatly inferior to the examples of the present invention. Steel sheet C-2, which is a comparative example in which cooling was not performed during hot rolling, is naturally inferior in characteristics to the example of the present invention. A similar trend is D
-1 and D-2, and between E-1 and E-2.

【0054】また、本発明例の要件を満たしているA−
1とB−1〜E−1を比較すると、鋼材成分にCu、N
i、Cr、及びCa、REM、Mgを添加したB−1〜
E−1の方が絶対的なレベルで耐食性に優れている。従
って、本発明の組織制御の適用により、通常の構造用鋼
ばかりでなく、Cu、Ni、Cr、及びCa、REM、
Mg等の従来から耐食性向上に効果のある合金元素を添
加した耐食構造用鋼の耐食性も大幅に向上できる事が判
る。
Further, A- which satisfies the requirements of the present invention example
1 and B-1 to E-1 show that the steel component is Cu, N
B-1 to which i, Cr, and Ca, REM, and Mg are added
E-1 is superior in corrosion resistance on an absolute level. Therefore, by applying the microstructure control of the present invention, Cu, Ni, Cr, and Ca, REM,
It can be seen that the corrosion resistance of the corrosion-resistant structural steel to which an alloying element, such as Mg, which has been conventionally effective in improving the corrosion resistance can be significantly improved.

【0055】最後に、本発明例の鋼A−2と概ね製造条
件が同じでありながら、C、Sが本発明例より高めに外
れている比較例のF−1は細粒層厚及びセメンタイト寸
法も本発明の条件を満足しているが、パーライト分率が
高く、且つ高Sの結果、耐食性が本発明例よりも劣って
いる。
Finally, while the production conditions were almost the same as those of the steel A-2 of the present invention, the comparative example F-1 in which C and S deviated higher than those of the present invention exhibited fine grain layer thickness and cementite. The dimensions also satisfy the conditions of the present invention, but the pearlite fraction is high, and the high S results in inferior corrosion resistance to the examples of the present invention.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【表2】 [Table 2]

【0058】[0058]

【表3】 [Table 3]

【0059】[0059]

【発明の効果】本発明は鋼の表層部又は鋼板の表・裏層
部の5%以上の領域におけるフェライト結晶粒界及び/
又は結晶亜粒界に0.5μm以下のセメンタイト又はN
b・Ti・Taの炭窒化物相を析出させて、当該領域の
平均粒径が安定して3μm以下のフェライト又はベーナ
イトを主体とする組織で構成させる事によって、海水な
ど、塩化物を含む水環境での構造用鋼(溶接用構造用鋼
を含む)の耐食性を向上可能ならしめた。これにより機
械部品又は鋼構造物の耐食性向上を、鋼材の化学成分面
だけでなく、鋼材組織の点からも可能とするものであ
る。更に、Cu、Ni等の高価な元素の多量の添加をし
なくても本発明により耐食性の向上が可能となり、産業
界が享受可能な経済的利益は多大なものがあると思料さ
れる。更に、本発明鋼の優れた機械的性質と相まって、
本発明は、腐食を起点とする腐食疲労、SCCに対して
も抵抗力の高い鋼材のベースとなるものである。
According to the present invention, a ferrite grain boundary and / or a region of 5% or more of the surface layer of steel or the front and back layers of steel sheet are obtained.
Alternatively, cementite or N of 0.5 μm or less
By depositing a carbonitride phase of b-Ti-Ta and forming a structure mainly composed of ferrite or bainite having a stable average particle size of 3 µm or less in the region, water containing chloride such as seawater can be obtained. The corrosion resistance of structural steel (including structural steel for welding) in the environment can be improved. This makes it possible to improve the corrosion resistance of mechanical parts or steel structures from the viewpoint of not only the chemical composition of the steel material but also the structure of the steel material. Furthermore, the present invention can improve the corrosion resistance without adding a large amount of expensive elements such as Cu and Ni, and it is considered that there is a great economic benefit that can be enjoyed by the industry. Furthermore, coupled with the excellent mechanical properties of the steel of the present invention,
The present invention is a base of a steel material having high resistance to corrosion fatigue and SCC caused by corrosion.

フロントページの続き (72)発明者 皆川 昌紀 大分市大字西ノ州1番地 新日本製鐵株式 会社大分製鐵所内 (72)発明者 石川 忠 大分市大字西ノ州1番地 新日本製鐵株式 会社大分製鐵所内 Fターム(参考) 4K032 AA01 AA02 AA04 AA05 AA08 AA11 AA12 AA14 AA15 AA16 AA17 AA19 AA20 AA22 AA23 AA24 AA27 AA29 AA31 AA32 AA33 AA35 AA36 CC03 CD05 CF01 Continuing from the front page (72) Inventor Masaki Minagawa 1 Oshino-shi, Oita-shi Nippon Steel Corporation In-house Oita Works (72) Inventor Tadashi Ishikawa 1-larger Nishinoshu Oita-shi Nippon Steel Corporation Oita Works F-term (reference)

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.04〜0.25%、
Si:0.01〜1.0%、Mn:0.3〜2.0%、
S:0.01%以下を含有し、残部鉄及び不可避的不純
物からなり、鋼の表層又は鋼板の表・裏層からそれぞれ
鋼の径又は厚さの5%以上の領域における結晶粒界及び
/又は結晶亜粒界に0.5μm以下のセメンタイト相を
有し、且つパーライト分率が10%以下で、平均結晶粒
径が3μm以下のフェライト若しくはベーナイトを主体
とする組織で構成される事を特徴とする耐食性に優れた
構造用鋼。
(1) C: 0.04 to 0.25% by weight,
Si: 0.01 to 1.0%, Mn: 0.3 to 2.0%,
S: 0.01% or less, the balance consisting of iron and unavoidable impurities, and from the surface layer of steel or the front and back layers of steel sheet, the crystal grain boundaries and / or in the region of 5% or more of the diameter or thickness of steel, respectively. Alternatively, it is characterized by having a cementite phase of 0.5 μm or less at the crystal subgrain boundaries, a structure of mainly ferrite or bainite having a pearlite fraction of 10% or less and an average crystal grain size of 3 μm or less. Structural steel with excellent corrosion resistance.
【請求項2】 重量%で、C:0.04〜0.25%、
Si:0.01〜1.0%、Mn:0.3〜2.0%、
S:0.01%以下、Al:0.005〜0.6%を含
有し、更に、Nb:0.005〜0.1%、Ti:0.
005〜0.05%、Ta:0.005〜0.05%の
1種又は2種以上を含有し、残部鉄及び不可避的不純物
からなり、鋼の表層又は鋼板の表・裏層からそれぞれ鋼
の径又は厚さの5%以上の領域における結晶粒界及び/
又は結晶亜粒界に0.5μm以下のセメンタイト相、及
び/又はNb・Ti・Taの炭窒化物相を有し、且つパ
ーライト分率が10%以下で、平均結晶粒径が3μm以
下のフェライト若しくはベーナイトを主体とする組織で
構成される事を特徴とする耐食性に優れた構造用鋼。
2. C: 0.04 to 0.25% by weight,
Si: 0.01 to 1.0%, Mn: 0.3 to 2.0%,
S: 0.01% or less, Al: 0.005 to 0.6%, Nb: 0.005 to 0.1%, Ti: 0.
005-0.05%, Ta: 0.005-0.05%, containing one or more kinds, the balance consisting of iron and unavoidable impurities. Grain boundaries in a region of 5% or more of the diameter or thickness of
Alternatively, a ferrite having a cementite phase of 0.5 μm or less and / or a carbonitride phase of Nb · Ti · Ta at a subgrain boundary and having a pearlite fraction of 10% or less and an average grain size of 3 μm or less. Alternatively, a structural steel having excellent corrosion resistance, characterized by being composed of a structure mainly composed of bainite.
【請求項3】 更に、重量%で、Cu:0.05〜1.
0%、Ni:0.1〜2.0%、Cr:0.03〜3.
0%、Mo:0.05〜1.0%、V:0.01〜0.
4%、B:0.0002〜0.002%、P:0.15
%以下の1種又は2種以上を含有する事を特徴とする請
求項1又は請求項2の何れかに記載の耐食性に優れた構
造用鋼。
3. The composition according to claim 1, further comprising: Cu: 0.05-1.
0%, Ni: 0.1 to 2.0%, Cr: 0.03 to 3.
0%, Mo: 0.05-1.0%, V: 0.01-0.
4%, B: 0.0002-0.002%, P: 0.15
The structural steel having excellent corrosion resistance according to claim 1, wherein the structural steel contains 1% or less of one or more kinds.
【請求項4】 更に、重量%で、Ca:0.0001〜
0.02%、Mg:0.0001〜0.02%、RE
M:0.001%〜0.2%の1種又は2種以上を含有
する事を特徴とする請求項1〜請求項3の何れか1つに
記載の耐食性に優れた構造用鋼。
4. Further, in terms of% by weight, Ca: 0.0001 to
0.02%, Mg: 0.0001-0.02%, RE
The structural steel excellent in corrosion resistance according to any one of claims 1 to 3, wherein one or more kinds of M: 0.001% to 0.2% are contained.
【請求項5】 重量%で、C:0.04〜0.25%、
Si:0.01〜1.0%、Mn:0.3〜2.0%、
S:0.01%以下を含有し、残部鉄及び不可避的不純
物からなる鋼又は鋼の素材をAc3点以上に加熱しCを
固溶させた後、熱間加工の前又は途中において、鋼の表
層又は鋼板の表・裏層からそれぞれ鋼の径又は厚さの5
%以上の領域を3℃/秒以上の冷却速度でフェライト分
率が50%以上となる温度まで急冷した後、当該表層又
は表・裏層領域を復熱させる過程において、(Ac1
−150)℃以上の温度で熱間加工を開始又は再開し
て、(Ac1点−50)℃〜(Ac3点)℃の温度範囲で
熱間加工を終了し、引き続いて当該表層又は表・裏層領
域をAc3点以上に復熱する前に冷却して、鋼の表層又
は鋼板の表・裏層からそれぞれ鋼の径又は厚さの5%以
上の領域における結晶粒界及び/又は結晶亜粒界に0.
5μm以下のセメンタイト相を有し、且つパーライト分
率が10%以下で、平均結晶粒径が3μm以下のフェラ
イト若しくはベーナイトを主体とする組織で構成される
事を特徴とする耐食性に優れた構造用鋼の製造方法。
5. C: 0.04 to 0.25% by weight,
Si: 0.01 to 1.0%, Mn: 0.3 to 2.0%,
S: A steel containing 0.01% or less, the balance consisting of iron and unavoidable impurities, or a steel material is heated to three or more Ac to form a solid solution with C, and then before or during hot working, Of the diameter or thickness of the steel from the surface layer of
% Or more at a cooling rate of 3 ° C./sec or more to a temperature at which the ferrite fraction becomes 50% or more, and then in the process of reheating the surface layer or the front and back layer regions, (Ac 1 point −150 ) The hot working is started or restarted at a temperature of ≧ ° C., the hot working is completed in a temperature range of (Ac 1 point −50) ° C. to (Ac 3 point) ° C., and subsequently the surface layer or the front and back surfaces The layer region is cooled before being reheated to three or more points of Ac, and from the surface layer of steel or the front and back layers of steel plate, the grain boundaries and / or subcrystals in the region of 5% or more of the diameter or thickness of steel, respectively. 0 at grain boundaries.
Structural material with excellent corrosion resistance, characterized by having a cementite phase of 5 μm or less, a pearlite fraction of 10% or less, and a structure mainly composed of ferrite or bainite having an average crystal grain size of 3 μm or less. Steel production method.
【請求項6】 重量%で、C:0.04〜0.25%、
Si:0.01〜1.0%、Mn:0.3〜2.0%、
S:0.01%以下、Al:0.005〜0.6%を含
有し、更に、Nb:0.005〜0.1%、Ti:0.
005〜0.05%、Ta:0.005〜0.05%の
1種又は2種以上を含有し、残部鉄及び不可避的不純物
からなる鋼又は鋼の素材をAc3点以上に加熱しC及び
Nb・Ti・Taの1種又は2種以上を固溶させた後、
熱間加工の前又は途中において、鋼の表層又は鋼板の表
・裏層からそれぞれ鋼の径又は厚さの5%以上の領域を
3℃/秒以上の冷却速度でフェライト分率が50%以上
となる温度まで急冷した後に、当該表層又は表・裏層領
域を復熱させる過程において、(Ac1点−150)℃
以上の温度で熱間加工を開始又は再開して、(Ac1
−50)℃〜Ac3点の温度範囲で熱間加工を終了し、
引き続いて当該表層又は表・裏層領域をAc3点以上に
復熱する前に冷却して、鋼の表層又は鋼板の表・裏層か
らそれぞれ鋼の径又は厚さの5%以上の領域における結
晶粒界及び/又は結晶亜粒界に0.5μm以下のセメン
タイト相、及び/又はNb・Ti・Taの炭窒化物相を
有し、且つパーライト分率が10%以下で、平均結晶粒
径が3μm以下のフェライト若しくはベーナイトを主体
とする組織で構成される事を特徴とする耐食性に優れた
構造用鋼の製造方法。
6. C: 0.04 to 0.25% by weight,
Si: 0.01 to 1.0%, Mn: 0.3 to 2.0%,
S: 0.01% or less, Al: 0.005 to 0.6%, Nb: 0.005 to 0.1%, Ti: 0.
A steel or a steel material containing one or more of 005-0.05% and Ta: 0.005-0.05%, and the balance consisting of iron and unavoidable impurities is heated to three or more Ac and C And one or more of Nb, Ti, and Ta are dissolved,
Before or during hot working, the area of 5% or more of the diameter or thickness of the steel from the surface layer of steel or the front and back layers of steel sheet, respectively, has a ferrite fraction of 50% or more at a cooling rate of 3 ° C / sec or more. After rapidly cooling to a temperature at which the surface layer or the front / back layer region is reheated, (Ac 1 point-150) ° C.
The hot working is started or restarted at the above temperature, and the hot working is completed in a temperature range of (Ac 1 point -50) ° C. to Ac 3 points,
Subsequently, the surface layer or the front / back layer region is cooled before being reheated to three or more points of Ac, and from the surface layer of the steel or the front / back layer of the steel plate, in the region of 5% or more of the diameter or thickness of the steel, respectively. Having a cementite phase of 0.5 μm or less and / or a carbonitride phase of Nb · Ti · Ta at a crystal grain boundary and / or a sub-grain boundary and having a pearlite fraction of 10% or less and an average crystal grain size Characterized by having a structure mainly composed of ferrite or bainite of 3 μm or less.
【請求項7】 熱間加工の終了後、引き続いて当該当該
表層又は表・裏層領域をAc3点以上に復熱させる前
に、冷却速度が5℃/秒以上で加速冷却又は直接焼き入
れする事を特徴とする請求項5又は請求項6の何れかに
記載の耐食性に優れた構造用鋼の製造方法。
7. After completion of hot working, before the surface layer or the front and back layer regions are reheated to three or more Ac points, accelerated cooling or direct quenching at a cooling rate of 5 ° C./sec or more. The method for producing a structural steel having excellent corrosion resistance according to any one of claims 5 and 6, characterized in that:
【請求項8】 加速冷却又は直接焼き入れ終了後に引き
続いて、焼戻しする事を特徴とする請求項7に記載の耐
食性に優れた構造用鋼の製造方法。
8. The method for producing a structural steel having excellent corrosion resistance according to claim 7, wherein tempering is performed after accelerated cooling or direct quenching is completed.
【請求項9】 更に、重量%で、Cu:0.05〜1.
0%、Ni:0.1〜2.0%、Cr:0.03〜3.
0%、Mo:0.05〜1.0%、V:0.01〜0.
4%、B:0.0002〜0.002%、P:0.15
%以下の1種又は2種以上を含有する事を特徴とする請
求項5〜請求項8の何れか1つに記載の耐食性に優れた
構造用鋼の製造方法。
9. Further, in weight%, Cu: 0.05-1.
0%, Ni: 0.1 to 2.0%, Cr: 0.03 to 3.
0%, Mo: 0.05-1.0%, V: 0.01-0.
4%, B: 0.0002-0.002%, P: 0.15
The method for producing a structural steel having excellent corrosion resistance according to any one of claims 5 to 8, wherein the steel contains at least one kind or two or more kinds.
【請求項10】 更に、重量%で、Ca:0.0001
〜0.02%、Mg:0.0001〜0.02%、RE
M:0.001%〜0.2%の1種又は2種以上を含有
する事を特徴とする請求項5〜請求項9の何れか1つに
記載の耐食性に優れた構造用鋼の製造方法。
10. The composition according to claim 1, further comprising:
-0.02%, Mg: 0.0001-0.02%, RE
The production of structural steel having excellent corrosion resistance according to any one of claims 5 to 9, wherein one or more of M: 0.001% to 0.2% is contained. Method.
JP31221998A 1998-11-02 1998-11-02 Steel excellent in corrosion resistance for structural purpose and its production Pending JP2000144309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31221998A JP2000144309A (en) 1998-11-02 1998-11-02 Steel excellent in corrosion resistance for structural purpose and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31221998A JP2000144309A (en) 1998-11-02 1998-11-02 Steel excellent in corrosion resistance for structural purpose and its production

Publications (1)

Publication Number Publication Date
JP2000144309A true JP2000144309A (en) 2000-05-26

Family

ID=18026632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31221998A Pending JP2000144309A (en) 1998-11-02 1998-11-02 Steel excellent in corrosion resistance for structural purpose and its production

Country Status (1)

Country Link
JP (1) JP2000144309A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197778A (en) * 2006-01-27 2007-08-09 Jfe Steel Kk High-strength steel material having low strength-dependency and superior fatigue-crack propagation resistance, and manufacturing method therefor
JP2007197777A (en) * 2006-01-27 2007-08-09 Jfe Steel Kk High-strength steel material superior in ductile-crack initiation resistance and fatigue-crack propagation resistance, and manufacturing method therefor
KR101439695B1 (en) 2012-12-27 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness
KR101439656B1 (en) 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness
CN112695243A (en) * 2020-12-01 2021-04-23 广西柳钢华创科技研发有限公司 Steel plate SM490B for welded structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197778A (en) * 2006-01-27 2007-08-09 Jfe Steel Kk High-strength steel material having low strength-dependency and superior fatigue-crack propagation resistance, and manufacturing method therefor
JP2007197777A (en) * 2006-01-27 2007-08-09 Jfe Steel Kk High-strength steel material superior in ductile-crack initiation resistance and fatigue-crack propagation resistance, and manufacturing method therefor
JP4645462B2 (en) * 2006-01-27 2011-03-09 Jfeスチール株式会社 A high-strength steel material excellent in fatigue crack propagation characteristics with low strength dependence and a method for producing the same.
JP4645461B2 (en) * 2006-01-27 2011-03-09 Jfeスチール株式会社 High-strength steel material excellent in ductile crack initiation characteristics and fatigue crack propagation characteristics and method for producing the same
KR101439656B1 (en) 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness
KR101439695B1 (en) 2012-12-27 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness
CN112695243A (en) * 2020-12-01 2021-04-23 广西柳钢华创科技研发有限公司 Steel plate SM490B for welded structure
CN112695243B (en) * 2020-12-01 2021-09-24 广西柳钢华创科技研发有限公司 Steel plate SM490B for welded structure

Similar Documents

Publication Publication Date Title
US5876521A (en) Ultra high strength, secondary hardening steels with superior toughness and weldability
EP2641987B1 (en) High-strength steel material having outstanding ultra-low-temperature toughness and a production method therefor
JP4767590B2 (en) Production method of low yield ratio high strength steel and low yield ratio high strength steel
JP5245259B2 (en) High strength steel sheet with excellent ductility and method for producing the same
KR20170107070A (en) A steel plate having high crack-controllability and a manufacturing method thereof
JP5741260B2 (en) Cryogenic steel material excellent in CTOD characteristics after imparting strain and method for producing the same
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
KR20120121811A (en) High strength steel sheet and method of manufacturing the steel sheet
JP4077167B2 (en) Steel plate with excellent arrest properties and its manufacturing method
JP4291480B2 (en) Structural steel with excellent corrosion resistance and corrosion fatigue resistance
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP2002020832A (en) High tensile strength steel excellent in high temperature strength and its production method
JP2002129281A (en) High tensile strength steel for welding structure excellent in fatigue resistance in weld zone and its production method
JP2000160245A (en) Production of high strength steel excellent in hic resistance
JP2000319752A (en) Steel for structural purpose excellent in corrosion resistance and its production
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP2004124113A (en) Non-water-cooled thin low yield ratio high tensile steel, and production method therefor
JP2000144309A (en) Steel excellent in corrosion resistance for structural purpose and its production
JP2002173734A (en) Steel having excellent weldability and its production method
JP2002003985A (en) High tensile steel excellent in strength at high temperature, and its manufacturing method
JP2002275576A (en) Low yield ratio steel for low temperature use and production method therefor
JP2001020035A (en) Steel for structural purpose excellent in corrosion resistance and corrosion fatigue resistance and its production
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JP3548461B2 (en) Structural steel excellent in corrosion resistance and corrosion fatigue resistance and method for producing the same
JP2001032035A (en) Structural steel excellent in corrosion resistance, and its manufacture