JP2002020832A - High tensile strength steel excellent in high temperature strength and its production method - Google Patents

High tensile strength steel excellent in high temperature strength and its production method

Info

Publication number
JP2002020832A
JP2002020832A JP2000201951A JP2000201951A JP2002020832A JP 2002020832 A JP2002020832 A JP 2002020832A JP 2000201951 A JP2000201951 A JP 2000201951A JP 2000201951 A JP2000201951 A JP 2000201951A JP 2002020832 A JP2002020832 A JP 2002020832A
Authority
JP
Japan
Prior art keywords
steel
temperature
strength
less
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000201951A
Other languages
Japanese (ja)
Other versions
JP4344073B2 (en
Inventor
Yoshiyuki Watabe
義之 渡部
Yoshio Terada
好男 寺田
Rikio Chijiiwa
力雄 千々岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000201951A priority Critical patent/JP4344073B2/en
Publication of JP2002020832A publication Critical patent/JP2002020832A/en
Application granted granted Critical
Publication of JP4344073B2 publication Critical patent/JP4344073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide high tensile strength steel excellent in high temperature strength and also good in weldability and toughness and to provide its production method. SOLUTION: This steel contains, as components, C, Si, Mn, Mo, Al, Nb, V and Ti, and the balance iron and, if required, contains Cu, Ni, Cr, Mg, Ca and rare earth metals. In its production method, after reheating at 1,000 to 1,250 deg.C, the cumulative draft at <=1,000 deg.C is controlled to >=30%, rolling is finished at >=750 deg.C, after that, air cooling or accelerated cooling from >=700 to <=600 deg.C is performed, or, subsequently to the hot rolling, normalizing or quenching is performed at Ac3 to 950 deg.C, and, if required, tempering is thereafter performed at <Ac1. For the purpose of reducing its yield ratio, the above steel sheet is reheated to a two phase coexistent region of α and γ of >Ac1 to <Ac3, is then cooled to <=600 deg.C by air cooling or at a cooling rate of that of air cooling or more and is, if required, further tempered at <Ac1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、耐震性の
観点からの低降伏比、高靭性と同時に、火災時の高温強
度を保証し得る建築用鋼などとしての要求に耐える高張
力鋼およびその製造方法に関するもので、鉄鋼業におい
ては厚板ミルへの適用が最も適している。なお、用途と
しては、建築分野のみならず、土木、海洋構造物、造
船、各種の貯槽タンクなどの一般的な溶接構造用鋼とし
て広範な用途に適用できる。
BACKGROUND OF THE INVENTION The present invention relates to a high-strength steel capable of withstanding a demand as a building steel or the like capable of guaranteeing a high yield strength at the time of a fire at the same time as a low yield ratio and a high toughness from the viewpoint of earthquake resistance. It is related to the production method, and is most suitable in the steel industry for a plate mill. It can be applied not only to the construction field but also to a wide range of applications as general welding structural steel such as civil engineering, marine structures, shipbuilding, and various storage tanks.

【0002】[0002]

【従来の技術】建築用鋼材は、弾性設計(許容応力度設
計)から、1981年6月に施行された新耐震設計基準
に基づく終局耐力設計への移行に伴い、低降伏比が求め
られている。低降伏比化を達成するため、一般に、鋼組
織の二相(Dual phase)化、すなわち、降伏
を支配する軟質相(通常、フェライト)と引張強さを確
保するための硬質相(パーライト、ベイナイト、マルテ
ンサイトなど)を形成させる方法が広く用いられてい
る。具体的には、制御圧延を含む熱間圧延後の鋼または
焼入後の鋼を、フェライトとオーステナイトの二相域温
度に再加熱して、フェライトとCが濃化されたオーステ
ナイトとし、その後空冷以上の冷速で冷却(、さらにそ
の後焼き戻し処理)する方法が特開平2−266378
号公報などに開示されている。このとき、成分的には、
C量が高いほど二相組織化が容易となるばかりでなく、
硬質相がより硬化し、低降伏比が容易となる。しかし、
高C化は、溶接性や低温靭性には不利になるという問題
があった。それに対し、低温靭性を改善するためには、
低C化や制御圧延が有効であるが、いずれも降伏比を上
昇させるため、低温靭性向上と低降伏比化とは相容れ
ず、両立が極めて困難であった。従来、建築用途では、
靭性要求レベルが低く、低降伏比化に有利な高C鋼でも
特に問題となることはなかったが、阪神大震災を契機と
した近年の耐震性能への要求の厳格化傾向には、必ずし
も十分に対応できないという問題があった。
2. Description of the Related Art With the shift from elastic design (allowable stress design) to ultimate strength design based on a new seismic design standard implemented in June 1981, low yield ratios are required for building steel materials. I have. In order to achieve a low yield ratio, generally, a dual phase (dual phase) of the steel structure is formed, that is, a soft phase (usually ferrite) that controls yield and a hard phase (pearlite, bainite) for securing tensile strength. , Martensite, etc.) are widely used. Specifically, the steel after hot rolling or quenching, including controlled rolling, is reheated to the two-phase temperature of ferrite and austenite to form austenite in which ferrite and C are concentrated, and then air-cooled. Japanese Patent Laid-Open No. 2-266378 discloses a method of cooling at the above-described cooling speed (and further tempering thereafter).
No., for example. At this time,
The higher the C content, the easier the two-phase organization becomes,
The hard phase hardens more and the low yield ratio becomes easy. But,
There is a problem that increasing the C content is disadvantageous for weldability and low-temperature toughness. On the other hand, in order to improve low temperature toughness,
Although reduction in C and controlled rolling are effective, they all increase the yield ratio, so that improvement in low-temperature toughness and reduction in yield ratio are incompatible, and it is extremely difficult to achieve both. Conventionally, for architectural applications,
Although the required level of toughness was low and there was no particular problem with high-C steel, which is advantageous for lowering the yield ratio, the demand for seismic performance in recent years following the Great Hanshin Earthquake was not sufficient. There was a problem that it could not be handled.

【0003】また、高温強度の保証を目的とした建築用
途でのいわゆる耐火鋼は、特開平2−77523号公報
他多くの公開公報で、含Mo鋼の製造方法が開示されて
いる。しかし、Moは鋼の焼き入れ性を顕著に高めると
ともに、Cとの相互作用が極めて強いために、材質変化
が製造条件の変動に敏感で、常温での強度−靭性バラン
スやそのばらつき、常温強度と高温強度のバランスを考
慮した場合、高温強度上は有効であるが、一般的な溶接
構造用鋼としては、多く添加されることはなかった。ま
た、Moの多量添加は、溶接性の顕著な劣化に加え、母
材および溶接部の靭性も著しく劣化させるため、高温強
度を向上させる目的であってもあまり多く添加されるこ
とはなかった。
As for so-called refractory steels for architectural use for the purpose of guaranteeing high-temperature strength, a method for producing Mo-containing steel is disclosed in Japanese Unexamined Patent Publication No. 2-77523 and many other publications. However, Mo remarkably enhances the hardenability of steel, and has an extremely strong interaction with C. Therefore, material changes are sensitive to changes in manufacturing conditions, and the strength-toughness balance at room temperature and its variation, and room temperature strength. In consideration of the balance between high-temperature strength and high-temperature strength, it is effective in terms of high-temperature strength, but was not added much as a general welded structural steel. Further, the addition of a large amount of Mo significantly deteriorates the toughness of the base material and the welded portion in addition to the remarkable deterioration of the weldability, so that the Mo was not added much even for the purpose of improving the high-temperature strength.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上述した従
来技術の問題点をクリアすべく、優れた高温強度ととも
に、靭性や溶接性にも優れる高張力鋼を得るため、比較
的多いMoと炭化物形成元素であるNb、V、Tiの1
種以上を複合添加した上で、溶接割れ感受性組成PCM
限定し、さらには製造方法を限定することで、上述した
複合特性を有する鋼、および該鋼を工業的に安定して供
給可能な方法を提供するものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems of the prior art, the present invention aims to obtain a high-strength steel having excellent high-temperature strength and excellent toughness and weldability. One of Nb, V and Ti which are carbide forming elements
More species in terms of the combined addition, even weld cracking susceptibility composition P CM limitation, further by limiting the manufacturing process, the steel having the above-described composite properties, and steel can be industrially stable supply of It provides a method.

【0005】[0005]

【課題を解決するための手段】本発明のポイントは、比
較的多いMoと炭(窒)化物形成元素であるNb、V、
Tiの1種以上を複合添加することで高温強度を安定し
て確保することを第一義とした上で、Mo多量添加によ
る溶接性の劣化や靭性の劣化を保証するため、C、S
i、Mnをはじめとする個々の合金元素量およびPCM
限定し、さらには製造条件を限定することで、優れた高
温強度と溶接性、靭性などの複合特性を両立し得ること
にある。
SUMMARY OF THE INVENTION The point of the present invention is that a relatively large amount of Mo and carbon (nitride) forming elements Nb, V,
The primary purpose is to stably secure high-temperature strength by adding one or more kinds of Ti in combination, and in order to guarantee the deterioration of weldability and toughness due to the addition of a large amount of Mo, C, S
i, limiting the individual amounts of alloying elements and P CM, including Mn, further by limiting the manufacturing conditions is to be compatible excellent high-temperature strength and weldability, the composite properties such as toughness.

【0006】そのために鋼成分をはじめ製造方法を本発
明の通り限定したものであるが、その要旨は以下に示す
通りである。
[0006] For this purpose, the manufacturing method including the steel component is limited according to the present invention, and the gist is as follows.

【0007】(1) 鋼成分が質量%で、C:0.03
〜0.15%、Si:0.6%以下、Mn:1.6%以
下、P:0.02%以下、S:0.01%以下、Mo:
0.7〜1.5%、Al:0.06%以下、N:0.0
06%以下、かつ、 [C−0.13Nb−0.24V−0.25(Ti−
3.4N)]/(0.063Mo) と定義する量が、0.5〜1.0の範囲を満足するよう
に、Nb:0.005〜0.1%、V:0.01〜0.
2%、Ti:0.005〜0.1%の範囲内で少なくと
も1種以上を含有し、さらに、 PCM=C+Si/30+Mn/20+Cu/20+Ni
/60+Cr/20+Mo/15+V/10+5B と定義する溶接割れ感受性組成PCMが0.25%以下
で、残部が鉄および不可避的不純物からなることを特徴
とする高温強度に優れた高張力鋼。
(1) The steel component is represented by mass% and C: 0.03
0.15%, Si: 0.6% or less, Mn: 1.6% or less, P: 0.02% or less, S: 0.01% or less, Mo:
0.7-1.5%, Al: 0.06% or less, N: 0.0
06% or less, and [C-0.13Nb-0.24V-0.25 (Ti-
Nb: 0.005 to 0.1%, V: 0.01 to 0 so that the amount defined as 3.4N)] / (0.063Mo) satisfies the range of 0.5 to 1.0. .
2%, Ti: at least one or more in the range of 0.005 to 0.1%, and P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni
/ 60 + Cr / 20 + Mo / 15 + V / 10 + 5B and definition to weld cracking susceptibility composition P CM is below 0.25%, a high tensile steel balance and excellent high-temperature strength, characterized in that it consists of iron and inevitable impurities.

【0008】(2) 上記鋼成分に加え、質量%で、C
u:0.05〜1.0%、Ni:0.05〜1.0%、
かつ、Cu添加量の1/2以上、Cr:0.05〜1.
0%、B:0.0002〜0.003%、Mg:0.0
002〜0.005%の範囲で1種または2種以上を含
有することを特徴とする上記(1)項に記載の高温強度
に優れた高張力鋼。
(2) In addition to the above steel components, C
u: 0.05 to 1.0%, Ni: 0.05 to 1.0%,
And 1 / or more of the addition amount of Cu, Cr: 0.05-1.
0%, B: 0.0002 to 0.003%, Mg: 0.0
High-tensile steel excellent in high-temperature strength according to the above item (1), wherein one or more kinds are contained in the range of 002 to 0.005%.

【0009】(3) 質量%で、Ca:0.0005〜
0.004%、REM:0.0005〜0.004%の
いずれか1種をさらに含有することを特徴とする上記
(1)または(2)項に記載の高温強度に優れた高張力
鋼。
(3) Ca: 0.0005 to 5% by mass
The high-tensile steel excellent in high-temperature strength according to the above item (1) or (2), further comprising any one of 0.004% and REM: 0.0005 to 0.004%.

【0010】(4) 上記(1)〜(3)項のいずれか
1項に記載の鋼成分からなる鋼片または鋳片を1000
〜1250℃の温度範囲に再加熱後、1000℃以下で
の累積圧下量を30%以上として750℃以上の温度で
圧延を終了し、その後放冷または700℃以上の温度か
ら放冷相当以上の冷速で600℃以下の任意の温度まで
加速冷却することを特徴とする高温強度に優れた高張力
鋼の製造方法。
(4) A slab or a slab made of the steel component according to any one of the above items (1) to (3) is
After reheating to a temperature range of 121250 ° C., rolling is completed at a temperature of 750 ° C. or higher with a cumulative rolling reduction at a temperature of 1000 ° C. or lower being 30% or more. A method for producing a high-strength steel excellent in high-temperature strength, wherein the high-temperature steel is accelerated to a desired temperature of 600 ° C. or less at a cooling rate.

【0011】(5) 上記(1)〜(3)項のいずれか
1項に記載の鋼成分からなる鋼片または鋳片を熱間圧延
後、Ac3以上950℃以下の温度で焼きならしするこ
とを特徴とする高温強度に優れた高張力鋼の製造方法。
(5) A steel slab or a slab comprising the steel component according to any one of the above items (1) to (3) is hot-rolled and then normalized at a temperature of from Ac 3 to 950 ° C. A method for producing a high-strength steel excellent in high-temperature strength.

【0012】(6) 上記(1)〜(3)項のいずれか
1項に記載の鋼成分からなる鋼片または鋳片を熱間圧延
後、Ac3以上950℃以下の温度に再加熱後、焼き入
れすることを特徴とする高温強度に優れた高張力鋼の製
造方法。
(6) After hot rolling a slab or a slab made of the steel component according to any one of the above (1) to (3), after reheating to a temperature of Ac 3 to 950 ° C. And a method for producing high-strength steel excellent in high-temperature strength, characterized by quenching.

【0013】(7) 強度調整や靭性改善、あるいは鋼
板の残留応力除去の目的で、鋼板をAc1未満の温度で
焼き戻しすることを特徴とする上記(4)〜(6)項の
いずれか1項に記載の高温強度に優れた高張力鋼の製造
方法。
(7) Any one of the above items (4) to (6), wherein the steel sheet is tempered at a temperature lower than Ac 1 for the purpose of adjusting strength, improving toughness, or removing residual stress of the steel sheet. 2. The method for producing a high-tensile steel having excellent high-temperature strength according to claim 1.

【0014】(8) 低降伏比化の目的で、鋼板をAc
1超Ac3未満のフェライトとオーステナイトの二相共存
域に再加熱後、放冷またはそれ以上の冷速で600℃以
下の温度まで冷却し、その後さらに必要に応じAc1
満の温度で焼き戻しすることを特徴とする上記(4)〜
(6)項のいずれか1項に記載の高温強度に優れた高張
力鋼の製造方法。
(8) For the purpose of lowering the yield ratio,
After reheating to the two-phase coexistence region of ferrite and austenite of more than 1 Ac 3 and less, it is allowed to cool to a temperature of 600 ° C. or less at a cooling rate of not less than 1 and then tempered at a temperature of less than Ac 1 if necessary. (4)-characterized in that
(6) The method for producing a high-tensile steel excellent in high-temperature strength according to any one of the above (6).

【0015】本発明によれば、低降伏比化の結果として
の大きな塑性変形能(建築用途などでは耐震性)はもち
ろん、火災時など高温にさらされる環境でも十分な耐力
を有し、また、靭性や溶接性にも優れた高張力鋼が大量
かつ安価に供給できるため、種々の用途の広範な溶接鋼
構造物の安全性向上に資することが可能となった。
According to the present invention, not only large plastic deformability as a result of lowering the yield ratio (earthquake resistance in architectural uses, etc.) but also sufficient strength in an environment exposed to high temperatures such as fires. Since high-tensile steel excellent in toughness and weldability can be supplied in large quantities and at low cost, it has become possible to contribute to improving the safety of a wide range of welded steel structures for various applications.

【0016】[0016]

【発明の実施の形態】以下に、本発明を詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0017】本発明が、請求項の通りに鋼組成および製
造方法を限定した理由について説明する。
The reason why the present invention limits the steel composition and the production method as described in the claims will be described.

【0018】Cは、鋼材の特性に最も顕著に効くもの
で、下限の0.03%は炭(窒)化物形成元素であるM
oおよびNb、V、Tiのうちの少なくとも1種を複合
添加する本発明において、析出物を生成せしめるための
最小量である。しかし、C量が多すぎると溶接性はもち
ろん、焼入性が必要以上に上がり、鋼材が本来有すべき
強度、靭性のバランスなどに悪影響を及ぼすため、上限
を0.15%とした。
C is most remarkably effective for the properties of steel materials. The lower limit of 0.03% is M, which is a carbon (nitride) forming element.
In the present invention in which o and at least one of Nb, V, and Ti are added in combination, this is the minimum amount for forming a precipitate. However, if the C content is too large, not only the weldability but also the hardenability will be increased more than necessary, and this will adversely affect the balance of strength and toughness that the steel material should originally have, so the upper limit was made 0.15%.

【0019】Siは、脱酸上鋼に含まれる元素である
が、多く添加すると溶接性、HAZ靭性が劣化するた
め、上限を0.6%に限定した。鋼の脱酸はTi、Al
のみでも十分可能であり、HAZ靭性、焼入性などの観
点から低いほど好ましく、必ずしも添加する必要はな
い。
Si is an element contained in the deoxidized upper steel, but if added in a large amount, the weldability and the HAZ toughness deteriorate, so the upper limit was limited to 0.6%. Deoxidation of steel is Ti, Al
Alone is sufficiently possible, and the lower the better, from the viewpoints of HAZ toughness, hardenability, etc., and it is not always necessary to add.

【0020】Mnは、母材の強度、靭性を確保する上で
不可欠な元素ではあるが、置換型の固溶強化元素である
Mnは、特に600℃超の高温強度にはあまり大きな改
善効果はなく、本発明のような比較的多量のMoを含有
する鋼において溶接性向上すなわち本発明でのPCM低減
の観点から1.6%以下に限定した。Mnの上限を低く
抑えることにより、連続鋳造スラブの中心偏析の点から
も有利となる。なお、下限については、特に限定しない
が、常温での母材の強度、靭性調整上、添加することが
望ましい。
Mn is an indispensable element for securing the strength and toughness of the base material. However, Mn, which is a substitution-type solid solution strengthening element, has a remarkably large effect of improving the high-temperature strength, particularly above 600 ° C. without were limited in terms of P CM reduced to less than 1.6% in weldability improvement that invention in steel containing a relatively large amount of Mo such as in the present invention. By keeping the upper limit of Mn low, it is advantageous also from the viewpoint of the center segregation of the continuously cast slab. The lower limit is not particularly limited, but is preferably added in order to adjust the strength and toughness of the base material at normal temperature.

【0021】Pは、本発明鋼においては不純物であり、
P量の低減はHAZにおける粒界破壊を減少させる傾向
があるため、少ないほど好ましい。含有量が多いと母
材、溶接部の低温靭性を劣化させるため上限を0.02
%とした。
P is an impurity in the steel of the present invention,
Since a reduction in the amount of P tends to reduce grain boundary fracture in HAZ, a smaller amount is more preferable. If the content is large, the low-temperature toughness of the base material and the welded portion is deteriorated, so the upper limit is 0.02.
%.

【0022】Sは、Pと同様本発明鋼においては不純物
であり、母材の低温靭性の観点からは少ないほど好まし
い。含有量が多いと母材、溶接部の低温靭性を劣化させ
るため上限を0.01%とした。
S, like P, is an impurity in the steel of the present invention, and is preferably as small as possible from the viewpoint of the low-temperature toughness of the base material. If the content is large, the low-temperature toughness of the base material and the welded portion is deteriorated, so the upper limit was made 0.01%.

【0023】Moは、鋼の高温強度を確保する上で必要
不可欠の元素で、本発明においては最も重要な元素の一
つである。600℃程度までの高温強度のみの考慮であ
れば、下限の緩和は可能であるが、600℃超の高温強
度(例えば700℃程度)の維持や後述する低降伏比化
のためのフェライト+オーステナイトの二相域熱処理お
よびその後必要に応じ焼き戻しを行ってもなお常温での
高強度、高靭性を確保するため、下限を0.7%とし
た。多すぎる添加は、母材材質の制御(ばらつきの制御
や靭性の劣化)が困難になるとともに、溶接性も劣化さ
せるため、1.5%以下に限定した。
Mo is an indispensable element for securing the high-temperature strength of steel, and is one of the most important elements in the present invention. If only high-temperature strength up to about 600 ° C. is considered, the lower limit can be relaxed. However, ferrite + austenite for maintaining high-temperature strength exceeding 600 ° C. (for example, about 700 ° C.) and lowering the yield ratio described below. In order to ensure high strength and high toughness at room temperature even after the two-phase region heat treatment and subsequent tempering as necessary, the lower limit is set to 0.7%. If the addition is too large, it becomes difficult to control the base material (control of variation and deterioration of toughness) and also deteriorates weldability.

【0024】Alは、一般に脱酸上鋼に含まれる元素で
あるが、脱酸はSiまたはTiだけでも十分であり、本
発明鋼においては、その下限は限定しない(0%を含
む)。しかし、Al量が多くなると鋼の清浄度が悪くな
るだけでなく、溶接金属の靭性が劣化するので上限を
0.06%とした。
Al is an element generally contained in the deoxidized upper steel, but deoxidation is sufficient with only Si or Ti. In the steel of the present invention, the lower limit is not limited (including 0%). However, when the amount of Al increases, not only the cleanliness of the steel deteriorates, but also the toughness of the weld metal deteriorates, so the upper limit was made 0.06%.

【0025】Nは、不可避的不純物として鋼中に含まれ
るものであるが、後述するTi、Nb、Vを少なくとも
1種以上添加する本発明鋼においては、TiNを形成し
て鋼の性質を高めたり、Nb、Vと結合して炭窒化物を
形成して強度を増加させる。このため、N量として最低
0.001%必要である。しかしながら、N量の増加は
HAZ靭性、溶接性に極めて有害であり、本発明鋼にお
いてはその上限は0.006%である。
N is contained in steel as an unavoidable impurity. However, in the steel of the present invention to which at least one of Ti, Nb and V is added as described later, TiN is formed to enhance the properties of the steel. Or, it combines with Nb and V to form a carbonitride and increases the strength. For this reason, at least 0.001% is required as the amount of N. However, an increase in the N content is extremely harmful to HAZ toughness and weldability, and the upper limit of the steel of the present invention is 0.006%.

【0026】本発明においては、上述した元素に加え、
質量%で [C−0.13Nb−0.24V−0.25(Ti−
3.4N)]/(0.063Mo) と定義する量が、0.5〜1.0の範囲を満足するよう
に、Nb、V、Tiのうち少なくとも1種以上を後述す
る範囲内での添加を必須とする。
In the present invention, in addition to the above-described elements,
[C-0.13Nb-0.24V-0.25 (Ti-
3.4N)] / (0.063Mo), so that at least one of Nb, V, and Ti within the range described below so that the amount defined as 0.5 / 1.0 satisfies the range of 0.5 to 1.0. Addition is mandatory.

【0027】上述した式の意味合いは、添加されたMo
が炭化物(Mo2C)として析出する比率を原子量に基
づき化学量論的に計算したもので、分子は、NbC、V
C、TiC(TiNとしてのTiの消費も考慮)として
消費された後のCの残量を示す。前記式の計算値が0.
5〜1.0とは、Moが計算上(化学量論的に)、50
〜100%がMo2Cとして析出することを意味する。
The implication of the above equation is that the added Mo
Is calculated stoichiometrically based on the atomic weight, the ratio of which precipitates as carbide (Mo 2 C), and the molecules are NbC, V
It shows the remaining amount of C after being consumed as C and TiC (considering the consumption of Ti as TiN). When the calculated value of the above equation is 0.
5 to 1.0 means that Mo is calculated (stoichiometrically) 50
It means that 100100% is precipitated as Mo 2 C.

【0028】すなわち、本発明が意図するところは、M
oが必要以上に固溶状態で存在することなく、計算上、
少なくとも50%以上がMo2Cとして析出するだけの
C量を確保することである。これは、600℃超の高温
下では、固溶体強化の寄与は小さく、析出物による析出
強化の方が寄与が大きいためである。
That is, the present invention intends that M
o does not exist in a solid solution state more than necessary,
The purpose is to ensure an amount of C sufficient for at least 50% or more to precipitate as Mo 2 C. This is because at a high temperature exceeding 600 ° C., the contribution of solid solution strengthening is small, and the contribution of precipitation strengthening by precipitates is greater.

【0029】Mo添加量に対し、化学量論的に過剰なC
は、焼き入れ性の増大やセメンタイトの生成量増加に伴
う靭性劣化などにも影響を及ぼすため、前記式でMo添
加量と化学量論的に等量となる1.0を上限とした。
The stoichiometric excess of C relative to the amount of Mo added
Has an upper limit of 1.0, which is stoichiometrically equivalent to the amount of Mo added in the above formula, since it affects the hardenability and the toughness degradation accompanying the increase in the amount of cementite produced.

【0030】以下、Nb、V、Tiの添加量の限定範囲
について説明する。これらはいずれも炭化物形成元素
で、Moとともに、これらの内の1種以上の添加は必須
である。
Hereinafter, the limited range of the added amounts of Nb, V, and Ti will be described. These are all carbide forming elements, and the addition of one or more of them is indispensable together with Mo.

【0031】Nbは、まず、一般的な効果として、オー
ステナイトの再結晶温度を上昇させ、熱間圧延時の制御
圧延の効果を最大限に発揮する上で有用な元素で、最低
0.005%の添加が必要である。また、圧延に先立つ
再加熱や焼きならしや焼き入れ時の加熱オーステナイト
の細粒化にも寄与する。さらに、析出硬化として強度向
上効果を有し、Moとの複合添加により高温強度向上に
も寄与する。しかし、過剰な添加は、溶接部の靭性劣化
を招くため上限を0.1%とした。なお、本発明におい
て必須元素であるMoにもオーステナイトの再結晶温度
を上昇させる効果があり、Nb添加は必ずしも必須では
ない。
Nb is a useful element for increasing the austenite recrystallization temperature as a general effect and maximizing the effect of the controlled rolling during hot rolling. Need to be added. It also contributes to reheating prior to rolling, fine graining of heated austenite during normalizing and quenching. Furthermore, it has an effect of improving strength as precipitation hardening, and contributes to improvement of high-temperature strength by addition of Mo. However, excessive addition causes toughness degradation of the welded portion, so the upper limit was made 0.1%. Note that Mo, which is an essential element in the present invention, also has the effect of increasing the recrystallization temperature of austenite, and the addition of Nb is not necessarily essential.

【0032】Vは、Nbとほぼ同様の作用を有するもの
であるが、Nbに比べてその効果は小さい。また、Vは
焼き入れ性にも影響を及ぼし、高温強度向上にも寄与す
る。Nbと同様の効果は0.01%未満では効果が少な
く、上限は0.2%まで許容できる。
V has almost the same effect as Nb, but its effect is smaller than that of Nb. V also affects the hardenability and contributes to the improvement in high-temperature strength. The effect similar to that of Nb is small when it is less than 0.01%, and the upper limit is acceptable up to 0.2%.

【0033】Tiは、母材および溶接部靭性に対する要
求が厳しい場合には、添加することが好ましい。なぜな
らばTiは、Al量が少ないとき(例えば0.003%
以下)、Oと結合してTi23を主成分とする析出物を
形成、粒内変態フェライト生成の核となり溶接部靭性を
向上させる。また、TiはNと結合してTiNとしてス
ラブ中に微細析出し、加熱時のγ粒の粗大化を抑え圧延
組織の細粒化に有効であり、また鋼板中に存在する微細
TiNは、溶接時に溶接熱影響部組織を細粒化するため
である。これらの効果を得るためには、Tiは最低0.
005%必要である。しかし多すぎるとTiCを多量に
形成し、低温靭性や溶接性を劣化させるので、その上限
は0.1%である。
It is preferable to add Ti when the requirements for the base metal and the weld toughness are severe. The reason for this is that when the amount of Al is small (for example, 0.003%
The following is combined with O to form a precipitate mainly composed of Ti 2 O 3, which serves as a nucleus for the formation of intragranular transformed ferrite and improves weld toughness. Further, Ti combines with N to form fine precipitates in the slab as TiN, which suppresses coarsening of γ grains during heating and is effective for reducing the rolling structure. Fine TiN present in the steel sheet is welded. This is because the structure of the heat affected zone is sometimes refined. In order to obtain these effects, Ti should be at least 0.1.
005% is required. However, if it is too large, a large amount of TiC is formed, and the low-temperature toughness and weldability are deteriorated. Therefore, the upper limit is 0.1%.

【0034】次に、必要に応じて含有することができる
Ni、Cu、Cr、B、Mgの添加理由について説明す
る。
Next, the reasons for adding Ni, Cu, Cr, B, and Mg, which can be contained as needed, will be described.

【0035】基本となる成分に、さらにこれらの元素を
添加する主たる目的は、本発明鋼の優れた特徴を損なう
ことなく、強度、靭性などの特性を向上させるためであ
る。したがって、その添加量は自ずと制限されるべき性
質のものである。
The main purpose of adding these elements to the basic components is to improve properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount added is of a nature that should be naturally restricted.

【0036】Niは、過剰に添加しなければ、溶接性、
HAZ靭性に悪影響を及ぼすことなく母材の強度、靭性
を向上させる。これら効果を発揮させるためには、少な
くとも0.05%以上の添加が必須である。一方、過剰
な添加は高価なだけでなく、溶接性に好ましくないた
め、上限を1.0%とした。なお、Cuを添加する場
合、熱間圧延時のCu−クラックを防止するため、前記
添加範囲を満足すると同時に、Cu添加量の1/2以上
とする必要がある。
If Ni is not excessively added, weldability,
Improves the strength and toughness of the base material without adversely affecting HAZ toughness. In order to exert these effects, it is essential to add at least 0.05% or more. On the other hand, excessive addition is not only expensive but also unfavorable for weldability, so the upper limit was made 1.0%. In addition, when adding Cu, in order to prevent Cu-crack at the time of hot rolling, it is necessary to satisfy the above-mentioned addition range and at the same time, make the addition amount of Cu equal to or more than の.

【0037】Cuは、Niとほぼ同様の効果、現象を示
し、上限の1.0%は溶接性劣化に加え、過剰な添加は
熱間圧延時にCu−クラックが発生し製造困難となるた
め規制される。下限は実質的な効果が得られるための最
小量とすべきで0.05%である。これは後述するCr
についても同様である。
Cu exhibits almost the same effects and phenomena as Ni. The upper limit of 1.0% is not only deteriorated in weldability, but excessive addition causes Cu-cracks to occur during hot rolling, which makes production difficult. Is done. The lower limit should be 0.05%, which should be the minimum for a substantial effect to be obtained. This is the Cr
The same applies to.

【0038】Crは、母材の強度、靭性をともに向上さ
せるため、0.05%以上添加する。しかし、添加量が
多すぎると母材、溶接部の靭性および溶接性を劣化させ
るため、上限を1.0%とした。
Cr is added in an amount of 0.05% or more in order to improve both the strength and the toughness of the base material. However, if the added amount is too large, the toughness and weldability of the base material and the welded portion are deteriorated, so the upper limit was made 1.0%.

【0039】上記、Cu、Ni、Crは、母材の強度、
靭性上の観点のみならず、耐候性にも有効であり、その
ような目的においては、溶接性を損ねない範囲で添加す
ることが好ましい。
The above Cu, Ni and Cr are the strengths of the base material,
It is effective not only in terms of toughness but also in weather resistance, and for such a purpose, it is preferable to add in a range that does not impair weldability.

【0040】Bは、オーステナイト粒界に偏析し、フェ
ライトの生成を抑制することを介して、焼入性を向上さ
せ、強度向上に寄与する。この効果を享受するため、最
低0.0002%以上必要である。しかし、多すぎる添
加は焼入性向上効果が飽和するだけでなく、靭性上有害
となるB析出物を形成する可能性もあるため、上限を
0.003%とした。なお、タンク用鋼などとして、応
力腐食割れが懸念されるケースでは、母材および溶接熱
影響部の硬さの低減がポイントとなることが多く(例え
ば、硫化物応力腐食割れ(SCC)防止のためにはHR
C≦22(HV≦248)が必須とされる)、そのよう
なケースでは焼入性を増大させるB添加は好ましくな
い。
B segregates at austenite grain boundaries and suppresses the formation of ferrite, thereby improving hardenability and contributing to strength improvement. To enjoy this effect, at least 0.0002% is required. However, too much addition not only saturates the effect of improving hardenability but also may form B precipitates that are harmful to toughness, so the upper limit was made 0.003%. In addition, in cases where stress corrosion cracking is a concern as steel for tanks, reduction of the hardness of the base metal and the weld heat affected zone is often the point (for example, to prevent sulfide stress corrosion cracking (SCC)). HR for
C ≦ 22 (HV ≦ 248) is essential. In such a case, the addition of B which increases the hardenability is not preferable.

【0041】Mgは、溶接熱影響部においてオーステナ
イト粒の成長を抑制し、細粒化する作用があり、溶接部
の強靭化が図れる。このような効果を享受するために
は、Mgは0.0002%以上必要である。一方、添加
量が増えると添加量に対する効果代が小さくなるため、
コスト上得策ではないので上限は0.005%とした。
Mg has the effect of suppressing the growth of austenite grains in the heat affected zone and reducing the size of the austenitic grains, thereby toughening the weld. In order to enjoy such effects, Mg needs to be 0.0002% or more. On the other hand, as the addition amount increases, the effect cost on the addition amount decreases,
The upper limit is set to 0.005% because it is not advantageous in terms of cost.

【0042】さらに、CaおよびREMは、MnSの形
態を制御し、母材の低温靭性を向上させるほか、湿潤硫
化水素環境下での水素誘起割れ(HIC、SSC、SO
HIC)感受性を低減させる。これらの効果を発揮する
ためには、最低0.0005%必要である。しかし、多
すぎる添加は、鋼の清浄度を逆に高め、母材靭性や湿潤
硫化水素環境下での水素誘起割れ(HIC、SSC、S
OHIC)感受性を高めため、添加量の上限は0.00
4%に限定した。CaとREMは、ほぼ同等の効果を有
するため、いずれか1種を上記範囲で添加すればよい。
Further, Ca and REM control the morphology of MnS, improve the low-temperature toughness of the base material, and also cause hydrogen-induced cracking (HIC, SSC, SOC) in a wet hydrogen sulfide environment.
HIC) reduces susceptibility. To achieve these effects, a minimum of 0.0005% is required. However, too much addition will conversely increase the cleanliness of the steel, increase base metal toughness and hydrogen-induced cracking in wet hydrogen sulfide environments (HIC, SSC, SSC).
OHIC) To increase the sensitivity, the upper limit of the amount added is 0.00
Limited to 4%. Since Ca and REM have almost the same effect, one of them may be added in the above range.

【0043】鋼の個々の成分を限定しても、成分系全体
が適切でないと優れた特性は得られない。このため、P
CMの値を0.25%以下に限定する。PCMは溶接性を表
す指標で、低いほど溶接性は良好である。本発明鋼にお
いては、PCMが0.25%以下であれば優れた溶接性の
確保が可能である。なお、溶接割れ感受性組成PCMは以
下の式により定義する。
Even if the individual components of the steel are limited, excellent properties cannot be obtained unless the entire component system is appropriate. Therefore, P
Limit the value of CM to 0.25% or less. P CM is a indicator of the weldability, the lower the weldability is good. In the present invention steels, it is possible to ensure excellent weldability if P CM is 0.25% or less. Incidentally, the welding crack sensitivity composition P CM is defined by the following equation.

【0044】PCM=C+Si/30+Mn/20+Cu
/20+Ni/60+Cr/20+Mo/15+V/1
0+5B
P CM = C + Si / 30 + Mn / 20 + Cu
/ 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 1
0 + 5B

【0045】次に、本発明の請求項4以下に規定する製
造条件およびその限定理由について説明する。
Next, the manufacturing conditions defined in claim 4 of the present invention and the reasons for limiting them will be described.

【0046】前記の通り限定した成分で、目的、用途に
応じ種々の製造方法を採ることができる。
As described above, various production methods can be employed depending on the purpose and use of the limited components.

【0047】まず、本発明の請求項4にかかる圧延まま
で製造する方法について説明する。圧延に先立つ加熱温
度を1000〜1250℃に限定した理由は、加熱時の
オーステナイト粒を小さく保ち、圧延組織の微細化を図
るためである。1250℃は加熱時のオーステナイトが
極端に粗大化しない上限温度であり、加熱温度がこれを
超えるとオーステナイト粒が粗大混粒化し、変態後の組
織も粗大化するため鋼の靭性が著しく劣化する。
First, a method for producing the as-rolled product according to claim 4 of the present invention will be described. The reason for limiting the heating temperature prior to rolling to 1000 to 1250 ° C. is to keep the austenite grains small during heating and to achieve a finer rolling structure. 1250 ° C. is the upper limit temperature at which austenite during heating does not become extremely coarse. If the heating temperature exceeds this temperature, austenite grains are coarsely mixed and the structure after transformation is also coarse, so that the toughness of steel is significantly deteriorated.

【0048】一方、加熱温度が低すぎると、後述する圧
延終了温度(750℃以上)の確保が困難となるばかり
でなく、Nbを添加した場合、オーステナイトの再結晶
温度を上昇させ、熱間圧延時の制御圧延の効果を最大限
に発揮させたり、析出硬化を発現させるためのNbの溶
体化の観点から下限を1000℃に限定した。
On the other hand, if the heating temperature is too low, not only is it difficult to secure the rolling end temperature (750 ° C. or higher) described later, but also if Nb is added, the recrystallization temperature of austenite is increased and hot rolling is performed. The lower limit was limited to 1000 ° C. from the viewpoint of solutionizing Nb for maximizing the effect of controlled rolling at the time and for exhibiting precipitation hardening.

【0049】なお、Nbを添加しない場合は、その溶体
化を考慮する必要がないため、加熱オーステナイトを必
要以上に粗大化させない観点から1150℃以下の温度
で加熱することが好ましい。
When Nb is not added, since it is not necessary to consider the solution, it is preferable to heat the austenite at a temperature of 1150 ° C. or less from the viewpoint of preventing the austenite from being excessively coarsened.

【0050】前記温度範囲に再加熱した鋳片または鋼片
を、圧延では1000℃以下での累積圧下量を30%以
上として750℃以上で熱間圧延を終了する必要があ
る。1000℃以下での累積圧下量が少ない場合、Mo
を比較的多く添加する本発明成分においても圧延オース
テナイトの細粒化が不十分となり、靭性確保が困難なた
めである。
In the rolling of a slab or a slab reheated to the above temperature range, it is necessary to end the hot rolling at 750 ° C. or higher with the cumulative reduction at 1000 ° C. or lower being 30% or more. If the cumulative rolling reduction below 1000 ° C is small, Mo
This is because, even in the component of the present invention to which a relatively large amount of is added, grain refinement of rolled austenite becomes insufficient, and it is difficult to secure toughness.

【0051】また、圧延終了温度が750℃を下回る
と、変態が一部開始する可能性が高まり、最終組織に加
工(圧延)組織を残す恐れがあり、靭性上好ましくない
ばかりでなく、降伏比の上昇を招き、建築用途などとし
て低降伏比が求められた場合、圧延ままでは製造が困難
となるため、圧延終了温度は750℃以上に限定する。
If the temperature at the end of rolling is lower than 750 ° C., there is a high possibility that transformation will partially start, and there is a possibility that a worked (rolled) structure may be left in the final structure, which is not only unfavorable in toughness but also yield ratio. When a low yield ratio is required for building applications or the like, it becomes difficult to manufacture the as-rolled product, so the rolling end temperature is limited to 750 ° C. or higher.

【0052】圧延後は、放冷または700℃以上の温度
から放冷相当以上の冷速で600℃以下の任意の温度ま
で加速冷却する。放冷あるいは加速冷却などの冷却条件
は、目的とする強度、靭性レベルにより自ずと変えるべ
き性質のものであり、強度と靭性を同時に向上させ、よ
り高強度、高靭性を得る目的では放冷よりも微細組織が
得られる加速冷却の適用が好ましい。
After the rolling, the steel sheet is cooled or accelerated from a temperature of 700 ° C. or more to an arbitrary temperature of 600 ° C. or less at a cooling speed equivalent to the cooling. Cooling conditions such as cooling or accelerated cooling are properties that should be changed naturally depending on the intended strength and toughness level.For the purpose of simultaneously improving strength and toughness and obtaining higher strength and high toughness, cooling Preferred is the application of accelerated cooling to obtain a fine structure.

【0053】加速冷却停止温度は、600℃超の温度で
は変態進行の初期段階での加速冷却の効果が十分に得ら
れないため、600℃以下とした。600℃以下であれ
ば、加速冷却停止温度は任意の温度とすることが可能で
あるが、比較的高温(例えば400℃以上)で停止した
場合、その後の放冷が実質上の焼き戻しとなり、強度調
整や靭性改善、あるいは鋼板の残留応力除去などの目的
での焼き戻しを省略することも可能である。
The accelerated cooling stop temperature is set to 600 ° C. or less because the effect of accelerated cooling at the initial stage of transformation progress cannot be sufficiently obtained at a temperature exceeding 600 ° C. If the temperature is 600 ° C. or lower, the accelerated cooling stop temperature can be set to any temperature. However, if the temperature is stopped at a relatively high temperature (for example, 400 ° C. or higher), the subsequent cooling is substantially tempering, Tempering for the purpose of adjusting the strength, improving the toughness, or removing the residual stress of the steel plate can be omitted.

【0054】なお、材質の要求レベルが高くない低グレ
ードの鋼材では、放冷であっても十分な材質が得られ、
製造容易性、コストの面からも好ましい。
In the case of a low-grade steel material, which does not require a high level of material, a sufficient material can be obtained even when it is left to cool.
It is also preferable from the viewpoint of manufacturability and cost.

【0055】なお、加速冷却時の冷速は、鋼成分や意図
する材質(強度、靭性)レベルによっても変わるため一
概には言えないが、板厚1/4厚位置の加速冷却開始温
度から停止温度までの平均冷速で、少なくとも3℃/秒
以上とすることが望ましい。
The cooling speed during the accelerated cooling cannot be unconditionally determined because it varies depending on the steel composition and the intended material (strength, toughness) level. It is desirable that the average cooling rate up to the temperature be at least 3 ° C./sec or more.

【0056】次に、本発明の請求項5〜6にかかる焼き
ならしまたは焼き入れにより製造する方法について説明
する。
Next, a method for manufacturing by normalizing or quenching according to claims 5 to 6 of the present invention will be described.

【0057】本発明が限定する成分を有する鋼を熱間圧
延後、用途や鋼材規格上の制約などにより、焼きならし
または焼き入れを行っても、本発明鋼材の優れた特性を
損なうものではない。むしろ、鋼材の組織や結果として
材質が均質化するため、目的によっては好ましい方法で
ある。
Even if normalizing or quenching is performed after the hot rolling of the steel having the components defined by the present invention due to the use and the restrictions on the specifications of the steel, the excellent properties of the steel of the present invention are not impaired. Absent. Rather, it is a preferable method depending on the purpose because the structure of the steel material and the resulting material are homogenized.

【0058】ただし、この場合でも、組織の微細化が鋼
材の強度、靭性を同時に向上させるポイントの一つであ
るため、前記焼きならしあるいは焼き入れ温度はAc3
以上950℃以下の温度とする必要がある。下限は、そ
の焼きならしあるいは焼き入れの定義上、オーステナイ
ト単相域への加熱が必須であること、また上限は、再加
熱時のオーステナイト粒径を必要以上に大きくしないた
めである。
However, even in this case, since the refinement of the structure is one of the points for simultaneously improving the strength and toughness of the steel material, the normalizing or quenching temperature is set to Ac 3.
It is necessary to set the temperature to at least 950 ° C. The lower limit is that heating to the austenite single phase region is essential in the definition of normalizing or quenching, and the upper limit is that the austenite grain size during reheating is not unnecessarily increased.

【0059】上述した種々の製造方法で製造された鋼板
は、その後、Ac1未満の温度で焼き戻ししても、本発
明の優れた特性はいささかも損なわれるものではない。
むしろ、強度調整や脆化組織であるマルテンサイトなど
の低温変態生成組織の分解による靭性改善、あるいは鋼
板の残留応力除去などの目的で焼き戻しを行うことが好
ましい場合もある。また、Nb、V、Cuなどの析出硬
化効果を有する元素を添加した場合には、焼き戻し処理
により、析出物の微細析出が促進され、析出硬化現象を
より一層発現させることができる。
[0059] steel sheet is manufactured by various manufacturing methods described above, then, even if tempering at a temperature of less than Ac 1, excellent properties of the present invention is not intended to somewhat also be impaired.
Rather, in some cases, it is preferable to perform tempering for the purpose of adjusting the strength, improving the toughness by decomposing a low-temperature transformation generation structure such as martensite, which is an embrittlement structure, or removing residual stress from a steel sheet. When an element having a precipitation hardening effect, such as Nb, V, or Cu, is added, fine precipitation of precipitates is promoted by the tempering treatment, and the precipitation hardening phenomenon can be further exhibited.

【0060】最後に、本発明の請求項8にかかるオース
テナイト+フェライト二相共存域での熱処理を適用する
製造方法について説明する。
Finally, a description will be given of a manufacturing method for applying a heat treatment in the austenite + ferrite two-phase coexistence region according to claim 8 of the present invention.

【0061】オーステナイト+フェライト二相共存域で
の熱処理は、本発明鋼を例えば建築分野に適用する用途
などにおいて、耐震性の観点から低降伏比が要求された
場合に適用するものである。オーステナイト+フェライ
ト二相共存域での熱処理の冶金的意味合いは、Cを排出
した未変態フェライトとCが濃化された逆変態オーステ
ナイトとに分離し、後者は冷却過程で再変態させて硬化
組織を得、前者の実質的な高温焼き戻しによる軟化組織
とにより低降伏比を達成するものである。
The heat treatment in the austenite + ferrite two-phase coexistence region is applied when a low yield ratio is required from the viewpoint of seismic resistance, for example, when the steel of the present invention is applied to the field of construction. The metallurgical implications of heat treatment in the coexistence region of austenite + ferrite are that the untransformed ferrite that discharges C and the reverse transformed austenite that is enriched in C are separated, and the latter is re-transformed in the cooling process to reduce the hardened structure. In addition, a low yield ratio is achieved by the former softened structure by substantially high-temperature tempering.

【0062】本発明においては、C量はMo、Nb、
V、Tiなど炭化物形成元素の添加量と化学量論的に等
量以下としており、計算上は変態などに寄与する実質的
なC量はほとんどないが、実際にはセメンタイトも析出
しており、それらの固溶などにより逆変態オーステナイ
トへのC濃化現象が見られる。
In the present invention, the amount of C is Mo, Nb,
V and Ti are stoichiometrically equal to or less than the added amount of carbide forming elements such as Ti, and the calculation shows that there is almost no substantial C amount contributing to transformation, but actually, cementite is also precipitated, Due to their solid solution and the like, a C enrichment phenomenon to reverse transformed austenite is observed.

【0063】熱処理時の加熱温度は、オーステナイトと
フェライトの構成比率に関わり、鋼成分や目的とする降
伏比のレベルに応じて変わるべき性質のものである。
The heating temperature at the time of the heat treatment is related to the composition ratio of austenite and ferrite, and has a property that should be changed according to the steel component and the target level of the yield ratio.

【0064】冷却時の冷速は、同様に鋼成分や目的とす
る強度レベルなどに応じて放冷またはそれ以上の冷速と
することができる。放冷を超える冷速、いわゆる加速冷
却は、600℃以下の温度まで行えばよく、その理由
は、上述した圧延後の加速冷却の際と同様である。これ
らは、さらに必要に応じ、Ac1未満の温度で焼き戻し
を行ってもよく、その理由も上述したものと同様であ
る。
The cooling speed at the time of cooling can be naturally cooled or a higher cooling speed depending on the steel composition and the desired strength level. The cooling speed exceeding the cooling, that is, the accelerated cooling, may be performed up to a temperature of 600 ° C. or less, for the same reason as the accelerated cooling after the above-described rolling. These may be tempered at a temperature lower than Ac 1 if necessary, for the same reason as described above.

【0065】なお、この二相共存域熱処理に先立つ前組
織は、熱処理後の機械的性質に若干の影響を及ぼすが、
本発明においては、強度、靭性レベルや用途などの目的
に応じて任意に選択すればよく、特に規定するものでは
ない。
The structure before the heat treatment in the two-phase coexistence zone slightly affects the mechanical properties after the heat treatment.
In the present invention, it may be arbitrarily selected according to the purpose such as strength, toughness level and application, and is not particularly limited.

【0066】[0066]

【実施例】転炉−連続鋳造−厚板工程で種々の鋼成分の
鋼板(厚さ20〜100mm)を製造し、その強度、降
伏比(YR)、靭性、600℃における降伏強さおよび
溶接性(斜めy形溶接割れ試験)を調査した。
EXAMPLE A steel plate (thickness: 20 to 100 mm) of various steel components was manufactured in a converter-continuous casting-thick plate process, and its strength, yield ratio (YR), toughness, yield strength at 600 ° C, and welding were performed. Properties (oblique y-shaped weld cracking test) were investigated.

【0067】表1に比較鋼とともに本発明鋼の鋼成分
を、表2に鋼板の製造条件および諸特性の調査結果を示
す。
Table 1 shows the steel composition of the steel of the present invention together with the comparative steel, and Table 2 shows the results of investigations on the manufacturing conditions and various properties of the steel sheet.

【0068】[0068]

【表1】 [Table 1]

【0069】[0069]

【表2】 [Table 2]

【0070】本発明法に則った成分、組織および製造方
法による鋼板(本発明鋼)は、すべて良好な特性を有す
る。これに対し、本発明の限定範囲を逸脱する比較鋼
は、靭性や高温YSが劣り、PCMが高い鋼では室温での
y割れ試験によりルート割れが発生している。また、特
に、比較例24では、Cu添加量に対してNi添加量が
低いため、熱間圧延時にクラックが生じ、製造が困難と
なった。さらに、比較例26では、Mo添加量が高いた
めに、PCMは本発明の限定範囲内であるが、室温でのy
割れ試験によりルート割れが発生した。
The steel sheets (the steels of the present invention) having the components, structures and manufacturing methods according to the present invention all have good properties. In contrast, the comparative steels departing from the limiting scope of the present invention is inferior in toughness and high-temperature YS, root cracking is generated by y crack test at room temperature with P CM high steel. Particularly, in Comparative Example 24, since the amount of Ni added was lower than the amount of Cu added, cracks occurred during hot rolling, making production difficult. In Comparative Example 26, since the added amount of Mo is high, P CM While it is within the limited range of the present invention, y at room temperature
A root crack was generated by the crack test.

【0071】[0071]

【発明の効果】本発明により、溶接性や靭性、また製造
方法によっては低降伏比をも同時に達成する高温強度に
優れた鋼の提供が可能となった。その結果、溶接鋼構造
物としての各種用途向けに高温強度はもとより、溶接性
や靭性にも優れた高張力鋼、あるいはさらに耐震性能に
も優れた建築用耐火鋼として、大量かつ安価に供給でき
るようになった。このような鋼材を用いることにより、
火災時などの高温での強度を維持し、さらに溶接性や靭
性にも優れ、建築用鋼としては低降伏比も達成されてい
るため、各種の溶接鋼構造物の安全性を一段と向上させ
ることが可能となった。
According to the present invention, it has become possible to provide a steel having excellent high-temperature strength, which simultaneously achieves a low yield ratio depending on the weldability and toughness and the production method. As a result, it can be supplied in large quantities and inexpensively as high-strength steel with excellent high-temperature strength, weldability and toughness, as well as fire-resistant building steel with excellent seismic performance, in addition to high-temperature strength for various uses as welded steel structures. It became so. By using such steel materials,
Maintains strength at high temperatures such as during a fire, and has excellent weldability and toughness, as well as a low yield ratio for building steel, which further improves the safety of various types of welded steel structures. Became possible.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C21D 8/02 C21D 8/02 A C22C 38/14 C22C 38/14 38/58 38/58 (72)発明者 千々岩 力雄 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 Fターム(参考) 4K032 AA01 AA02 AA04 AA05 AA08 AA11 AA14 AA16 AA19 AA20 AA21 AA22 AA23 AA27 AA29 AA31 AA35 AA36 AA40 BA01 CA02 CA03 CC03 CD05 CD06 CF01 CF02 CF03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C21D 8/02 C21D 8/02 A C22C 38/14 C22C 38/14 38/58 38/58 (72) Invention Person Rikio Chiziwa 1 Kimitsu, Kimitsu-shi Nippon Steel Corporation Kimitsu Works F-term (reference) 4K032 AA01 AA02 AA04 AA05 AA08 AA11 AA14 AA16 AA19 AA20 AA21 AA22 AA23 AA27 AA29 AA31 CD40 CF01 CF02 CF03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 鋼成分が質量%で、C:0.03〜0.
15%、Si:0.6%以下、Mn:1.6%以下、
P:0.02%以下、S:0.01%以下、Mo:0.
7〜1.5%、Al:0.06%以下、N:0.006
%以下、かつ、 [C−0.13Nb−0.24V−0.25(Ti−
3.4N)]/(0.063Mo) と定義する量が、0.5〜1.0の範囲を満足するよう
に、Nb:0.005〜0.1%、V:0.01〜0.
2%、Ti:0.005〜0.1%の範囲内で少なくと
も1種以上を含有し、さらに、 PCM=C+Si/30+Mn/20+Cu/20+Ni
/60+Cr/20+Mo/15+V/10+5B と定義する溶接割れ感受性組成PCMが0.25%以下
で、残部が鉄および不可避的不純物からなることを特徴
とする高温強度に優れた高張力鋼。
1. The steel component in mass%, C: 0.03-0.
15%, Si: 0.6% or less, Mn: 1.6% or less,
P: 0.02% or less, S: 0.01% or less, Mo: 0.
7 to 1.5%, Al: 0.06% or less, N: 0.006
% Or less, and [C-0.13Nb-0.24V-0.25 (Ti-
Nb: 0.005 to 0.1%, V: 0.01 to 0 so that the amount defined as 3.4N)] / (0.063Mo) satisfies the range of 0.5 to 1.0. .
2%, Ti: at least one or more in the range of 0.005 to 0.1%, and P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni
/ 60 + Cr / 20 + Mo / 15 + V / 10 + 5B and definition to weld cracking susceptibility composition P CM is below 0.25%, a high tensile steel balance and excellent high-temperature strength, characterized in that it consists of iron and inevitable impurities.
【請求項2】 上記鋼成分に加え、質量%で、Cu:
0.05〜1.0%、Ni:0.05〜1.0%、か
つ、Cu添加量の1/2以上、Cr:0.05〜1.0
%、B:0.0002〜0.003%、Mg:0.00
02〜0.005%の範囲で1種または2種以上を含有
することを特徴とする請求項1に記載の高温強度に優れ
た高張力鋼。
2. In addition to the above steel components, Cu:
0.05 to 1.0%, Ni: 0.05 to 1.0%, and 以上 or more of the added amount of Cu, Cr: 0.05 to 1.0
%, B: 0.0002 to 0.003%, Mg: 0.00
The high-tensile steel excellent in high-temperature strength according to claim 1, comprising one or more kinds in the range of 02 to 0.005%.
【請求項3】 質量%で、Ca:0.0005〜0.0
04%、REM:0.0005〜0.004%のいずれ
か1種をさらに含有することを特徴とする請求項1また
は2に記載の高温強度に優れた高張力鋼。
3. Ca: 0.0005 to 0.0% by mass
The high-tensile steel excellent in high-temperature strength according to claim 1 or 2, further comprising any one of 0.4% and REM: 0.0005 to 0.004%.
【請求項4】 請求項1〜3のいずれか1項に記載の鋼
成分からなる鋼片または鋳片を1000〜1250℃の
温度範囲に再加熱後、1000℃以下での累積圧下量を
30%以上として750℃以上の温度で圧延を終了し、
その後放冷または700℃以上の温度から放冷相当以上
の冷速で600℃以下の任意の温度まで加速冷却するこ
とを特徴とする高温強度に優れた高張力鋼の製造方法。
4. After reheating a steel slab or a slab made of the steel component according to any one of claims 1 to 3 to a temperature range of 1000 to 1250 ° C., the cumulative rolling reduction at 1000 ° C. or less is 30. % And finish the rolling at a temperature of 750 ° C or more,
A method for producing a high-strength steel excellent in high-temperature strength, wherein the steel is then cooled or accelerated from a temperature of 700 ° C. or higher to an arbitrary temperature of 600 ° C. or lower at a cooling speed equivalent to cooling.
【請求項5】 請求項1〜3のいずれか1項に記載の鋼
成分からなる鋼片または鋳片を熱間圧延後、Ac3以上
950℃以下の温度で焼きならしすることを特徴とする
高温強度に優れた高張力鋼の製造方法。
5. A steel slab or a slab made of the steel component according to claim 1 is hot-rolled and then normalized at a temperature of not less than Ac 3 and not more than 950 ° C. To produce high-strength steel with excellent high-temperature strength.
【請求項6】 請求項1〜3のいずれか1項に記載の鋼
成分からなる鋼片または鋳片を熱間圧延後、Ac3以上
950℃以下の温度に再加熱後、焼き入れすることを特
徴とする高温強度に優れた高張力鋼の製造方法。
6. A slab or a slab made of the steel component according to any one of claims 1 to 3, after hot rolling, reheating to a temperature of Ac 3 to 950 ° C. and then quenching. A method for producing a high-tensile steel excellent in high-temperature strength, characterized by the following.
【請求項7】 強度調整や靭性改善、あるいは鋼板の残
留応力除去の目的で、鋼板をAc1未満の温度で焼き戻
しすることを特徴とする請求項4〜6のいずれか1項に
記載の高温強度に優れた高張力鋼の製造方法。
In 7. intensity adjustment and improving toughness, or residual stress relief purposes of the steel sheet, according to any one of claims 4-6, characterized in that tempering the steel plate at a temperature of less than Ac 1 A method for producing high-strength steel with excellent high-temperature strength.
【請求項8】 低降伏比化の目的で、鋼板をAc1超A
3未満のフェライトとオーステナイトの二相共存域に
再加熱後、放冷またはそれ以上の冷速で600℃以下の
温度まで冷却し、その後さらに必要に応じAc1未満の
温度で焼き戻しすることを特徴とする請求項4〜6のい
ずれか1項に記載の高温強度に優れた高張力鋼の製造方
法。
8. For the purpose of lowering the yield ratio, the steel sheet should be made of more than Ac 1
After reheating to the two phase coexistence region of ferrite and austenite less than c 3 , cool it to a temperature of 600 ° C. or less at a cooling rate of not less than that, and then temper at a temperature less than Ac 1 as necessary. The method for producing a high-strength steel excellent in high-temperature strength according to any one of claims 4 to 6, characterized in that:
JP2000201951A 2000-07-04 2000-07-04 High strength steel excellent in high temperature strength and method for producing the same Expired - Fee Related JP4344073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000201951A JP4344073B2 (en) 2000-07-04 2000-07-04 High strength steel excellent in high temperature strength and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000201951A JP4344073B2 (en) 2000-07-04 2000-07-04 High strength steel excellent in high temperature strength and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002020832A true JP2002020832A (en) 2002-01-23
JP4344073B2 JP4344073B2 (en) 2009-10-14

Family

ID=18699547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000201951A Expired - Fee Related JP4344073B2 (en) 2000-07-04 2000-07-04 High strength steel excellent in high temperature strength and method for producing the same

Country Status (1)

Country Link
JP (1) JP4344073B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191785A (en) * 2005-12-21 2007-08-02 Nippon Steel Corp Method for manufacturing high-tensile steel material superior in weld cracking resistance
JP2008138293A (en) * 2001-11-26 2008-06-19 Jfe Steel Kk Refractory steel product for construction, and its manufacturing process
CN103921075A (en) * 2014-04-28 2014-07-16 武汉钢铁(集团)公司 Method for manufacturing wear resistant slurry conveying longitudinal welded pipe
CN106222574A (en) * 2016-08-24 2016-12-14 宁波乾豪金属制品有限公司 A kind of corrosion resistant spring suspension
CN106222573A (en) * 2016-08-24 2016-12-14 宁波乾豪金属制品有限公司 A kind of high-performance spring suspension
CN106319365A (en) * 2016-08-24 2017-01-11 宁波乾豪金属制品有限公司 Wear-resistant spring suspension
CN109321844A (en) * 2018-12-19 2019-02-12 内蒙古科技大学 A kind of rare earth super steel and preparation method thereof
CN113235010A (en) * 2021-05-19 2021-08-10 宝武集团鄂城钢铁有限公司 Preparation method of nuclear power steel plate with thin specification and uniform whole plate performance
CN114015943A (en) * 2021-11-09 2022-02-08 河北工业大学 Rare earth series low-alloy cast steel for high-speed train brake disc and preparation method thereof
CN114032462A (en) * 2021-11-09 2022-02-11 河北工业大学 High-strength and high-toughness low-alloy cast steel and preparation method thereof
CN115261724A (en) * 2022-08-01 2022-11-01 马鞍山钢铁股份有限公司 Steel for ultrahigh-strength and high-toughness fastener and production method and heat treatment process thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103122435A (en) * 2011-11-18 2013-05-29 江苏省沙钢钢铁研究院有限公司 Hot-rolled titaniferous high-strength steel plate with yield strength higher than 700MPa and production method thereof
CN105506250B (en) * 2015-12-10 2018-02-02 南京钢铁股份有限公司 A kind of Technology for Heating Processing of the strong offshore platform steel NDT performances of raising F level superelevation
CN109628836B (en) * 2019-01-02 2020-10-09 北京科技大学 High-strength anti-seismic fire-resistant steel for building structure and preparation method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138293A (en) * 2001-11-26 2008-06-19 Jfe Steel Kk Refractory steel product for construction, and its manufacturing process
JP2007191785A (en) * 2005-12-21 2007-08-02 Nippon Steel Corp Method for manufacturing high-tensile steel material superior in weld cracking resistance
CN103921075A (en) * 2014-04-28 2014-07-16 武汉钢铁(集团)公司 Method for manufacturing wear resistant slurry conveying longitudinal welded pipe
CN103921075B (en) * 2014-04-28 2016-01-20 武汉钢铁(集团)公司 A kind of preparation method of wear-resistant slurry pipeline steel ERW
CN106319365B (en) * 2016-08-24 2017-12-22 宁波乾豪金属制品有限公司 A kind of wear-resisting spring suspension
CN106222573A (en) * 2016-08-24 2016-12-14 宁波乾豪金属制品有限公司 A kind of high-performance spring suspension
CN106319365A (en) * 2016-08-24 2017-01-11 宁波乾豪金属制品有限公司 Wear-resistant spring suspension
CN106222573B (en) * 2016-08-24 2017-12-19 宁波乾豪金属制品有限公司 A kind of high-performance spring suspension
CN106222574A (en) * 2016-08-24 2016-12-14 宁波乾豪金属制品有限公司 A kind of corrosion resistant spring suspension
CN109321844A (en) * 2018-12-19 2019-02-12 内蒙古科技大学 A kind of rare earth super steel and preparation method thereof
CN109321844B (en) * 2018-12-19 2020-02-14 内蒙古科技大学 Rare earth super-strong steel and preparation method thereof
CN113235010A (en) * 2021-05-19 2021-08-10 宝武集团鄂城钢铁有限公司 Preparation method of nuclear power steel plate with thin specification and uniform whole plate performance
CN114015943A (en) * 2021-11-09 2022-02-08 河北工业大学 Rare earth series low-alloy cast steel for high-speed train brake disc and preparation method thereof
CN114032462A (en) * 2021-11-09 2022-02-11 河北工业大学 High-strength and high-toughness low-alloy cast steel and preparation method thereof
CN114032462B (en) * 2021-11-09 2023-02-24 河北工业大学 High-strength and high-toughness low-alloy cast steel and preparation method thereof
CN115261724A (en) * 2022-08-01 2022-11-01 马鞍山钢铁股份有限公司 Steel for ultrahigh-strength and high-toughness fastener and production method and heat treatment process thereof
CN115261724B (en) * 2022-08-01 2023-05-09 马鞍山钢铁股份有限公司 Steel for ultrahigh-strength and high-toughness fastener, production method thereof and heat treatment process

Also Published As

Publication number Publication date
JP4344073B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
JP4767590B2 (en) Production method of low yield ratio high strength steel and low yield ratio high strength steel
JPH10509768A (en) High strength secondary hardened steel with excellent toughness and weldability
JP2003160811A (en) Method for manufacturing tempered high-tensile- strength steel sheet superior in toughness
JP2001152248A (en) Method for producing high tensile strength steel plate and steel pipe excellent in low temperature toughness
KR102131538B1 (en) Ultra high strength steel material having excellent cold workability and sulfide stress cracking resistance and method of manufacturing the same
JP2009024228A (en) Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness
JP2002020832A (en) High tensile strength steel excellent in high temperature strength and its production method
JP6682988B2 (en) High-tensile steel plate with excellent ductility and method of manufacturing the same
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
JP4268462B2 (en) Manufacturing method of non-tempered low yield ratio high strength steel sheet with excellent high temperature strength
JP2001288512A (en) Method of producing high tensile strength steel excellent in toughness and ductility
JP2001207220A (en) Method for producing high strength hot rolled steel sheet for electric same welded tube excellent in low temperature toughness and weldability
JP2001234238A (en) Producing method for highly wear resistant and high toughness rail
JP2002003985A (en) High tensile steel excellent in strength at high temperature, and its manufacturing method
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP2002115022A (en) Steel having excellent high temperature strength and its production method
JP2002003983A (en) Low yielding ratio, high-tensile steel excellent in weldability and toughness at low temperature, and its manufacturing method
JP2003129134A (en) Method for manufacturing high-strength steel sheet superior in low-temperature toughness
JP2007191785A (en) Method for manufacturing high-tensile steel material superior in weld cracking resistance
JP2002173734A (en) Steel having excellent weldability and its production method
JPH10237547A (en) Cold rolled steel sheet with high ductility and high strength, and its production
JP2008144216A (en) Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness
JP2023547102A (en) Ultra-high strength steel plate with excellent ductility and its manufacturing method
JP2001342538A (en) High tensile steel with low yield ratio, excellent in weldability and low temperature toughness, and production of the same
JP2002012939A (en) High tensile steel excellent in hot strength and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4344073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees