JP2023547102A - Ultra-high strength steel plate with excellent ductility and its manufacturing method - Google Patents

Ultra-high strength steel plate with excellent ductility and its manufacturing method Download PDF

Info

Publication number
JP2023547102A
JP2023547102A JP2023524378A JP2023524378A JP2023547102A JP 2023547102 A JP2023547102 A JP 2023547102A JP 2023524378 A JP2023524378 A JP 2023524378A JP 2023524378 A JP2023524378 A JP 2023524378A JP 2023547102 A JP2023547102 A JP 2023547102A
Authority
JP
Japan
Prior art keywords
steel sheet
less
steel plate
ultra
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023524378A
Other languages
Japanese (ja)
Inventor
ジュ-ヒョン リュ、
ヨン-サン アン、
ガン-ヒョン チェ、
ウル-ヨン チェ、
Original Assignee
ポスコ カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポスコ カンパニー リミテッド filed Critical ポスコ カンパニー リミテッド
Publication of JP2023547102A publication Critical patent/JP2023547102A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

本発明は自動車の素材として好適な鋼板に関するものであって、より詳細には、延性に優れた超高強度鋼板に関するものである。The present invention relates to a steel plate suitable as a material for automobiles, and more particularly to an ultra-high strength steel plate with excellent ductility.

Description

本発明は、自動車の素材として好適な鋼板に関し、より詳細には、延性に優れた超高強度鋼板に関する。 The present invention relates to a steel plate suitable as a material for automobiles, and more particularly to an ultra-high strength steel plate with excellent ductility.

最近、自動車産業において、各種の環境規制及びエネルギー使用規制等に伴う燃費の向上又は耐久性の向上のために、高強度鋼板の使用が求められている。 Recently, in the automobile industry, there has been a demand for the use of high-strength steel sheets in order to improve fuel efficiency or durability in accordance with various environmental regulations and energy usage regulations.

ところが、鋼板の強度を高める場合、相対的に延性が低下するという問題が発見されたため、強度と延性との関係を改善するための多くの研究が行われてきた。その結果、低温組織であるマルテンサイト、ベイナイトとともに、残留オーステナイト相を活用する変態組織鋼が開発されて適用されている実情である。 However, it has been discovered that when increasing the strength of a steel plate, the ductility relatively decreases, so much research has been conducted to improve the relationship between strength and ductility. As a result, in addition to martensite and bainite, which are low-temperature structures, transformed steels that utilize retained austenite phases have been developed and are now being applied.

変態組織鋼は、フェライト基地に硬質のマルテンサイト相を形成させたフェライト-マルテンサイトの二相組織(Dual Phase、DP)鋼、残留オーステナイトの変態誘起塑性を用いたTRIP(Tranformation Induced Plasticity)鋼、フェライトと硬質のベイナイト又はマルテンサイト組織で構成されるCP(Complexed Phase)鋼に区別され、これらの各鋼は母相と第2相の種類及び分率によって機械的性質、すなわち、引張強度と伸び率のレベルが異なる。 Transformation structure steels include ferrite-martensite dual phase (DP) steel in which a hard martensite phase is formed in a ferrite base, TRIP (Transformation Induced Plasticity) steel that uses transformation-induced plasticity of retained austenite, It is classified into CP (Complexed Phase) steel, which is composed of ferrite and hard bainite or martensitic structures, and each of these steels has mechanical properties, such as tensile strength and elongation, depending on the type and fraction of the parent phase and second phase. There are different levels of rates.

特に、残留オーステナイト相を多量含有するTRIP鋼は引張強度と伸び率のバランス(TS×El)値が最も高い。 In particular, TRIP steel containing a large amount of retained austenite phase has the highest balance between tensile strength and elongation (TS x El).

一例として、特許文献1には、フェライト及びマルテンサイトの他に残留オーステナイト相を10%程度含み、引張強度と伸び率の積が21000MPa%以上であり、780MPa級以上の引張強度を確保できる鋼を開示している。しかし、当該鋼は、炭素(C)の含量が約0.2%、シリコン(Si)の含量が約1.5%以上と多量に添加されるため、スポット溶接性及び溶融亜鉛めっき性に劣るおそれがある。また、高い物性を実現するために2回にわたって焼鈍を行うため、鋼板の製造コストが上昇するという問題がある。 As an example, Patent Document 1 describes a steel that contains about 10% retained austenite phase in addition to ferrite and martensite, has a product of tensile strength and elongation of 21000 MPa% or more, and can secure a tensile strength of 780 MPa class or higher. Disclosed. However, this steel has a large content of carbon (C) of approximately 0.2% and silicon (Si) of approximately 1.5% or more, which results in poor spot weldability and hot-dip galvanizing properties. There is a risk. Furthermore, since annealing is performed twice in order to achieve high physical properties, there is a problem in that the manufacturing cost of the steel sheet increases.

一方、特許文献2では、良好なめっき性及びスポット溶接性を確保するためにSiの含量を1%レベルに下げ、微細組織として残留オーステナイト相を含まずともマルテンサイト、ベイナイト及びフェライトで構成され、980MPa以上の引張強度及び15%以上の伸び率の確保が可能な技術を開示している。しかし、最近、自動車の衝撃安定性に対する規制が拡大され、車体の耐衝撃性を向上させるためにメンバ(member)、シートレール(seat rail)、ピラー(pillar)などの構造部材などに、降伏強度に優れた高強度鋼が採用されている実情であるものの、当該鋼は降伏強度が700MPa以下であり、適用対象に限界がある。 On the other hand, in Patent Document 2, in order to ensure good plating properties and spot weldability, the Si content is lowered to the 1% level, and the microstructure is composed of martensite, bainite, and ferrite even if it does not contain a retained austenite phase. It discloses a technology that can ensure a tensile strength of 980 MPa or more and an elongation rate of 15% or more. However, recently, regulations regarding the impact stability of automobiles have been expanded, and in order to improve the impact resistance of automobile bodies, structural members such as members, seat rails, and pillars are required to have yield strength. Although high-strength steels with excellent properties are currently being used, the yield strength of these steels is 700 MPa or less, which limits their applicability.

韓国公開特許第2015-0130612号公報Korean Publication Patent No. 2015-0130612 韓国公開特許第2013-0106142号公報Korean Published Patent No. 2013-0106142

本発明の一態様は、自動車の構造部材などにも好適な鋼板であって、引張強度だけでなく、降伏強度にも優れており、延性が向上した鋼板及びそれを製造する方法を提供することである。 One aspect of the present invention is to provide a steel plate that is suitable for structural members of automobiles, has excellent not only tensile strength but also yield strength, and has improved ductility, and a method for manufacturing the same. It is.

本発明の課題は、上述した内容に限定されない。本発明の課題は、本明細書の内容全体から理解することができ、本発明が属する技術分野において通常の知識を有する者であれば、本発明の更なる課題を理解する上で何ら困難がない。 The object of the present invention is not limited to the above-mentioned content. The problems to be solved by the present invention can be understood from the contents of this specification as a whole, and a person having ordinary knowledge in the technical field to which the present invention pertains will not have any difficulty in understanding further problems to be solved by the present invention. do not have.

本発明の一態様は、重量%で、炭素(C):0.1~0.2%、シリコン(Si):0.1~1.0%、マンガン(Mn):2.0~3.0%、アルミニウム(Al):1.0%以下(0%を除く)、クロム(Cr):1.0%以下、モリブデン(Mo):0.5%以下、チタン(Ti):0.1%以下、ニオブ(Nb):0.1%以下、アンチモン(Sb):0.1%以下(0%を除く)、リン(P):0.05%以下、硫黄(S):0.02%以下、窒素(N):0.02%以下、残りのFe及びその他の不可避不純物を含み、下記関係式1~3を満たすことを特徴とする、延性に優れた超高強度鋼板を提供する。 One embodiment of the present invention has carbon (C): 0.1 to 0.2%, silicon (Si): 0.1 to 1.0%, and manganese (Mn): 2.0 to 3.0% by weight. 0%, aluminum (Al): 1.0% or less (excluding 0%), chromium (Cr): 1.0% or less, molybdenum (Mo): 0.5% or less, titanium (Ti): 0.1 % or less, Niobium (Nb): 0.1% or less, Antimony (Sb): 0.1% or less (excluding 0%), Phosphorus (P): 0.05% or less, Sulfur (S): 0.02 % or less, nitrogen (N): 0.02% or less, containing residual Fe and other unavoidable impurities, and satisfying the following relational expressions 1 to 3. To provide an ultra-high strength steel plate with excellent ductility. .

[関係式1]
1110[C]+41.5[Si]+575[Mn]-1092[Al]-3590[Nb]-5181[Ti]+258[Cr]+664[Mo]≧1380
[Relational expression 1]
1110[C]+41.5[Si]+575[Mn]-1092[Al]-3590[Nb]-5181[Ti]+258[Cr]+664[Mo]≧1380

[関係式2]
2853[C]+95[Si]+309[Mn]-153[Al]+4661[Nb]-780[Ti]+210[Cr]+457[Mo]≧1300
[Relational expression 2]
2853[C]+95[Si]+309[Mn]-153[Al]+4661[Nb]-780[Ti]+210[Cr]+457[Mo]≧1300

[関係式3]
-29[C]+0.6[Si]-7.3[Mn]+7.8[Al]-145.2[Nb]+62.6[Ti]-3.3[Cr]-2.2[Mo]≧-24
(関係式1~3において、各元素は重量含量を意味する。)
[Relational expression 3]
-29[C]+0.6[Si]-7.3[Mn]+7.8[Al]-145.2[Nb]+62.6[Ti]-3.3[Cr]-2.2[Mo ]≧-24
(In relational expressions 1 to 3, each element means the weight content.)

本発明の他の一態様は、上述した合金組成及び関係式1~3を満たす鋼スラブを準備する段階と、上記鋼スラブを1050~1300℃の温度範囲で加熱する段階と、上記加熱された鋼スラブを800~1000℃の温度範囲で熱間圧延して熱延鋼板を製造する段階と、上記熱延鋼板を400~700℃の温度範囲で巻き取る段階と、上記巻き取られた熱延鋼板を総圧下率20~70%で冷間圧延して冷延鋼板を製造する段階と、上記冷延鋼板を800~900℃の温度範囲で焼鈍処理する段階と、上記連続焼鈍処理された冷延鋼板を250~400℃の温度範囲に冷却する段階と、上記冷却された冷延鋼板を再加熱及び維持する段階と、を含み、上記再加熱及び維持する段階は、上記冷却された温度+50℃以上~冷却された温度+200℃以下の温度範囲で0.1~60分間行うものである、延性に優れた超高強度鋼板の製造方法を提供する。 Another aspect of the present invention includes the steps of preparing a steel slab that satisfies the alloy composition and relational expressions 1 to 3 described above, heating the steel slab in a temperature range of 1050 to 1300°C, and a step of hot rolling a steel slab at a temperature range of 800 to 1000°C to produce a hot rolled steel plate; a step of winding the hot rolled steel plate at a temperature range of 400 to 700°C; and a step of manufacturing the hot rolled steel plate. a step of manufacturing a cold rolled steel sheet by cold rolling a steel sheet at a total reduction rate of 20 to 70%; a step of annealing the cold rolled steel sheet at a temperature range of 800 to 900°C; The steps include cooling the rolled steel sheet to a temperature range of 250 to 400° C., and reheating and maintaining the cooled cold rolled steel sheet, and the reheating and maintaining step includes the step of cooling the rolled steel sheet to a temperature range of 250 to 400° C. Provided is a method for producing an ultra-high strength steel sheet with excellent ductility, which is carried out for 0.1 to 60 minutes in a temperature range of 0.1 to 200° C. to the cooled temperature.

本発明によると、引張強度とともに降伏強度に優れ、延性が向上した鋼板を提供することができ、このような本発明の鋼板は、冷間成形用鋼板に要求される成形性及び衝突安定性が保証されるという利点がある。 According to the present invention, it is possible to provide a steel plate that has excellent tensile strength and yield strength, and improved ductility, and the steel plate of the present invention has the formability and collision stability required for cold forming steel plates. It has the advantage of being guaranteed.

本発明の一実施例による発明鋼の微細組織をSEMで測定した写真を示すものである。1 is a photograph showing a microstructure of an inventive steel according to an example of the present invention measured by SEM. 本発明の一実施例による比較鋼の微細組織をSEMで測定した写真を示すものである。1 is a photograph showing a microstructure of a comparative steel according to an example of the present invention measured by SEM.

本発明の発明者らは、自動車の素材として、引張強度及び延性とともに降伏強度に優れており、成形性及び衝突安定性が保証されることにより、複雑な形状への加工が要求される構造部材などにも適用可能な鋼板を提供すべく鋭意研究を行った。 The inventors of the present invention have developed a structural member that requires processing into complex shapes as a material for automobiles because it has excellent yield strength as well as tensile strength and ductility, and ensures formability and collision stability. We conducted extensive research to provide a steel plate that can be used in other applications.

その結果、合金成分系及び製造条件を最適化することにより、目標とする物性の確保に有利な組織を有する鋼板を提供できることを確認し、本発明を完成するに至った。 As a result, it was confirmed that by optimizing the alloy composition system and manufacturing conditions, it was possible to provide a steel plate having a structure that is advantageous in securing the target physical properties, and the present invention was completed.

特に、本発明は、合金成分のうち特定元素の含量関係を制御し、一連の工程を経て製造される鋼板の工程条件を最適化することにより、軟質相(soft phase)と硬質相(hard phase)とを適切に分散させた複合組織を有する鋼板を提供することに特徴がある。 In particular, the present invention controls the content relationship of specific elements among the alloy components and optimizes the process conditions of the steel plate manufactured through a series of processes, thereby separating the soft phase and hard phase. ) is characterized in that it provides a steel plate having a composite structure in which these are appropriately dispersed.

以下、本発明について詳細に説明する。 The present invention will be explained in detail below.

本発明の一態様による延性に優れた超高強度鋼板は、重量%で、炭素(C):0.1~0.2%、シリコン(Si):0.1~1.0%、マンガン(Mn):2.0~3.0%、アルミニウム(Al):1.0%以下(0%を除く)、クロム(Cr):1.0%以下、モリブデン(Mo):0.5%以下、チタン(Ti):0.1%以下、ニオブ(Nb):0.1%以下、アンチモン(Sb):0.1%以下(0%を除く)、リン(P):0.05%以下、硫黄(S):0.02%以下、窒素(N):0.02%以下を含むことができる。 The ultra-high strength steel sheet with excellent ductility according to one embodiment of the present invention has carbon (C): 0.1 to 0.2%, silicon (Si): 0.1 to 1.0%, manganese ( Mn): 2.0 to 3.0%, aluminum (Al): 1.0% or less (excluding 0%), chromium (Cr): 1.0% or less, molybdenum (Mo): 0.5% or less , Titanium (Ti): 0.1% or less, Niobium (Nb): 0.1% or less, Antimony (Sb): 0.1% or less (excluding 0%), Phosphorus (P): 0.05% or less , sulfur (S): 0.02% or less, and nitrogen (N): 0.02% or less.

以下では、本発明で提供する鋼板の合金組成を上記のように制限する理由について詳細に説明する。 Below, the reason why the alloy composition of the steel plate provided by the present invention is limited as described above will be explained in detail.

一方、本発明において特に断らない限り、各元素の含量は重量を基準とし、組織の割合は面積を基準とする。 On the other hand, in the present invention, unless otherwise specified, the content of each element is based on weight, and the ratio of structure is based on area.

炭素(C):0.1~0.2%
炭素(C)は、鋼板の強度強化に大きく寄与する元素であって、上記Cは鋼板の結晶粒に析出して固溶強化を誘導し、鋼内のマルテンサイトの形成を促進して鋼を強化させる。また、上記Cはオーステナイト安定化元素であって、残留オーステナイトの形成に重要な役割を果たす。具体的には、オーステナイトに固溶する炭素(C)の量が増加するほど、オーステナイト安定度が高くなり、鋼内のオーステナイトの分率が高くなる。これは、上記オーステナイトの変態により形成されるマルテンサイトの分率上昇を誘導し、鋼板の強度が向上する効果が得られ、一部のオーステナイトは常温で残留して残留オーステナイトとして残る。
Carbon (C): 0.1-0.2%
Carbon (C) is an element that greatly contributes to strengthening the strength of steel sheets, and the above C precipitates in the crystal grains of steel sheets, induces solid solution strengthening, promotes the formation of martensite within the steel, and strengthens the steel. strengthen. Moreover, the above-mentioned C is an austenite stabilizing element and plays an important role in the formation of retained austenite. Specifically, as the amount of carbon (C) dissolved in austenite increases, the austenite stability becomes higher and the fraction of austenite in the steel becomes higher. This induces an increase in the fraction of martensite formed by the transformation of austenite, which has the effect of improving the strength of the steel sheet, and some austenite remains at room temperature and remains as retained austenite.

上述した効果を十分に得るためには、0.1%以上のCを添加することができるが、その含量が0.2%を超えると、マルテンサイト相の分率が過度に増加し、相対的に伸び率及び衝撃吸収エネルギーに優れたフェライト相の分率が減少する。これにより、鋼板の延性が減少し、脆性発生の可能性が高くなる原因となる。 In order to fully obtain the above-mentioned effects, 0.1% or more of C can be added, but if the content exceeds 0.2%, the fraction of martensitic phase will increase excessively and the relative The fraction of ferrite phase, which has excellent elongation and impact absorption energy, decreases. This reduces the ductility of the steel sheet and increases the possibility of brittleness.

したがって、上記Cは0.1~0.2%含むことができ、より好ましくは0.12%以上、0.18%以下含むことができる。 Therefore, the above C can be contained in an amount of 0.1 to 0.2%, more preferably 0.12% or more and 0.18% or less.

シリコン(Si):0.1~1.0%
シリコン(Si)は、フェライト内で炭化物の析出を抑制し、フェライト内の炭素がオーステナイトに拡散することを誘導し、残留オーステナイト安定化に寄与する元素である。
Silicon (Si): 0.1-1.0%
Silicon (Si) is an element that suppresses the precipitation of carbides in ferrite, induces carbon in ferrite to diffuse into austenite, and contributes to stabilizing retained austenite.

上述した効果を得るためには、0.1%以上のSiを含むことが有利であるが、その含量が1.0%を超えると、鋼の表面にSi酸化物を形成するため、溶融めっき及び化成処理(chemical conversion coating)効果を阻害するおそれがある。 In order to obtain the above-mentioned effects, it is advantageous to contain 0.1% or more of Si. However, if the content exceeds 1.0%, Si oxide is formed on the surface of the steel, so hot-dip plating is difficult. Also, there is a possibility that the effect of chemical conversion coating may be inhibited.

したがって、上記Siは0.1~1.0%含むことができ、より好ましくは0.2%以上、さらに好ましくは0.4%以上を含むことができる。一方、上記Siはより好ましくは0.9%以下含むことができる。 Therefore, the above-mentioned Si can be contained in an amount of 0.1 to 1.0%, more preferably 0.2% or more, and still more preferably 0.4% or more. On the other hand, the above-mentioned Si can be contained more preferably at 0.9% or less.

マンガン(Mn):2.0~3.0%
マンガン(Mn)は、上記Cと同様に、オーステナイト安定化元素として作用することができる。具体的には、上記Mnは、複合組織鋼において、マルテンサイトが形成される臨界冷却速度を減少させ、鋼内でマルテンサイトの分率を高めるのに寄与することができる。
Manganese (Mn): 2.0-3.0%
Manganese (Mn) can act as an austenite stabilizing element similarly to the above-mentioned C. Specifically, the Mn can contribute to reducing the critical cooling rate at which martensite is formed in a composite structure steel and increasing the fraction of martensite within the steel.

上述した効果を十分に得るためには、2.0%以上のMnを含有することが有利であるが、その含量が3.0%を超えると、鋼板の溶接性が減少し、熱間圧延性が低下するおそれがある。また、Mn-Bandと呼ばれる縞状の帯を形成して成形性を阻害し、加工クラックの発生リスクを増加させるという問題がある。 In order to fully obtain the above-mentioned effects, it is advantageous to contain Mn in an amount of 2.0% or more; however, if the content exceeds 3.0%, the weldability of the steel plate decreases, making hot rolling difficult. There is a risk that performance may deteriorate. In addition, there is a problem in that striped bands called Mn-Bands are formed, which impairs formability and increases the risk of processing cracks.

したがって、上記Mnは2.0~3.0%含むことができ、より好ましくは2.2%以上、2.8%以下含むことができる。 Therefore, the above-mentioned Mn can be contained in an amount of 2.0 to 3.0%, more preferably 2.2% or more and 2.8% or less.

アルミニウム(Al):1.0%以下
アルミニウム(Al)は、鋼の脱酸のために添加する元素であり、上記Siと同様にフェライト安定化元素である。上記Alは、フェライト内の炭素をオーステナイトに分配してマルテンサイト硬化能を向上させるのに有効であり、ベイナイト領域での維持時、ベイナイト内の炭化物の析出を効果的に抑制させ、鋼板の延性向上に有用な元素である。
Aluminum (Al): 1.0% or less Aluminum (Al) is an element added for deoxidizing steel, and is a ferrite stabilizing element like the above-mentioned Si. The above Al is effective in distributing carbon in ferrite to austenite and improving martensite hardening ability, and when maintained in the bainite region, effectively suppresses precipitation of carbides in bainite, improving the ductility of the steel sheet. It is a useful element for improvement.

このようなAlの含量が1.0%を超えると、製鋼の連鋳操業時に連続鋳造性が低下し、介在物が過剰に形成されて焼鈍材の材質不良が発生する可能性が高くなる。 When the content of Al exceeds 1.0%, continuous castability decreases during continuous casting operations in steelmaking, and there is a high possibility that inclusions will be excessively formed and material defects will occur in the annealed material.

したがって、上記Alは1.0%以下含むことができ、0%は除く。より好ましくは、上記Alは0.01%以上含むことができる。 Therefore, the above-mentioned Al can be contained in an amount of 1.0% or less, and 0% is excluded. More preferably, the Al content may be 0.01% or more.

本発明において、Alは可溶アルミニウム(Sol.Al)を意味する。 In the present invention, Al means soluble aluminum (Sol.Al).

クロム(Cr):1.0%以下
クロム(Cr)は、鋼の硬化能を向上させ、高強度を確保するために添加する元素であって、マルテンサイトの形成に重要な役割を果たす。また、強度の上昇に対して伸び率の低下を最小化させ、高延性を有する複合組織鋼の製造に有利である。
Chromium (Cr): 1.0% or less Chromium (Cr) is an element added to improve the hardenability of steel and ensure high strength, and plays an important role in the formation of martensite. In addition, the reduction in elongation rate is minimized with respect to the increase in strength, which is advantageous for producing a composite structure steel having high ductility.

このようなCrの含量が1.0%を超えると、上述した効果が飽和するだけでなく、熱延強度が過度に増加して冷間圧延性に劣るという問題があり、焼鈍後にマルテンサイト分率が大きく増加して伸び率の低下を招くという問題がある。 If the content of Cr exceeds 1.0%, not only will the above-mentioned effects become saturated, but there will also be a problem that the hot rolling strength will increase excessively and the cold rolling properties will be poor. There is a problem in that the growth rate increases significantly, leading to a decrease in the growth rate.

したがって、上記Crは1.0%以下含むことができ、上記Crを意図的に添加しなくても、意図する物性を確保することは困難ではないことを明らかにする。 Therefore, it is clear that the above-mentioned Cr can be contained in an amount of 1.0% or less, and that it is not difficult to ensure the intended physical properties even without intentionally adding the above-mentioned Cr.

モリブデン(Mo):0.5%以下
モリブデン(Mo)は、鋼内に炭化物を形成する元素であって、鋼中のTi、Nbなどと結合して鋼内に微細な炭化物を形成することで降伏強度及び引張強度の向上に寄与することができる。このようなMoの含量が0.5%を超えると、鋼の伸び率が減少し、製造コストを上昇させるという問題がある。
Molybdenum (Mo): 0.5% or less Molybdenum (Mo) is an element that forms carbides in steel, and it combines with Ti, Nb, etc. in steel to form fine carbides in steel. It can contribute to improving yield strength and tensile strength. When the content of Mo exceeds 0.5%, there is a problem that the elongation rate of the steel decreases and the manufacturing cost increases.

したがって、上記Moは0.5%以下含むことができ、上記Moを意図的に添加しなくても、意図する物性を確保することは困難ではないことを明らかにする。 Therefore, it is clear that the above-mentioned Mo can be contained in an amount of 0.5% or less, and that it is not difficult to ensure the intended physical properties even without intentionally adding the above-mentioned Mo.

チタン(Ti):0.1%以下
チタン(Ti)は、上記Moと同様に鋼内に微細な炭化物を形成し、鋼の降伏強度及び引張強度の確保に寄与することができる。また、Tiは、窒化物を形成することにより、鋼内に含有されたNをTiNとして析出させ、上記NがAlと結合してAlNとして析出することを抑制することができ、これは、連鋳工程においてクラックが発生する危険を低減する効果がある。
Titanium (Ti): 0.1% or less Titanium (Ti), like the above Mo, forms fine carbides in steel and can contribute to ensuring the yield strength and tensile strength of steel. Furthermore, by forming nitrides, Ti can cause the N contained in the steel to precipitate as TiN, and can suppress the above N from combining with Al and precipitating as AlN. It has the effect of reducing the risk of cracks occurring during the casting process.

このようなTiの含量が0.1%を超えると、粗大な炭化物が析出し、鋼内でCが低減されることにより鋼板の強度が低下するおそれがある。さらに、上記粗大な炭化物で、連鋳工程においてノズル(nozzle)の目詰まりを誘発する可能性がある。 When the content of Ti exceeds 0.1%, coarse carbides are precipitated and C is reduced in the steel, which may reduce the strength of the steel sheet. Furthermore, the coarse carbides may cause clogging of nozzles during the continuous casting process.

したがって、上記Tiは0.1%以下含むことができ、上記Tiを意図的に添加しなくても、意図する物性を確保することは困難ではないことを明らかにする。 Therefore, it is clear that the Ti can be contained in an amount of 0.1% or less, and that it is not difficult to secure the intended physical properties even if the Ti is not intentionally added.

ニオブ(Nb):0.1%以下
ニオブ(Nb)はオーステナイト粒界に偏析し、焼鈍熱処理時にオーステナイト結晶粒の粗大化を抑制し、上記結晶粒に微細な炭化物を析出することで、鋼板の強度増加に寄与することができる。
Niobium (Nb): 0.1% or less Niobium (Nb) segregates at austenite grain boundaries, suppresses coarsening of austenite crystal grains during annealing heat treatment, and precipitates fine carbides in the crystal grains, thereby improving the strength of steel sheets. It can contribute to increased strength.

このようなNbの含量が0.1%を超えると、粗大な炭化物の形成により鋼内のCの含量が低減され、鋼板の強度及び伸び率が減少するという問題があり、鋼の製造コストが上昇するという問題がある。 When the Nb content exceeds 0.1%, the C content in the steel is reduced due to the formation of coarse carbides, which causes a problem of decreasing the strength and elongation of the steel sheet, which increases the manufacturing cost of the steel. There is a problem with rising.

したがって、上記Nbは0.1%以下含むことができ、上記Nbを意図的に添加しなくても、意図する物性を確保することは困難ではないことを明らかにする。 Therefore, it is clear that the Nb can be contained in an amount of 0.1% or less, and that it is not difficult to secure the intended physical properties even without intentionally adding the Nb.

アンチモン(Sb):0.1%以下
アンチモン(Sb)は、結晶粒界に分布し、鋼内のMn、Si、Alなどの酸化性元素の結晶粒界を介した拡散を遅らせることにより、酸化物の表面濃化を抑制し、温度上昇及び熱延工程の変化による表面濃化物の粗大化を抑制するのに有利な効果がある。
Antimony (Sb): 0.1% or less Antimony (Sb) is distributed at grain boundaries and prevents oxidation by slowing the diffusion of oxidizing elements such as Mn, Si, and Al in steel through grain boundaries. It has an advantageous effect in suppressing the surface thickening of the material and suppressing the coarsening of the surface concentrated material due to temperature rise and changes in the hot rolling process.

このようなSbの含量が0.1%を超えると、加工性に劣るだけでなく、製造コストが上昇するという問題がある。 If the content of Sb exceeds 0.1%, there is a problem that not only the processability is poor but also the manufacturing cost increases.

したがって、上記Sbは0.1%以下含むことができ、0%は除く。より好ましくは、上記Sbは0.01%以上含むことができる。 Therefore, the above-mentioned Sb can be contained at 0.1% or less, and 0% is excluded. More preferably, the above-mentioned Sb can be contained in an amount of 0.01% or more.

リン(P):0.05%以下
リン(P)は粒界に偏析して焼戻し脆性(Temper Brittlement)の発生の主な原因となり、溶接性及び靭性を阻害するという問題がある。したがって、上記Pは、可能な限り0%に近づくようにその含量を低く制御することが有利であるが、鋼の製造工程上、必然的に含有され、このようなPの含量を減らすための工程が難しく、追加工程による生産コストが増加するため、その上限を管理することが有効である。
Phosphorus (P): 0.05% or less Phosphorus (P) segregates at grain boundaries and becomes the main cause of temper brittlement, which poses a problem of impairing weldability and toughness. Therefore, it is advantageous to control the P content as low as possible to approach 0%, but it is inevitably contained in the steel manufacturing process, and there are Since the process is difficult and the production cost increases due to additional steps, it is effective to control the upper limit.

したがって、上記Pは0.05%以下に制限することができ、より好ましくは0.03%以下に制限することができる。但し、不可避に添加されるレベルを考慮して0%は除くことができることを明らかにする。 Therefore, the above P can be limited to 0.05% or less, more preferably 0.03% or less. However, it will be clarified that 0% can be excluded in consideration of the level that is unavoidably added.

硫黄(S):0.02%以下
硫黄Sは、上述したPとともに鋼内に不可避に含有される不純物であって、鋼板の延性及び溶接性を阻害するという問題がある。したがって、上記Sも可能な限り0%に近づくようにその含量を低く制御することが有利であるが、Sの含量を減らすための工程に消耗されるコスト及び時間を考慮すると、その上限を管理することが有効である。
Sulfur (S): 0.02% or less Sulfur S is an impurity that is inevitably contained in steel together with the above-mentioned P, and has the problem of inhibiting the ductility and weldability of the steel plate. Therefore, it is advantageous to control the above-mentioned S content as low as possible to approach 0%, but considering the cost and time consumed in the process of reducing the S content, the upper limit should be controlled. It is effective to do so.

したがって、上記Sは0.02%以下に制限することができ、より好ましくは0.01%以下に制限することができる。但し、不可避に添加されるレベルを考慮して0%は除くことができることを明らかにする。 Therefore, the above S can be limited to 0.02% or less, more preferably 0.01% or less. However, it will be clarified that 0% can be excluded in consideration of the level that is unavoidably added.

窒素(N):0.02%以下
窒素(N)は、鋼中のAlと結合してAlNのアルミナ(Alumina)系非金属介在物を形成することができる。上記AlNは連鋳品質を低下させ、鋼板の脆性を増加させるため、破壊欠陥が発生する危険性を増加させる。
Nitrogen (N): 0.02% or less Nitrogen (N) can combine with Al in steel to form alumina-based nonmetallic inclusions of AlN. The AlN reduces continuous casting quality and increases the brittleness of the steel sheet, thereby increasing the risk of fracture defects.

したがって、上記Nは0.02%以下に制限することができ、より好ましくは0.01%以下に制限することができる。但し、不可避に流入するレベルを考慮して0%は除くことができる。 Therefore, the above N can be limited to 0.02% or less, more preferably 0.01% or less. However, in consideration of the level that inevitably flows in, 0% can be excluded.

本発明の残りの成分は鉄(Fe)である。但し、通常の製造過程では、原料又は周囲環境から意図しない不純物が不可避に混入し得るため、これを排除することはできない。これらの不純物は、通常の製造過程における技術者であれば、誰でも分かるものであるため、本明細書では、特にその全ての内容を言及しない。 The remaining component of the present invention is iron (Fe). However, in normal manufacturing processes, unintended impurities may inevitably be mixed in from raw materials or the surrounding environment, and this cannot be eliminated. Since these impurities are known to anyone skilled in the ordinary manufacturing process, the contents of all of them will not be specifically mentioned in this specification.

上述した合金組成を有する本発明の鋼板は、鋼内の特定元素間の含量関係が下記関係式1~3を全て満たすことが好ましい。 In the steel sheet of the present invention having the above-mentioned alloy composition, it is preferable that the content relationships between specific elements in the steel satisfy all of the following relational expressions 1 to 3.

[関係式1]
1110[C]+41.5[Si]+575[Mn]-1092[Al]-3590[Nb]-5181[Ti]+258[Cr]+664[Mo]≧1380
[Relational expression 1]
1110[C]+41.5[Si]+575[Mn]-1092[Al]-3590[Nb]-5181[Ti]+258[Cr]+664[Mo]≧1380

[関係式2]
2853[C]+95[Si]+309[Mn]-153[Al]+4661[Nb]-780[Ti]+210[Cr]+457[Mo]≧1300
[Relational expression 2]
2853[C]+95[Si]+309[Mn]-153[Al]+4661[Nb]-780[Ti]+210[Cr]+457[Mo]≧1300

[関係式3]
-29[C]+0.6[Si]-7.3[Mn]+7.8[Al]-145.2[Nb]+62.6[Ti]-3.3[Cr]-2.2[Mo]≧-24
(関係式1~3において、各元素は重量含量を意味する。)
[Relational expression 3]
-29[C]+0.6[Si]-7.3[Mn]+7.8[Al]-145.2[Nb]+62.6[Ti]-3.3[Cr]-2.2[Mo ]≧-24
(In relational expressions 1 to 3, each element means the weight content.)

上記関係式1及び2は、鋼板を構成する微細組織の相(phase)分率の制御及び固溶強化効果の向上による鋼板の降伏強度及び引張強度の強化に寄与する程度を数値化して導出した成分関係式である。 The above relational expressions 1 and 2 were derived by quantifying the extent to which controlling the phase fraction of the microstructure constituting the steel sheet and improving the solid solution strengthening effect contributes to strengthening the yield strength and tensile strength of the steel sheet. This is a component relational expression.

上記関係式1及び2において、上記Cは、上記Si及びMnに比べて相対的に係数が大きく、これは、上記Cが鋼板の結晶粒に固溶し、強度の向上に大きく寄与することに起因する。一方、上記Siは、上記Cに比べて相対的に係数が小さく、これは、上記Cよりも固溶強化に寄与する効果が小さいことに起因する。さらに、上記Alは負の係数値を有するが、これは固溶強化に寄与するものの、焼鈍中に二相域(dual phase region)フェライトを残留させるか、又は以後の冷却中にフェライト変態を促進して強度の減少を招く効果がより大きいことに起因する。一方、上記Cr及びMoは代表的な硬化能元素であって、焼鈍後の冷却中にフェライト変態を抑制するため、強度を向上させる効果があり、正の値で表す。 In the above relational expressions 1 and 2, the above C has a relatively large coefficient compared to the above Si and Mn, and this is because the above C dissolves into the crystal grains of the steel sheet and greatly contributes to improving the strength. to cause. On the other hand, the coefficient of Si is relatively smaller than that of C, and this is because the effect of contributing to solid solution strengthening is smaller than that of C. Furthermore, the Al has a negative coefficient value, which contributes to solid solution strengthening, but may leave dual phase region ferrite during annealing or promote ferrite transformation during subsequent cooling. This is due to the fact that the effect of reducing strength is greater. On the other hand, the above-mentioned Cr and Mo are typical hardenable elements, and since they suppress ferrite transformation during cooling after annealing, they have the effect of improving strength, and are expressed as positive values.

なお、TiとNbは、微細炭化物を形成して強度の向上に寄与する元素であるため、成分元素による強度関係式において正の係数値を有することができる。ところが、微細炭化物を形成すると同時に固溶炭素の量が減少し、炭素の固溶強化効果は減少するようになる。したがって、Ti及びNbは、その添加により析出強化効果が支配的な場合には、正の係数値を有するのに対し、炭化物の析出による炭素の固溶強化効果が支配的な場合には、負の係数値で表すことができる。 Note that Ti and Nb are elements that form fine carbides and contribute to improving the strength, so they can have positive coefficient values in the strength relationship equation based on the component elements. However, as fine carbides are formed, the amount of solid solution carbon decreases, and the solid solution strengthening effect of carbon decreases. Therefore, Ti and Nb have a positive coefficient value when the precipitation strengthening effect is dominant due to their addition, whereas they have a negative coefficient value when the solid solution strengthening effect of carbon due to carbide precipitation is dominant. It can be expressed by the coefficient value of

上記関係式3は、特定元素による固溶強化効果の向上とともに、鋼板の伸び率向上に寄与する程度を数値化して導出した成分関係式である。 The above relational expression 3 is a component relational expression derived by quantifying the extent to which a specific element contributes to improving the solid solution strengthening effect and improving the elongation rate of the steel plate.

一般的に、鋼板の強度が増加すると、伸び率が減少する傾向があることを考慮して、上記関係式3の各元素の係数は、上記関係式1及び2とは相反する傾向がある。 In general, considering that the elongation rate tends to decrease as the strength of a steel plate increases, the coefficients of each element in the above relational expression 3 tend to be contradictory to the above relational expressions 1 and 2.

具体的には、上記C及びMnは固溶強化効果により強度の向上に有利であるが、このような強度の向上によって伸び率は減少する傾向があるため、負の係数値を有するようになる。これに対し、Alは伸び率の増加に効果的であるため、正の係数値を有する。一方、Siの場合、固溶強化による強度の向上効果と同時に、残留オーステナイトの確保にも寄与するため、関係式3においても正の係数値を有する。 Specifically, C and Mn are advantageous in improving strength due to their solid solution strengthening effect, but such improvement in strength tends to reduce elongation, so it has a negative coefficient value. . On the other hand, since Al is effective in increasing the elongation rate, it has a positive coefficient value. On the other hand, in the case of Si, since it contributes to securing retained austenite as well as improving strength through solid solution strengthening, it also has a positive coefficient value in relational expression 3.

本発明で提案する上記関係式1~3のうちいずれか一つでも満たさなくなると、鋼板の物性、特に、引張強度、降伏強度、伸び率のうちいずれか一つ以上に劣るという問題がある。これは、後述する実施例から立証されることを明らかにする。 If any one of the above relational expressions 1 to 3 proposed in the present invention is not satisfied, there is a problem that the physical properties of the steel sheet, especially any one or more of the tensile strength, yield strength, and elongation rate, are inferior. This will be clearly demonstrated from the examples described below.

上述した合金成分系を有する本発明の鋼板は、微細組織として軟質相と硬質相とが適切に分散して含まれ、特に面積分率3~20%のフェライト、1~10%の残留オーステナイト、1~30%のベイナイト、30~70%の焼戻しマルテンサイト、及び残部フレッシュマルテンサイト(fresh martensite)を含むという特徴がある。 The steel sheet of the present invention having the above-mentioned alloy composition system contains a soft phase and a hard phase appropriately dispersed as a microstructure, and in particular contains ferrite with an area fraction of 3 to 20%, retained austenite with an area fraction of 1 to 10%, It is characterized by containing 1 to 30% bainite, 30 to 70% tempered martensite, and the remainder fresh martensite.

上記フェライト(Ferrite)は、体心立方構造(BCC)を有する鉄(Fe)の同素体であって、マルテンサイト及びベイナイトとは異なる軟質組織である。よって、上記ベイナイト及びマルテンサイト相に比べて伸び率が高く、衝撃吸収エネルギーに優れるという利点がある。 The ferrite is an allotrope of iron (Fe) having a body-centered cubic structure (BCC), and has a soft structure different from martensite and bainite. Therefore, it has the advantage of having a higher elongation rate and superior impact absorption energy than the bainite and martensite phases.

このようなフェライトの分率が20%を超えると、鋼板内の軟質組織が過度に形成されて塑性変形を促進することがあり、これは、鋼板の降伏強度の低下を誘発する原因となる。一方、上記フェライトの分率が3%未満であると、鋼板の伸び率が減少し、成形性が低下するという問題がある。 When the fraction of such ferrite exceeds 20%, soft structures within the steel sheet may be formed excessively and promote plastic deformation, which causes a decrease in the yield strength of the steel sheet. On the other hand, if the ferrite fraction is less than 3%, there is a problem that the elongation rate of the steel sheet decreases and the formability decreases.

したがって、上記フェライトは面積分率3~20%で含むことができ、より好ましくは5~15%で含むことができる。 Therefore, the ferrite can be contained in an area fraction of 3 to 20%, more preferably 5 to 15%.

上記残留オーステナイト(Retained Austenite)は、鋼板の製造過程のうち、一連の熱処理過程(本発明では、[焼鈍-冷却-再加熱及び維持]工程に該当する)でマルテンサイト又はベイナイトに変態することができず、鋼内に残留するオーステナイト組織を意味し、鋼板の強度と伸び率とのバランスを調節する役割を果たす。 The above-mentioned retained austenite can be transformed into martensite or bainite during a series of heat treatment processes (corresponding to the [annealing-cooling-reheating and maintenance] process in the present invention) in the steel sheet manufacturing process. This refers to the austenite structure that remains within the steel and plays a role in adjusting the balance between the strength and elongation of the steel plate.

一般的に、鋼板の強度が増加すると、伸び率が減少して成形性が低下し、鋼板の伸び率が増加すると、強度が減少して構造部材として要求される物性の確保が難しいが、上記残留オーステナイト相は鋼板の引張強度(TS)×伸び率(El)の値を高めるため、強度と伸び率とのバランス向上に有用である。 In general, when the strength of a steel plate increases, its elongation rate decreases and its formability decreases, and when the elongation rate of a steel plate increases, its strength decreases, making it difficult to secure the physical properties required for structural members. The retained austenite phase increases the value of tensile strength (TS) x elongation (El) of the steel plate, and is therefore useful for improving the balance between strength and elongation.

上述した効果を十分に得るためには、面積分率1%以上の残留オーステナイト相を含むことができるが、その分率が10%を超えると、液体金属脆性の敏感度が増加してスポット溶接性に劣るという問題がある。 In order to fully obtain the above-mentioned effects, it is possible to include retained austenite phase with an area fraction of 1% or more, but if the fraction exceeds 10%, the sensitivity to liquid metal embrittlement increases and spot welding becomes difficult. There is a problem with being inferior in gender.

したがって、上記残留オーステナイトは面積分率1~10%で含むことができ、より好ましくは3~9%で含むことができる。 Therefore, the retained austenite can be contained in an area fraction of 1 to 10%, more preferably 3 to 9%.

上記ベイナイト(Bainite)は、鋼内で組織間の強度差を減らし、加工性の向上に寄与することができる。すなわち、比較的硬度の低いフェライト及び残留オーステナイト相と、相対的に硬度の高い焼戻しマルテンサイト、フレッシュマルテンサイトとの硬度差により、鋼板に割れ、欠陥及び破壊が発生することを防止する役割を果たす。 Bainite can reduce the strength difference between structures within steel and contribute to improving workability. In other words, it plays a role in preventing cracks, defects, and destruction in the steel sheet due to the difference in hardness between the ferrite and retained austenite phases, which have relatively low hardness, and the tempered martensite and fresh martensite, which have relatively high hardness. .

上述した効果を十分に得るためには、面積分率1%以上、より好ましくは5%以上で含むことができる。但し、その分率が30%を超えると、フレッシュマルテンサイトの分率が減少して目標レベルの強度を確保するのに困難がある。 In order to fully obtain the above-mentioned effects, it can be contained in an area fraction of 1% or more, more preferably 5% or more. However, if the fraction exceeds 30%, the fraction of fresh martensite decreases, making it difficult to secure the target level of strength.

したがって、上記ベイナイトは面積分率1~30%で含むことができる。 Therefore, the bainite can be contained in an area fraction of 1 to 30%.

上記焼戻しマルテンサイト(Tempered Martensite)とは、オーステナイトを焼入れ(quenching)して得られたマルテンサイト相を約500℃程度の温度で焼戻し(tempering)処理して軟化させた組織を意味する。このような焼戻しマルテンサイト相は、前述の組織に比べて強度が高いため、鋼板の降伏強度及び引張強度の向上に大きく寄与する。また、焼入れして得られたマルテンサイト内の炭素が焼戻し工程中に周辺のオーステナイトに分配され、オーステナイトの熱的安定性を高めて、常温で残留できるようにするため、鋼板の伸び率の向上を図る効果がある。 The tempered martensite refers to a structure obtained by softening a martensite phase obtained by quenching austenite at a temperature of about 500°C. Since such a tempered martensitic phase has higher strength than the above-mentioned structure, it greatly contributes to improving the yield strength and tensile strength of the steel sheet. In addition, the carbon in the martensite obtained by quenching is distributed to the surrounding austenite during the tempering process, increasing the thermal stability of the austenite and allowing it to remain at room temperature, improving the elongation rate of the steel plate. This has the effect of achieving

上述した効果を十分に得るためには、面積分率30%以上の上記焼戻しマルテンサイト相を含むことが好ましい。但し、その分率が70%を超えると、相対的に残留オーステナイト相の分率が減少するという問題がある。 In order to fully obtain the above-mentioned effects, it is preferable that the above-mentioned tempered martensitic phase be contained in an area fraction of 30% or more. However, if the fraction exceeds 70%, there is a problem that the fraction of the retained austenite phase decreases relatively.

したがって、上記焼戻しマルテンサイトは面積分率30~70%で含むことができる。 Therefore, the tempered martensite can be contained in an area fraction of 30 to 70%.

上記フェライト、残留オーステナイト、ベイナイト及び焼戻しマルテンサイト相を除く残部組織としては、フレッシュマルテンサイト(Fresh Martensite)相を含むことができる。 The remaining structure excluding the ferrite, retained austenite, bainite, and tempered martensite phases may include a fresh martensite phase.

上記フレッシュマルテンサイト相は、常温に最終冷却する過程で得られる組織であり、強度が最も高いため、鋼板の降伏強度及び引張強度の向上に大きく寄与する。このようなフレッシュマルテンサイト相の分率については特に限定しないが、一例として、面積分率3%以上で含むことができることを明らかにする。 The above-mentioned fresh martensite phase is a structure obtained during the final cooling process to room temperature and has the highest strength, so it greatly contributes to improving the yield strength and tensile strength of the steel sheet. The fraction of such fresh martensite phase is not particularly limited, but as an example, it is clarified that it can be included at an area fraction of 3% or more.

上記のように、本発明の鋼板は、軟質相と硬質相とが適切に形成されることにより、引張強度、降伏強度及び伸び率に優れるという特徴があり、具体的には、700MPa以上の降伏強度、980MPa以上の引張強度、13%以上の伸び率を有することができる。 As mentioned above, the steel sheet of the present invention is characterized by excellent tensile strength, yield strength, and elongation due to the appropriate formation of a soft phase and a hard phase. It can have a tensile strength of 980 MPa or more and an elongation rate of 13% or more.

一方、本発明の鋼板は冷延鋼板であってもよく、上記冷延鋼板の少なくとも一面に亜鉛系めっき層を含む溶融亜鉛めっき鋼板、上記溶融亜鉛めっき鋼板が合金化処理した合金化溶融亜鉛めっき鋼板であってもよい。 On the other hand, the steel sheet of the present invention may be a cold-rolled steel sheet, such as a hot-dip galvanized steel sheet containing a zinc-based plating layer on at least one surface of the cold-rolled steel sheet, or an alloyed hot-dip galvanized steel sheet obtained by alloying the hot-dip galvanized steel sheet. It may also be a steel plate.

特に限定するものではないが、上記亜鉛系めっき層は、亜鉛を主に含有する亜鉛めっき層、亜鉛以外にアルミニウム及び/又はマグネシウムを含有する亜鉛合金めっき層であってもよい。 Although not particularly limited, the zinc-based plating layer may be a zinc plating layer mainly containing zinc, or a zinc alloy plating layer containing aluminum and/or magnesium in addition to zinc.

以下、本発明の他の一態様である、本発明で提供する延性に優れた超高強度鋼板を製造する方法について詳細に説明する。 Hereinafter, a method for manufacturing an ultra-high strength steel plate with excellent ductility provided by the present invention, which is another embodiment of the present invention, will be described in detail.

簡単に言えば、本発明は、[鋼スラブ再加熱-熱間圧延-巻取り-冷間圧延-連続焼鈍-冷却-再加熱及び維持]の工程を経て目的とする鋼板を製造することができ、その後、「溶融亜鉛めっき-合金化熱処理」の工程をさらに行うことができる。 Simply put, the present invention can produce a target steel plate through the steps of [steel slab reheating - hot rolling - winding - cold rolling - continuous annealing - cooling - reheating and maintenance]. After that, a process of "hot dip galvanizing-alloying heat treatment" can be further performed.

各段階別条件については、下記で詳細に説明する。 The conditions for each stage will be explained in detail below.

[鋼スラブ加熱]
まず、上述した合金成分系を全て満たす鋼スラブを準備した後、これを加熱することができる。本工程は、後続する熱間圧延工程を円滑に行い、目標とする鋼板の物性を十分に得るために行われる。
[Steel slab heating]
First, a steel slab satisfying all of the above-mentioned alloy composition systems is prepared and then heated. This step is performed in order to smoothly perform the subsequent hot rolling step and to sufficiently obtain the target physical properties of the steel sheet.

上記加熱工程は1050~1300℃の温度範囲で行うことができる。上記加熱温度が1050℃未満であると、鋼板と圧延機との間で摩擦が増加し、熱間圧延時にローラに負荷される荷重が急激に増加するという問題がある。一方、その温度が1300℃を超えると、温度上昇のために要求されるエネルギーコストが増加するだけでなく、表面スケールの量が増加して材料の損失につながる可能性がある。 The above heating step can be performed at a temperature range of 1050 to 1300°C. If the heating temperature is less than 1050° C., there is a problem in that friction increases between the steel plate and the rolling mill, and the load applied to the rollers during hot rolling increases rapidly. On the other hand, if the temperature exceeds 1300° C., not only will the energy cost required due to the temperature increase increase, but also the amount of surface scale will increase, which may lead to material loss.

したがって、上記加熱工程は1050~1300℃の温度範囲で行うことができ、より好ましくは1090~1250℃の温度範囲で行うことができる。 Therefore, the above heating step can be carried out at a temperature range of 1050 to 1300°C, more preferably 1090 to 1250°C.

[熱間圧延]
上記により加熱された鋼スラブを熱間圧延して熱延鋼板に製造することができ、このとき800~1000℃の温度範囲で仕上げ熱間圧延を行うことができる。
[Hot rolling]
The heated steel slab as described above can be hot rolled to produce a hot rolled steel plate, and at this time, finish hot rolling can be performed at a temperature range of 800 to 1000°C.

上述した温度範囲で仕上げ熱間圧延を行うことで、鋼板の剛性及び成形性を同時に向上させる効果が得られる。しかし、その温度が800℃未満であると、フェライト領域で圧延が行われることによって、鋼板と圧延機との間で摩擦が増加し、圧延による負荷が大きく増加するという問題がある。これは、過度な転位を形成して後続する巻取り又は冷間圧延の過程で鋼板の表面に粗大な結晶粒の形成を誘発するため、強度低下の原因となる。一方、その温度が1000℃を超えると、フェライト結晶粒の大きさが増加し、やはり強度が低下するという問題がある。さらに、熱延鋼板の表面にスケール(scale)が発生し、表面欠陥及び圧延ロールの寿命短縮を誘発する可能性がある。 By performing finish hot rolling in the above-mentioned temperature range, the effect of simultaneously improving the rigidity and formability of the steel sheet can be obtained. However, if the temperature is less than 800° C., rolling is performed in the ferrite region, which increases friction between the steel plate and the rolling mill, causing a problem that the load due to rolling increases significantly. This causes the formation of excessive dislocations and the formation of coarse grains on the surface of the steel sheet during the subsequent winding or cold rolling process, resulting in a decrease in strength. On the other hand, if the temperature exceeds 1000° C., the size of ferrite crystal grains increases, resulting in a problem that the strength also decreases. Furthermore, scale may be generated on the surface of the hot-rolled steel sheet, which may cause surface defects and shorten the life of the rolling rolls.

したがって、上記熱間圧延時に仕上げ熱間圧延は800~1000℃の温度範囲で行うことができ、より好ましくは850~950℃の温度範囲で行うことができる。 Therefore, finish hot rolling during the above hot rolling can be performed at a temperature range of 800 to 1000°C, more preferably at a temperature range of 850 to 950°C.

[巻取り]
上記により製造された熱延鋼板を巻き取ることができ、このとき400~700℃の温度範囲で行うことができる。
[Winding]
The hot-rolled steel sheet produced as described above can be rolled up at a temperature range of 400 to 700°C.

上記巻取り温度が400℃未満であると、熱延鋼板の強度が過度に高くなり、後続する冷間圧延時に圧延負荷を誘発することがある。また、熱間圧延された鋼板を巻取り温度まで冷却するためのコスト及び時間が過度にかかり、工程コスト上昇の原因となる。一方、その温度が700℃を超えると、熱延鋼板の表面にスケールが過度に発生して表面欠陥を誘発する可能性が高く、めっき性が弱くなる原因となる。 If the coiling temperature is less than 400° C., the strength of the hot-rolled steel sheet becomes excessively high, which may induce rolling load during subsequent cold rolling. Further, it takes excessive cost and time to cool the hot rolled steel plate to the coiling temperature, which causes an increase in process costs. On the other hand, if the temperature exceeds 700° C., there is a high possibility that scale will be generated excessively on the surface of the hot rolled steel sheet and induce surface defects, which will cause the plating properties to become weak.

したがって、上記巻取り工程は400~700℃の温度範囲で行うことができ、より好ましくは500~700℃の温度範囲で行うことができる。 Therefore, the above-mentioned winding step can be performed at a temperature range of 400 to 700°C, more preferably at a temperature range of 500 to 700°C.

[冷却]
上記巻き取られた熱延鋼板を常温まで冷却することができる。このとき、冷却速度については特に限定しないが、空冷で行うことができる。
[cooling]
The hot-rolled steel sheet thus wound can be cooled to room temperature. At this time, the cooling rate is not particularly limited, but air cooling can be used.

[冷間圧延]
その後、上記熱延鋼板を冷間圧延して冷延鋼板に製造することができ、このとき20~70%の冷間圧下率で行うことができる。
[Cold rolling]
Thereafter, the hot-rolled steel sheet can be cold-rolled to produce a cold-rolled steel sheet, and this can be done at a cold rolling reduction rate of 20 to 70%.

上記冷間圧延時に冷間圧下率が20%未満であると、目標厚さの鋼板を得るのに困難があり、鋼板の形状を矯正し難いという欠点がある。一方、70%を超えると、鋼板のエッジ(edge)部でクラックが発生する可能性が高く、冷間圧延の負荷をもたらすという問題がある。さらに、鋼板の表面に、過度な負荷により後続の連続焼鈍時に粗大なフェライトが形成されるおそれがある。 If the cold rolling reduction rate during the cold rolling is less than 20%, it is difficult to obtain a steel plate with a target thickness, and there are disadvantages in that it is difficult to correct the shape of the steel plate. On the other hand, if it exceeds 70%, there is a high possibility that cracks will occur at the edge portions of the steel sheet, causing a problem of causing a load during cold rolling. Furthermore, there is a risk that coarse ferrite will be formed on the surface of the steel plate during subsequent continuous annealing due to excessive load.

したがって、上記冷間圧延は20~70%の冷間圧下率で行うことができ、より好ましくは30~60%の冷間圧下率で行うことができる。 Therefore, the cold rolling can be performed at a cold rolling reduction of 20 to 70%, more preferably 30 to 60%.

一方、上記冷間圧延を行う前に、上記熱延鋼板に対して酸洗(pickling)処理を行うことができる。上記酸洗処理は、上記熱延鋼板の表面に形成されたスケールを塩酸(HCl)などを用いて除去する工程であり、通常の条件により行うことができるため、その条件については特に限定しない。 Meanwhile, before performing the cold rolling, the hot rolled steel sheet may be subjected to pickling treatment. The pickling treatment is a process of removing scale formed on the surface of the hot rolled steel sheet using hydrochloric acid (HCl) or the like, and can be carried out under normal conditions, so the conditions are not particularly limited.

[焼鈍]
上記により製造された冷延鋼板を焼鈍処理することができる。一例として、連続焼鈍工程(Continuous Annealing Process)を行うことができるが、これに限定されるものではなく、公知の焼鈍方法のいずれでも構わない。
[Annealing]
The cold-rolled steel sheet manufactured as described above can be annealed. As an example, a continuous annealing process may be performed, but the present invention is not limited thereto, and any known annealing method may be used.

本発明では、上記焼鈍工程により冷延鋼板に形成されるフェライトを再結晶化させ、鋼内のフェライト及びオーステナイトの分率を調節することができる。このとき形成された各相の分率によって、最終熱処理(後述する再加熱工程を指す)以後に製造された鋼板の強度が決定され、一般的に上記オーステナイトの分率が高いほど、オーステナイトから変態するマルテンサイト又はベイナイトの分率が増加して鋼板の強度が向上する傾向がある。但し、本発明は、後述する一連の熱処理条件によってさらに強度を制御することができる。 In the present invention, the ferrite formed in the cold-rolled steel sheet through the annealing process is recrystallized, and the fraction of ferrite and austenite in the steel can be adjusted. The strength of the steel sheet produced after the final heat treatment (referring to the reheating process described below) is determined by the fraction of each phase formed at this time, and generally speaking, the higher the austenite fraction, the more the austenite transforms. As the fraction of martensite or bainite increases, the strength of the steel sheet tends to improve. However, in the present invention, the strength can be further controlled by a series of heat treatment conditions described below.

また、上記焼鈍工程によって鋼内の炭素(C)を分配することができ、これによりオーステナイト内に含有される炭素(C)の量を増加させ、常温でも最大10面積%のオーステナイト相を有することができる。 Additionally, carbon (C) within the steel can be distributed through the above annealing process, thereby increasing the amount of carbon (C) contained within the austenite, allowing the steel to have an austenite phase of up to 10% by area even at room temperature. I can do it.

上記焼鈍工程は800~900℃の温度範囲で行うことができる。 The above annealing step can be performed at a temperature range of 800 to 900°C.

上記焼鈍時の温度が800℃未満であると、焼鈍工程によって形成されるオーステナイトの分率が減少し、後述する熱処理時に形成される焼戻しマルテンサイト、ベイナイト及びフレッシュマルテンサイトの分率が十分でないおそれがある。これは、最終鋼板の降伏強度と引張強度が減少する原因となり得る。一方、その温度が900℃を超えると、鋼板内のオーステナイトの分率が過度に高くなり、後述する熱処理過程で一部のオーステナイトがフェライトに変態するという問題がある。また、残留オーステナイトの炭素濃化が低くなって機械的安定性が減少するおそれがあり、この場合、鋼板の伸び率を低下させる原因となる。さらに、上記焼鈍過程で鋼内のFeが酸化しながら発生する水分が鋼中のSi、Mn、Alと反応し、鋼板に酸化物皮膜を形成する可能性が高くなる。上記酸化物皮膜は、溶融亜鉛めっき時にZnの濡れ性を阻害し、鋼板の表面品質が悪くなるおそれがある。 If the temperature during the above annealing is less than 800°C, the fraction of austenite formed in the annealing process will decrease, and the fraction of tempered martensite, bainite and fresh martensite formed during the heat treatment described below may not be sufficient. There is. This can cause the yield strength and tensile strength of the final steel plate to decrease. On the other hand, if the temperature exceeds 900°C, there is a problem that the fraction of austenite in the steel sheet becomes excessively high, and some austenite transforms into ferrite during the heat treatment process described below. Furthermore, there is a possibility that the carbon enrichment of the retained austenite becomes low and the mechanical stability decreases, which causes a decrease in the elongation rate of the steel sheet. Furthermore, during the annealing process, moisture generated while Fe in the steel is oxidized reacts with Si, Mn, and Al in the steel, increasing the possibility that an oxide film will be formed on the steel sheet. The above oxide film may inhibit the wettability of Zn during hot-dip galvanizing, and the surface quality of the steel sheet may deteriorate.

したがって、上記焼鈍工程は800~900℃の温度範囲で行うことができ、より好ましくは820~870℃の温度範囲で行うことができる。 Therefore, the annealing step can be performed at a temperature range of 800 to 900°C, more preferably 820 to 870°C.

[冷却]
上記により焼鈍工程を完了した冷延鋼板を冷却することができる。
[cooling]
The cold-rolled steel sheet that has undergone the annealing process can be cooled by the above process.

本発明は、上記焼鈍処理された冷延鋼板に対して冷却を行うことにより焼入れマルテンサイト(quenched martensite)を形成することができ、このために、上記冷却はマルテンサイト変態開始温度(Ms)以下で行うことが好ましい。より好ましくは250~400℃の温度範囲まで行うことができる。 In the present invention, quenched martensite can be formed by cooling the annealed cold-rolled steel sheet, and for this purpose, the cooling is performed at a temperature below the martensitic transformation start temperature (Ms). It is preferable to do so. More preferably, the temperature range can be from 250 to 400°C.

上記冷却時に、その温度が低いほど、焼入れマルテンサイトの分率が高くなり、鋼板の強度向上を誘導することができる。また、マルテンサイト内に過飽和した炭素が、後続する熱処理過程において周辺のオーステナイトに分配され、残留オーステナイトの安定性を高め、その結果、伸び率の向上を図ることができる。 During the cooling, the lower the temperature, the higher the fraction of quenched martensite, which can induce an improvement in the strength of the steel plate. In addition, supersaturated carbon in martensite is distributed to surrounding austenite in the subsequent heat treatment process, increasing the stability of retained austenite and, as a result, improving elongation.

但し、上記冷却温度が250℃未満であると、焼入れマルテンサイトの分率が過度に増加して、むしろ残留オーステナイトの分率が減少し、鋼板の形状が劣化するという問題がある。一方、その温度が400℃を超えると、焼入れマルテンサイトが十分に形成されず、上述した効果を期待し難くなる。 However, if the cooling temperature is less than 250° C., there is a problem that the fraction of quenched martensite increases excessively, and the fraction of retained austenite decreases, resulting in deterioration of the shape of the steel sheet. On the other hand, if the temperature exceeds 400°C, quenched martensite will not be sufficiently formed, making it difficult to expect the above-mentioned effects.

上述した温度範囲に冷却する際、2~50℃/sの平均冷却速度で行うことができる。上記冷却時の速度が2℃/s未満であると、冷却中にフェライトがさらに変態して強度の減少を誘発する。一方、その速度が50℃/sを超えて急冷すると、鋼板の位置別冷却ばらつきの発生により鋼板の形状が劣化するという問題がある。上述した冷却速度で冷却を行うにあたり、冷却方法については特に限定しない。一例として、上記冷却は、初期設定された冷却速度のまま冷却終了温度まで冷却する単一冷却方法であってもよく、他の例として、一定区間までは徐冷を行った後、冷却終了温度まで強冷を行う段階的冷却(step-by step cooling)方法であってもよいが、これに限定されるものではないことを明らかにする。 When cooling to the above-mentioned temperature range, it can be performed at an average cooling rate of 2 to 50° C./s. If the cooling rate is less than 2° C./s, the ferrite is further transformed during cooling, leading to a decrease in strength. On the other hand, if the cooling speed exceeds 50° C./s, there is a problem that the shape of the steel sheet deteriorates due to variations in cooling depending on the position of the steel sheet. When performing cooling at the above-mentioned cooling rate, there are no particular limitations on the cooling method. As an example, the above-mentioned cooling may be a single cooling method in which cooling is performed at an initially set cooling rate until the cooling end temperature is reached.As another example, after slow cooling is performed up to a certain section, the cooling end temperature is A step-by step cooling method may be used, but is not limited to this method.

一方、上記冷却された温度で一定時間維持する工程を経ることができ、この過程で等温変態相がさらに導入され、後続工程においてベイナイトの変態を促進する効果を得ることができる。このために、上記維持工程は0.1~60分間行うことができる。 On the other hand, it is possible to undergo a step of maintaining the above-mentioned cooled temperature for a certain period of time, and in this step, an isothermal transformation phase is further introduced, and it is possible to obtain the effect of promoting the transformation of bainite in the subsequent step. To this end, the above maintenance step can be performed for 0.1 to 60 minutes.

[再加熱及び維持]
上記冷却された冷延鋼板、さらに、冷却及び維持された冷延鋼板を上記冷却温度に比べて50~200℃程度高い温度範囲に再加熱した後、一定時間維持することにより焼戻し処理することができる。
[Reheating and maintenance]
The above-mentioned cooled cold-rolled steel sheet and the cooled and maintained cold-rolled steel sheet can be reheated to a temperature range approximately 50 to 200°C higher than the above-mentioned cooling temperature, and then tempered by maintaining the temperature for a certain period of time. can.

上記冷却された冷延鋼板を再加熱処理することにより、上記冷却過程で形成された焼入れマルテンサイト相が焼戻しされて焼戻しマルテンサイトに変態し、上記焼戻しマルテンサイトは炭素が転位に固着して降伏強度が高いという利点がある。また、上記焼戻し過程で焼入れマルテンサイト内に過飽和した炭素(C)が周辺のオーステナイトに再分配されるか、又はベイナイト変態を誘導して残留オーステナイトの安定性が向上し、伸び率を向上させる効果が得られる。 By reheating the cooled cold-rolled steel sheet, the hardened martensite phase formed in the cooling process is tempered and transformed into tempered martensite, and the tempered martensite yields due to carbon fixation at dislocations. It has the advantage of high strength. In addition, in the above tempering process, supersaturated carbon (C) in the hardened martensite is redistributed to the surrounding austenite or induces bainite transformation, which improves the stability of the retained austenite and has the effect of improving the elongation rate. is obtained.

上記転位の固着及びオーステナイトへの炭素分配は、焼戻しされる温度が高いほど円滑に起こるため、上記冷却温度より50℃以上高い温度(冷却された温度+50℃以上)で再加熱する必要がある。但し、その温度が過度に高いと、焼入れマルテンサイト内にセメンタイト(cementite)が生成され、粗大化して鋼板の強度が低下し、オーステナイトへの炭素再分配効果が減少して伸び率の向上を期待し難くなる。これを考慮して、上記再加熱は、上記冷却された温度+200℃以下で行われるように制限することができる。 The above fixation of dislocations and carbon distribution into austenite occur more smoothly as the tempering temperature is higher, so it is necessary to reheat at a temperature 50° C. or more higher than the cooling temperature (cooled temperature + 50° C. or more). However, if the temperature is too high, cementite will be generated within the quenched martensite, which will become coarser and reduce the strength of the steel sheet, reducing the effect of carbon redistribution to austenite, which is expected to improve the elongation rate. It becomes difficult to do. Considering this, the reheating can be limited to below the cooled temperature +200°C.

上述した温度範囲に冷却された冷延鋼板を再加熱した後、その温度で0.1~60分間維持することにより、上述した効果を十分に実現することが好ましい。 It is preferable to fully realize the above-mentioned effects by reheating the cold-rolled steel sheet that has been cooled to the above-mentioned temperature range and then maintaining it at that temperature for 0.1 to 60 minutes.

上記維持時に、その時間が過度となって60分を超えると、維持温度で平衡相であるフェライトとセメンタイトが形成され、鋼板の強度が減少するという問題があり、0.1分未満では意図する効果が得られない。 During the above maintenance, if the time exceeds 60 minutes, ferrite and cementite, which are equilibrium phases, will be formed at the maintenance temperature, resulting in a decrease in the strength of the steel plate. No effect is obtained.

上記のように冷却された冷延鋼板を再加熱及び維持する工程を完了した後には、通常の条件で常温まで冷却することができ、最終的に、一定分率の軟質相と硬質相とが適切に分布した組織を有する鋼板が得られる。 After completing the process of reheating and maintaining the cooled cold-rolled steel sheet as described above, it can be cooled to room temperature under normal conditions, and finally a certain proportion of the soft phase and hard phase will be formed. A steel plate with an appropriately distributed structure is obtained.

具体的には、面積分率3~20%のフェライト、1~10%の残留オーステナイト、1~30%のベイナイト、30~70%の焼戻しマルテンサイト及び残部フレッシュマルテンサイト(fresh martensite)で構成される微細組織を有する鋼板を得ることができ、このような本発明の鋼板は、降伏強度及び引張強度に優れ、延性が向上した効果を有することができる。 Specifically, it is composed of ferrite with an area fraction of 3 to 20%, retained austenite of 1 to 10%, bainite of 1 to 30%, tempered martensite of 30 to 70%, and the remainder fresh martensite. The steel plate of the present invention has excellent yield strength and tensile strength, and can have the effect of improved ductility.

上記常温まで冷却する工程については特に限定しないが、一例として、空冷で行うことができる。但し、水冷、油冷、炉冷などの公知の冷却方法で代替可能であることは自明である。 The step of cooling to room temperature is not particularly limited, but can be performed by air cooling, for example. However, it is obvious that known cooling methods such as water cooling, oil cooling, and furnace cooling can be used instead.

一方、上記による一連の熱処理工程を完了した冷延鋼板に対して、後述するようにめっき処理することで、少なくとも一面にめっき層を有するめっき鋼板を製造することができる。 On the other hand, a plated steel plate having a plating layer on at least one surface can be manufactured by subjecting a cold-rolled steel plate that has undergone the above series of heat treatment steps to a plating treatment as described below.

[溶融亜鉛めっき]
上述した一連の工程を経て製造された鋼板を溶融亜鉛系めっき浴に浸漬して溶融亜鉛めっき鋼板を製造することができる。
[Hot dip galvanizing]
A hot-dip galvanized steel sheet can be manufactured by immersing a steel sheet manufactured through the series of steps described above in a hot-dip galvanizing bath.

このとき、溶融亜鉛めっきは通常の条件で行うことができるが、一例として、430~490℃の温度範囲で行うことができる。また、上記溶融亜鉛めっき時に、溶融亜鉛系めっき浴の組成については特に限定せず、純粋亜鉛めっき浴であってもよく、Si、Al、Mg等を含む亜鉛系合金めっき浴であってもよい。 At this time, hot-dip galvanizing can be performed under normal conditions, and as an example, it can be performed at a temperature range of 430 to 490°C. Furthermore, during the hot-dip galvanizing, the composition of the hot-dip zinc plating bath is not particularly limited, and may be a pure zinc plating bath or a zinc-based alloy plating bath containing Si, Al, Mg, etc. .

[合金化熱処理]
必要に応じて、上記溶融亜鉛めっき鋼板に対して合金化熱処理することにより、合金化溶融亜鉛めっき鋼板を得ることができる。
[Alloying heat treatment]
If necessary, by subjecting the hot-dip galvanized steel sheet to an alloying heat treatment, an alloyed hot-dip galvanized steel sheet can be obtained.

本発明では、上記合金化熱処理工程条件については特に制限せず、通常の条件であれば構わない。一例として、480~600℃の温度範囲で合金化熱処理工程を行うことができる。 In the present invention, the alloying heat treatment process conditions are not particularly limited, and any normal conditions may be used. As an example, the alloying heat treatment step can be performed at a temperature range of 480-600°C.

以下、実施例を挙げて本発明をより具体的に説明する。但し、下記の実施例は、本発明を例示してより詳細に説明するためのものであり、本発明の権利範囲を限定するためのものではないことに留意する必要がある。本発明の権利範囲は、特許請求の範囲に記載された事項及びこれにより合理的に類推される事項によって決定されるものである。 Hereinafter, the present invention will be explained in more detail with reference to Examples. However, it should be noted that the following examples are for illustrating and explaining the present invention in more detail, and are not intended to limit the scope of the present invention. The scope of rights to the present invention is determined by the matters stated in the claims and matters reasonably inferred from the claims.

(実施例)
下記表1の合金組成を有するスラブ30kgを1200℃の温度で1時間の間加熱した後、加熱されたスラブを900℃で仕上げ熱間圧延して熱延鋼板を製造した。その後、各熱延鋼板を600℃に予め加熱された炉に装入して1時間維持した後、炉冷する熱延巻取りの模擬を行った。その後、常温まで冷却(空冷)した後に45%の冷間圧下率で冷間圧延して冷延鋼板を製造した。
(Example)
After heating 30 kg of a slab having the alloy composition shown in Table 1 below at a temperature of 1200° C. for 1 hour, the heated slab was finish hot rolled at 900° C. to produce a hot rolled steel plate. Thereafter, each hot-rolled steel sheet was charged into a furnace preheated to 600° C., maintained for one hour, and then cooled in the furnace to simulate hot-rolled winding. Thereafter, it was cooled to room temperature (air-cooled) and then cold-rolled at a cold reduction ratio of 45% to produce a cold-rolled steel sheet.

上記により製造されたそれぞれの冷延鋼板について、下記表2に示す温度T1(℃)で1分間連続焼鈍処理した後、温度T2(℃)に冷却してから10秒維持した後、温度T3(℃)に再加熱して1分間維持した上で、常温に冷却(空冷)して最終鋼板を製造した。上記焼鈍処理後、温度T2までの冷却は一律的に15℃/sの冷却速度で行った。 Each of the cold-rolled steel sheets manufactured as described above was continuously annealed for 1 minute at the temperature T1 (°C) shown in Table 2 below, then cooled to a temperature T2 (°C) and maintained for 10 seconds, and then maintained at a temperature T3 (°C). ℃), maintained for 1 minute, and then cooled to room temperature (air cooling) to produce a final steel plate. After the annealing treatment, cooling to temperature T2 was uniformly performed at a cooling rate of 15° C./s.

上述した全ての工程を経て製造されたそれぞれの鋼板について、機械的物性及び内部組織を測定し、その結果を下記表3に示した。 The mechanical properties and internal structure of each steel plate manufactured through all the steps described above were measured, and the results are shown in Table 3 below.

上記機械的物性としては、降伏強度(YS)、引張強度(TS)及び伸び率(El)を測定し、ASTM引張試験片を用いて万能引張試験機により測定した。 As for the mechanical properties, yield strength (YS), tensile strength (TS), and elongation rate (El) were measured using a universal tensile tester using an ASTM tensile test piece.

上記内部組織は試験片を研磨してからナイタル(nital)エッチングした後、走査電子顕微鏡(SEM)を用いて各相の面積を算出した。 For the internal structure, the test piece was polished and nital etched, and the area of each phase was calculated using a scanning electron microscope (SEM).

Figure 2023547102000002
Figure 2023547102000002

Figure 2023547102000003
(表2において、鋼9、10及び11は、合金成分系が本発明から外れるため、比較例として分類したものである。)
Figure 2023547102000003
(In Table 2, Steels 9, 10, and 11 are classified as comparative examples because their alloy composition systems are outside the scope of the present invention.)

Figure 2023547102000004
Figure 2023547102000004

上記表1~3に示すように、本発明で提案する合金成分系及び製造条件を全て満たす発明例1~11は、意図する組織構成が形成されることで、目標とする物性が確保された。 As shown in Tables 1 to 3 above, invention examples 1 to 11 that satisfy all of the alloy composition systems and manufacturing conditions proposed in the present invention ensured the target physical properties by forming the intended structure. .

一方、本発明で提案する成分関係式の関係式1及び2のうち少なくとも一つを満たさない比較例1及び2は、降伏強度及び引張強度のうち一つ以上の物性が目標レベルに確保されないことが分かる。また、成分関係式のうち関係式3を満たさない比較例7は、伸び率が大きく劣っていることが確認できる。 On the other hand, in Comparative Examples 1 and 2, which do not satisfy at least one of Relational Expressions 1 and 2 of the component relational expressions proposed in the present invention, one or more of the physical properties of yield strength and tensile strength cannot be secured at the target level. I understand. Furthermore, it can be confirmed that Comparative Example 7, which does not satisfy Relational Expression 3 among the component relational expressions, has a significantly inferior elongation rate.

これにより、本発明で特徴とする関係式1は鋼板の微細組織の分率と固溶強化効果による降伏強度の強化に寄与し、関係式2は鋼板の引張強度の向上に寄与し、関係式3は鋼板の延性向上に寄与することが証明された。 As a result, relational expression 1, which is a feature of the present invention, contributes to strengthening the yield strength due to the fraction of the microstructure of the steel plate and the solid solution strengthening effect, and relational expression 2 contributes to improving the tensile strength of the steel plate, and the relational expression 3 was proven to contribute to improving the ductility of steel sheets.

すなわち、本発明の関係式1及び2を満たさない場合、鋼板の強度に劣り、関係式3を満たさない場合は鋼板の延性に劣ることを意味する。 That is, when relational expressions 1 and 2 of the present invention are not satisfied, the strength of the steel plate is inferior, and when relational expression 3 is not satisfied, it means that the ductility of the steel plate is inferior.

一方、本発明で提案する合金成分系は満たしているものの、熱処理条件が本発明から外れる比較例3~6は、意図した通りに軟質相と硬質相とが適切に形成されず、その結果、全ての例において優れた強度及び延性の両立を確保することができなかった。 On the other hand, in Comparative Examples 3 to 6, in which the alloy composition system proposed by the present invention is satisfied but the heat treatment conditions deviate from the present invention, the soft phase and hard phase were not formed appropriately as intended, and as a result, In all examples, it was not possible to ensure both excellent strength and ductility.

図1は、発明例1の組織写真を示すものであって、フェライト、残留オーステナイト、焼戻しマルテンサイト、ベイナイトが目標とする分率の範囲内に形成され、その他の残部組織としてフレッシュマルテンサイト相が形成されたことが確認できる。 FIG. 1 shows a photograph of the structure of Invention Example 1, in which ferrite, retained austenite, tempered martensite, and bainite are formed within the target fraction range, and the remaining structure is a fresh martensite phase. It can be confirmed that it has been formed.

図2は、比較例6の組織写真を示すものであって、焼戻しマルテンサイト相が目標とする分率で形成されず、残留オーステナイト相を十分に確保できず、フレッシュマルテンサイト相の分率が相対的に高く形成されたことが確認できる。 FIG. 2 shows a microstructure photograph of Comparative Example 6, in which the tempered martensite phase was not formed in the target fraction, the retained austenite phase could not be sufficiently secured, and the fresh martensite phase fraction was reduced. It can be confirmed that it was formed relatively high.

Claims (10)

重量%で、炭素(C):0.1~0.2%、シリコン(Si):0.1~1.0%、マンガン(Mn):2.0~3.0%、アルミニウム(Al):1.0%以下(0%を除く)、クロム(Cr):1.0%以下、モリブデン(Mo):0.5%以下、チタン(Ti):0.1%以下、ニオブ(Nb):0.1%以下、アンチモン(Sb):0.1%以下(0%を除く)、リン(P):0.05%以下、硫黄(S):0.02%以下、窒素(N):0.02%以下、残りのFe及びその他の不可避不純物を含み、
下記関係式1~3を満たすことを特徴とする、延性に優れた超高強度鋼板。
[関係式1]
1110[C]+41.5[Si]+575[Mn]-1092[Al]-3590[Nb]-5181[Ti]+258[Cr]+664[Mo]≧1380
[関係式2]
2853[C]+95[Si]+309[Mn]-153[Al]+4661[Nb]-780[Ti]+210[Cr]+457[Mo]≧1300
[関係式3]
-29[C]+0.6[Si]-7.3[Mn]+7.8[Al]-145.2[Nb]+62.6[Ti]-3.3[Cr]-2.2[Mo]≧-24
(関係式1~3において、各元素は重量含量を意味する。)
In weight%, carbon (C): 0.1 to 0.2%, silicon (Si): 0.1 to 1.0%, manganese (Mn): 2.0 to 3.0%, aluminum (Al) : 1.0% or less (excluding 0%), chromium (Cr): 1.0% or less, molybdenum (Mo): 0.5% or less, titanium (Ti): 0.1% or less, niobium (Nb) : 0.1% or less, antimony (Sb): 0.1% or less (excluding 0%), phosphorus (P): 0.05% or less, sulfur (S): 0.02% or less, nitrogen (N) : 0.02% or less, including remaining Fe and other unavoidable impurities,
An ultra-high strength steel plate with excellent ductility, characterized by satisfying the following relational expressions 1 to 3.
[Relational expression 1]
1110[C]+41.5[Si]+575[Mn]-1092[Al]-3590[Nb]-5181[Ti]+258[Cr]+664[Mo]≧1380
[Relational expression 2]
2853[C]+95[Si]+309[Mn]-153[Al]+4661[Nb]-780[Ti]+210[Cr]+457[Mo]≧1300
[Relational expression 3]
-29[C]+0.6[Si]-7.3[Mn]+7.8[Al]-145.2[Nb]+62.6[Ti]-3.3[Cr]-2.2[Mo ]≧-24
(In relational expressions 1 to 3, each element means the weight content.)
前記鋼板は、微細組織として、面積分率3~20%のフェライト、1~10%の残留オーステナイト、1~30%のベイナイト、30~70%の焼戻しマルテンサイト及び残部フレッシュマルテンサイト(fresh martensite)を含む、請求項1に記載の延性に優れた超高強度鋼板。 The steel plate has a microstructure having an area fraction of 3 to 20% ferrite, 1 to 10% retained austenite, 1 to 30% bainite, 30 to 70% tempered martensite, and the remainder fresh martensite. The ultra-high strength steel plate with excellent ductility according to claim 1, comprising: 前記鋼板は、フレッシュマルテンサイト相を面積分率3%以上で含む、請求項2に記載の延性に優れた超高強度鋼板。 The ultra-high strength steel plate with excellent ductility according to claim 2, wherein the steel plate contains a fresh martensite phase in an area fraction of 3% or more. 前記鋼板は、降伏強度700MPa以上、引張強度980MPa以上、伸び率13%以上である、請求項1に記載の延性に優れた超高強度鋼板。 The ultra-high strength steel plate with excellent ductility according to claim 1, wherein the steel plate has a yield strength of 700 MPa or more, a tensile strength of 980 MPa or more, and an elongation rate of 13% or more. 前記鋼板は、冷延鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板のうちいずれか一つである、請求項1に記載の延性に優れた超高強度鋼板。 The ultra-high strength steel sheet with excellent ductility according to claim 1, wherein the steel sheet is one of a cold-rolled steel sheet, a hot-dip galvanized steel sheet, and an alloyed hot-dip galvanized steel sheet. 重量%で、炭素(C):0.1~0.2%、シリコン(Si):0.1~1.0%、マンガン(Mn):2.0~3.0%、アルミニウム(Al):1.0%以下(0%を除く)、クロム(Cr):1.0%以下、モリブデン(Mo):0.5%以下、チタン(Ti):0.1%以下、ニオブ(Nb):0.1%以下、アンチモン(Sb):0.1%以下(0%を除く)、リン(P):0.05%以下、硫黄(S):0.02%以下、窒素(N):0.02%以下、残りのFe及びその他の不可避不純物を含み、下記関係式1~3を満たす鋼スラブを準備する段階と、
前記鋼スラブを1050~1300℃の温度範囲で加熱する段階と、
前記加熱された鋼スラブを800~1000℃の温度範囲で熱間圧延して熱延鋼板を製造する段階と、
前記熱延鋼板を400~700℃の温度範囲で巻き取る段階と、
前記巻き取られた熱延鋼板を総圧下率20~70%で冷間圧延して冷延鋼板を製造する段階と、
前記冷延鋼板を800~900℃の温度範囲で焼鈍処理する段階と、
前記連続焼鈍処理された冷延鋼板を250~400℃の温度範囲に冷却する段階と、
前記冷却された冷延鋼板を再加熱及び維持する段階と、を含み、
前記再加熱及び維持する段階は、前記冷却された温度+50℃以上~冷却された温度+200℃以下の温度範囲で0.1~60分間行う、延性に優れた超高強度鋼板の製造方法。
[関係式1]
1110[C]+41.5[Si]+575[Mn]-1092[Al]-3590[Nb]-5181[Ti]+258[Cr]+664[Mo]≧1380
[関係式2]
2853[C]+95[Si]+309[Mn]-153[Al]+4661[Nb]-780[Ti]+210[Cr]+457[Mo]≧1300
[関係式3]
-29[C]+0.6[Si]-7.3[Mn]+7.8[Al]-145.2[Nb]+62.6[Ti]-3.3[Cr]-2.2[Mo]≧-24
(関係式1~3において、各元素は重量含量を意味する。)
In weight%, carbon (C): 0.1 to 0.2%, silicon (Si): 0.1 to 1.0%, manganese (Mn): 2.0 to 3.0%, aluminum (Al) : 1.0% or less (excluding 0%), chromium (Cr): 1.0% or less, molybdenum (Mo): 0.5% or less, titanium (Ti): 0.1% or less, niobium (Nb) : 0.1% or less, antimony (Sb): 0.1% or less (excluding 0%), phosphorus (P): 0.05% or less, sulfur (S): 0.02% or less, nitrogen (N) : preparing a steel slab containing 0.02% or less, remaining Fe and other unavoidable impurities, and satisfying the following relational expressions 1 to 3;
heating the steel slab to a temperature range of 1050-1300°C;
hot rolling the heated steel slab at a temperature range of 800 to 1000°C to produce a hot rolled steel plate;
Coiling the hot rolled steel sheet at a temperature range of 400 to 700°C;
manufacturing a cold rolled steel sheet by cold rolling the wound hot rolled steel sheet at a total reduction rate of 20 to 70%;
annealing the cold rolled steel plate at a temperature range of 800 to 900°C;
cooling the continuously annealed cold rolled steel sheet to a temperature range of 250 to 400°C;
reheating and maintaining the cooled cold rolled steel sheet;
The method for producing an ultra-high strength steel sheet with excellent ductility, wherein the reheating and maintaining step is performed for 0.1 to 60 minutes at a temperature ranging from the cooled temperature +50°C to the cooled temperature +200°C.
[Relational expression 1]
1110[C]+41.5[Si]+575[Mn]-1092[Al]-3590[Nb]-5181[Ti]+258[Cr]+664[Mo]≧1380
[Relational expression 2]
2853[C]+95[Si]+309[Mn]-153[Al]+4661[Nb]-780[Ti]+210[Cr]+457[Mo]≧1300
[Relational expression 3]
-29[C]+0.6[Si]-7.3[Mn]+7.8[Al]-145.2[Nb]+62.6[Ti]-3.3[Cr]-2.2[Mo ]≧-24
(In relational expressions 1 to 3, each element means the weight content.)
前記冷延鋼板の冷却は、2~50℃/sの冷却速度で行う、請求項6に記載の延性に優れた超高強度鋼板の製造方法。 7. The method for producing an ultra-high strength steel sheet with excellent ductility according to claim 6, wherein the cold rolled steel sheet is cooled at a cooling rate of 2 to 50° C./s. 前記冷却された冷延鋼板を再加熱する前に冷却された温度範囲で0.1~60分間維持する段階をさらに含む、請求項6に記載の延性に優れた超高強度鋼板の製造方法。 The method for producing an ultra-high strength steel sheet with excellent ductility according to claim 6, further comprising the step of maintaining the cooled cold-rolled steel sheet in the cooled temperature range for 0.1 to 60 minutes before reheating. 前記再加熱及び維持後に溶融亜鉛めっきする段階をさらに含む、請求項6に記載の延性に優れた超高強度鋼板の製造方法。 The method of manufacturing an ultra-high strength steel sheet with excellent ductility according to claim 6, further comprising the step of hot-dip galvanizing after the reheating and maintenance. 前記溶融亜鉛めっき後に合金化熱処理する段階をさらに含む、請求項6に記載の延性に優れた超高強度鋼板の製造方法。 The method for producing an ultra-high strength steel sheet with excellent ductility according to claim 6, further comprising the step of performing alloying heat treatment after the hot-dip galvanizing.
JP2023524378A 2020-10-23 2021-10-14 Ultra-high strength steel plate with excellent ductility and its manufacturing method Pending JP2023547102A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020200138312A KR102468051B1 (en) 2020-10-23 2020-10-23 Ultra high strength steel sheet having excellent ductility and method for manufacturing thereof
KR10-2020-0138312 2020-10-23
PCT/KR2021/014215 WO2022086050A1 (en) 2020-10-23 2021-10-14 Ultra high strength steel sheet having excellent ductility and method for manufacturing thereof

Publications (1)

Publication Number Publication Date
JP2023547102A true JP2023547102A (en) 2023-11-09

Family

ID=81290791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023524378A Pending JP2023547102A (en) 2020-10-23 2021-10-14 Ultra-high strength steel plate with excellent ductility and its manufacturing method

Country Status (6)

Country Link
US (1) US20230357881A1 (en)
EP (1) EP4234750A1 (en)
JP (1) JP2023547102A (en)
KR (1) KR102468051B1 (en)
CN (1) CN116507753A (en)
WO (1) WO2022086050A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230004237A (en) * 2021-06-29 2023-01-06 현대제철 주식회사 Cold-rolled steel sheet and method of manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406444B1 (en) 2012-03-19 2014-06-13 주식회사 포스코 Ultra high strength cold rolled steel sheet having excellent elongation and bendability and method for manufacturing the same
KR101594670B1 (en) 2014-05-13 2016-02-17 주식회사 포스코 Cold-rolled steel sheet and galvanized steel sheet having excellent ductility and method for manufacturing thereof
KR102020411B1 (en) 2017-12-22 2019-09-10 주식회사 포스코 High-strength steel sheet having excellent workablity and method for manufacturing thereof
KR102276741B1 (en) * 2018-09-28 2021-07-13 주식회사 포스코 High strength cold-rolled steel sheet and galvanized steel sheet having high hole expansion ratio and manufacturing method thereof
KR102153197B1 (en) 2018-12-18 2020-09-08 주식회사 포스코 Cold rolled steel sheet with excellent formability, galvanized steel sheet, and manufacturing method thereof
EP3922739B1 (en) * 2019-02-06 2023-05-03 Nippon Steel Corporation Hot dip galvanized steel sheet and method for producing same field
EP4079883A4 (en) * 2020-02-28 2023-05-24 JFE Steel Corporation Steel sheet, member, and methods respectively for producing said steel sheet and said member
JP7028379B1 (en) * 2020-06-30 2022-03-02 Jfeスチール株式会社 Steel sheets, members and their manufacturing methods

Also Published As

Publication number Publication date
WO2022086050A1 (en) 2022-04-28
KR102468051B1 (en) 2022-11-18
US20230357881A1 (en) 2023-11-09
KR20220053941A (en) 2022-05-02
CN116507753A (en) 2023-07-28
EP4234750A1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
JP6383808B2 (en) High-strength cold-rolled steel sheet having excellent ductility, hot-dip galvanized steel sheet, and production methods thereof
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
US11827950B2 (en) Method of manufacturing high-strength steel sheet having excellent processability
KR101758522B1 (en) Ultra high strength and high ductility steel sheet having excellent yield strength and hole expansion ratio, and method for manufacturing the same
KR102020412B1 (en) High-strength steel sheet having excellent crash worthiness and formability, and method for manufacturing thereof
KR20190075589A (en) High-strength steel sheet having high yield ratio and method for manufacturing thereof
JP2022535254A (en) Cold-rolled and coated steel sheet and method for producing same
JP2023547102A (en) Ultra-high strength steel plate with excellent ductility and its manufacturing method
JP2018502992A (en) Composite steel sheet with excellent formability and method for producing the same
WO2022009032A1 (en) Heat treated cold rolled steel sheet and a method of manufacturing thereof
JP7022825B2 (en) Ultra-high-strength, high-ductility steel sheet with excellent cold formability and its manufacturing method
KR20120132834A (en) High strength cold-rolled steel sheet and method of manufacturing the cold-rolled steel sheet
JP2022535255A (en) Cold-rolled and coated steel sheet and method for producing same
JP7440619B2 (en) Steel plate with excellent uniform elongation rate and work hardening rate and method for manufacturing the same
US20230295759A1 (en) Steel sheet having excellent formability and strain hardening rate
KR102464387B1 (en) High strength galva-annealed steel sheet and method of manufacturing the same
US20230265536A1 (en) Ultra high strength cold rolled steel sheet having excellent spot weldability and formability, ultra high strength plated steel sheet and manufacturing method therefor
KR20220125755A (en) Ultra high strength cold rolled steel sheet having high elongation and local formality and method of manufacturing the same
KR20220028375A (en) High strength Cold-rolled steel sheet having excellent hole expansion rate and bending properties and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230420