JP2001342538A - High tensile steel with low yield ratio, excellent in weldability and low temperature toughness, and production of the same - Google Patents

High tensile steel with low yield ratio, excellent in weldability and low temperature toughness, and production of the same

Info

Publication number
JP2001342538A
JP2001342538A JP2000395305A JP2000395305A JP2001342538A JP 2001342538 A JP2001342538 A JP 2001342538A JP 2000395305 A JP2000395305 A JP 2000395305A JP 2000395305 A JP2000395305 A JP 2000395305A JP 2001342538 A JP2001342538 A JP 2001342538A
Authority
JP
Japan
Prior art keywords
steel
low
temperature
martensite
weldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000395305A
Other languages
Japanese (ja)
Other versions
JP4261765B2 (en
Inventor
Yoshiyuki Watabe
義之 渡部
Yoshio Terada
好男 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000395305A priority Critical patent/JP4261765B2/en
Publication of JP2001342538A publication Critical patent/JP2001342538A/en
Application granted granted Critical
Publication of JP4261765B2 publication Critical patent/JP4261765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high tensile steel with a low yield ratio, excellent in weldability and low temperature toughness for buildings or tanks holding various kinds of liquified gases wherein earthquake-proof properties are required, and provide a production method of the same. SOLUTION: The steel structure at the position of 1/4 thickness in a cross section of the sheet thickness direction, contains martensite or martensite- austenite mixture phase with the area ratio of observed section of 1-10%, wherein 90% or above of each size of this phase has the equivalent circular radius of 3 μm or below and the yield point does not appear in the tension test. For this purpose, the composition is controlled (arranged) to be C: 0.03-0.15%, Si: 0.40% or below, Mn: 1.0-2.0%, P: 0.02% or below, S: 0.01% or below, Nb: 0.005-0.05%, Ti: 0.005-0.025%, Al: 0.06% or below, N: 0.001-0.005%, and PCM: 0.25% or below by mass %..

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐震性の観点から
高靭性と低降伏比を要求される建築用鋼や、各種タンク
用鋼として、搭載される内容物が複数にわたる場合、内
容物に応じた複合特性として、低温靭性と低降伏比とを
同時に要求される高張力鋼およびその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION The present invention relates to a construction steel which is required to have high toughness and a low yield ratio from the viewpoint of seismic resistance, and a steel for various tanks. The present invention relates to a high-strength steel requiring low-temperature toughness and a low yield ratio at the same time as the corresponding composite properties, and a method for producing the same.

【0002】[0002]

【従来の技術】建築用鋼材は、弾性設計(許容応力度設
計)から、1981年6月に施行された新耐震設計基準
に基づく終局耐力設計への移行に伴い、低降伏比が求め
られている。低降伏比化を達成するため、一般に、鋼組
織の二相(Dual phase)化、すなわち、降伏
を支配する軟質相(通常、フェライト)と引張強さを確
保するための硬質相(パーライト、ベイナイト、マルテ
ンサイトなど)を形成させる方法が広く用いられてい
る。具体的には、制御圧延を含む熱間圧延後の鋼または
焼入後の鋼を、フェライトとオーステナイトの二相域温
度に再加熱して、フェライトとCが濃化されたオーステ
ナイトとし、その後空冷以上の冷速で冷却(、さらにそ
の後焼き戻し処理)する方法が特開平2−266378
号公報などに開示されている。このとき、成分的には、
C量が高いほど二相組織化が容易となるばかりでなく、
硬質相がより硬化し、低降伏比化が容易となる。しか
し、高C化は、溶接性や低温靭性には不利となるという
問題があった。それに対して、低温靭性を改善するため
には、低C化や制御圧延が有効ではあるが、いずれも降
伏比が上昇するため、低温靭性向上と低降伏比化とは相
容れず、両立がきわめて困難であった。従来、建築用途
では、靭性要求レベルが低く、低降伏比化に有利な高C
鋼でも特に問題となることはなかったが、阪神大震災を
契機とした近年の耐震性能への要求の厳格化傾向には、
必ずしも十分に対応できないという問題があった。
2. Description of the Related Art With the shift from elastic design (allowable stress design) to ultimate strength design based on a new seismic design standard implemented in June 1981, low yield ratios are required for building steel materials. I have. In order to achieve a low yield ratio, generally, a dual phase (dual phase) of the steel structure is formed, that is, a soft phase (usually ferrite) that controls yield and a hard phase (pearlite, bainite) for securing tensile strength. , Martensite, etc.) are widely used. Specifically, the steel after hot rolling or quenching, including controlled rolling, is reheated to the two-phase temperature of ferrite and austenite to form austenite in which ferrite and C are concentrated, and then air-cooled. Japanese Patent Laid-Open No. 2-266378 discloses a method of cooling at the above-described cooling speed (and further tempering thereafter).
No., for example. At this time,
The higher the C content, the easier the two-phase organization becomes,
The hard phase is more hardened, and the yield ratio can be easily reduced. However, there is a problem that increasing the C content is disadvantageous for weldability and low-temperature toughness. On the other hand, in order to improve low-temperature toughness, low C and controlled rolling are effective, but since the yield ratio increases in both cases, improvement in low-temperature toughness and low yield ratio are incompatible with each other. It was extremely difficult. Conventionally, in building applications, the required level of toughness is low, and high C, which is advantageous for lowering the yield ratio
Although there was no particular problem with steel, the demands for seismic performance in recent years following the Great Hanshin Earthquake have been increasing.
There was a problem that it was not always possible to respond sufficiently.

【0003】また、液化ガス貯槽用タンクに使用される
鋼材では、液化ガスの種類によって異なるが、ガスの液
化温度は一般に常圧では低温(LPGの場合、−48
℃)であるため、母材はもちろん溶接継手部においても
優れた低温靭性が要求される。これに対し、特開昭63
−290246号公報には6.5〜12.0%のNiを
添加する方法や、特開昭58−153730号公報には
特定組成の鋼を焼入れ焼戻し処理を行って、焼戻しマル
テンサイトとベイナイトの強靭性を利用する方法が開示
されている。一方で、液体アンモニアは鋼材の応力腐食
割れ(SCC)を引き起こすことが知られ、IGC C
ODE 17.13(International C
ode for the Construction
and Equipment of Ships Ca
rrying LiquefiedGases in
Bulk)では、酸素分圧、温度などの貯槽時の操業条
件を規制するとともに、鋼材のNi含有量を5%以下に
制限することや実降伏強さを440N/mm2以下に抑
えることなどを規定している。このため、特開平4−1
7613号公報では表層のみ軟化処理した鋼板や、特開
昭57−139493号公報では軟鋼クラッド鋼と軟質
溶接最終層によるタンク製造方法などが開示されてい
る。
[0003] Further, in the steel material used for the tank for the liquefied gas storage tank, the liquefaction temperature of the gas is generally low at normal pressure (-48 in the case of LPG, though it depends on the type of liquefied gas).
° C), excellent low-temperature toughness is required not only in the base material but also in the welded joint. In contrast, Japanese Patent Application Laid-Open
Japanese Patent Application Laid-Open No. 290246/1990 discloses a method of adding 6.5 to 12.0% Ni, and Japanese Patent Application Laid-Open No. 58-153730 discloses a method of quenching and tempering a steel having a specific composition to provide tempered martensite and bainite. A method utilizing toughness is disclosed. On the other hand, liquid ammonia is known to cause stress corrosion cracking (SCC) of steel, and IGC C
ODE 17.13 (International C
ode for the construction
and Equipment of Ships Ca
rrying LiquidifiedGames in
Bulk) regulates operating conditions during storage, such as oxygen partial pressure and temperature, and restricts the Ni content of steel to 5% or less and the actual yield strength to 440 N / mm 2 or less. Stipulates. For this reason, Japanese Unexamined Patent Publication No.
No. 7613 discloses a steel sheet in which only the surface layer is softened, and Japanese Unexamined Patent Publication No. 57-139493 discloses a tank manufacturing method using mild steel clad steel and a soft welding final layer.

【0004】しかし、上記LPGと液体アンモニアを混
載するタンクでは、当然のことながら両者に要求される
仕様を満足する必要がある。一方、タンクの大容量化や
船舶に搭載されることの多いこの種のタンクにおいては
高張力化が求められており、LPGからの優れた低温靭
性と液体アンモニアからの降伏強さの上限規制に伴う低
降伏比化の同時達成が大きな課題となっていた。
However, the tank in which the LPG and the liquid ammonia are mixed must naturally satisfy the specifications required for both. On the other hand, large-capacity tanks and high-tension tanks of this type, which are often mounted on ships, are required to have high tensile strength, and are subject to superior low-temperature toughness from LPG and the upper limit of yield strength from liquid ammonia. At the same time, achieving a low yield ratio at the same time has been a major issue.

【0005】さらに、マルテンサイトまたはマルテンサ
イト−オーステナイト混合相(M−A constit
uents)は、硬く、脆いために、低温靭性上有害と
され、極力生成しないよう鋼成分、製造条件を限定する
か、生成した場合には焼き戻しなど熱処理により分解す
ることが、半ば常識とされており、積極的にマルテンサ
イトまたはマルテンサイト−オーステナイト混合相(M
−A constituents)が利用されることは
なかった。なお、本発明で規定するマルテンサイトまた
はマルテンサイト−オーステナイト混合相(M−A c
onstituents)は、島状マルテンサイトある
いはM*などとも呼ばれるもので、その相(組織)の識
別のための現出法(エッチング法)については後述す
る。
[0005] Furthermore, martensite or a martensite-austenite mixed phase (MA consitite)
is harmful to low-temperature toughness because it is hard and brittle, and it is generally accepted that steel components and production conditions are limited so as not to be formed as much as possible, or when formed, they are decomposed by heat treatment such as tempering. And aggressively martensite or a martensite-austenite mixed phase (M
-A constituents) were not used. The martensite or martensite-austenite mixed phase (M-Ac) defined in the present invention.
The term “instruments” is also referred to as island-like martensite or M *, and the appearance method (etching method) for identifying its phase (structure) will be described later.

【0006】[0006]

【発明が解決しようとする課題】本発明は、優れた溶接
性、低温靭性と同時に高強度で低降伏比を図るために、
鋼組織中のマルテンサイトまたはマルテンサイト−オー
ステナイト混合相(M−A constituent
s)の組織分率、サイズなどの存在形態を限定し、引張
試験において降伏点が出ないようにする溶接性と低温靭
性に優れた低降伏比高張力鋼およびその製造方法を提供
することを課題とする。
DISCLOSURE OF THE INVENTION The present invention aims at achieving excellent weldability and low-temperature toughness as well as high strength and a low yield ratio.
Martensite or martensite-austenite mixed phase (MA constituent) in steel structure
s) The present invention provides a low-yield-ratio high-strength steel excellent in weldability and low-temperature toughness, which limits the form of existence such as the structure fraction and size and prevents a yield point from appearing in a tensile test, and a method for producing the same. Make it an issue.

【0007】[0007]

【課題を解決するための手段】本発明者は、これまで靭
性上有害とされたマルテンサイトまたはマルテンサイト
−オーステナイト混合相(M−A constitue
nts)の分率、サイズなどの存在形態を規定し、引張
試験時に降伏点を出ないようにすることで、低降伏比化
することができるということを見出し、このために、N
bを含有する特定の成分の鋼を、制御圧延−加速冷却す
ることで組織を微細化して強度、靭性を確保するととも
に、その加速冷却を比較的低温で停止することでマルテ
ンサイトまたはマルテンサイト−オーステナイト混合相
(M−A constituents)を微細に生成さ
せることに基づき、溶接性と低温靭性に優れた低降伏比
高張力鋼の発明を完成した。
Means for Solving the Problems The present inventors have proposed a martensite or martensite-austenite mixed phase (MA composition) which has been regarded as detrimental to toughness.
nts), it is found that the yield ratio can be reduced by defining the existence form such as the fraction and size and preventing the yield point from appearing during the tensile test.
b, a steel having a specific composition, controlled rolling-accelerated cooling to refine the structure by securing the strength and toughness, and stopping the accelerated cooling at a relatively low temperature to obtain martensite or martensite- The invention of a low-yield-ratio high-strength steel excellent in weldability and low-temperature toughness has been completed based on fine generation of austenite mixed phase (MA-constituents).

【0008】本発明によれば、耐震性に優れた建築用鋼
や、液体アンモニアとLPGなどとの混載タンク用とし
て低温靭性と低降伏比とを両立した鋼を大量かつ安価に
供給でき、特に高強度化も可能としたため、該タンクの
船舶への搭載も容易となった。
According to the present invention, it is possible to supply a large amount and inexpensively of steel for construction having excellent seismic resistance and steel having both low temperature toughness and a low yield ratio for a mixed tank of liquid ammonia and LPG. Since high strength can be achieved, the tank can be easily mounted on a ship.

【0009】本発明の要旨は、以下の通りである。The gist of the present invention is as follows.

【0010】(1) 板厚方向断面1/4厚位置の鋼組
織が、マルテンサイトまたはマルテンサイト−オーステ
ナイト混合相(M−A constituents)を
観察断面の面積分率で1〜10%を含み、その相の個々
のサイズの90%以上が円相当直径で3μm以下であっ
て、引張試験において降伏点が出ないことを特徴とする
溶接性と低温靭性に優れた低降伏比高張力鋼。
(1) The steel structure at the 1/4 thickness position in the cross section in the thickness direction contains 1 to 10% of martensite or a martensite-austenite mixed phase (MA-constituents) in an area fraction of an observed cross section, A low yield ratio high tensile strength steel excellent in weldability and low temperature toughness characterized in that 90% or more of the individual sizes of the phase have an equivalent circle diameter of 3 μm or less and no yield point is obtained in a tensile test.

【0011】(2) 鋼成分が質量%で、C:0.03
〜0.15%、Si:0.4%以下、Mn:1.0〜
2.0%、P:0.02%以下、S:0.01%以下、
Nb:0.005〜0.05%、Ti:0.005〜
0.025%、Al:0.06%以下、N:0.001
〜0.005%、かつ、下記(1)式で規定する溶接性
指標のPCMが0.25%以下で、残部が鉄および不可避
的不純物からなることを特徴とする上記(1)項記載の
溶接性と低温靭性に優れた低降伏比高張力鋼。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20 +Mo/15+V/10+5B ・ ・ ・(1)
(2) Steel component in mass%, C: 0.03
0.15%, Si: 0.4% or less, Mn: 1.0-
2.0%, P: 0.02% or less, S: 0.01% or less,
Nb: 0.005 to 0.05%, Ti: 0.005 to
0.025%, Al: 0.06% or less, N: 0.001
0.005%, and the following (1) is not more than 0.25% P CM weldability index as defined in formula, the balance being composed of iron and unavoidable impurities (1) above, wherein Low yield ratio high tensile strength steel with excellent weldability and low temperature toughness. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B · · · (1)

【0012】(3) 質量%で、Cu:0.05〜0.
5%、Ni:0.05〜1.0%、Cr:0.05〜
0.5%、Mo:0.05〜0.5%、V:0.01〜
0.05%、B:0.0002〜0.003%、Mg:
0.0002〜0.005%の範囲で1種または2種以
上をさらに含有することを特徴とする上記(2)項に記
載の溶接性と低温靭性に優れた低降伏比高張力鋼。
(3) Cu: 0.05-0.
5%, Ni: 0.05 to 1.0%, Cr: 0.05 to
0.5%, Mo: 0.05 to 0.5%, V: 0.01 to
0.05%, B: 0.0002 to 0.003%, Mg:
The low-yield-ratio high-strength steel excellent in weldability and low-temperature toughness according to the above item (2), further comprising one or more kinds in the range of 0.0002 to 0.005%.

【0013】(4) 質量%で、Ca:0.0005〜
0.004%、REM:0.0005〜0.004%の
いずれか1種をさらに含有することを特徴とする上記
(2)項または(3)項に記載の溶接性と低温靭性に優
れた低降伏比高張力鋼。
(4) Ca: 0.0005 to 5% by mass
Excellent in weldability and low-temperature toughness according to the above item (2) or (3), further containing any one of 0.004% and REM: 0.0005 to 0.004%. Low yield ratio high tensile steel.

【0014】(5) 上記(2)〜(4)項のいずれか
1項に記載の鋼組成からなる鋳片または鋼片を、100
0〜1250℃の温度に加熱し、オーステナイト未再結
晶温度域での累積圧下量を30%以上として720点以
上の温度で熱間圧延を終了した後、680℃以上の温度
から加速冷却を開始し、150〜350℃の温度で加速
冷却を停止した後放冷することを特徴とする上記(1)
項に記載の溶接性と低温靭性に優れた低降伏比高張力鋼
の製造方法。
(5) A slab or a slab made of the steel composition according to any one of the above (2) to (4) is
After heating to a temperature of 0 to 1250 ° C. and setting the cumulative rolling reduction in the austenite non-recrystallization temperature range to 30% or more and finishing hot rolling at a temperature of 720 points or more, accelerated cooling is started from a temperature of 680 ° C. or more (1) characterized in that the accelerated cooling is stopped at a temperature of 150 to 350 ° C., and then the mixture is allowed to cool.
A method for producing a low-yield-ratio high-strength steel excellent in weldability and low-temperature toughness described in the paragraph.

【0015】[0015]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0016】本発明が、請求項の通りに鋼組織、鋼組成
および製造方法を限定した理由について説明する。
The reason why the present invention has limited the steel structure, the steel composition and the manufacturing method as set forth in the claims will be described.

【0017】鋼組織は、板厚方向断面1/4厚位置にお
いて、マルテンサイトまたはマルテンサイト−オーステ
ナイト混合相(M−A constituents)を
観察断面の面積分率で1〜10%を含むことを第一の構
成要素とする。このマルテンサイトまたはマルテンサイ
ト−オーステナイト混合相(M−A constitu
ents)は、高転位密度で、Cが濃縮された非常に硬
い相であるため、この相の存在により引張試験時に低応
力で転位が動き始め、応力−歪み曲線上は、降伏点の存
在しないラウンドなカーブを描く。マルテンサイトまた
はマルテンサイト−オーステナイト混合相(M−A c
onstituents)の組織分率が上記限定範囲で
あっても、マトリックスの組織によっては(例えばフェ
ライト組織)、降伏点が出現するケースもあり、「引張
試験において降伏点が出ないこと」を構成要素の一つと
した。これは、具体的には、引張試験において、荷重−
伸び曲線がラウンドなカーブを描ことを意味し、降伏点
が出ないことが、高張力化と低降伏比化を両立するため
には必須である。降伏点が出ない、ラウンドな荷重−伸
び曲線においては、降伏強さとして一般に0.2%耐力
が採られ、降伏点が出る同一の引張強さの鋼と比較した
場合、降伏強さは低くなり、結果として降伏比も低くな
る。
[0017] The steel structure is characterized in that it contains martensite or a martensite-austenite mixed phase (MA-constituents) in an area fraction of 1 to 10% at an area fraction of the observed cross section at a 1/4 thickness position in the cross section in the thickness direction. One component. This martensite or a martensite-austenite mixed phase (MA-constiti)
ents) has a high dislocation density and is a very hard phase enriched with C. Due to the presence of this phase, dislocations start to move at a low stress during a tensile test, and there is no yield point on the stress-strain curve. Draw a round curve. Martensite or martensite-austenite mixed phase (M-Ac)
Even when the structural fraction of the components is within the above-mentioned limited range, a yield point may appear depending on the structure of the matrix (for example, a ferrite structure). One. This is, specifically, in the tensile test, the load-
It means that the elongation curve draws a round curve, and it is essential that a yield point does not appear in order to achieve both high tension and low yield ratio. In a round load-elongation curve with no yield point, a yield strength of 0.2% proof stress is generally adopted, and the yield strength is lower when compared with steel of the same tensile strength that yields a yield point. And, as a result, the yield ratio also decreases.

【0018】引張試験において降伏点が出ないための条
件としてマトリックスの組織を規定することは、マルテ
ンサイトまたはマルテンサイト−オーステナイト混合相
(M−A constituents)の硬さや構成分
率などにも依存するため一概に言えないばかりでなく、
それらの組織の記述があいまいであること(多種多様な
組織を正確に記述することが不可能)などの理由から、
発明の構成要素としては不適当と判断した。
Defining the structure of the matrix as a condition for not producing a yield point in a tensile test also depends on the hardness and constituent fraction of martensite or a martensite-austenite mixed phase (MA-constituents). Not only can't say in general,
For reasons such as ambiguous descriptions of those organizations (it is impossible to accurately describe a wide variety of organizations)
It was determined that it was inappropriate as a component of the invention.

【0019】マルテンサイトまたはマルテンサイト−オ
ーステナイト混合相(M−A constituent
s)の構成分率(観察断面の面積分率)の下限1%は、
引張試験時に低応力で転位が動き始めるのに必要な最低
限の量で、上限の10%は、靭性を必要以上に劣化させ
ない限界量である。ただし、低温靭性の観点からは、マ
ルテンサイトまたはマルテンサイト−オーステナイト混
合相(M−A constituents)の構成分率
(観察断面の面積分率)を上記のように限定しただけで
は不十分である。
Martensite or a martensite-austenite mixed phase (MA constituent)
The lower limit 1% of the constituent fraction (area fraction of the observed cross section) of s) is
The minimum amount required for the dislocation to start moving with low stress during the tensile test, and the upper limit of 10% is a limit amount that does not deteriorate the toughness more than necessary. However, from the viewpoint of low-temperature toughness, it is not sufficient to limit the constituent fraction (area fraction of the observed cross section) of martensite or a martensite-austenite mixed phase (M-A constituents) as described above.

【0020】塊状に大きな単位(サイズ)で存在した場
合、破壊起点として作用し、靭性が劣化するため、本発
明では、板厚方向断面1/4厚位置の観察断面におい
て、マルテンサイトまたはマルテンサイト−オーステナ
イト混合相(M−A constituents)の個
々のサイズの90%以上が円相当直径で3μm以下に限
定した。これらの数値は、発明者らの実験事実に基づく
ものである。
In the case where a large unit (size) exists in the form of a block, it acts as a fracture starting point and toughness is deteriorated. 90% or more of the individual sizes of the austenitic mixed phases (MA-constituents) were limited to 3 μm or less in circle equivalent diameter. These numerical values are based on the experimental facts of the inventors.

【0021】なお、マルテンサイトまたはマルテンサイ
ト−オーステナイト混合相(M−Aconstitue
nts)の識別のための組織現出法は、LePera氏
によって開発されたエッチング法(Journal o
f Metals、March、1980、p.38)
をベースとする方法が最適であり、このエッチングによ
り、マルテンサイトまたはマルテンサイト−オーステナ
イト混合相(M−Aconstituents)は、白
く現出される。
Incidentally, martensite or a martensite-austenite mixed phase (M-Aconstite) is used.
nts) is an etching method developed by LePera (Journal o).
f Metals, March, 1980, p. 38)
Is most suitable, and this etching causes the martensite or martensite-austenite mixed phase (M-Aconstituents) to appear white.

【0022】次に、本発明のように限定されたマルテン
サイトまたはマルテンサイト−オーステナイト混合相
(M−A constituents)を得、引張試験
において降伏点が出ないようにする上で、最適な鋼成分
の限定理由について説明する。
Next, in order to obtain the limited martensite or martensite-austenite mixed phase (MA-constituents) as in the present invention, and to prevent the yield point from appearing in the tensile test, the optimum steel component is used. Will be described.

【0023】Cは鋼材の特性に最も顕著に効くもので、
下限0.03%は強度確保や溶接などの熱影響部が必要
以上に軟化することのないようにするための最小量であ
る。しかし、C量が多すぎると焼入性が必要以上に上が
り、鋼材が本来有すべき強度、靭性のバランス、溶接性
などに悪影響を及ぼすため、上限を0.15%とした。
C is the most remarkable effect on the properties of steel.
The lower limit of 0.03% is a minimum amount for ensuring strength and preventing the heat-affected zone such as welding from softening more than necessary. However, if the C content is too large, the hardenability increases more than necessary, and the steel material has an adverse effect on the inherent strength, toughness balance, weldability, etc., so the upper limit was made 0.15%.

【0024】Siは脱酸上鋼に含まれる元素であるが、
多く添加すると溶接性、HAZ靭性が劣化するため、上
限を0.4%に限定した。鋼の脱酸はTi、Alのみで
も十分可能であり、HAZ靭性、焼入性などの観点から
低いほど好ましく、必ずしも添加する必要はない。
Si is an element contained in the deoxidized steel,
If a large amount is added, the weldability and the HAZ toughness deteriorate, so the upper limit is limited to 0.4%. Deoxidation of steel is sufficiently possible only with Ti and Al, and the lower the better, from the viewpoint of HAZ toughness, hardenability and the like, the more preferable, and it is not always necessary to add.

【0025】Mnは強度、靭性を確保する上で不可欠な
元素であり、その下限は1.0%である。しかし、Mn
量が多すぎると焼入性が上昇して溶接性、HAZ靭性を
劣化させるだけでなく、連続鋳造スラブの中心偏析を助
長するので上限を2.0%とした。
Mn is an element indispensable for securing strength and toughness, and its lower limit is 1.0%. However, Mn
If the amount is too large, the hardenability increases and not only deteriorates the weldability and HAZ toughness, but also promotes the center segregation of the continuous cast slab, so the upper limit was made 2.0%.

【0026】Pは本発明鋼においては不純物であり、P
量の低減はHAZにおける粒界破壊を減少させる傾向が
あるため、少ないほど好ましい。含有量が多いと母材、
溶接部の低温靭性を劣化させるため上限を0.02%と
した。
P is an impurity in the steel of the present invention.
Since a reduction in the amount tends to reduce grain boundary fracture in the HAZ, a smaller amount is preferable. If the content is high, the base material,
The upper limit is set to 0.02% in order to deteriorate the low-temperature toughness of the weld.

【0027】SはPと同様本発明鋼においては不純物で
あり、母材の低温靭性の観点からは少ないほど好まし
い。含有量が多いと母材、溶接部の低温靭性を劣化させ
るため上限を0.01%とした。
S, like P, is an impurity in the steel of the present invention, and is preferably as small as possible from the viewpoint of the low-temperature toughness of the base material. If the content is large, the low-temperature toughness of the base material and the welded portion is deteriorated, so the upper limit was made 0.01%.

【0028】Nbはオーステナイトの未再結晶温度を上
昇させ、熱間圧延時の制御圧延の効果を最大限に発揮す
る上で必須元素で、最低0.005%の添加が必要であ
る。また、焼入れの際の加熱オーステナイトの細粒化に
も寄与する。さらに、析出硬化として、強度向上効果も
有する。しかし、過剰な添加は、溶接部の靭性劣化を招
くため上限を0.05%とした。
Nb is an essential element for increasing the unrecrystallization temperature of austenite and maximizing the effect of the controlled rolling during hot rolling, and at least 0.005% of Nb is required. It also contributes to the refinement of heated austenite during quenching. Further, it has an effect of improving strength as precipitation hardening. However, excessive addition causes toughness degradation of the welded portion, so the upper limit was made 0.05%.

【0029】Tiは母材およびHAZ靭性向上のために
必須である。なぜならばTiは、Al量が少ないとき
(例えば0.003%以下)、Oと結合してTi23
主成分とする析出物を形成、粒内変態フェライト生成の
核となりHAZ靭性を向上させる。また、TiはNと結
合してTiNとしてスラブ中に微細析出し、加熱時のγ
粒の粗大化を抑え圧延組織の細粒化に有効であり、また
鋼板中に存在する微細TiNは、溶接時にHAZ組織を
細粒化するためである。これらの効果を得るためには、
Tiは最低0.005%必要である。しかし多すぎると
TiCを形成し、低温靭性や溶接性を劣化させるので、
その上限は0.025%である。
[0029] Ti is essential for improving the base material and HAZ toughness. Because, when the amount of Al is small (for example, 0.003% or less), Ti combines with O to form a precipitate containing Ti 2 O 3 as a main component, becomes a nucleus for the formation of intragranular transformed ferrite, and improves the HAZ toughness. Let it. Further, Ti is combined with N and finely precipitated as TiN in the slab, and γ during heating is obtained.
This is because it suppresses coarsening of the grains and is effective in reducing the grain size of the rolled structure, and the fine TiN present in the steel sheet refines the HAZ structure during welding. To get these effects,
Ti must be at least 0.005%. However, if too much, TiC is formed and the low-temperature toughness and weldability are deteriorated.
The upper limit is 0.025%.

【0030】Alは、一般に脱酸上鋼に含まれる元素で
あるが、脱酸はSiまたはTiだけでも十分であり、本
発明鋼においては、その下限は限定しない。しかし、A
l量が多くなると鋼の清浄度が悪くなるだけでなく、溶
接金属の靭性が劣化するので上限を0.06%とした。
Al is an element generally contained in the deoxidized upper steel, but the deoxidation is sufficient with only Si or Ti, and the lower limit is not limited in the steel of the present invention. But A
When the amount of l increases, not only does the cleanliness of the steel deteriorate, but also the toughness of the weld metal deteriorates, so the upper limit was made 0.06%.

【0031】Nは、不可避的不純物として鋼中に含まれ
るものであるが、Nbと結合して炭窒化物を形成して強
度を増加させ、また、TiNを形成して前述のように鋼
の性質を高める。このため、N量として最低0.001
%必要である。しかしながら、N量の増加はHAZ靭
性、溶接性にきわめて有害であり、本発明鋼においては
その上限は0.005%である。
N is contained in steel as an unavoidable impurity, but combines with Nb to form a carbonitride to increase the strength, and forms TiN to form a steel as described above. Enhance the nature. Therefore, the amount of N is at least 0.001.
%is necessary. However, an increase in the amount of N is extremely harmful to HAZ toughness and weldability, and the upper limit of the steel of the present invention is 0.005%.

【0032】次に必要に応じて含有することができるC
u、Ni、Cr、Mo、V、B、Mgの添加理由につい
て説明する。
Next, C which can be optionally contained
The reason for adding u, Ni, Cr, Mo, V, B, and Mg will be described.

【0033】基本となる成分に、さらにこれらの元素を
添加する主たる目的は、本発明鋼の優れた特徴を損なう
ことなく、強度、靭性などの特性を向上させるためであ
る。したがってその添加量は自ずと制限されるべき性質
のものである。
The main purpose of adding these elements to the basic components is to improve properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount added is of a nature that should be naturally restricted.

【0034】CuはNiとほぼ同様の効果、現象を示
し、上限の0.5%は溶接性劣化に加え、過剰な添加は
熱間圧延時にCu−クラックが発生し製造困難となるた
め規制される。下限は実質的な効果が得られるための最
小量とすべきで0.05%である。これは後述するC
r、Moについても同様である。
Cu exhibits almost the same effects and phenomena as Ni. The upper limit of 0.5% is not only deteriorated in weldability, but excessive addition is restricted because Cu-cracks are generated during hot rolling and production becomes difficult. You. The lower limit should be 0.05%, which should be the minimum for a substantial effect to be obtained. This is C
The same applies to r and Mo.

【0035】Niは過剰に添加しなければ、溶接性、H
AZ靭性に悪影響を及ぼすことなく母材の強度、靭性を
向上させる。これら効果を発揮させるためには、少なく
とも0.05%以上の添加が必須である。一方、過剰な
添加は高価なだけでなく、溶接性に好ましくない。ま
た、Niを多く添加すると液体アンモニア中で応力腐食
割れ(SCC)を誘起する可能性が指摘されている。発
明者らの実験によれば、1%までの添加は溶接性や液体
アンモニア中でのSCCを大きく劣化させず、強度、靭
性向上効果の方が大きいため、上限を1.0%とした。
If Ni is not added excessively, weldability, H
Improves the strength and toughness of the base material without adversely affecting AZ toughness. In order to exert these effects, it is essential to add at least 0.05% or more. On the other hand, excessive addition is not only expensive but also unfavorable for weldability. In addition, it has been pointed out that adding a large amount of Ni may induce stress corrosion cracking (SCC) in liquid ammonia. According to the experiments of the inventors, the addition of up to 1% does not significantly deteriorate the weldability and SCC in liquid ammonia, and has a greater effect of improving the strength and toughness. Therefore, the upper limit is set to 1.0%.

【0036】Cr、Moは、母材の強度、靭性をともに
向上させるために0.05%以上添加する。しかし添加
量が多すぎると母材、溶接部の靭性および溶接性を劣化
を招き、また後述する組織制御が困難となって好ましく
ないため上限を0.5%とした。
Cr and Mo are added in an amount of 0.05% or more to improve both the strength and toughness of the base material. However, if the addition amount is too large, the toughness and weldability of the base metal and the welded portion are deteriorated, and the control of the structure described later becomes difficult, which is not preferable.

【0037】Vは、Nbとほぼ同様の作用を有するもの
であるが、Nbに比べてその効果は小さい。また、Vは
焼入れ性にも影響を及ぼし、上記元素と同様組織制御の
観点から添加するものである。Nbと同様の効果は0.
01%未満では効果が少なく、上限は0.05%まで許
容できる。
V has almost the same effect as Nb, but its effect is smaller than that of Nb. Further, V also affects the hardenability, and is added from the viewpoint of controlling the structure as in the case of the above-mentioned elements. The effect similar to Nb is 0.
If it is less than 01%, the effect is small, and the upper limit can be tolerated up to 0.05%.

【0038】Bは、オーステナイト粒界に偏析し、フェ
ライトの生成を抑制することを介して、焼入性を向上さ
せ、強度向上に寄与する。この効果を享受するため、最
低0.0002%以上必要である。しかし、多すぎる添
加は焼入性向上効果が飽和するだけでなく、靭性上有害
となるB析出物を形成する可能性もあるため、上限を
0.003%とした。なお、タンク用鋼などとして、応
力腐食割れが懸念されるケースでは、母材および溶接熱
影響部の硬さの低減がポイントとなることが多く(例え
ば、硫化物応力腐食割れ(SCC)防止のためにはHR
C≦22(HV≦248)が必須とされる)、そのよう
なケースでは焼入性を増大させるB添加は好ましくな
い。
B segregates at austenite grain boundaries and suppresses the formation of ferrite, thereby improving hardenability and contributing to strength improvement. To enjoy this effect, at least 0.0002% is required. However, too much addition not only saturates the effect of improving hardenability but also may form B precipitates that are harmful to toughness, so the upper limit was made 0.003%. In addition, in cases where stress corrosion cracking is a concern as steel for tanks, reduction of the hardness of the base metal and the weld heat affected zone is often the point (for example, to prevent sulfide stress corrosion cracking (SCC)). HR for
C ≦ 22 (HV ≦ 248) is essential. In such a case, the addition of B which increases the hardenability is not preferable.

【0039】Mgは、溶接熱影響部においてオーステナ
イト粒の成長を抑制し、細粒化する作用があり、溶接部
の強靭化が図れる。このような効果を享受するために
は、Mgは0.0002%以上必要である。一方、添加
量が増えると添加量に対する効果代が小さくなるため、
コスト上得策ではないので上限は0.005%とした。
Mg has the effect of suppressing the growth of austenite grains in the heat affected zone and reducing the size of the austenitic grains, thereby toughening the welded portion. In order to enjoy such effects, Mg needs to be 0.0002% or more. On the other hand, as the addition amount increases, the effect cost on the addition amount decreases,
The upper limit is set to 0.005% because it is not advantageous in terms of cost.

【0040】さらに、CaおよびREMは、MnSの形
態を制御し、母材の低温靭性を向上させるほか、湿潤硫
化水素環境下での水素誘起割れ(HIC、SSC、SO
HIC)感受性を低減させる。これらの効果を発揮する
ためには、最低0.0005%が必要である。しかし、
多すぎる添加は、鋼の清浄度を逆に高め、母材靭性や湿
潤硫化水素環境下での水素誘起割れ(HIC、SSC、
SOHIC)感受性を高めるため、添加量の上限は0.
004%に限定した。CaとREMは、ほぼ同等の効果
を有するため、いずれか1種を上記範囲で添加すればよ
い。
Furthermore, Ca and REM control the morphology of MnS, improve the low-temperature toughness of the base material, and also cause hydrogen-induced cracking (HIC, SSC, SOC) in a wet hydrogen sulfide environment.
HIC) reduces susceptibility. In order to exhibit these effects, at least 0.0005% is required. But,
Too much addition will increase the cleanliness of the steel, adversely affect base metal toughness and hydrogen-induced cracking (HIC, SSC,
(SOHIC) In order to increase the sensitivity, the upper limit of the amount added is 0.
004%. Since Ca and REM have almost the same effect, one of them may be added in the above range.

【0041】鋼の個々の成分を限定しても、成分系全体
が適切でないと優れた特性は得られない。このため、下
記(1)式に示すPCMの値を0.25%以下に限定す
る。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20 +Mo/15+V/10+5B ・ ・ ・(1) PCMは溶接性を表す指標で、低いほど溶接性は良好であ
る。本発明鋼においては、PCMが0.25%以下であれ
ば、優れた溶接性の確保が可能である。
Even if the individual components of the steel are limited, excellent properties cannot be obtained unless the entire component system is appropriate. Thus, limiting the value of P CM shown in the following equation (1) below 0.25%. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B · · · (1) P CM is an indicator representing the weldability, the lower the weldability is good. In the present invention steel, as long as P CM is 0.25% or less, it is possible to ensure excellent weldability.

【0042】優れた溶接性と低温靭性を確保しつつ、上
述したような、引張試験において、荷重−伸び曲線がラ
ウンドなカーブを描き、降伏点を出さないため、本発明
の通り製造条件を限定することがきわめて有効である。
以下、その理由について説明する。
While ensuring excellent weldability and low-temperature toughness, in the tensile test as described above, the load-elongation curve draws a round curve and does not produce a yield point. It is extremely effective to do so.
Hereinafter, the reason will be described.

【0043】圧延に先立つ加熱温度を1000〜125
0℃に限定した理由は、加熱時のオーステナイト粒を小
さく保ち、圧延組織の微細化を図るためである。125
0℃は加熱時のオーステナイトが極端に粗大化しない上
限温度であり、加熱温度がこれを超えるとオーステナイ
ト粒が粗大混粒化し、変態後の組織も粗大化するため鋼
の靭性が著しく劣化する。一方、加熱温度が低すぎる
と、後述する圧延終了温度(Ar3点以上)の確保が困
難となるばかりでなく、オーステナイトの未再結晶温度
を上昇させ、熱間圧延時の制御圧延の効果を最大限に発
揮させたり、析出硬化を発現させるためのNbの溶体化
の観点から下限を1000℃に限定した。
The heating temperature prior to rolling is 1000 to 125
The reason for limiting the temperature to 0 ° C. is to keep the austenite grains small during heating and to make the rolling structure finer. 125
0 ° C. is an upper limit temperature at which austenite during heating does not become extremely coarse. If the heating temperature exceeds this temperature, austenite grains are coarsely mixed and the structure after transformation is also coarse, so that the toughness of steel is significantly deteriorated. On the other hand, if the heating temperature is too low, it is difficult not only to secure a rolling end temperature (Ar 3 point or more) described later, but also to raise the austenite non-recrystallization temperature, thereby reducing the effect of controlled rolling during hot rolling. The lower limit was set to 1000 ° C. from the viewpoint of solutionizing Nb to maximize its effect and to develop precipitation hardening.

【0044】上述のような条件で加熱した鋳片または鋼
片を、オーステナイト未再結晶温度域での累積圧下量を
30%以上とし、720℃以上で熱間圧延を終了した
後、680℃以上の温度から加速冷却する。
The slab or slab heated under the above conditions is subjected to a cumulative rolling reduction of 30% or more in the austenite non-recrystallization temperature range, and after completion of hot rolling at 720 ° C. or more, 680 ° C. or more. Accelerated cooling from the temperature of

【0045】オーステナイト未再結晶温度域での圧延を
行うことによって、オーステナイト粒を顕著に細粒化す
るため、少なくとも30%以上の累積圧下量が必要であ
る。圧延終了温度が720℃を下回ると、フェライトが
変態析出し、フェライトを加工(圧延)する恐れがあ
り、低降伏比化や低温靭性確保の点で好ましくない。こ
のため、圧延終了温度は、720℃以上に限定する。
By performing rolling in the austenite non-recrystallization temperature range, austenite grains are remarkably refined, so that at least a 30% or more cumulative rolling reduction is required. If the rolling end temperature is lower than 720 ° C., the ferrite transforms and precipitates, and the ferrite may be processed (rolled), which is not preferable in terms of lowering the yield ratio and ensuring low-temperature toughness. For this reason, the rolling end temperature is limited to 720 ° C. or higher.

【0046】720℃以上で熱間圧延を終了した後、6
80℃以上の温度から加速冷却を開始するのは、変態域
の冷速を早めることで組織を微細化し、強度と靭性を同
時に向上させるためである。また、組織を微細化するこ
とは、C濃縮相であるマルテンサイト−オーステナイト
混合相(M−A constituents)を本発明
の通り微細に生成させる上でも必須である。組織は68
0℃を下回ると、粗大なフェライトが析出し始め、強度
低下や靭性を劣化させるため、680℃以上からの加速
冷却に限定した。この加速冷却は、150〜350℃の
温度で停止しなければならない。350℃を超える温度
では、加速冷却停止後の放冷が実質上の焼き戻しとな
り、強度低下とともに、マルテンサイト−オーステナイ
ト混合相(M−A constituents)が分解
され、結果として降伏点が出るようになり低降伏比化が
できない。一方、加速冷却停止温度が150℃を下回る
と、必要以上にマルテンサイト−オーステナイト混合相
(M−A constituents)が生成する可能
性が高いのに加え、溶接やガス切断などの熱影響による
軟化が顕著になるため、使用性能上好ましくない。この
ため、加速冷却停止温度の下限温度を150℃とした。
After the completion of hot rolling at 720 ° C. or higher, 6
The reason why the accelerated cooling is started from a temperature of 80 ° C. or higher is to make the structure finer by increasing the cooling speed in the transformation region and simultaneously improve the strength and toughness. Further, the refinement of the structure is indispensable for finely forming the martensite-austenite mixed phase (MA-constituents) as the C-enriched phase as in the present invention. The organization is 68
When the temperature is lower than 0 ° C., coarse ferrite starts to precipitate, and the strength is reduced and the toughness is deteriorated. This accelerated cooling must stop at a temperature of 150-350 ° C. At a temperature higher than 350 ° C., the cooling after stopping the accelerated cooling is substantially tempering, and the strength is reduced, and the martensite-austenite mixed phase (MA-constituents) is decomposed, so that the yield point is obtained. And a low yield ratio cannot be achieved. On the other hand, when the accelerated cooling stop temperature is lower than 150 ° C., in addition to a high possibility that a martensite-austenite mixed phase (MA-constituents) is generated more than necessary, softening due to heat influences such as welding and gas cutting occurs. It is not preferable in use performance because it becomes remarkable. For this reason, the lower limit temperature of the accelerated cooling stop temperature was set to 150 ° C.

【0047】なお、加速冷却時の冷速は、鋼成分や意図
する降伏比、低温靭性レベルによっても変わるため一概
には言えないが、板厚1/4厚位置の加速冷却開始温度
から350℃までの平均冷速で、少なくとも3℃/秒以
上とすることが望ましい。
The cooling rate during accelerated cooling cannot be unconditionally determined because it varies depending on the steel composition, the intended yield ratio, and the low-temperature toughness level. It is desirable that the average cooling rate is up to at least 3 ° C./sec.

【0048】[0048]

【実施例】本発明の実施例を比較例とともに説明する。EXAMPLES Examples of the present invention will be described together with comparative examples.

【0049】転炉−連続鋳造−厚板工程で種々の鋼成分
の鋼板(厚さ15〜80mm)を製造し、その強度、降
伏比(YR)、靭性および溶接性(斜めy形溶接割れ試
験)を調査した。
In the converter-continuous casting-thick plate process, steel plates of various steel components (thickness 15 to 80 mm) are manufactured, and their strength, yield ratio (YR), toughness and weldability (oblique y-shaped weld cracking test) )investigated.

【0050】表1に比較鋼とともに本発明鋼の鋼成分
を、表2に鋼板の製造条件と諸特性を示す。
Table 1 shows the steel composition of the steel of the present invention together with the comparative steel, and Table 2 shows the manufacturing conditions and various characteristics of the steel sheet.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】本発明法にしたがって製造した鋼板(本発
明鋼)は、すべて良好な特性を有する。これに対し、本
発明によらない比較鋼は、いずれかの特性が劣る。
The steel sheets manufactured according to the method of the present invention (steel of the present invention) all have good properties. On the other hand, the comparative steel not according to the present invention is inferior in any of the properties.

【0054】比較鋼11は、C量が低く、またNb、T
iが添加されていないのに加え、γ未再結晶温度域にお
ける累積圧下量も小さいために、溶接性は良好であるが
強度が低めで、かつ靭性に劣る。比較鋼12は、成分的
には本発明範囲内にあるものの、水冷停止温度が高いた
め、マルテンサイトまたはマルテンサイト−オーステナ
イト混合相(M−A constituents)が生
成されず、結果として降伏点が出現し、降伏強さが高く
なり、降伏比が高い。比較鋼13は、個々の元素の添加
量は本発明範囲内にあるものの、PCMが高いため溶接性
に劣る。また、粗大なマルテンサイトまたはマルテンサ
イト−オーステナイト混合相(M−Aconstitu
ents)が高く、靭性に劣る。比較鋼14は、Ti量
が高く、製造条件も圧延温度が低く、水冷開始温度も低
いため、降伏点が出現し、降伏強さ、降伏比ともに高く
なり、低温靭性にも劣る。なお、Ti量の高い比較鋼1
4では、HAZ靭性も劣ることが確認されており、使用
性能上好ましくない。比較鋼15は、C量が高く、PCM
も高いため溶接性に劣り、加速冷却停止温度が低いこと
もあって、粗大なマルテンサイトまたはマルテンサイト
−オーステナイト混合相(M−A constitue
nts)分率が高く、また、その粗大なものの比率も高
いため、靭性が劣っている。さらに、加速冷却停止温度
の低い本比較鋼15は、溶接時のHAZ軟化が顕著であ
ることも確認されており、使用性能上好ましくない。
The comparative steel 11 has a low C content, and has Nb, T
In addition to the fact that i is not added, the accumulated rolling reduction in the γ non-recrystallization temperature range is small, so that the weldability is good but the strength is low and the toughness is poor. Although the comparative steel 12 is within the scope of the present invention in terms of composition, since the water cooling stop temperature is high, martensite or a martensite-austenite mixed phase (MA-constituents) is not generated, and as a result, a yield point appears. And the yield strength is high, and the yield ratio is high. Comparative Steel 13, although the addition amount of each element is within the scope of the present invention, inferior in weldability due to high P CM. In addition, coarse martensite or a martensite-austenite mixed phase (M-Aconstiti)
ents) is high and inferior in toughness. The comparative steel 14 has a high Ti content, a low rolling temperature under manufacturing conditions, and a low water-cooling start temperature, so that a yield point appears, both the yield strength and the yield ratio are high, and the low-temperature toughness is poor. In addition, the comparative steel 1 with a high Ti content
In No. 4, HAZ toughness was also confirmed to be inferior, which is not preferable in terms of use performance. Comparative Steel 15 has a high C content, P CM
Is high, the weldability is inferior, and the accelerated cooling stop temperature is low, so that coarse martensite or a martensite-austenite mixed phase (MA-constite)
The nts) fraction is high, and the ratio of coarse ones is high, so that the toughness is poor. Further, it has been confirmed that the comparative steel 15 having a low accelerated cooling stop temperature has remarkable HAZ softening during welding, which is not preferable in terms of use performance.

【0055】[0055]

【発明の効果】本発明により、溶接性、低温靭性に優れ
た低降伏比高張力鋼の製造が可能となった。その結果、
耐震性能の優れた建築用、あるいは液体アンモニアとL
PGなどとの混載タンク用として溶接性の優れた鋼材を
大量かつ安価に供給できるようになった。特に高強度化
も可能としたため、該タンクの船舶への搭載も容易とな
った。
According to the present invention, it has become possible to produce a low-yield-ratio high-tensile steel excellent in weldability and low-temperature toughness. as a result,
For building with excellent seismic performance, or liquid ammonia and L
It has become possible to supply inexpensively a large amount of steel having excellent weldability for use in a tank mixed with PG or the like. In particular, since the strength can be increased, the tank can be easily mounted on a ship.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K032 AA01 AA02 AA04 AA05 AA08 AA11 AA14 AA16 AA20 AA21 AA22 AA23 AA27 AA29 AA31 AA35 AA36 AA40 BA01 CA02 CA03 CC02 CD02 CD03  ────────────────────────────────────────────────── ─── Continued on front page F term (reference) 4K032 AA01 AA02 AA04 AA05 AA08 AA11 AA14 AA16 AA20 AA21 AA22 AA23 AA27 AA29 AA31 AA35 AA36 AA40 BA01 CA02 CA03 CC02 CD02 CD03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 板厚方向断面1/4厚位置の鋼組織が、
マルテンサイトまたはマルテンサイト−オーステナイト
混合相(M−A constituents)を観察断
面の面積分率で1〜10%を含み、その相の個々のサイ
ズの90%以上が円相当直径で3μm以下であって、引
張試験において降伏点が出ないことを特徴とする溶接性
と低温靭性に優れた低降伏比高張力鋼。
1. A steel structure at a 1/4 thickness position in a cross section in the thickness direction,
The martensite or martensite-austenite mixed phase (MA constituents) contains 1 to 10% by area fraction of the observed cross section, and 90% or more of the individual sizes of the phase have a circle equivalent diameter of 3 µm or less; Low yield ratio high tensile strength steel with excellent weldability and low temperature toughness characterized by no yield point in tensile test.
【請求項2】 鋼成分が質量%で、C:0.03〜0.
15%、Si:0.4%以下、Mn:1.0〜2.0
%、P:0.02%以下、S:0.01%以下、Nb:
0.005〜0.05%、Ti:0.005〜0.02
5%、Al:0.06%以下、N:0.001〜0.0
05%、かつ、下記(1)式で規定する溶接性指標のP
CMが0.25%以下で、残部が鉄および不可避的不純物
からなることを特徴とする請求項1記載の溶接性と低温
靭性に優れた低降伏比高張力鋼。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20 +Mo/15+V/10+5B ・ ・ ・(1)
2. The steel component in mass%, C: 0.03-0.
15%, Si: 0.4% or less, Mn: 1.0 to 2.0
%, P: 0.02% or less, S: 0.01% or less, Nb:
0.005 to 0.05%, Ti: 0.005 to 0.02
5%, Al: 0.06% or less, N: 0.001 to 0.0
05% and the weldability index P defined by the following equation (1)
The low yield ratio high tensile strength steel having excellent weldability and low temperature toughness according to claim 1, characterized in that CM is 0.25% or less and the balance consists of iron and unavoidable impurities. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B · · · (1)
【請求項3】 質量%で、Cu:0.05〜0.5%、
Ni:0.05〜1.0%、Cr:0.05〜0.5
%、Mo:0.05〜0.5%、V:0.01〜0.0
5%、B:0.0002〜0.003%、Mg:0.0
002〜0.005%の範囲で1種または2種以上をさ
らに含有することを特徴とする請求項2に記載の溶接性
と低温靭性に優れた低降伏比高張力鋼。
3. Cu: 0.05 to 0.5% by mass%;
Ni: 0.05 to 1.0%, Cr: 0.05 to 0.5
%, Mo: 0.05 to 0.5%, V: 0.01 to 0.0
5%, B: 0.0002 to 0.003%, Mg: 0.0
The low-yield-ratio high-tensile steel having excellent weldability and low-temperature toughness according to claim 2, further comprising one or more kinds in the range of 002 to 0.005%.
【請求項4】 質量%で、Ca:0.0005〜0.0
04%、REM:0.0005〜0.004%のいずれ
か1種をさらに含有することを特徴とする請求項2また
は3に記載の溶接性と低温靭性に優れた低降伏比高張力
鋼。
4. Ca: 0.0005 to 0.0% by mass
The low-yield-ratio high-tensile steel having excellent weldability and low-temperature toughness according to claim 2 or 3, further comprising any one of 0.4% and REM: 0.0005 to 0.004%.
【請求項5】 請求項2〜4のいずれか1項に記載の鋼
組成からなる鋳片または鋼片を、1000〜1250℃
の温度に加熱し、オーステナイト未再結晶温度域での累
積圧下量を30%以上として720点以上の温度で熱間
圧延を終了した後、680℃以上の温度から加速冷却を
開始し、150〜350℃の温度で加速冷却を停止した
後放冷することを特徴とする請求項1に記載の溶接性と
低温靭性に優れた低降伏比高張力鋼の製造方法。
5. A slab or a slab made of the steel composition according to any one of claims 2 to 4, which is subjected to a temperature of 1000 to 1250 ° C.
After the hot rolling is completed at a temperature of 720 points or more with the cumulative reduction in the austenite non-recrystallization temperature range being 30% or more, accelerated cooling is started from a temperature of 680 ° C. or more. The method according to claim 1, wherein the accelerated cooling is stopped at a temperature of 350 ° C, and then the steel is allowed to cool.
JP2000395305A 2000-03-29 2000-12-26 Low yield ratio high strength steel excellent in weldability and low temperature toughness and method for producing the same Expired - Lifetime JP4261765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000395305A JP4261765B2 (en) 2000-03-29 2000-12-26 Low yield ratio high strength steel excellent in weldability and low temperature toughness and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-92233 2000-03-29
JP2000092233 2000-03-29
JP2000395305A JP4261765B2 (en) 2000-03-29 2000-12-26 Low yield ratio high strength steel excellent in weldability and low temperature toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001342538A true JP2001342538A (en) 2001-12-14
JP4261765B2 JP4261765B2 (en) 2009-04-30

Family

ID=26588773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000395305A Expired - Lifetime JP4261765B2 (en) 2000-03-29 2000-12-26 Low yield ratio high strength steel excellent in weldability and low temperature toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP4261765B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328511A (en) * 2005-05-30 2006-12-07 Jfe Steel Kk Wear resistant steel with excellent low-temperature toughness, and its manufacturing method
CN102719753A (en) * 2012-05-28 2012-10-10 江苏省沙钢钢铁研究院有限公司 Low-yield-ratio high-strength steel plate and manufacturing method thereof
JP2016507649A (en) * 2012-12-27 2016-03-10 ポスコ High-strength steel sheet with excellent cryogenic toughness and low yield ratio characteristics and method for producing the same
CN108728729A (en) * 2017-04-24 2018-11-02 鞍钢股份有限公司 Low-yield-ratio high-strength quenched and tempered container steel and production method thereof
US20200080167A1 (en) * 2016-12-13 2020-03-12 Posco High strength multi-phase steel having excellent burring properties at low temperature, and method for producing same
CN111455272A (en) * 2020-03-25 2020-07-28 南京钢铁股份有限公司 Hot-rolled high-strength S500M L steel plate and production method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108603267B (en) 2016-02-03 2021-02-23 杰富意钢铁株式会社 Steel material for high heat input welding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328511A (en) * 2005-05-30 2006-12-07 Jfe Steel Kk Wear resistant steel with excellent low-temperature toughness, and its manufacturing method
JP4645306B2 (en) * 2005-05-30 2011-03-09 Jfeスチール株式会社 Wear-resistant steel with excellent low-temperature toughness and method for producing the same
CN102719753A (en) * 2012-05-28 2012-10-10 江苏省沙钢钢铁研究院有限公司 Low-yield-ratio high-strength steel plate and manufacturing method thereof
JP2016507649A (en) * 2012-12-27 2016-03-10 ポスコ High-strength steel sheet with excellent cryogenic toughness and low yield ratio characteristics and method for producing the same
US20200080167A1 (en) * 2016-12-13 2020-03-12 Posco High strength multi-phase steel having excellent burring properties at low temperature, and method for producing same
CN108728729A (en) * 2017-04-24 2018-11-02 鞍钢股份有限公司 Low-yield-ratio high-strength quenched and tempered container steel and production method thereof
CN111455272A (en) * 2020-03-25 2020-07-28 南京钢铁股份有限公司 Hot-rolled high-strength S500M L steel plate and production method thereof

Also Published As

Publication number Publication date
JP4261765B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP4767590B2 (en) Production method of low yield ratio high strength steel and low yield ratio high strength steel
JP2001152248A (en) Method for producing high tensile strength steel plate and steel pipe excellent in low temperature toughness
JP2003160811A (en) Method for manufacturing tempered high-tensile- strength steel sheet superior in toughness
KR101940880B1 (en) Sour resistance steel sheet having excellent low temperature toughness and post weld heat treatment property, and method of manufacturing the same
JP2001288512A (en) Method of producing high tensile strength steel excellent in toughness and ductility
JP2009024228A (en) Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JP4268462B2 (en) Manufacturing method of non-tempered low yield ratio high strength steel sheet with excellent high temperature strength
JP2001200334A (en) 60 kilo class high tensile strength steel excellent in weldability and toughness
JP2002129281A (en) High tensile strength steel for welding structure excellent in fatigue resistance in weld zone and its production method
JP2002003983A (en) Low yielding ratio, high-tensile steel excellent in weldability and toughness at low temperature, and its manufacturing method
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP2001342538A (en) High tensile steel with low yield ratio, excellent in weldability and low temperature toughness, and production of the same
JP2002173734A (en) Steel having excellent weldability and its production method
JP2007191785A (en) Method for manufacturing high-tensile steel material superior in weld cracking resistance
JP2002115022A (en) Steel having excellent high temperature strength and its production method
JP2002003985A (en) High tensile steel excellent in strength at high temperature, and its manufacturing method
JPH05295434A (en) Production of high tensile strength steel plate excellent in hydrogen induced cracking resistance, sulfide stress corrosion cracking resistance, and toughness at low temperature
JP3009569B2 (en) Method for producing CO2 corrosion resistant sour resistant steel sheet with excellent low temperature toughness
JP4348102B2 (en) 490 MPa class high strength steel excellent in high temperature strength and manufacturing method thereof
JPH08209239A (en) Production of thick steel for low temperature use having brittle fracture propagation stop characteristic at lower than-50×c
JP4031730B2 (en) Structural 490 MPa class high-strength refractory steel excellent in weldability and gas-cutting property and method for producing the same
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
JP2002012939A (en) High tensile steel excellent in hot strength and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4261765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term