JPS6167717A - Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone - Google Patents

Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone

Info

Publication number
JPS6167717A
JPS6167717A JP19034184A JP19034184A JPS6167717A JP S6167717 A JPS6167717 A JP S6167717A JP 19034184 A JP19034184 A JP 19034184A JP 19034184 A JP19034184 A JP 19034184A JP S6167717 A JPS6167717 A JP S6167717A
Authority
JP
Japan
Prior art keywords
toughness
steel
less
rolling
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19034184A
Other languages
Japanese (ja)
Inventor
Motomi Kanano
叶野 元巳
Haruo Kaji
梶 晴男
Nobutsugu Takashima
高嶋 修嗣
Manabu Yamauchi
学 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19034184A priority Critical patent/JPS6167717A/en
Publication of JPS6167717A publication Critical patent/JPS6167717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture a high tension steel plate having superior strength and toughness in its weld heat-affected zone by subjecting a low carbon steel contg. a prescribed amount of Nb to heating, rolling and cooling under specified conditions. CONSTITUTION:The composition of a steel slab is composed of, by weight, 0.005-0.05% C, 0.05-0.75% Si, 0.2-2.2% Mn, 0.005-0.1% Al, 0.01-0.1% Nb and the balance Fe with inevitable impurities. The steel slab is heated to 1,000-1,250 deg.C and rolled. The rolling is finished at >=900 deg.C in the austenite recrystallization temp. range. The resulting steel plate is cooled at once at 1-50 deg.C/sec average cooling rate in the temp. range of 800 deg.C to 300 deg.C.

Description

【発明の詳細な説明】 本発明は溶接熱影響部の強度及び靭性にすくれだ高張力
鋼板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high-strength steel plate that is sensitive to the strength and toughness of a welded heat affected zone.

近年、再加熱処理省略による熱処理コストの低減、熱間
圧延−熱処理工程の連続化、焼入れ性の向上、強度上昇
の観点から鋼材をオーステナイト域で熱間圧延し、圧延
後に直ちに急冷する直接焼入れ法による調質鋼の製造方
法方法が提案されている。
In recent years, from the viewpoints of reducing heat treatment costs by omitting reheating, making the hot rolling-heat treatment process continuous, improving hardenability, and increasing strength, a direct quenching method has been developed in which steel is hot rolled in the austenite region and then rapidly cooled immediately after rolling. A method for manufacturing tempered steel has been proposed.

例えば、特開昭50−115611号公報には、B及び
N量を調整してBの焼入れ性向上効果を発揮させ、圧延
後直ちに焼入れし、必要に応じて焼戻すことにより、母
材の高強度化と高靭性化を図る方法が開示されている。
For example, Japanese Patent Application Laid-Open No. 50-115611 discloses that the amount of B and N is adjusted to exhibit the effect of improving the hardenability of B, and by quenching immediately after rolling and tempering as necessary, the base material is improved. A method for increasing strength and toughness is disclosed.

また、特開昭54−68719号公報には、Nb等のオ
ーステナイト再結晶抑制元素を添加し、熱間圧延時に再
結晶域からオーステナイト低温域の未再結晶域に至るま
での圧延を行ない、オースナナ41粒の微細化を進める
と共に、多数の格子欠陥を導入し、フェライトの核生成
サイトを増大させることにより焼入れ性を抑え、その結
果、マルテンサイトや上部ベイナイ1〜等の粗大な低温
変態生成物の出現を抑制し、微細なフェライト主体の組
織にすることにより、母材の強靭化を図る方法が開示さ
れている。
Furthermore, in JP-A-54-68719, an austenite recrystallization inhibiting element such as Nb is added, and during hot rolling, rolling is performed from the recrystallized region to the unrecrystallized region of the austenite low temperature region, and the austenite recrystallization suppressing element is added. 41 grains are refined, many lattice defects are introduced, and the number of nucleation sites for ferrite is increased to suppress hardenability. As a result, coarse low-temperature transformation products such as martensite and upper bainii 1~ are formed. A method is disclosed for strengthening the base material by suppressing the appearance of ferrite and creating a structure consisting mainly of fine ferrite.

しかし、前者の方法によれば、B及びNを有効に活用す
ることにより、母材強度及び靭性は向上するが、必ずし
も耐熔接割れ感受性、溶接Il1手部強度及び靭性は良
好とはいえない。また、後者の方法については、低温圧
延時にN b 13< tJb(C,N)として析出す
るため、前者の方法と同じく、母材強度及び靭性ill
向」−させ得るが、オーステナイト低温域における未再
結晶域圧延を含むために、圧延能率の低下を免れない。
However, according to the former method, the strength and toughness of the base metal are improved by effectively utilizing B and N, but the weld cracking resistance, weld Il1 hand strength and toughness are not necessarily good. In addition, in the latter method, since Nb13<tJb(C,N) precipitates during low-temperature rolling, the strength and toughness of the base metal are reduced as in the former method.
However, since rolling involves rolling in a non-recrystallized austenite region at a low temperature, rolling efficiency inevitably decreases.

更に、溶接部の強度及び靭性については何ら改善されて
いない。
Furthermore, there is no improvement in the strength and toughness of the weld.

従って、上記のような従来の方法によるfgI板を用い
る場合には、予熱、入熱量の制限が付随するので、軟鋼
等に比較して、溶接施行管理が煩雑である。
Therefore, when using the fgI plate by the conventional method as described above, there are restrictions on preheating and heat input, so welding execution management is more complicated than with mild steel or the like.

本発明者らは、これら従来の方法における問題を解決す
るために、直接焼入れ鋼板の母材及び溶接熱影響部の強
度及び靭性に及ぼす各種合金元素の添加、及び加熱、圧
延、冷却等の製造条件を詳細且つ広範囲にわたって研究
した結果、特別な低温圧延を行なうことなく、また、直
接焼入れ後に特に焼戻し処理を必要とすることなく、母
材強度及び靭性のみならず、溶接継手部の強度及び靭性
を改善した高張力鋼板を得ることができることを見出し
た。
In order to solve the problems in these conventional methods, the present inventors have investigated the effects of adding various alloying elements on the strength and toughness of the base metal and weld heat-affected zone of directly quenched steel sheets, and manufacturing processes such as heating, rolling, and cooling. As a result of detailed and extensive research on the conditions, we have found that not only the strength and toughness of the base metal but also the strength and toughness of the welded joint can be improved without special low-temperature rolling or without the need for special tempering treatment after direct quenching. We have discovered that it is possible to obtain high-strength steel sheets with improved properties.

即ち、本発明者らは、鋼におけるC添加量を著しく低減
すると共に適量のNbを添加し、更に、製造工程におい
ては、加熱、圧延及びその後の冷却条件を制限すること
により、熱間圧延後に直接焼入れして、溶接熱影響部の
強度及び靭性にすくれた高張力鋼板を得たものである。
That is, the present inventors significantly reduced the amount of C added to the steel, added an appropriate amount of Nb, and furthermore, in the manufacturing process, by limiting the heating, rolling, and subsequent cooling conditions, the A high tensile strength steel plate with excellent strength and toughness in the weld heat affected zone is obtained by direct quenching.

即ち、本発明による溶接熱影響部の強度及び靭性にずく
れた高張力鋼板の製造方法は、重量%でC0.005〜
0.05%、 Si0.05〜0.75%、 Mn  0.2〜2.2%、 Aρ 0.005〜01%、 Nb  0101〜0.1%、 残部鉄及び不可避的不純物よりなる鋼スラブを1000
〜1250℃の範囲の温度に加熱し、900℃以上のオ
ーステナイト再結晶域で圧延を完了し、その後直ちに冷
却を開始し、800℃から300℃までを平均冷却速度
1〜50℃/秒にて冷却することを特徴とする。
That is, the method for producing a high-strength steel plate with poor strength and toughness in the weld heat affected zone according to the present invention has a method of manufacturing a high-strength steel plate with poor strength and toughness in the welded heat affected zone.
Steel slab consisting of 0.05%, Si 0.05~0.75%, Mn 0.2~2.2%, Aρ 0.005~01%, Nb 0101~0.1%, balance iron and inevitable impurities. 1000
Heating to a temperature in the range of ~1250°C, completing rolling in the austenite recrystallization zone above 900°C, then immediately starting cooling, from 800°C to 300°C at an average cooling rate of 1 to 50°C/sec. It is characterized by cooling.

以下に本発明について詳細に説明する。The present invention will be explained in detail below.

熱間圧延時において、Nbはオーステナイトの再結晶を
抑制し、冷却後のに、J1織を微細化する効果を有する
が、本発明におけるNbの添加の最も重要な効果は、固
溶状態でのNbによる焼入れ性向上効果、及び溶接施行
時に上記固溶Nbをi戚細に再析出させることによる溶
接継手部の軟化防止にある。
During hot rolling, Nb has the effect of suppressing recrystallization of austenite and refining the J1 weave after cooling. However, the most important effect of adding Nb in the present invention is This is due to the effect of improving hardenability due to Nb, and the prevention of softening of the welded joint by redecipitating the solid solution Nb in fine particles during welding.

即し、オーステナイト中に固溶状態で存在するNbは極
めて高い焼入れ性を示し、その効果は固溶Nb量と共に
著しく増大する。その結果、圧延後の急冷過程において
、初析フエライ[−の生成が大幅に抑制され、倣細なヘ
イナイ(・組織が得られるので、すくれた強度と靭性を
有する鋼板を得ることができるのである。更に、固溶状
態で常温までもちきたらされたNbは、溶接施行時、溶
接熱影響部にNb(C,N)として微細に析出し、継手
の軟化幅を著しく狭める。
That is, Nb existing in austenite in a solid solution state exhibits extremely high hardenability, and this effect increases significantly as the amount of solid solution Nb increases. As a result, during the quenching process after rolling, the formation of pro-eutectoid ferrite is greatly suppressed, and a fine-grained structure is obtained, making it possible to obtain a steel plate with excellent strength and toughness. Furthermore, Nb brought to room temperature in a solid solution state precipitates finely as Nb (C, N) in the weld heat affected zone during welding, significantly narrowing the softening width of the joint.

一方、従来のオーステナイト未再結晶域での加工を必要
とする方法によれば、圧延中にN b炭窒化物の析出が
進行し、固溶Nbの焼入れ性向上効果が消失するのみな
らず、溶接施行時のNb炭窒化物の析出硬化が」分に期
待できない。従って、本発明による方法は、低温圧延を
必要とする従来の方法とは木質的に異なるものである。
On the other hand, according to the conventional method that requires processing in the austenite non-recrystallized region, precipitation of Nb carbonitrides progresses during rolling, and the hardenability improvement effect of solid solution Nb not only disappears, but also Precipitation hardening of Nb carbonitrides during welding cannot be expected. The method according to the invention therefore differs from conventional methods requiring low temperature rolling.

本発明の方法における別の大きな特徴は、鋼中のC含有
量を著しく低減させたことにある。C含有量の低減は、
溶接部の硬化を抑制し、耐溶接割れ性を大幅に改善する
のみならず、溶接熱影響部の靭性を■害する島状マルテ
ンサイトの生成を抑制する。上記効果は、本発明の方法
に従って、特にC含有量を0.03%以下とするときに
顕著である。その結果、本発明の方法による鋼板によれ
ば、溶接施行時の予熱が不要となると同時に、広範囲の
溶接入熱量に対して安定してずくれた溶接熱影響部の靭
性を確保することができる。
Another major feature of the method of the present invention is that the C content in the steel is significantly reduced. The reduction of C content is
It not only suppresses hardening of the weld zone and significantly improves weld cracking resistance, but also suppresses the formation of island martensite that impairs the toughness of the weld heat affected zone. The above effect is remarkable especially when the C content is set to 0.03% or less according to the method of the present invention. As a result, the steel plate produced by the method of the present invention eliminates the need for preheating during welding, and at the same time, it is possible to stably maintain the toughness of the weld heat-affected zone over a wide range of welding heat input. .

更に、このように、C含有量を低減することにより、所
謂質量効果が減少し、圧延後に急冷するにもかかわらず
、鋼板内の材質、特に板厚方向の強度差を大幅に減少す
ることができる。また、一般に、圧延後に低温まで急冷
すると、マルテンサイト変態に伴い、鋼板の反りが大き
くなり、急冷後の矯正が必要となるが、低C化はこれら
マルテンサイト変態を抑制し、変態時の膨張による鋼板
の反りの軽減に有効であると同時に、これら硬質の低温
変態生成物が割れの起点となる応力腐食割れ性の改善に
も極めて有効である。
Furthermore, by reducing the C content in this way, the so-called mass effect is reduced, and despite rapid cooling after rolling, it is possible to significantly reduce the strength difference in the material within the steel sheet, especially in the thickness direction. can. In addition, generally, when rapidly cooled to low temperatures after rolling, the warpage of the steel sheet becomes large due to martensitic transformation, and straightening after quenching is required. It is effective in reducing the warping of steel sheets caused by the oxidation process, and at the same time, it is extremely effective in improving stress corrosion cracking, where these hard low-temperature transformation products become the starting point for cracking.

従って、本発明の方法によれば、通常の焼入れ焼戻し鋼
よりもずくれた強度と靭性とを有する低Cヘイナイ1鋼
を得ることができ、炭素当量の著しい低減が可能となっ
て、溶接性を飛躍的に向上させることができる。
Therefore, according to the method of the present invention, it is possible to obtain a low C Heinai 1 steel that has superior strength and toughness compared to ordinary quenched and tempered steel, and it is possible to significantly reduce the carbon equivalent, thereby improving weldability. It can be improved dramatically.

次に、本発明において用いる鋼の化学成分の限定理由に
ついて説明する。
Next, the reasons for limiting the chemical composition of the steel used in the present invention will be explained.

Cは、溶接割れ感受性を高め、また、溶接熱影響部の靭
性を劣化さゼる島状マルテンサイトの生成を抑制するた
めに、本発明においては、C添加量の上限を0.05%
とする。しかし、C含有量を0、0 O5%よりも少な
くした鋼を安定して得ることは実操業上困難であるので
、下限を0.0 O5%とする。
In the present invention, the upper limit of the amount of C added is set at 0.05% in order to increase the susceptibility to weld cracking and suppress the formation of island-like martensite that deteriorates the toughness of the weld heat affected zone.
shall be. However, since it is difficult in actual operation to stably obtain steel with a C content lower than 0.0 O5%, the lower limit is set to 0.0 O5%.

Siは、鋼の脱酸を促進し、強度を上智させるために、
少なくとも0.05%の添加を必要とする。
Si promotes deoxidation of steel and improves its strength.
Requires addition of at least 0.05%.

しかし、過多に添加するときは、溶接性をI員なうので
北限を0.75%とする。
However, if added in excess, weldability will be affected, so the northern limit is set at 0.75%.

Mnは、鋼の強度及び靭性を高めるために、少なくとも
0.2%の添加を必要とするが、2.2%を越えるとき
は溶接割れ感受性が著しく高まるので、上限を2.2%
とする。
Mn needs to be added in an amount of at least 0.2% to increase the strength and toughness of steel, but if it exceeds 2.2%, weld cracking susceptibility increases significantly, so the upper limit should be set at 2.2%.
shall be.

Alは脱酸元素として必要不可欠であると共に、窒化物
を形成して組織を微細化する。このために、本発明にお
いては、Alは少なくとも0.005%を添加するが、
過多に添加するときは、介在物が増大するので、0.1
%を」−眼とする。
Al is essential as a deoxidizing element, and also forms nitrides to refine the structure. For this reason, in the present invention, at least 0.005% of Al is added, but
When adding too much, inclusions will increase, so add 0.1
% as "-eye".

Nbは、固溶状態で鋼の焼入れ性を高めると共に、溶接
施行時に溶接熱影響部にNb(C;N)として微細に析
出するので、溶接継手部の軟化防止に著しい効果がある
。従って、本発明においては、後述する冷却条件の下で
」−記Nbの効果を有効に発揮させるために、少なくと
も0.01%添加する。
Nb improves the hardenability of steel in a solid solution state and precipitates finely as Nb (C; N) in the weld heat affected zone during welding, so it has a significant effect on preventing softening of the welded joint. Therefore, in the present invention, at least 0.01% of Nb is added in order to effectively exhibit the effect of Nb under the cooling conditions described below.

しかし、過多に添加するときけ、溶接部の靭性を低下さ
ゼるので、上限を0.1%とする。
However, if added in excess, the toughness of the welded part will be reduced, so the upper limit is set at 0.1%.

本発明による高張力鋼板においては、」−記の元素に加
えて、更にCuXN i、、Cr、Mo及びBよりなる
群から選ばれる少なくとも1種の焼入れ性向上元素を添
加することができる。
In the high-strength steel sheet according to the present invention, in addition to the elements listed below, at least one hardenability-improving element selected from the group consisting of CuXNi, Cr, Mo, and B can be added.

Cuは鋼の耐食性及び焼入れ性を改善するのに有効であ
るが、過剰に添加するときは耐溶接割れ性を阻害するの
で、その添加量の上限を0.5%とする。
Cu is effective in improving the corrosion resistance and hardenability of steel, but when added in excess, it impedes weld cracking resistance, so the upper limit of its addition amount is set at 0.5%.

他方、Niは溶接性を害することなく、鋼の靭性を改善
するために有効であるが、経済性を考慮してその上限を
4.0%とする。
On the other hand, Ni is effective in improving the toughness of steel without impairing weldability, but its upper limit is set at 4.0% in consideration of economic efficiency.

Crは鋼の焼入れ性を改善するために添加される。しか
し、過多に添加すれば、溶接性を著しく劣化させるので
、その上限を2.0%とする。
Cr is added to improve the hardenability of steel. However, if added in excess, weldability will be significantly degraded, so the upper limit is set at 2.0%.

MOは鋼強度の向上をもたらし、低温靭性の改善に有効
であるが、過剰に加えても強度−ト昇効果が飽和し、ま
た、却って靭性及び溶接性を劣化させるので、上限を1
.0%とする。
MO improves steel strength and is effective in improving low-temperature toughness, but if added in excess, the strength-T increasing effect will be saturated, and it will actually deteriorate toughness and weldability, so the upper limit should be set at 1.
.. Set to 0%.

Bは微量の添加によって焼入れ性を向上させ、極厚板の
強度及び靭性の確保に有効であるが、過多に添加しても
その効果が飽和するので、上限を0、002%とする。
When added in a small amount, B improves hardenability and is effective in ensuring the strength and toughness of extremely thick plates, but the effect is saturated even if added in excess, so the upper limit is set at 0.002%.

更に、本発明によれば、■及び/又はTiの析出硬化元
素を鋼に添加し、鋼強度を一層高めることができる。し
かし、これらの元素は、余りに多量に添加することG」
、溶接時に母材及び溶接部の靭性を阻害するため、いず
れの元素についても上限をそれぞれ0.1%とする。
Furthermore, according to the present invention, precipitation hardening elements such as (1) and/or Ti can be added to the steel to further increase the steel strength. However, these elements should not be added in too large a quantity.
The upper limit of each element is set at 0.1% because it impairs the toughness of the base metal and welded part during welding.

また、本発明によれば、Ca及びREMよりなる群から
選ばれる少なくとも1種の元素を更に必要に応じて添加
することができる。これらの元素は硫化物系の非金属介
在物を球状化し、その異方性を改善する効果を有する。
Further, according to the present invention, at least one element selected from the group consisting of Ca and REM can be further added as necessary. These elements have the effect of spheroidizing sulfide-based nonmetallic inclusions and improving their anisotropy.

この効果を有効に発揮させるためには、それぞれ少なく
とも0.001%の添加を必要とする。しかし、過多に
添加しても、その効果が飽和するので、その上限を各元
素についてそれぞれ0.01%とする。
In order to effectively exhibit this effect, it is necessary to add at least 0.001% of each. However, even if added in excess, the effect will be saturated, so the upper limit is set to 0.01% for each element.

本発明の方法によれば、以上のような化学組成を有する
鋼を所定の条件下に加熱、圧延、冷却することにより、
すぐれた強度及び靭性を有する鋼板を得ることができる
According to the method of the present invention, by heating, rolling, and cooling steel having the above chemical composition under predetermined conditions,
A steel plate with excellent strength and toughness can be obtained.

即ち、先ず本発明の方法によれば、熱間圧延に先立つ加
熱温度は、鋼中のC及びN量によってもいくらか異なる
が、Nbの炭窒化物をオーステナイト中に十分に固溶さ
せるために、第1図に示すように、少なくとも1000
℃が必要である。次に、その後の熱間圧延については、
圧延中に析出するNbの炭窒化物をできる限り抑え、固
溶Nbの焼入れ性を十分に確保するためには、第2図に
示すように、900℃以上のオーステナイト再結晶域で
圧延を完了させる必要があり、従って、本発明の方法に
おいては、圧延仕上温度を900℃以上とする。
That is, according to the method of the present invention, the heating temperature prior to hot rolling varies somewhat depending on the amount of C and N in the steel, but in order to sufficiently dissolve Nb carbonitride in austenite, At least 1000 as shown in FIG.
°C is required. Next, regarding the subsequent hot rolling,
In order to suppress Nb carbonitrides precipitated during rolling as much as possible and to ensure sufficient hardenability of solid solute Nb, rolling should be completed in the austenite recrystallization region at 900°C or higher, as shown in Figure 2. Therefore, in the method of the present invention, the finishing rolling temperature is set to 900°C or higher.

本発明の方法においては、この圧延の後、冷却後に微細
なヘイナイト組織を得るために、」−記固溶Nbをヘイ
ナイト変態完了まで固溶状態で凍結する必要があり、そ
のために冷却速度は、鋼の組成によってもいくらか異な
るが、第3図に示すように、800℃から300までを
平均冷却速度1〜b する。この冷却速度力月℃/秒よりも遅い場合は、微細
なベイナイトを得ることが困難である。冷却速度の上限
は、特に制限されるものではないが、実用的な観点から
50℃/秒とする。
In the method of the present invention, in order to obtain a fine heinite structure after cooling after rolling, it is necessary to freeze the solid solution Nb in a solid solution state until the completion of the heinite transformation, and for this purpose, the cooling rate is Although it varies somewhat depending on the composition of the steel, as shown in Fig. 3, the average cooling rate is 1~b from 800°C to 300°C. If the cooling rate is slower than 1°C/sec, it is difficult to obtain fine bainite. Although the upper limit of the cooling rate is not particularly limited, it is set to 50° C./second from a practical standpoint.

尚、本発明においては、圧延後の空冷時において、上記
冷却速度を満足するような薄肉材においては、特に、強
制的に冷却する必要がないことはいうまでもない。
In the present invention, it goes without saying that there is no need to forcibly cool a thin material that satisfies the above cooling rate during air cooling after rolling.

以−トのように、本発明の方法によれば、所定の化学組
成を有する鋼、特に、低C化すると共に所定量のNbを
添加した綱を用いることにより、特別な低温圧延を行な
うことなく、珪つ、直接焼入れ後に特に焼戻し処理を必
要とすることなく、母材強度及び靭性のみならず、溶接
継手部の強度及び靭性にずくれた高張力鋼板を得ること
ができる。
As described above, according to the method of the present invention, a special low-temperature rolling process is performed by using steel having a predetermined chemical composition, especially a steel with low carbon content and a predetermined amount of Nb added. It is possible to obtain a high-strength steel plate that has not only the strength and toughness of the base material but also the strength and toughness of the welded joint without requiring any particular tempering treatment after direct quenching.

但し、本発明においては、必要に応して冷却後に焼戻し
を行なうことは何ら差し支えなく、この場合、その焼戻
し温度がAc以下であれば、本発明鋼の特性を阻害する
ことはない。
However, in the present invention, there is no problem in performing tempering after cooling if necessary, and in this case, as long as the tempering temperature is Ac or less, the characteristics of the steel of the present invention will not be impaired.

以下に実施例を挙げて本発明を説明する。The present invention will be explained below with reference to Examples.

第1表に示す化学組成を有する本発明鋼A〜■]及び比
較鋼に−Nを第2表に示す温度に加熱し、仕上圧延し、
800度から300度までを第2表に示す平均冷却速度
にて冷却し、それぞれ上り熱延鋼板を得た。これらにつ
いての機械的性質を第2表に示す。
Invention steels A to ■ having the chemical compositions shown in Table 1] and comparative steels are heated with -N to the temperatures shown in Table 2, and finish rolled.
Cooling was performed from 800 degrees to 300 degrees at the average cooling rate shown in Table 2 to obtain hot-rolled steel sheets. The mechanical properties of these are shown in Table 2.

Nb添加した本発明鋼A〜Hは、Nb添加によって非常
に微細なヘイナイト組織を有するため、Nb無添加の比
較鋼に−Nに比べて極めてずくれた靭性と強度とを有し
ている。
The Nb-added steels A to H of the present invention have a very fine haynite structure due to the Nb addition, so they have extremely poor toughness and strength compared to -N comparative steels without Nb addition.

第4図は本発明鋼Aと比較@にとを入熱量56KJ/c
mにてサブマージアーク溶接を施行したときの継手部の
硬さ分布を示す。本発明@Aは比軸鋼に比べて、溶接熱
影響部の軟化幅が極めて小さいことが明らかである。尚
、図には同時にA鋼をオーステナイト未再結晶域で50
%圧下を加えたときの結果を併せて示す。オーステナイ
ト未再結晶域での圧延によって、溶接熱影響部の軟化の
程度が大きくなることが理解される。
Figure 4 shows a comparison with the invention steel A with heat input of 56 KJ/c.
This shows the hardness distribution of the joint when submerged arc welding was performed at m. It is clear that the softening width of the weld heat-affected zone in the present invention @A is extremely small compared to the specific axis steel. In addition, the figure also shows A steel in the austenite non-recrystallized region.
The results when applying % pressure are also shown. It is understood that rolling in the austenite non-recrystallized region increases the degree of softening of the weld heat affected zone.

第1図及び第2図は本発明によるB鋼について、加熱温
度及び仕上圧延温度と、得られる鋼板の強度及び靭性と
の関係を示す。加熱温度及び仕上温度共に高くするほど
、固溶Nb量の増加に対応し、強靭化が達成されること
が理解される。
FIG. 1 and FIG. 2 show the relationship between the heating temperature and finish rolling temperature and the strength and toughness of the obtained steel plate for steel B according to the present invention. It is understood that the higher the heating temperature and finishing temperature are, the higher the amount of Nb in solid solution is increased, and the tougher the steel is achieved.

第3図は、本発明鋼であるC鋼について、直接焼入れ時
の平均冷却速度の強度及び靭性に及ぼず影響を示す。約
り℃/秒以上の冷却速度で冷却することにより、すぐれ
た強度と靭性を得ることができることを示す。
FIG. 3 shows the influence of the average cooling rate during direct quenching on the strength and toughness of Steel C, which is the steel of the present invention. It is shown that excellent strength and toughness can be obtained by cooling at a cooling rate of approximately 1°C/second or higher.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明鋼及び比較鋼について、鋼片加熱温度と
得られる鋼板の機械的性質及び衝撃特性との関係を示す
グラフ、第2図は本発明鋼及び比較鋼について、圧延仕
」二温度と得られる鋼板の機械的性質及び衝撃特性との
関係を示すグラフ、第3図は圧延後の平均冷却速度と得
られる鋼板の機械的性質及び衝撃特性との関係を示すグ
ラフ、第4図は本発明@Aと比較鋼にとを入熱M56K
J/cmにてサブマージアーク溶接を施行したときの継
手部の硬さ分布を示すグラフである。 第1図 スラダkIM!;呂度(°こジ 第3図 1−一て 謬”、7 、謳、        +に7久10スfη第2図
Figure 1 is a graph showing the relationship between billet heating temperature and the mechanical properties and impact properties of the obtained steel sheets for the invention steel and comparative steel. A graph showing the relationship between temperature and the mechanical properties and impact properties of the obtained steel plate, Figure 3 is a graph showing the relationship between the average cooling rate after rolling and the mechanical properties and impact properties of the obtained steel plate, and Figure 4 The heat input is M56K to the steel of the present invention @A and the comparison steel.
It is a graph showing the hardness distribution of a joint when submerged arc welding is performed at J/cm. Figure 1 Surada kIM! ;Ro degree (°Koji Fig. 3 1-1 1-1 error”, 7, song, + to 7 kyu 10 s fη Fig. 2

Claims (3)

【特許請求の範囲】[Claims] (1)重量%で C 0.005〜0.05%、 Si 0.05〜0.75%、 Mn 0.2〜2.2%、 Al 0.005〜0.1%、 Nb 0.01〜0.1%、 残部鉄及び不可避的不純物よりなる鋼スラブを1000
〜1250℃の範囲の温度に加熱し、900℃以上のオ
ーステナイト再結晶域で圧延を完了し、その後直ちに冷
却を開始し、800℃から300℃までを平均冷却速度
1〜50℃/秒にて冷却することを特徴とする溶接熱影
響部の強度及び靭性にすぐれた高張力鋼板の製造方法。
(1) C 0.005-0.05%, Si 0.05-0.75%, Mn 0.2-2.2%, Al 0.005-0.1%, Nb 0.01 in weight% ~0.1%, balance iron and unavoidable impurities
Heating to a temperature in the range of ~1250°C, completing rolling in the austenite recrystallization zone above 900°C, then immediately starting cooling, from 800°C to 300°C at an average cooling rate of 1 to 50°C/sec. A method for producing a high-strength steel plate with excellent strength and toughness in a welded heat-affected zone, which is characterized by cooling.
(2)重量%で (a)C 0.005〜0.05%、 Si 0.05〜0.75%、 Mn 0.2〜2.2%、 Al 0.005〜0.1%、 Nb 0.01〜0.1%、及び (b)Cu 0.5%以下、 Ni 4.0%以下、 Cr 2.0%以下、 Mo 1.0%以下、 V 0.1%以下、 Ti 0.1%以下、及び B 0.002%以下よりなる群から選ばれる少なくと
も1種の元素、 残部鉄及び不可避的不純物よりなる鋼スラブを1000
〜1250℃の範囲の温度に加熱し、900℃以上のオ
ーステナイト再結晶域で圧延を完了し、その後直ちに冷
却を開始し、800℃から300℃までを平均冷却速度
1〜50℃/秒にて冷却することを特徴とする溶接熱影
響部の強度及び靭性にすぐれた高張力鋼板の製造方法。
(2) In weight% (a) C 0.005-0.05%, Si 0.05-0.75%, Mn 0.2-2.2%, Al 0.005-0.1%, Nb 0.01 to 0.1%, and (b) Cu 0.5% or less, Ni 4.0% or less, Cr 2.0% or less, Mo 1.0% or less, V 0.1% or less, Ti 0 1% or less of B, and at least one element selected from the group consisting of 0.002% or less of B, the balance being iron and unavoidable impurities.
Heating to a temperature in the range of ~1250°C, completing rolling in the austenite recrystallization zone above 900°C, then immediately starting cooling, from 800°C to 300°C at an average cooling rate of 1 to 50°C/sec. A method for producing a high-strength steel plate with excellent strength and toughness in a welded heat-affected zone, which is characterized by cooling.
(3)重量%で (a)C 0.005〜0.05%、 Si 0.05〜0.75%、 Mn 0.2〜2.2%、 Al 0.005〜0.1%、 Nb 0.01〜0.1%、及び (b)Cu 0.5%以下、 Ni 4.0%以下、 Cr 2.0%以下、 Mo 1.0%以下、 V 0.1%以下、 Ti 0.1%以下、及び B 0.002%以下よりなる群から選ばれる少なくと
も1種の元素、 (c)Ca及びREMよりなる群から選ばれる少なくと
も1種の元素0.001〜0.01%、残部鉄及び不可
避的不純物よりなる鋼スラブを1000〜1250℃の
範囲の温度に加熱し、900℃以上のオーステナイト再
結晶域で圧延を完了し、その後直ちに冷却を開始し、8
00℃から300℃までを平均冷却速度1〜500℃/
秒にて冷却することを特徴とする溶接熱影響部の強度及
び靭性にすぐれた高張力鋼板の製造方法。
(3) In weight% (a) C 0.005-0.05%, Si 0.05-0.75%, Mn 0.2-2.2%, Al 0.005-0.1%, Nb 0.01 to 0.1%, and (b) Cu 0.5% or less, Ni 4.0% or less, Cr 2.0% or less, Mo 1.0% or less, V 0.1% or less, Ti 0 (c) at least one element selected from the group consisting of Ca and REM 0.001 to 0.01%; A steel slab consisting of the balance iron and unavoidable impurities is heated to a temperature in the range of 1000 to 1250°C, rolling is completed in the austenite recrystallization zone of 900°C or higher, and cooling is immediately started thereafter.
Average cooling rate 1~500℃/from 00℃ to 300℃
A method for producing a high-tensile steel plate with excellent strength and toughness in a welded heat-affected zone, characterized by cooling in seconds.
JP19034184A 1984-09-10 1984-09-10 Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone Pending JPS6167717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19034184A JPS6167717A (en) 1984-09-10 1984-09-10 Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19034184A JPS6167717A (en) 1984-09-10 1984-09-10 Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone

Publications (1)

Publication Number Publication Date
JPS6167717A true JPS6167717A (en) 1986-04-07

Family

ID=16256581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19034184A Pending JPS6167717A (en) 1984-09-10 1984-09-10 Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone

Country Status (1)

Country Link
JP (1) JPS6167717A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116032A (en) * 1987-10-29 1989-05-09 Nkk Corp Production of high-strength-high-toughness un-tempered steel
JPH07145425A (en) * 1994-05-20 1995-06-06 Nkk Corp Production of high-strength high-toughness non-tempered steel
US5718776A (en) * 1993-09-20 1998-02-17 Nippon Steel Corporation Steel plate less susceptible to welding distortion and highly bendable by lineal heating, process for producing said steel plate, welding material, and welding method using said welding material
US5989366A (en) * 1996-03-18 1999-11-23 Kawasaki Steel Corporation Method of manufacturing thick steel product of high strength and high toughness having excellent weldability and minimal variation of structure and physical properties
US6056833A (en) * 1997-07-23 2000-05-02 Usx Corporation Thermomechanically controlled processed high strength weathering steel with low yield/tensile ratio
JP2000199011A (en) * 1999-01-05 2000-07-18 Kawasaki Steel Corp Production of steel small in variation of material and excellent in low temperature toughness of weld zone
CN112899558A (en) * 2020-06-18 2021-06-04 宝钢湛江钢铁有限公司 550 MPa-grade weather-resistant steel plate with excellent weldability and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397922A (en) * 1977-02-08 1978-08-26 Nippon Kokan Kk <Nkk> Manufacture of non-refined high tensile steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397922A (en) * 1977-02-08 1978-08-26 Nippon Kokan Kk <Nkk> Manufacture of non-refined high tensile steel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116032A (en) * 1987-10-29 1989-05-09 Nkk Corp Production of high-strength-high-toughness un-tempered steel
US5718776A (en) * 1993-09-20 1998-02-17 Nippon Steel Corporation Steel plate less susceptible to welding distortion and highly bendable by lineal heating, process for producing said steel plate, welding material, and welding method using said welding material
JPH07145425A (en) * 1994-05-20 1995-06-06 Nkk Corp Production of high-strength high-toughness non-tempered steel
US5989366A (en) * 1996-03-18 1999-11-23 Kawasaki Steel Corporation Method of manufacturing thick steel product of high strength and high toughness having excellent weldability and minimal variation of structure and physical properties
US6056833A (en) * 1997-07-23 2000-05-02 Usx Corporation Thermomechanically controlled processed high strength weathering steel with low yield/tensile ratio
JP2000199011A (en) * 1999-01-05 2000-07-18 Kawasaki Steel Corp Production of steel small in variation of material and excellent in low temperature toughness of weld zone
CN112899558A (en) * 2020-06-18 2021-06-04 宝钢湛江钢铁有限公司 550 MPa-grade weather-resistant steel plate with excellent weldability and manufacturing method thereof
CN112899558B (en) * 2020-06-18 2022-07-05 宝钢湛江钢铁有限公司 550 MPa-grade weather-resistant steel plate with excellent weldability and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH0127128B2 (en)
CN113403529A (en) 1470 MPa-level alloyed galvanized steel plate for cold stamping and preparation method thereof
JPS6155572B2 (en)
JPH08176659A (en) Production of high tensile strength steel with low yield ratio
JPS605647B2 (en) Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPH04285119A (en) Production of thick-walled high tensile strength steel plate excellent in toughness at low temperature
JP3873540B2 (en) Manufacturing method of high productivity and high strength rolled H-section steel
JPS6141968B2 (en)
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP4461589B2 (en) Manufacturing method of high yield strength steel with low yield ratio 780N / mm2 excellent in weld crack sensitivity
JPH0277521A (en) Production of ultra-high-tension steel sheet for welding having excellent homogeneity in thickness direction
JP3229107B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation
JP2898455B2 (en) Manufacturing method of high strength steel with excellent weldability
JP2652538B2 (en) Method for producing high-strength steel with excellent weldability and low-temperature toughness
JPS63190117A (en) Production of high tension steel plate having high toughness and less than 90% low yield ratio by direct quenching method
KR100311791B1 (en) METHOD FOR MANUFACTURING QUENCHED AND TEMPERED STEEL WITH SUPERIOR TENSILE STRENGTH OF AROUND 600MPa AND IMPROVED TOUGHNESS IN WELDED PART
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
JPS62158817A (en) Manufacture of thick steel plate having high strength and high toughness
JPH06145787A (en) Production of high tensile strength steel excellent in weldability
JPH0192317A (en) Manufacture of high-strength sheet metal excellent in stretch-flange workability
JP2626421B2 (en) Manufacturing method of high strength steel with excellent weldability