JPH03207814A - Manufacture of low yield ratio high tensile strength steel plate - Google Patents

Manufacture of low yield ratio high tensile strength steel plate

Info

Publication number
JPH03207814A
JPH03207814A JP318990A JP318990A JPH03207814A JP H03207814 A JPH03207814 A JP H03207814A JP 318990 A JP318990 A JP 318990A JP 318990 A JP318990 A JP 318990A JP H03207814 A JPH03207814 A JP H03207814A
Authority
JP
Japan
Prior art keywords
temperature
less
steel plate
yield ratio
low yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP318990A
Other languages
Japanese (ja)
Other versions
JPH0717947B2 (en
Inventor
Kiyoshi Nishioka
潔 西岡
Yoshiyuki Watabe
義之 渡部
Hiroshi Tamehiro
為広 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003189A priority Critical patent/JPH0717947B2/en
Publication of JPH03207814A publication Critical patent/JPH03207814A/en
Publication of JPH0717947B2 publication Critical patent/JPH0717947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the low yield ratio high tensile strength steel plate by subjecting a slab having a specified compsn. constituted of C, Si, Mn, Cr, Mo, Nb, Ti, B, Al, N and Fe to specified hot rolling, cooling, quenching and tempering. CONSTITUTION:A slab contg., by weight, 0.08 to 0.18% C, <=0.6% Si, 1.5 to 1.6% Mn, 0.4 to 1.5% Cr, 0.2 to 0.5% Mo, 0.005 to 0.05% Nb, 0.005 to 0.03% Ti, 0.0005 to 0.003% B, <=0.10% Al and <=0.006% N, furthermore contg., at need, one or more kinds among <=1.0% Ni, <=1.0% Cu, <=0.1% V and 0.001 to 0.005% Ca and the balance Fe with inevitable impurities is heated to 1100 to 1250 deg.C and is thereafter rolled. After finishing the rolling at 800 to 950 deg.C, the steel plate is cooled by air-cooling to <=300 deg.C. After that, the steel plate is heated to the Ac1 to the Ac3, is thereafter rapidly cooled, is tempered at 400 to 580 deg.C and is thereafter air-cooled. In this way, the low yield ratio high tensile strength steel plate having about >=70kg f/mm<2> tensile strength can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は70kgf/一以上の引張強さを有する低降伏
比高張力鋼板の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a low yield ratio high tensile strength steel plate having a tensile strength of 70 kgf/1 or more.

(従来の技術) 近年、建築用構造物に使用される鋼材(鋼板、鋼管ある
いは形綱ほか)をはじめとする構造用鋼材において、耐
震性に優れた低降伏比高張力鋼板が要求されている。
(Prior art) In recent years, there has been a demand for low-yield-ratio, high-strength steel plates with excellent earthquake resistance for structural steel materials, including steel materials (steel plates, steel pipes, steel shapes, etc.) used in architectural structures. .

このような要求に対応するための低降伏比高張力鋼の製
造法として、例えば特開昭55−41927号公報ある
いは特開昭55 − 97425号公報記載の方法等が
提案されている。前者の方法は制御圧延・制御冷却法の
組合せを利用した方法であり、後者の方法はいわゆる調
質処理(QT)型によるものであるが、いずれの場合も
60kgf/一級鋼としては良好な低降伏比を有するが
、70kgf/一以上の高張力鋼、とりわけ80kgf
/一級鋼としては十分な低降伏比(降伏比80%以下)
が得られないという問題点があった。
As a method for manufacturing a low yield ratio high tensile strength steel to meet such demands, the method described in, for example, Japanese Patent Laid-Open No. 55-41927 or No. 55-97425 has been proposed. The former method utilizes a combination of controlled rolling and controlled cooling methods, and the latter method uses a so-called tempering treatment (QT) method, but in both cases, 60kgf/1-grade steel has a good low yield. High tensile strength steel with a yield ratio of 70 kgf/1 or more, especially 80 kgf
/Sufficiently low yield ratio for first class steel (yield ratio 80% or less)
There was a problem in that it was not possible to obtain

(発明が解決しようとする課題) 本発明の目的は、このような従来法の問題点を解決し、
最適な或分並びに製造条件を明らかにすることにより、
優れた低降伏比を有する高張力鋼板(70kgf/一以
上)の製造方法を提供するにある。
(Problems to be Solved by the Invention) The purpose of the present invention is to solve the problems of the conventional method,
By clarifying the optimal portion and manufacturing conditions,
An object of the present invention is to provide a method for producing a high tensile strength steel plate (70 kgf/1 or more) having an excellent low yield ratio.

(課題を解決するための手段) 本発明の要旨とするところは下記の通りである。(Means for solving problems) The gist of the present invention is as follows.

(1)重量%で、 c : o. o s〜0. 1 8%、Si:0.6
%以下、 Mn:0.5〜1.6%、 Cr : 0. 4 〜1. 5%、 Mo : 0. 2 〜0. 5%、 Nb:0.005〜0.05%、 Ti:0.005〜0. 0 3%、 B:0.0005 〜0.003%、 7V : 0. 1 0%以下、 N 7 0. 0 0 6%以下、 残部がFeおよび不可避的不純物からなる鋼片を110
0 〜!250℃(7)温度に加熱後、800 〜95
0 ℃(7)温度で圧延を終了した後、鋼板を空冷にて
300 ℃以下の温度まで冷却し、その後A c ,〜
Ac3の温度に加熱後急冷し、400〜580℃の温度
で焼戻し後空冷することを特徴とする低降伏比高張カ綱
板の製造方法。
(1) In weight%, c: o. o s~0. 1 8%, Si: 0.6
% or less, Mn: 0.5 to 1.6%, Cr: 0. 4 ~1. 5%, Mo: 0. 2 ~ 0. 5%, Nb: 0.005-0.05%, Ti: 0.005-0. 0 3%, B: 0.0005 to 0.003%, 7V: 0. 10% or less, N70. 0 0 6% or less, the balance being Fe and unavoidable impurities.
0 ~! After heating to 250℃ (7) temperature, 800 to 95
After finishing the rolling at a temperature of 0 °C (7), the steel plate was cooled by air cooling to a temperature of 300 °C or less, and then A c , ~
A method for producing a low yield ratio high tensile strength steel sheet, which comprises heating to a temperature of Ac3, rapidly cooling, tempering at a temperature of 400 to 580°C, and then air cooling.

(2)重量%で、 c : o. o s〜0.18%、 Si:0.5%以下、 Mn : 0. 5 〜1. 6%、 Cr : 0. 4 〜1. 5%、 Mo=0.2〜0。5%、 Nb:0.005〜0.05%、 Ti:0.005〜0.03%、 B  : 0. 0 0 0 5〜O. O O 3%
、A7 : 0. 1 0%以下、 N : 0. 0 0 6%以下とし、これに Ni:1.O%以下、 Cu : 1. O%以下、 V : 0. 1%以下、 Ca: 0.0 0 1〜0.0 0 5%のいずれか
1種、または2種以上をさらに含有し、残部がFeおよ
び不可避的不純物からなる鋼片を1100〜l250℃
の温度に加熱後、800〜950℃の温度で圧延を終了
した後、鋼板を空冷にて300℃以下の温度まで冷却し
、その後Ac+〜Acsの温度に加熱後急冷し、400
〜580℃の温度で焼戻し後空冷することを特徴とする
低降伏比高張力鋼板の製造方法。
(2) In weight %, c: o. os~0.18%, Si: 0.5% or less, Mn: 0. 5 ~1. 6%, Cr: 0. 4 ~1. 5%, Mo=0.2-0.5%, Nb: 0.005-0.05%, Ti: 0.005-0.03%, B: 0. 0 0 0 5~O. O O 3%
, A7: 0. 10% or less, N: 0. 0 0 6% or less, and Ni: 1. 0% or less, Cu: 1. 0% or less, V: 0. 1% or less, Ca: 0.001 to 0.005%, or two or more of them, and the balance is Fe and unavoidable impurities.
After heating to a temperature of 800 to 950 °C, the steel plate is cooled to a temperature of 300 °C or less by air cooling, then heated to a temperature of Ac+ to Acs, and then rapidly cooled to a temperature of 400 °C.
A method for producing a low yield ratio high tensile strength steel sheet, which comprises tempering at a temperature of ~580°C and then air cooling.

(作 用) 鋼材の降伏比は一般に強度が上昇するほど高くなること
が知られている。すなわち、強度が高くなればなるほど
、低降伏比化は困難となることから、優れた低降伏比を
有する高張力鋼板を得るためには、適正な戒分・製造条
件を選択することが必須となる。
(Function) It is known that the yield ratio of steel generally increases as its strength increases. In other words, the higher the strength, the more difficult it is to achieve a low yield ratio. Therefore, in order to obtain a high-strength steel plate with an excellent low yield ratio, it is essential to select appropriate precepts and manufacturing conditions. Become.

本発明においては、70kgf/一以上の高張力鋼板と
してその母材強度・靭性を確保し、なおかつ低降伏比を
達成するための必要条件としての戒分条件、製造条件を
明らかにした。
In the present invention, we have clarified the precepts and manufacturing conditions as necessary conditions for ensuring the strength and toughness of the base material as a high tensile strength steel plate of 70 kgf/1 or more and achieving a low yield ratio.

本発明者らの研究によれば、優れた低降伏比を有する高
張力鋼板を実現するためには、そのミクロ組織を、均質
なアッパーベイナイト(ベイニティックフェライト)相
をヘースとし、これに適切なサイズで微細分散した焼戻
しマルテンサイト相を含む混合組織とすることが必要で
ある。一般にマルテンサイト相を含む混合組織を得るた
めには、A C H点〜A c 3点の温度から鋼材を
焼入れ、焼戻すことが有効であることが知られているが
、適切なサイズ、分散状態を有するマルテンサイト相を
得るためには、焼入前組織を適正に制御することが不可
欠である。そのためには、綱の化学戒分と圧延条件の適
正化が必須であるとともに、焼戻温度にも注意を払う必
要がある。
According to the research of the present inventors, in order to realize a high-strength steel sheet with an excellent low yield ratio, the microstructure should be made with a homogeneous upper bainite (bainitic ferrite) phase, It is necessary to have a mixed structure containing a finely dispersed tempered martensite phase of a certain size. In general, it is known that it is effective to quench and temper steel from a temperature between A C H point and A C point in order to obtain a mixed structure containing a martensitic phase. In order to obtain a martensitic phase having a state, it is essential to appropriately control the structure before quenching. To this end, it is essential to optimize the chemical properties of the steel and the rolling conditions, and it is also necessary to pay attention to the tempering temperature.

以下、本発明における化学戒分の限定理由について説明
する。
The reasons for limiting the chemical precepts in the present invention will be explained below.

CはAc,〜Ac3間の温度からの焼入処理において焼
入性を確保し、マルテンサイト相を得るために0,08
%以上の添加が必要である.しかしながら、Cの過度の
添加は溶接性の劣化をもたらすことから、その上限を0
.18%とした。
C is 0.08 to ensure hardenability in the hardening treatment at temperatures between Ac and Ac3 and to obtain martensitic phase.
It is necessary to add more than %. However, excessive addition of C causes deterioration of weldability, so the upper limit has been set to 0.
.. It was set at 18%.

Stは脱酸上鋼に含まれる元素であるが、その過剰添加
は溶接性、HAZ靭性を阻害する。従って、その上限を
0. 6%とすることが必要である。
St is an element contained in deoxidized steel, but its excessive addition inhibits weldability and HAZ toughness. Therefore, the upper limit is set to 0. It is necessary to set it to 6%.

旧は、強度、靭性並びに焼入性を確保する上で有用な元
素であり、0.5%以上の添加が必要である。しかしM
n量が多すぎると溶接性、HAZ靭性の劣化あるいは焼
戻し脆化を招くためその上限を1.6%とした。
Ni is a useful element for ensuring strength, toughness, and hardenability, and needs to be added in an amount of 0.5% or more. But M
If the amount of n is too large, it will cause deterioration of weldability, HAZ toughness, or temper embrittlement, so the upper limit was set at 1.6%.

Crは母材の強度を高める元素であり、0.4%以上の
添加が必要である。しかし、Cr量が1.5%を超える
と溶接性やHAZ靭性を劣化させるため、その上限を1
. 5%とした。
Cr is an element that increases the strength of the base material, and needs to be added in an amount of 0.4% or more. However, if the Cr content exceeds 1.5%, weldability and HAZ toughness deteriorate, so the upper limit was set to 1.5%.
.. It was set at 5%.

Moは母材の強度、靭性を共に向上させる元素であり、
0.2%以上添加しないとその効果がない。
Mo is an element that improves both the strength and toughness of the base material,
There is no effect unless 0.2% or more is added.

しかし、0.5%を超えると溶接部靭性および溶接性の
劣化を招き好ましくないため、上限を0. 5%に限定
した。
However, if it exceeds 0.5%, the weld toughness and weldability will deteriorate, which is undesirable, so the upper limit should be set at 0.5%. It was limited to 5%.

Nbは母材の強度・靭性の向上に有効な元素であり、特
に本発明においては未再結晶域圧延を活用し、圧延後空
冷ままで適正なサイズのマルテンサイト相を得るととも
に、母材の靭性を確保するために必須の元素である。そ
の量は0.005%以上が必要であるが、Nbの過量添
加はHAZ靭性を劣化させるため、その上限を0.05
%とする必要がある。
Nb is an effective element for improving the strength and toughness of the base metal, and in particular, in the present invention, rolling in the non-recrystallized region is used to obtain a martensitic phase of an appropriate size while cooling in air after rolling, and to improve the strength and toughness of the base metal. It is an essential element to ensure toughness. The amount needs to be 0.005% or more, but since excessive addition of Nb deteriorates the HAZ toughness, the upper limit should be set at 0.05%.
It needs to be %.

Tiは加熱時のオーステナイト粒の粗大化を抑制し、母
材の靭性を確保する上で有用であり、その微量添加はH
AZ靭性の向上にも有効である。しかし、o.oos%
未溝の添加では効果がなく、また0.03%超の添加で
はTiCの析出硬化によりHAZ靭性の劣化を招くため
、その添加量を0. 005〜0. 0 3%に限定し
た。
Ti is useful in suppressing the coarsening of austenite grains during heating and ensuring the toughness of the base material, and its addition in small amounts is
It is also effective in improving AZ toughness. However, o. oos%
Addition without grooves has no effect, and addition of more than 0.03% leads to deterioration of HAZ toughness due to precipitation hardening of TiC, so the addition amount is reduced to 0.03%. 005~0. It was limited to 0.3%.

Bは焼入性を向上させ、母材の強度・靭性を確保する上
で重要な元素である。特に本発明においては、圧延後空
冷ままで適切なサイズのマルテンサイト相を含む均質な
アッパーベイナイト(ベイニティフクフエライト)相を
得て強度を確保しておく必要がありBの添加は必須であ
る。Bは0.0005%未満の添加では効果がなく、ま
た0.003%を超える添加は焼入性を著しく劣化させ
るため、その添加量を0.0005〜0.00 3%に
限定した。
B is an important element for improving hardenability and ensuring the strength and toughness of the base metal. In particular, in the present invention, it is necessary to obtain a homogeneous upper bainite (bainity fukuferrite) phase containing an appropriately sized martensite phase while air-cooling after rolling to ensure strength, and the addition of B is essential. . Addition of less than 0.0005% of B has no effect, and addition of more than 0.003% significantly deteriorates hardenability, so the amount added is limited to 0.0005 to 0.003%.

Mは一般に脱酸上鋼に含まれる元素であるが、Stおよ
びMnあるいはTiによっても脱酸は行なわれるので、
本発明ではMについては下限を限定しない。しかし、M
量が多くなると鋼の清浄度が悪くなり、HAZ靭性が劣
化するので上限を0.10%とした。
M is an element that is generally included in deoxidized steel, but deoxidation is also performed by St, Mn, or Ti.
In the present invention, there is no lower limit for M. However, M
If the amount increases, the cleanliness of the steel will deteriorate and the HAZ toughness will deteriorate, so the upper limit was set at 0.10%.

Nは一般に不可避的不純物として鋼中に含まれるが、N
の過量添加はHAZ靭性の劣化を招くため、その上限を
0.006%とした。
N is generally included in steel as an unavoidable impurity, but N
Since excessive addition of C leads to deterioration of HAZ toughness, the upper limit was set at 0.006%.

なお、P,  Sは不可避的不純物として鋼中に含まれ
る。本発明では、その量を待に限定しないが、これらは
母材ならびに溶接部の靭性を劣化させるため、その量は
極力少ない方が好ましく、それぞれ0.03%以下、0
.Ol%以下とすることが望ましい。
Note that P and S are included in steel as unavoidable impurities. In the present invention, the amount is not limited to 3%, but since these deteriorate the toughness of the base metal and welded part, it is preferable that the amount is as small as possible, and 0.03% or less and 0.03% or less, respectively.
.. It is desirable that the content be 01% or less.

本発明鋼板においては、さらに必要によりNi:1.0
%以下、Cu:1.O%以下、V : 0. 1%以下
、Ca : 0.001 〜0.005%のうちいずれ
か1種、または2種以上を含有させる。
In the steel sheet of the present invention, if necessary, Ni: 1.0
% or less, Cu: 1. 0% or less, V: 0. 1% or less, Ca: 0.001 to 0.005%, and one or more of them is contained.

これらの元素を含有させる主たる目的は本発明鋼板の特
徴を損なうことなく、強度、靭性の向上および製造板厚
の拡大を可能にするところにあり、その添加量は溶接性
およびHAZ靭性等の面から自ずと制限されるべき性質
のものである。
The main purpose of containing these elements is to improve the strength and toughness of the steel sheet of the present invention and to increase the thickness of the manufactured sheet without impairing the characteristics of the steel sheet, and the amount of addition is determined based on aspects such as weldability and HAZ toughness. Therefore, it is a property that should naturally be restricted.

NiはHAZの硬化性および靭性に悪影響を与えること
なく母材の強度、靭性を向上させる特性をもつが、1.
0%を超えるとHAZの硬化性および靭性上好ましくな
いため、上限を1.0%とした。
Ni has the property of improving the strength and toughness of the base material without adversely affecting the hardenability and toughness of HAZ.
If it exceeds 0%, it is unfavorable in terms of hardenability and toughness of the HAZ, so the upper limit was set at 1.0%.

CuはNiとほぼ同様の効果を持つとともに、耐食性、
耐水素誘起割れ特性にも効果がある。しかし、1.0%
を超えると圧延中にCu−クラックが発生し製造が困難
になる。このため、上限を1.0%とした。
Cu has almost the same effect as Ni, and also has corrosion resistance,
It is also effective against hydrogen-induced cracking resistance. However, 1.0%
If it exceeds this amount, Cu-cracks will occur during rolling, making manufacturing difficult. Therefore, the upper limit was set at 1.0%.

■は微細な炭窒化物の形或による強度向上効果を奏する
が、0.1%を超える添加は靭性の劣化を引き起こすた
めその上限を0.1%とした。
(2) has the effect of improving strength due to the form of fine carbonitrides, but addition of more than 0.1% causes deterioration of toughness, so the upper limit was set at 0.1%.

Caは硫化物の形態を制御し、シャルビー吸収エネルギ
ーを増加させ低,1!靭性を向上させるほか、耐水素誘
起割れ性の改善にも効果を発揮する。しかし、Ca量は
0.001%未満では実用上効果がなく、また、0.0
05%を超えるとCab. CaOが多量に生戒して大
型介在物となり、綱の靭性のみならず清浄度も害し、さ
らに溶接性にも悪影響を与えるので、Ca添加量の範囲
を0.001〜0.005%とした。
Ca controls the morphology of sulfides and increases the Charby absorption energy, resulting in low, 1! In addition to improving toughness, it is also effective in improving hydrogen-induced cracking resistance. However, if the amount of Ca is less than 0.001%, there is no practical effect;
If it exceeds 0.05%, Cab. Since a large amount of CaO is present and becomes large inclusions, which impairs not only the toughness but also the cleanliness of the steel, and also has a negative effect on the weldability, the range of the amount of Ca added is set at 0.001 to 0.005%. .

次に、以上の様な戊分系を有する鋼板の製造法について
述べる。
Next, a method for producing a steel plate having the above-mentioned fractional system will be described.

まず、鋼片の加熱温度は1100〜1250℃とする必
要がある。加熱温度が1100℃未満になると、Nbの
固溶が不十分となり、強度が確保できない。また、加熱
温度の上限については、オーステナイトの粗大化を防止
し母材靭性を確保するために1250℃以下とすること
が必要である。なお、綱片鋳造後Ar=点より低い温度
に冷却後再加熱することなく、すなわち鋼片鋳造後直ち
にあるいは鋼片鋳造後^r3点以上の温度での保黙過程
を経た後直ちに圧延を行なってもよい。
First, the heating temperature of the steel piece needs to be 1100 to 1250°C. If the heating temperature is less than 1100° C., solid solution of Nb becomes insufficient and strength cannot be ensured. Further, the upper limit of the heating temperature needs to be 1250° C. or lower in order to prevent coarsening of austenite and ensure base material toughness. In addition, after casting the steel strip, rolling is performed without reheating after cooling to a temperature lower than the Ar= point, that is, immediately after casting the steel strip, or immediately after passing through a resting process at a temperature of 3 points or higher after casting the steel strip. You can.

次に、圧延終了温度は800〜950℃とする必要があ
る。圧延を800℃未満で終了した場合オーステナイト
が過度に細粒化あるいは延伸化して焼入性が低下し、強
度の確保が出来ない。また、950℃を超える温度で圧
延を終了した場合、オーステナイトの細粒化が不十分で
母材靭性の劣化を招く。さらに、圧延後の冷却に関して
は空冷とすることが必須である。圧延後水冷(急冷)を
施すとマルテンサイトあるいはローワーベイナイト組織
が得られるが、このような均一組織においては、炭化物
が極めて微細となる。本発明者らの研究によれば、この
ような微細な炭化物を有する組織を前組織としてA c
 .〜A c3温度からの焼入れを行なうと、最終的に
得られる組織におけるマルテンサイトのサイズが十分に
大きなものとならず、低降伏比が得られなくなる。高強
度でかつ低降伏比を有する鋼材を製造するためには、こ
の圧延ままの、すなわちA C 1〜A c 3温度か
らの焼入処理前の組織を、適切なサイズのマルテンサイ
ト相を含むアッパーベイナイト(ペイニティックフェラ
イト)組織とすることが必要であり、そのためには圧延
後空冷により3 0 0 ”C以下まで冷却することが
必須となる。
Next, the rolling end temperature needs to be 800 to 950°C. If the rolling is completed at a temperature lower than 800°C, the austenite becomes excessively fine-grained or elongated, resulting in decreased hardenability and strength cannot be ensured. Further, when rolling is finished at a temperature exceeding 950° C., the austenite grains are insufficiently refined and the toughness of the base material deteriorates. Furthermore, air cooling is essential for cooling after rolling. When water cooling (quenching) is applied after rolling, a martensite or lower bainite structure is obtained, but in such a uniform structure, carbides become extremely fine. According to the research of the present inventors, A c
.. If quenching is performed at a temperature of ~Ac3, the size of martensite in the finally obtained structure will not be large enough, making it impossible to obtain a low yield ratio. In order to produce a steel material with high strength and a low yield ratio, this as-rolled structure, i.e., before quenching from A C 1 to A C 3 temperature, must contain a martensitic phase of an appropriate size. It is necessary to form an upper bainite (peinitic ferrite) structure, and for this purpose, it is essential to cool the steel to 300''C or less by air cooling after rolling.

次に、圧延後の熱処理方法を規定する理由を述べる。前
述の適正な前組織を有する鋼板を圧延によって得たのち
、良好な低降伏比を得るためにA c 1〜Ac3温度
からの焼入れとそれに引き続く焼戻しを行なう。A c
 1〜A c 3温度からの焼入れの目的は、圧延によ
って得られたマルテンサイト相をγ相に逆変態させてC
のより一層の濃縮を計り、ベース組織であるアッパーベ
イナイト(ベイニティックフェライト)とのより一層の
強度差を付与することにより、低降伏比を達戒するため
である。A c H未満の温度での加熱では逆変態が生
しず、またAc3超の温度での加熱では組織全体がγ化
し、圧延で付与した前組織の利点を生かせないことから
、その加熱温度をA c 1〜A C 3とした。なお
、本処理においては、ペイナイトーマルテンサイトニ相
化を計ることから急冷(焼入)が必須となる。このよう
にして得られた組織におけるマルテンサイトはきわめて
脆く低温靭性に関して問題があり、このため、焼戻し処
理を行なう。400℃未満では焼戻しが不十分であり、
580℃超では強度の低下を生しる。このため、焼戻し
温度は400〜580℃とした。
Next, the reason for specifying the heat treatment method after rolling will be described. After a steel plate having the above-mentioned appropriate pre-structure is obtained by rolling, quenching from a temperature of A c 1 to A c 3 and subsequent tempering are performed in order to obtain a good low yield ratio. A c
The purpose of quenching from 1 to A c 3 temperature is to reversely transform the martensitic phase obtained by rolling into γ phase and
This is to achieve a low yield ratio by further concentrating the ferrite and providing a greater strength difference with the base structure, upper bainite (bainitic ferrite). Heating at a temperature lower than A c H does not cause reverse transformation, and heating at a temperature higher than Ac3 causes the entire structure to become gamma, making it impossible to take advantage of the previous structure imparted by rolling. It was set as A c 1 to A C 3. In addition, in this process, rapid cooling (quenching) is essential because it aims to create a two-phase payne-martensite structure. The martensite in the structure thus obtained is extremely brittle and has problems with low-temperature toughness, so it is tempered. Tempering is insufficient below 400°C;
If the temperature exceeds 580°C, the strength will decrease. Therefore, the tempering temperature was set at 400 to 580°C.

なお、本発明は種々の痢材に通用が可能であるが、主と
して引張強度70kgf/一以上、板厚80mm以下の
厚鋼板並びにこれらを板巻きして製造する鋼管用鋼板に
適用するのが好ましい。
Although the present invention can be applied to various diarrheal materials, it is preferable to apply it mainly to thick steel plates with a tensile strength of 70 kgf/1 or more and a plate thickness of 80 mm or less, and steel plates for steel pipes manufactured by winding these. .

(実施例) 次に本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

第1表に供試鋼の化学或分を、第1表(続き)に各鋼の
製造条件と機械的性質を示す。第1表、第1表(続き)
において、記号A−Eは本発明例、F−Gは比較例を示
す。本発明例A−Eは70kgf/一以上の高強度を有
するとともに、80%以下の極めて良好な低降伏比を有
する。これに対して、比較例Fは圧延後直ちに水冷を行
なっているため、Ac+〜A C 3温度からの焼入前
の組織がマルテンサイトないしはローワーペイナイトの
均一組織を有しており、A C 1〜A c s温度か
らの焼入れとそれに引き続く焼戻し処理で得られる最終
的な材質で80%以下の十分な低降伏比が得られない。
Table 1 shows the chemical properties of the test steels, and Table 1 (continued) shows the manufacturing conditions and mechanical properties of each steel. Table 1, Table 1 (continued)
, symbols A to E indicate examples of the present invention, and symbols F to G indicate comparative examples. Examples A to E of the present invention have a high strength of 70 kgf/1 or more and an extremely low yield ratio of 80% or less. On the other hand, in Comparative Example F, water cooling was performed immediately after rolling, so the structure before quenching from the temperature of Ac+ to AC3 had a uniform structure of martensite or lower paynite. A sufficiently low yield ratio of 80% or less cannot be obtained with the final material obtained by quenching from a temperature of 1 to A c s and subsequent tempering.

また、比較例GはNb,  Bを含まないため圧延まま
の組織にフエライトを含んでおり、強度が70kgf/
一未満と不良となっている。
In addition, Comparative Example G does not contain Nb or B, so it contains ferrite in the as-rolled structure, and has a strength of 70 kgf/
Less than 1 is considered poor.

(発明の効果) 以上、本発明を詳細に説明したが、本発明は優れた低降
伏比と70kgf/一以上の高強度を併せ持つ画期的な
高張力鋼板を製造する手段を提供するものである。
(Effects of the Invention) The present invention has been described in detail above, and the present invention provides a means for manufacturing an innovative high-strength steel plate that has both an excellent low yield ratio and a high strength of 70 kgf/1 or more. be.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、 C:0.08〜0.18%、 Si:0.6%以下、 Mn:0.5〜1.6%、 Cr:0.4〜1.5%、 Mo:0.2〜0.5%、 Nb:0.005〜0.05%、 Ti:0.005〜0.03%、 B:0.0005〜0.003%、 Al:0.10%以下、 N:0.006%以下、 残部がFeおよび不可避的不純物からなる鋼片を110
0〜1250℃の温度に加熱後、800〜950℃の温
度で圧延を終了した後、鋼板を空冷にて300℃以下の
温度まで冷却し、その後Ac_1〜Ac_3の温度に加
熱後急冷し、400〜580℃の温度で焼戻し後空冷す
ることを特徴とする低降伏比高張力鋼板の製造方法。
(1) In weight%, C: 0.08 to 0.18%, Si: 0.6% or less, Mn: 0.5 to 1.6%, Cr: 0.4 to 1.5%, Mo: 0.2-0.5%, Nb: 0.005-0.05%, Ti: 0.005-0.03%, B: 0.0005-0.003%, Al: 0.10% or less, N: 0.006% or less, the balance being Fe and unavoidable impurities.
After heating to a temperature of 0 to 1250°C, and finishing rolling at a temperature of 800 to 950°C, the steel plate is cooled by air cooling to a temperature of 300°C or less, then heated to a temperature of Ac_1 to Ac_3, and then rapidly cooled to 400°C. A method for producing a low yield ratio high tensile strength steel sheet, which comprises tempering at a temperature of ~580°C and then air cooling.
(2)重量%で、 C:0.08〜0.18%、 Si:0.6%以下、 Mn:0.5〜1.6%、 Cr:0.4〜1.5%、 Mo:0.2〜0.5%、 Nb:0.005〜0.05%、 Ti:0.005〜0.03%、 B:0.0005〜0.003%、 Al:0.10%以下、 N:0.006%以下とし、 これに Ni:1.0%以下、 Cu:1.0%以下、 V:0.1%以下、 Ca:0.001〜0.005% のいずれか1種、または2種以上をさらに含有し、残部
がFeおよび不可避的不純物からなる鋼片を1100〜
1250℃の温度に加熱後、800〜950℃の温度で
圧延を終了した後、鋼板を空冷にて300℃以下の温度
まで冷却し、その後Ac_1〜Ac_3の温度に加熱後
急冷し、400〜580℃の温度で焼戻し後空冷するこ
とを特徴とする低降伏比高張力鋼板の製造方法。
(2) In weight%, C: 0.08 to 0.18%, Si: 0.6% or less, Mn: 0.5 to 1.6%, Cr: 0.4 to 1.5%, Mo: 0.2-0.5%, Nb: 0.005-0.05%, Ti: 0.005-0.03%, B: 0.0005-0.003%, Al: 0.10% or less, N: 0.006% or less, plus any one of Ni: 1.0% or less, Cu: 1.0% or less, V: 0.1% or less, Ca: 0.001 to 0.005%. , or a steel piece further containing two or more kinds, with the balance consisting of Fe and unavoidable impurities.
After heating to a temperature of 1250°C and finishing rolling at a temperature of 800 to 950°C, the steel plate is cooled by air cooling to a temperature of 300°C or less, then heated to a temperature of Ac_1 to Ac_3, and then rapidly cooled to a temperature of 400 to 580°C. A method for producing a low yield ratio high tensile strength steel sheet, which comprises tempering at a temperature of 10°C and then air cooling.
JP2003189A 1990-01-10 1990-01-10 Low yield ratio high strength steel sheet manufacturing method Expired - Fee Related JPH0717947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189A JPH0717947B2 (en) 1990-01-10 1990-01-10 Low yield ratio high strength steel sheet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189A JPH0717947B2 (en) 1990-01-10 1990-01-10 Low yield ratio high strength steel sheet manufacturing method

Publications (2)

Publication Number Publication Date
JPH03207814A true JPH03207814A (en) 1991-09-11
JPH0717947B2 JPH0717947B2 (en) 1995-03-01

Family

ID=11550460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189A Expired - Fee Related JPH0717947B2 (en) 1990-01-10 1990-01-10 Low yield ratio high strength steel sheet manufacturing method

Country Status (1)

Country Link
JP (1) JPH0717947B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1288322A1 (en) * 2001-08-29 2003-03-05 Sidmar N.V. An ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained
CN102400053A (en) * 2010-09-07 2012-04-04 鞍钢股份有限公司 Steel plate for building structure with yield strength of 460 MPa, and manufacturing method thereof
CN102719753A (en) * 2012-05-28 2012-10-10 江苏省沙钢钢铁研究院有限公司 Low-yield-ratio high-strength steel plate and manufacturing method thereof
CN112410686A (en) * 2020-12-04 2021-02-26 安阳钢铁股份有限公司 Low-yield-ratio high-strength steel plate and production method thereof
CN114836691A (en) * 2022-04-28 2022-08-02 鞍钢股份有限公司 Seamless steel pipe for drilling and production and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1288322A1 (en) * 2001-08-29 2003-03-05 Sidmar N.V. An ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained
WO2003018858A1 (en) * 2001-08-29 2003-03-06 Sidmar N.V. An ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained
CN100339500C (en) * 2001-08-29 2007-09-26 西德玛有限公司 Ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained
US8715427B2 (en) 2001-08-29 2014-05-06 Arcelormittal France Sa Ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained
CN102400053A (en) * 2010-09-07 2012-04-04 鞍钢股份有限公司 Steel plate for building structure with yield strength of 460 MPa, and manufacturing method thereof
CN102719753A (en) * 2012-05-28 2012-10-10 江苏省沙钢钢铁研究院有限公司 Low-yield-ratio high-strength steel plate and manufacturing method thereof
CN112410686A (en) * 2020-12-04 2021-02-26 安阳钢铁股份有限公司 Low-yield-ratio high-strength steel plate and production method thereof
CN112410686B (en) * 2020-12-04 2022-08-05 安阳钢铁股份有限公司 Low-yield-ratio high-strength steel plate and production method thereof
CN114836691A (en) * 2022-04-28 2022-08-02 鞍钢股份有限公司 Seamless steel pipe for drilling and production and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0717947B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
JPH10509768A (en) High strength secondary hardened steel with excellent toughness and weldability
JPS6155572B2 (en)
JPS5983722A (en) Preparation of low carbon equivalent unnormalized high tensile steel plate
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JPS605647B2 (en) Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPS6141968B2 (en)
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
CN114480949B (en) 690 MPa-grade low-yield-ratio weather-resistant welding structural steel, steel plate and manufacturing method thereof
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
KR102400036B1 (en) Steel sheet having excellent low temperature toughness and low yield ratio and method of manufacturing the same
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JPS602364B2 (en) Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness
JPH0277521A (en) Production of ultra-high-tension steel sheet for welding having excellent homogeneity in thickness direction
JP2898455B2 (en) Manufacturing method of high strength steel with excellent weldability
KR100311791B1 (en) METHOD FOR MANUFACTURING QUENCHED AND TEMPERED STEEL WITH SUPERIOR TENSILE STRENGTH OF AROUND 600MPa AND IMPROVED TOUGHNESS IN WELDED PART
JPS6289815A (en) Manufacture of high yield point steel for low temperature
KR910003883B1 (en) Making process for high tension steel
JPS623214B2 (en)
JPS63145711A (en) Production of high tension steel plate having excellent low temperature toughness
JPH07233414A (en) Production of low yield ratio high tensile strength steel plate excellent in uniform elongation
JPH0215122A (en) Production of high strength and high toughness thick steel plate having excellent weldability
KR20240031547A (en) Thick steel plate and method of manufacturing the same
JP2708540B2 (en) Method for producing high-strength steel sheet mainly composed of ferrite structure
JPS62149812A (en) Production of low temperature steel plate of 40kgf/mm2 yield point glass

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees