JPS5983722A - Preparation of low carbon equivalent unnormalized high tensile steel plate - Google Patents

Preparation of low carbon equivalent unnormalized high tensile steel plate

Info

Publication number
JPS5983722A
JPS5983722A JP19331782A JP19331782A JPS5983722A JP S5983722 A JPS5983722 A JP S5983722A JP 19331782 A JP19331782 A JP 19331782A JP 19331782 A JP19331782 A JP 19331782A JP S5983722 A JPS5983722 A JP S5983722A
Authority
JP
Japan
Prior art keywords
less
rolling
ferrite
toughness
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19331782A
Other languages
Japanese (ja)
Inventor
Chiaki Shiga
千晃 志賀
Taneo Hatomura
波戸村 太根生
Kenichi Amano
天野 「けん」一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19331782A priority Critical patent/JPS5983722A/en
Publication of JPS5983722A publication Critical patent/JPS5983722A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Abstract

PURPOSE:To prepare a low carbon equivalent unnormalized high tensile steel plate excellent in low temp. toughness and weldability, by applying rolling, heat treatment and accelerated cooling to slab having a specific composition having reduced contents of C and N and contg. B and Ti therein under a limited condition. CONSTITUTION:A steel slab containing 0.01-0.12% C, 0.05-0.50% Si, 1.00- 2.50% Mn, 0.005-0.10% Nb, 0.0003-0.0030% B. 0.0080% or less N, 0.005-0.040% Ti, 0.005-0.080% Al and 0.008% or less S, further containing one or more of Ni, Mo, Cu according to necessity, or further containing one or more of V, Ca, REM and comprising the remainder Fe and inevitable impurities is heated to a temp. for forming a solid solution containing 0.01% or more of Nb and the heated slab is rolled respectively in a temp. range above (an Ar3-point + 150 deg.C), from (the Ar3-point + 150 deg.C) to the Ar3-point, and from the Ar3-point to (the Ar3-point - 80 deg.C) under cumulative drafts of >=50%, >=50%, and >=10% for each temp. range. Directly after rolling, the rolled slab is forcibly cooled to <=500 deg.F at a cooling speed of 2-30 deg.C/sec to obtain an unnormalized high tensile steel plate.

Description

【発明の詳細な説明】 本発明は、低炭素当量非調質高張力鋼板の製造方法に関
するものであり、特に本発明は、脆性破壊伝播停止特性
などの低温靭性及び溶接性の優れた主として40〜gO
kg /w−級非調質低温用高張力鋼板の製造方法に関
するものである。すなわち本発明は主として寒冷地での
天然ガス輸送に用いる60〜go kg/、、y2級大
径ラインパイプ用鋼板、あるいは50〜70 kg/m
ri’級調質処理鋼板(以後QT錆鋼板称す)に代り得
る鋼板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a low carbon equivalent non-tempered high tensile strength steel plate, and in particular, the present invention relates to a method for producing a low carbon equivalent non-tempered high tensile strength steel plate. ~gO
The present invention relates to a method for manufacturing a kg/w class non-tempered high-strength steel plate for low temperature use. That is, the present invention is directed to steel plates for large-diameter line pipes of 60 to 70 kg/m, or 50 to 70 kg/m, mainly used for natural gas transportation in cold regions.
The present invention relates to a method for producing a steel plate that can be substituted for a RI' class tempered steel plate (hereinafter referred to as QT rust steel plate).

近年エネルギー需要が高まるにつれて天然ガスの大量輸
送が望まれ、ラインパイプの操業圧も従来の75気圧か
ら700気圧、  7.20気圧へと上昇の傾向にある
。これにともない使用される素材は、高張力化、厚肉化
が求められるようになっており、so〜40 kg/m
++2級であれば一5un厚以上の厚肉化、そして/g
朋厚であればqo −go kg/vr−級の高強度化
が必要とされている。捷だ同時に、これらLl)ライン
パイプには、現地での円周溶接の能率の点から溶接性の
向上が望まれ、低炭素当量化が要求され始めている。た
とえば強度的6 o kg/闘2級で0.30係以下、
また強度的70 kg/v=n2級で0.35係以下の
非常に低い炭素当量が要求され、なおかつ優れた低温靭
性を有するラインパイプ用鋼板が要望されている。この
ような要求を満たす従来鋼板として、1%以上のN1を
添加したQ、T鋼板が知られているが、成分コスト、生
産性の面から非常に経済的に不利であるという欠点があ
る。また従来の制御圧延後空冷して得られる微細化した
フェライト+パーライト組織よりなる鋼板では、いかに
析出強化を強めても上記の要求を十分満足させることは
できない。
As the demand for energy has increased in recent years, there has been a desire to transport large amounts of natural gas, and the operating pressure of line pipes has been increasing from the conventional 75 atm to 700 atm to 7.20 atm. Along with this, the materials used are required to have higher tensile strength and thicker walls, and so
++ If it is grade 2, it must be thicker than 15un, and /g
If it is thick, high strength of qo-go kg/vr- class is required. At the same time, these Ll) line pipes are desired to have improved weldability from the standpoint of efficiency of circumferential welding on site, and are beginning to be required to have low carbon equivalents. For example, the strength is 6 o kg/2nd class of 0.30 or less,
In addition, there is a demand for a steel plate for line pipes that has a strength of 70 kg/v=n2 class, has a very low carbon equivalent of 0.35 coefficient or less, and has excellent low-temperature toughness. Q and T steel sheets containing 1% or more of N1 are known as conventional steel sheets that meet these requirements, but they have the drawback of being very economically disadvantageous in terms of component costs and productivity. Further, a steel sheet made of a fine ferrite + pearlite structure obtained by air cooling after conventional controlled rolling cannot fully satisfy the above requirements no matter how strong the precipitation strengthening is.

本発明は、上記従来の製造方法においてみられる欠点を
除いた低炭素当量非調質高張力m板の製造方法を提供す
ることを目的とし、特許請求の範囲記載の方法を提供す
ることによって、前記目的を達成することができる。
An object of the present invention is to provide a method for manufacturing a low carbon equivalent non-tempered high tensile strength m-plate that eliminates the drawbacks seen in the conventional manufacturing method, and by providing the method described in the claims, The above objective can be achieved.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明者等は、低い炭素当量で高張力化、高靭性化させ
ることのできる製造法について研究を重ねてきた結果、
非常に細かいフェライト(大きくとも3μm)す加工す
ることによ・りて得られる6微細加エフエライト”と細
粒オーステナイトのフェライト変態に引続くパーライト
変態に代って剪断変態(ベイナイト変態とマルテンサイ
ト変態)を起こさせることによって得られる”低炭素の
微細ベイナイト及び島状マルテンサイト”とが強度の上
昇と靭性の向上を同時にもたらすことができることに想
到した。そして微細加工フェライトと低炭素の微細ベイ
ナイト及び島状マルテンサイトは本発明の製造方法によ
り同時に得られるととを新規に知見した。
As a result of repeated research by the present inventors on a manufacturing method that can achieve high tensile strength and high toughness with a low carbon equivalent,
The ferrite transformation of fine-grained austenite, which is obtained by processing extremely fine ferrite (3 μm at most), and the shear transformation (bainite transformation and martensitic transformation) instead of the pearlite transformation ), we came up with the idea that "low carbon fine bainite and island martensite" obtained by causing microfabricated ferrite and low carbon fine bainite and martensite can simultaneously increase strength and improve toughness. It has been newly discovered that island-shaped martensite can be simultaneously obtained by the production method of the present invention.

すなわち炭素当量を上げずに焼入れ性の高いB元素を添
加した含Nb鋼を用い高湿オーステナイト域において圧
延を施こすことにより、一部の未再結晶オーステナイト
粒からフェライト変態を先行させ、引続いてAr 点と
Ar3〜go℃の温度範囲内で圧延を施し”微細加工フ
ェライト“′を生成させると同時に残9の未再結晶オー
ステナイト粒からフェライト変態に引続きベイナイト変
態、次いでマルテンサイト変態を起こさせ、゛微細べ・
rナイトおよび島状マルテンサイト″を生成させること
とによってフェライトを主体として微細ベイナイト、島
状マルテンサイトおよび微細加工フェライトからなる圧
延組織が得られ、この結果低い炭素当量の成分鋼を用い
て高強度化と高靭性化を同時に達成することができる。
In other words, by rolling in a high-humidity austenite region using a Nb-containing steel to which the B element with high hardenability is added without increasing the carbon equivalent, some unrecrystallized austenite grains undergo ferrite transformation, and then Rolling is performed at an Ar point and within a temperature range of 3 to 0.degree. C. to produce "microprocessed ferrite" and at the same time cause the remaining 9 unrecrystallized austenite grains to undergo ferrite transformation, followed by bainitic transformation, and then martensitic transformation. , ゛Minute Be・
By generating r-night and island-like martensite, a rolled structure consisting of ferrite as a main component, fine bainite, island-like martensite, and micro-processed ferrite is obtained, and as a result, high strength can be obtained using component steel with a low carbon equivalent. and high toughness can be achieved at the same time.

ここでいうフェライトの大きさは平均粒径で/θμm以
下、微細ベイナイトの大きさは7μm以下。
The size of ferrite here is an average grain size of /θ μm or less, and the size of fine bainite is 7 μm or less.

微細加工フェライトの大きさは3μm以下、島状マルテ
ンサイトの大きさは3μm以下であり、これらの量比率
は、フェライトが約SO%以上、微細加エフエライトと
微細ベイナイトと島状マルテンサイトの和が約kOt4
以下が一般的であるが、鋼板の強度が1,0 、 ’1
0 、 gOkli’/y+J ト増加するニドもない
フェライト率を減少させ「方策コ相の量比率を増加させ
ることが必要である。
The size of microfabricated ferrite is 3 μm or less, and the size of island martensite is 3 μm or less, and the ratio of these amounts is such that ferrite is approximately SO% or more, and the sum of microfabricated ferrite, fine bainite, and island martensite is approximately SO% or more. Approximately kOt4
The following is common, but the strength of the steel plate is 1.0, '1
0, gOkli'/y+J It is necessary to increase the amount ratio of the co-phase in order to reduce the ferrite ratio without increasing the ferrite ratio.

なお、上記B元素を添加したNl)鋼は圧延終了後空冷
のままでも微細ベイナイト、島状マルテンサイト組織が
得られるが、上記組織の体積率は低く 、40 kgf
/my”以上の高強度は得がたい。このためV、N1.
MO等の高価な成分を強度補足の目的で添加する必要が
あるが、これらの元素は多く添加されると溶接性が劣化
する傾向にある。
Note that the Nl) steel to which the above B element is added can obtain a fine bainite and island martensite structure even if it is left air-cooled after rolling, but the volume fraction of the above structure is low, and the steel is 40 kgf.
/my'' or higher strength is difficult to obtain.For this reason, V, N1.
It is necessary to add expensive components such as MO for the purpose of supplementing strength, but if large amounts of these elements are added, weldability tends to deteriorate.

上記従来方法に対し、本発明によれば圧延終了後加熱冷
却を施すことによシ微細ベイナイト十島状マルテンサイ
トの体積率を増すことができ高強度を得ることができる
。すなわち本発明によれば、Nl)、!:B等の特殊な
成分を含有する鋼をもちいて制御圧延を施し、そのなか
でも限られた(α+γ)コ相域において圧延を施して1
微細加エフエライト”を生成させ、圧延後直ちに加速冷
却をなすことによって、微細ベイナイトと島状マルテン
サイトの体積率を増加させることができる。これら3つ
の第2相組織の増加は靭性を損わす^強度化を可能にす
るので、低炭素当量の高靭性高張力鋼を製造することが
できる。
In contrast to the above-mentioned conventional method, according to the present invention, by heating and cooling after completion of rolling, the volume fraction of fine bainite island martensite can be increased and high strength can be obtained. That is, according to the invention, Nl),! : Controlled rolling is performed using steel containing special components such as B, and rolling is performed in a limited (α + γ) phase region.
The volume fraction of fine bainite and island-like martensite can be increased by generating "finely modified efrite" and performing accelerated cooling immediately after rolling. An increase in these three second phase structures impairs toughness. Since it enables strengthening, high toughness and high tensile strength steel with low carbon equivalent can be produced.

本発明で用いる鋼は、0.07〜0.7.2%C含有と
するのが特徴の一つである。Bの微量添加は、ベイナイ
ト化および島状マルテンサイト化を促進し、C成分と他
の添加合金成分の軽減を目的とするものである。
One of the characteristics of the steel used in the present invention is that it contains 0.07 to 0.7.2% C. The purpose of adding a small amount of B is to promote bainite formation and island-like martensite formation, and to reduce the C component and other additive alloy components.

本発明の方法において、出発材として用いられるスラブ
の特徴は、O,N含有量の低減及びB。
In the method of the present invention, the slabs used as starting materials are characterized by reduced O, N contents and B.

T1の有効利用にある。C含有量の軽減は、フェライト
−ベイナイト組織のベイナイト粒の靭性を良好にして母
材の靭性の向上を第1目的とするもので、その低炭素当
量を下げ溶接部の靭性の向上及び溶接割れの防止を同時
に則ろうとするものである。更に高強歴1強靭性の鋼を
得るためには再結晶オーステナイト粒でBが固溶してい
ることが重要であり、そのためにばBがBN析出物とし
て析出し、ないように(1)N含有量を低減するか(I
I)Ttを添加してTiN析出物になしNを固定してし
甘うことが大切である。
Effective use of T1. The primary purpose of reducing the C content is to improve the toughness of the bainite grains in the ferrite-bainite structure and improve the toughness of the base metal.The purpose of reducing the C content is to improve the toughness of the base metal by improving the toughness of the bainite grains in the ferrite-bainite structure. At the same time, the aim is to prevent Furthermore, in order to obtain a steel with high strength and toughness, it is important that B be solidly dissolved in the recrystallized austenite grains. whether to reduce the content (I
I) It is important to add Tt to fix N in the TiN precipitate.

次に本発明の構成要件のうちスラブの圧延及び熱処理の
条件を限定する理由を説明する。
Next, the reason for limiting the conditions for slab rolling and heat treatment among the constituent elements of the present invention will be explained.

本発明は、前述のとおり、微細加工フェライト及び微細
ベイナイト組織を 有する鋼を製造するととを目的とし
ており、これらの微細粒を生成させるためにNbを含有
させる必要があり、 Nl)が0.0/係以上固溶する
ように先ず鋼スラブを加熱しなければならないが、 N
bは未固溶のときには、未再結晶オーステナイト域の上
限はAr3+ !rO℃であるが0.0/%以上Nbを
固溶すると、前記未再結晶オーステナイト域はAr3+
 /!;0℃まで上昇するので、この未再結晶オーステ
ナイト域において50チ以上の圧延を可能とするために
は、との未再結晶オーステナイト域を拡大する必要があ
り、さらにまた固溶Nbは鋼の焼入性を増しベイナイト
ならびに島状マルテンサイトを生成させ易くなるので、
スラブの加熱温度はAr3+ 130℃を越える温度で
累積圧下率が少なくともgo %となるように圧延でき
る温度にする必要がある。
As mentioned above, the purpose of the present invention is to manufacture steel having micromachined ferrite and microbainite structures, and in order to generate these micrograins, it is necessary to contain Nb, and Nl) is 0.0. The steel slab must first be heated to form a solid solution of N
When b is not in solid solution, the upper limit of the unrecrystallized austenite region is Ar3+! When 0.0/% or more of Nb is dissolved at rO°C, the unrecrystallized austenite region becomes Ar3+
/! ; Since the temperature rises to 0°C, in order to enable rolling of 50 mm or more in this unrecrystallized austenite region, it is necessary to expand the unrecrystallized austenite region, and furthermore, the solid solution Nb is It increases hardenability and makes it easier to generate bainite and island martensite.
The heating temperature of the slab needs to be such that it can be rolled at a temperature exceeding Ar3+ 130° C. so that the cumulative reduction ratio is at least go %.

Ar3 + 130℃を越える高温再結晶オーステナイ
ト域におけるSOSの累積圧下率は、約3μ′m以下の
細粒にするために必要な圧下率の下限である。
The cumulative reduction rate of SOS in the high-temperature recrystallized austenite region exceeding Ar3 + 130° C. is the lower limit of the reduction rate necessary to make the grains finer than about 3 μ'm.

Ar3+ 130℃以下でかつAr3点以上の未再結晶
オーステナイト域の温度範囲内で累積圧下率が少なくと
もsO%となるように圧延を施す理由は、゛未再結晶オ
ーステナイト粒をパンケーキ状に伸展させ、その粒内に
多くの変形帯を導入しフェライト粒を生成させるためで
あり、このためには少くとも50%累積圧下量が必要で
あるので、この温度域での圧下率は下限を、5−(7%
にする必要がある。
The reason why rolling is carried out so that the cumulative rolling reduction is at least sO% within the temperature range of the unrecrystallized austenite region of Ar3+ 130°C or higher and Ar3 point or higher is because ``unrecrystallized austenite grains are stretched into a pancake shape. The purpose of this is to introduce many deformation bands into the grains and generate ferrite grains.For this purpose, a cumulative reduction of at least 50% is required, so the lower limit of the reduction rate in this temperature range is 5. -(7%
It is necessary to

Ar  からAr3”−g 0℃までの(γ+α)、2
相域での圧延を施す理由は、残りの未再結晶オーステナ
イト粒から変態して生じた未成長の細粒フェライトから
、微細加工フェライト粒を生成させ、また未再結晶オー
ステナイトに有効に歪を蓄積させるので、フェライト粒
とベイナイト粒の微細化に有効であるためであるが、A
r310℃より低い温度域で圧延すると大きなフェライ
ト粒を加工することになり、遷移温度(以後この温度を
vTrsと称す)が低下するので、コ相域における圧延
はAr3〜Ar  −tO℃の範囲内にする必要がある
。またコ相域での圧延の圧下率は70%より小さいと引
張強さく以後この強さをTSと称す)の上昇効果がない
ので、コ相域での圧延の圧下率はtO%以上にする必要
がある。
(γ+α) from Ar to Ar3”-g 0℃, 2
The reason for rolling in the phase region is to generate micro-processed ferrite grains from ungrown fine-grained ferrite produced by transformation from remaining unrecrystallized austenite grains, and to effectively accumulate strain in unrecrystallized austenite. This is because A is effective in refining ferrite grains and bainite grains.
Rolling in a temperature range lower than r310°C involves processing large ferrite grains and lowers the transition temperature (hereinafter referred to as vTrs), so rolling in the co-phase region is within the range of Ar3 to Ar -tO°C. It is necessary to Furthermore, if the rolling reduction in the co-phase region is less than 70%, there is no effect of increasing the tensile strength (hereinafter referred to as TS), so the rolling reduction in the co-phase region should be tO% or more. There is a need.

次に本発明の圧延後加速冷却条件を限定する理由を説明
する。
Next, the reason for limiting the post-rolling accelerated cooling conditions of the present invention will be explained.

本発明の目的は、フェライト組織中に微細ベイナイトや
島状マルテンサイトを混入させることにめ9、冷却速度
が30℃/seeより速いと、もとのオーステナイト粒
界が観察される塊状のマルテンザイトやベイナイトが生
成し、いわゆる焼入組織となって、焼戻し処理が必要と
なり本発明の目的とする非調質鋼の製造方法とならず、
一方冷却速度が、2’C/θθCより遅いと加速冷却の
効果がみられないので冷却速度は1.2〜30℃78e
Cの範囲内にする必要がある。
The purpose of the present invention is to mix fine bainite and island-like martensite into the ferrite structure.9 When the cooling rate is faster than 30°C/see, the original austenite grain boundaries are observed to form massive martensite. and bainite are generated, resulting in a so-called quenched structure, which requires tempering treatment, and the method for manufacturing non-tempered steel, which is the objective of the present invention, cannot be achieved.
On the other hand, if the cooling rate is slower than 2'C/θθC, the effect of accelerated cooling will not be seen, so the cooling rate should be 1.2~30℃78e
It must be within the range of C.

前記圧延後の加速冷却の停止温度は、3000C以上で
冷却を停止するとベイナイトやマルテンサイトの体積率
が少なくなり、その結果強度上昇が小さくなり、一方S
OO°C以下で加速冷却を停止すると靭性の劣下をとも
なわず高張力を得ることができるので、冷却停止温度は
SOO°C未満にする必要がある。
The temperature at which the accelerated cooling after rolling is stopped is 3000C or higher, and the volume fraction of bainite and martensite decreases, resulting in a small increase in strength.
If accelerated cooling is stopped below OO°C, high tensile strength can be obtained without deterioration of toughness, so the cooling stop temperature must be below SOO°C.

次に本発明の成分組成を限定する理由を説明する。Next, the reason for limiting the component composition of the present invention will be explained.

Cは0.07係未満では鋼板の強度が低下すること及び
溶接熱影響部(以後HAZと称す)の軟化が大きく、か
つ製造コストが著しく高くなり、一方Cが0.12%を
越えると母材の靭性が劣化するとともに溶接部の硬化、
耐割れ性の劣化が著しいので、Cは0.07〜0. /
、2 %の範囲内にする必要がある3、Siは鋼精錬時
に脱酸上必然的に含有される元素であるが、0005チ
未満になると母材靭性が劣化し、一方θ、50係を越え
るとベイナイト化の促進が低Fするので、 Siは0.
0S〜o、 so %の範囲内にする必要がある。
If C is less than 0.07%, the strength of the steel plate will decrease and the weld heat affected zone (hereinafter referred to as HAZ) will be greatly softened, and the manufacturing cost will increase significantly. On the other hand, if C exceeds 0.12%, As the toughness of the material deteriorates, the welded part hardens,
Since the deterioration of cracking resistance is significant, C is 0.07 to 0. /
, 2%. 3.Si is an element that is inevitably included for deoxidation during steel refining, but if it is less than 0.005%, the toughness of the base metal will deteriorate, while the θ, 50 coefficient will decrease. If Si exceeds 0.0F, the promotion of bainite formation will be low.
It needs to be within the range of 0S to o,so%.

Mnは7.00%未満では鋼、板の強度および靭性が低
−Fl〜、さらにHAZの軟化が大きくなり、一方λ、
5θ係を越えるとHAZの靭性が劣下するので、Mnは
7.00〜2.5θ%の範囲内にする必要がある。
If Mn is less than 7.00%, the strength and toughness of the steel and plate will be low -Fl~, and the softening of the HAZ will be large, while λ,
If it exceeds 5θ, the toughness of HAZ deteriorates, so Mn needs to be within the range of 7.00 to 2.5θ%.

ht rH1鋼の脱酸−ヒ最低0゜OOS係のAlが固
溶するよう添加することが必要であり、一方固溶Alが
o、 og%以上になるとHAZの靭性のみならず溶接
金属の靭性も劣下するので、AltOta/、はo、 
oos〜0.0g0%の範囲内にする必要がある。
Deoxidation of H1 Steel - It is necessary to add Al with a minimum of 0°OOS so that it becomes a solid solution.On the other hand, if the solid solution Al exceeds o, og%, not only the toughness of the HAZ but also the toughness of the weld metal is also degraded, so AltOta/, is o,
It is necessary to keep it within the range of oos to 0.0g0%.

Sはo、 og%以下でないと本発明の製造方法ではC
方向のvTrsが一10℃以下にならず、さらに吸収エ
ネルギーも著しく低くなるので、不純物の    中で
も特にSは0.0θg%以下にする必要がある。
In the production method of the present invention, S must be less than o, og%.
Since the vTrs in the direction does not go below 110°C and the absorbed energy also becomes extremely low, S, among other impurities, must be kept at below 0.0θg%.

Nbは0.00jt 4未満では遷移温度を向上させる
細粒効果が得られず、一方0. /θ係を越えると溶接
部の溶接金属靭性の劣化が生じるので、Nbはo、 o
os〜0.70%の範囲内にする必要がある。
If the Nb content is less than 0.00jt4, a fine grain effect that improves the transition temperature cannot be obtained; /θ ratio, the weld metal toughness of the welded part will deteriorate, so Nb is o, o
It is necessary to keep it within the range of os to 0.70%.

Bはo、 ooo3%未満ではベイナイト化の促進には
有効でないし、一方0.0030%を越えるとHAZの
硬化が大きいので、Bは0.0003〜0.0030チ
の範囲内にする必要がある。
If B is less than 3%, it is not effective in promoting bainite formation, and if it exceeds 0.0030%, hardening of the HAZ will be large, so B must be within the range of 0.0003 to 0.0030. be.

T1はγ粒の微細効果による靭性向上と、前述のとおp
Ti炭窒化物の生成による未再結晶オーステナイト粒中
の固溶N量を低下させ、その結果B窒化物の生成を防止
する目的として添加するが、o、 oos係未満ではそ
の効果はなく、一方0.0グ0係を越えると靭性が劣化
するので、TiはO1θOり〜o、 ollo%の範囲
内にする必要がある。
T1 improves toughness due to the fine effect of γ grains and improves toughness as mentioned above.
It is added to reduce the amount of solid solute N in unrecrystallized austenite grains due to the formation of Ti carbonitrides, thereby preventing the formation of B nitrides, but it has no effect below the o, oos ratio. If it exceeds 0.0g, the toughness deteriorates, so Ti needs to be within the range of O1θO~o, ollo%.

Nはo、 oogo 56以上含有すると本発明の範囲
のAl、Ti量ではT1窒化物、 Al窒化物として固
定するには不十分でその結果BがB窒化物を生成するこ
とになシ、鋼の焼き入れ性を悪くするので、Nはo、 
oogo 96以下にする必要がある。
If N is o, oogo 56 or more, the amount of Al and Ti within the range of the present invention is insufficient to fix it as T1 nitride and Al nitride, and as a result, B will not form B nitride. Since N deteriorates the hardenability of
oogo Must be 96 or lower.

以上が本発明において使用される鋼スラブの基本成分で
あり、必要によシNi、 Mo、 Ou、 Orのうち
から選んだ何れか少なくとも7種を、更に必要によりV
 、 C!a、 RIMのうちから選んだ何れか少なく
とも7種を添加含有させることができ、それぞれの元素
の適正な量の含有によって後述するように特有な効果が
付加される。
The above are the basic components of the steel slab used in the present invention.
, C! At least seven elements selected from a and RIM can be added, and by containing appropriate amounts of each element, specific effects are added as described below.

すなわちN1はHAZの硬化性および靭性に悪い影響を
与えることなく、母材の強度、靭”性を′向上させるが
、/、0096を越えて添加含有させると製造コストの
上昇を招き、また本発明の目的ならびに効果を達成する
ためには必要でないので、N1は/、00チ以下にする
In other words, N1 improves the strength and toughness of the base material without adversely affecting the hardenability and toughness of HAZ, but adding N1 in excess of 0096 will increase manufacturing costs and Since it is not necessary to achieve the purpose and effects of the invention, N1 should be less than /,00.

OuはN1とほぼ同様の効果があるだけでなく、耐食性
も向上させるが、o、 so %を越えると熱間圧延中
にクラックが発生しやすくなり、鋼板の表面性状が劣化
するので、aUは03SO%以下にする必要がある。
Ou not only has almost the same effect as N1, but also improves corrosion resistance, but if it exceeds o,so%, cracks are likely to occur during hot rolling and the surface quality of the steel sheet deteriorates, so aU is It is necessary to keep it below 0.03SO%.

MOは圧延時のγ粒を整粒にし、なおかつ微細なベイナ
イトを生成するので強度、靭性を向上させるが、この発
明の目的を達成するには、o、s9Aを越えて添加する
必要はなく、それ以上は製造コストの上昇を招くので、
 Moはo、5oqb以下にする。
MO makes the γ grains regular during rolling and also produces fine bainite, so it improves strength and toughness, but in order to achieve the purpose of this invention, it is not necessary to add more than o, s9A, Anything more than that will lead to an increase in manufacturing costs.
Mo should be o, 5 oqb or less.

■はこの発明による鋼板の母材強度と靭性向上。■Improvement in base material strength and toughness of steel plates by this invention.

継手部強度確保のために添加するものであるが、添加量
が多きに失すると、母材及びHAZの靭性を著しく劣下
させるので、■はo、10c4以下にする必要がある。
It is added to ensure the strength of the joint, but if too much is lost, the toughness of the base metal and HAZ will be significantly degraded, so it is necessary to keep the value of ■ below 10c4.

Caは0.0011未満ではMnSの形態制御に不十分
でC方向の靭性向上に効果がなく、一方0.070%を
越えると、鋼の清浄度が悪くなり内部欠陥の原因となる
ので、CaはO0θ02〜0.0/θチの範囲内にする
必要がある。
If Ca is less than 0.0011%, it is insufficient for controlling the morphology of MnS and has no effect on improving the toughness in the C direction.On the other hand, if it exceeds 0.070%, the cleanliness of the steel deteriorates and causes internal defects. must be within the range of O0θ02 to 0.0/θchi.

REMはo、 oo、zチ未満では、MnSの形態制御
に不十分で鋼板のC方向の靭性向上に有効でなく、一方
o、o10’lrを越えると、鋼の清浄度が悪くなシ、
またアーク溶接面でも不利であるので、 HEMは0、
θOコ係〜o、 olo %の範囲内にする必要がある
If REM is less than o, oo, or z, it is insufficient for controlling the morphology of MnS and is not effective in improving the toughness of the steel plate in the C direction.
It is also disadvantageous in terms of arc welding, so HEM is 0,
It is necessary to keep it within the range of θ0% to o,olo%.

次に本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.

実施例1 第1表の成分組成を示す供試鋼種のスラブ/A〜3A、
/Bf:用いてそれぞれ第二衣に示す圧延。
Example 1 Slabs of test steel types having the composition shown in Table 1/A to 3A,
/Bf: Rolling shown in the second coating.

冷却条件により処理した鋼板の機械的諸性質を同表に示
す。
The mechanical properties of steel sheets treated under different cooling conditions are shown in the same table.

第−表に示す試験例/16/〜/3は本発明において用
いることのできる成分組成を有する/B鋼のスラブにつ
いて種々の圧延条件を変えて製造したものである。第2
表によれば/16/と廓λはスラブ固溶Nbが0.O/
チに達せず、I63は空冷であシ、腐6は冷却停止温度
がSOO℃以上であシ、また/16//はAr3点以下
の圧下量が零であシ、すなわちそれぞれ本発明の構成要
件が完全には満たされていないために製造された鋼板の
強度は’lOkgf/m−に達していないことがわかる
Test Examples /16/ to /3 shown in Table 1 are slabs of /B steel having a composition that can be used in the present invention, and were manufactured under various rolling conditions. Second
According to the table, at /16/ and λ, the slab solid solution Nb is 0. O/
I63 is air-cooled, rot 6 has a cooling stop temperature of SOO°C or higher, and /16// has a reduction of 0 below the Ar3 point, that is, each of the configurations of the present invention. It can be seen that the strength of the manufactured steel plate does not reach '10 kgf/m- because the requirements are not completely met.

/I69は、オーステナイト再結晶域での圧下量がro
 e4未満であシ、/16/θはAr3 + 150℃
からA rB点に至る未再結晶オーステナイト域での圧
下量が5゜係未満であt)z/I6nは仕上温度がAr
3−40℃未満でおり、すなわちそれぞれ本発明の構成
要件が完全には満たされていないために製造された鋼板
の’vTrsは、−70℃以上であることがわかる。
/I69 has a reduction amount of ro in the austenite recrystallization region.
Less than e4, /16/θ is Ar3 + 150℃
If the reduction amount in the unrecrystallized austenite region from to the A rB point is less than 5 degrees, and the finishing temperature is Ar
It can be seen that the 'vTrs of the manufactured steel sheets is -70°C or higher because the temperature is lower than 3-40°C, that is, the constituent requirements of the present invention are not completely satisfied.

屑3.ダ、?、g、7.2は本発明において用いること
のできる全ての構成要件の範囲内において製造を施した
丸め、それぞれ70 kg f /rsvt2以上のT
Sと一70℃以下のvTrsを有し、上記の諸比較例の
方法にくらべ優れた高張力と高靭性を有する非常に低い
炭素当量の鋼板が得られることがわかる。
Scrap 3. Da,? , g, 7.2 are rounded, manufactured within the scope of all the constituent requirements that can be used in the present invention, and T of 70 kg f /rsvt2 or more, respectively.
It can be seen that a very low carbon equivalent steel plate having vTrs of -70° C. or lower and superior high tensile strength and high toughness compared to the methods of the above-mentioned comparative examples can be obtained.

実施例2 第3表の成分組成を示す供試鋼を用いてそれぞれ第1表
に示す圧延条件により処理し/C鋼板の機械的性質を同
表に示す。
Example 2 Test steels having the chemical compositions shown in Table 3 were processed under the rolling conditions shown in Table 1, and the mechanical properties of /C steel plates are shown in the same table.

第1表によれば/167〜乙は本発明において用いるこ
とのできる成分組成の鋼種のスラブを出発材となし本発
明において用いることのできる全ての構成要件の範囲内
において製造を施したため、/I6/〜3は、o、3o
s以下のC当量で乙θkg f/1n、、2以上の強度
と−り0℃以下のVTreが得られており、AII、j
’は0.3!;チ以下のC当量でqokgf/苅−以上
の強度と一70℃以FのvTrsが得られており、/1
6Aはo、qos以下のC当量でgokgf/、−以上
の強度と一70℃以下のvTrsが得られることがわか
る。
According to Table 1, /167 to B were manufactured using slabs of steel types that can be used in the present invention as starting materials and within the range of all the constituent requirements that can be used in the present invention, / I6/~3 is o, 3o
With a C equivalent of s or less, an intensity of θkg f/1n, 2 or more and a VTre of 0°C or less have been obtained, and AII, j
' is 0.3! ; Strength of qokgf/kari or more and vTrs of -70°C or less have been obtained with a C equivalent of less than 1.
It can be seen that 6A can obtain an intensity of gokgf/, - or more and a vTrs of -70°C or less with a C equivalent of o, qos or less.

以上実施例からもわかるように1本発明の製造方法によ
り製造すれば高強度、高靭性を有する低炭素当量非調質
鋼であって安定した品質のものを、多量にかつ安価に容
易に製造することができる。
As can be seen from the above examples, if the production method of the present invention is used, it is possible to easily produce low carbon equivalent non-tempered steel with high strength and toughness, and of stable quality, in large quantities and at low cost. can do.

125−125-

Claims (1)

【特許請求の範囲】 L  00.07〜0.7!%、Bi0.03〜o、 
goチ。 Mn /、00〜2.!;0 % 、 Nb O,0(
B; 〜θ、IO’4゜B O,0003〜0.θ03
0チ、 N O,00g0係以下。 T1 θ、005〜0.θグθ 係 、  A) 0.
oog  〜 o、ogo  チ。 s o、 oog %以下を含有し、必要によりN1/
、 oo 嗟以丁、 MOo、go 1以下、 au 
o、so %以下、Or0.30%以ドのうちから選ば
れる倒れか少なくとも1種を含有し、更に必要によp 
V O,10%以下、 Oa O,002−0,θto
 qA 。 I(EiMθ、θ(7,2〜0.070%のうちから選
ばれる何れか少なくとも7種を含有し、残部不可避的不
純物及びFeよりなる鋼スラブを、鋼スラブに含有して
いるNl)が少なくとも0.07%固溶する温度に加熱
した後、Ar3点+150℃を越える温度で累積圧下率
が少なくとも5<7 %となるように圧延を施し、引続
いてAr3点十/30℃以ドで、かつAr3点以上の未
再結晶オーステナイト域の温度範囲内で累積圧下率が少
なくともSO%となるよう圧延を施し、次いでAr3点
未満で、かつAr3点−go′C以上のオーステナイト
とフェライトとのコ相域の温度範囲内で、累積圧下率が
少なくとも10チとなるように圧延を施し、その後直ち
に2〜b/secの冷却速度でSOO℃未満の温度まで
強制冷却を施す為ことにより、フェライト、微細ベイナ
イト、島状マルテンサイト及び微細加工フェライトを主
体とする組織を形成させることを特徴とする靭性と溶接
性の優れた低炭素当ダニ非調質高張力鋼板の製造方法。
[Claims] L 00.07-0.7! %, Bi0.03~o,
gochi. Mn/, 00~2. ! ;0%, NbO,0(
B; ~θ, IO'4°B O,0003~0. θ03
0chi, N O, 00g 0 section or less. T1 θ, 005-0. θg θ , A) 0.
oog ~ o, ogo chi. Contains s o, oog % or less, and if necessary N1/
, oo 嗟いTING, MOo, go 1 or less, au
Contains at least one of the following: o, so % or less, or 0.30% or more, and further contains p as necessary.
V O, 10% or less, Oa O, 002-0, θto
qA. I(EiMθ, θ(Nl) containing at least 7 of any selected from 7.2 to 0.070%, with the remainder consisting of unavoidable impurities and Fe) After heating to a temperature at which at least 0.07% solid solution is obtained, rolling is performed at a temperature exceeding 3 Ar points + 150°C so that the cumulative reduction ratio is at least 5<7%, and then rolling at a temperature exceeding 3 Ar points + 150°C, and then , and within the temperature range of the unrecrystallized austenite region with an Ar point of 3 or more, rolling is performed so that the cumulative rolling reduction rate is at least SO%, and then austenite and ferrite with an Ar of less than 3 points and an Ar of 3 points - go'C or more are rolled. Rolling is carried out within the temperature range of the phase region of , so that the cumulative reduction rate is at least 10 inches, and then immediately forced cooling is carried out at a cooling rate of 2 to 2 b/sec to a temperature below SOO ° C. A method for producing a low-carbon, heat-treated, non-heat treated high-strength steel sheet with excellent toughness and weldability, which is characterized by forming a structure mainly consisting of ferrite, fine bainite, island martensite, and microfabricated ferrite.
JP19331782A 1982-11-05 1982-11-05 Preparation of low carbon equivalent unnormalized high tensile steel plate Pending JPS5983722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19331782A JPS5983722A (en) 1982-11-05 1982-11-05 Preparation of low carbon equivalent unnormalized high tensile steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19331782A JPS5983722A (en) 1982-11-05 1982-11-05 Preparation of low carbon equivalent unnormalized high tensile steel plate

Publications (1)

Publication Number Publication Date
JPS5983722A true JPS5983722A (en) 1984-05-15

Family

ID=16305889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19331782A Pending JPS5983722A (en) 1982-11-05 1982-11-05 Preparation of low carbon equivalent unnormalized high tensile steel plate

Country Status (1)

Country Link
JP (1) JPS5983722A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996218A (en) * 1982-11-24 1984-06-02 Sumitomo Metal Ind Ltd Manufacture of low-carbon high-tension tough steel plate having two-phase structure
JPS6164824A (en) * 1984-09-05 1986-04-03 Kobe Steel Ltd Manufacture of 50kgf/mm2-class steel plate for low temperature use
EP0190312A1 (en) * 1984-08-06 1986-08-13 The Regents Of The University Of California Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes
JPS6293313A (en) * 1985-10-21 1987-04-28 Kobe Steel Ltd Manufacture of accerelatedly cooled steel sheet superior in stress relief annealing characteristic
JPS62148790A (en) * 1985-12-23 1987-07-02 積水ハウス株式会社 Shutter opening and closing apparatus
JPS62170459A (en) * 1986-01-22 1987-07-27 Sumitomo Metal Ind Ltd High tension steel plate for high heat input welding
JPS63235430A (en) * 1987-03-24 1988-09-30 Nippon Steel Corp Manufacture of tempered high-tensile steel stock excellent in toughness and weldability
JPS6455335A (en) * 1987-08-26 1989-03-02 Nippon Kokan Kk Production of high-tensile steel having low yield ratio
JPH01129953A (en) * 1987-11-16 1989-05-23 Kobe Steel Ltd High strength non-heat treated steel and its manufacture
WO1996023909A1 (en) * 1995-02-03 1996-08-08 Nippon Steel Corporation High-strength line-pipe steel having low yield ratio and excellent low-temperature toughness
US5858130A (en) * 1997-06-25 1999-01-12 Bethlehem Steel Corporation Composition and method for producing an alloy steel and a product therefrom for structural applications
JP2005048289A (en) * 2003-07-16 2005-02-24 Jfe Steel Kk Low yield ratio, high strength and high toughness steel sheet, and its production method
JP2008248338A (en) * 2007-03-30 2008-10-16 Kobe Steel Ltd Steel member having excellent fatigue crack propagation resistance and weld heat affected zone low temperature toughness
EP2853615A1 (en) * 2003-06-12 2015-04-01 JFE Steel Corporation Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe, and method for manufacturing the same
KR20160117536A (en) 2014-03-17 2016-10-10 제이에프이 스틸 가부시키가이샤 Steel material for welding
CN107904504A (en) * 2017-11-10 2018-04-13 钢铁研究总院 What a kind of normalizing state was delivered goods can Large Heat Input Welding EH36 special heavy plates and preparation method
CN111492085A (en) * 2017-12-22 2020-08-04 株式会社Posco High-strength steel material for polar environment having excellent fracture resistance at low temperature and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134518A (en) * 1981-02-14 1982-08-19 Kawasaki Steel Corp Production of high-toughness high-tensile steel
JPS57149424A (en) * 1981-03-12 1982-09-16 Kawasaki Steel Corp Manufacture of nontempered high-tensile steel plate of 60[70kg/mm2 class and having excellent low-temperature toughness
JPS5877528A (en) * 1981-10-31 1983-05-10 Nippon Steel Corp Manufacture of high tensile steel with superior toughness at low temperature

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134518A (en) * 1981-02-14 1982-08-19 Kawasaki Steel Corp Production of high-toughness high-tensile steel
JPS57149424A (en) * 1981-03-12 1982-09-16 Kawasaki Steel Corp Manufacture of nontempered high-tensile steel plate of 60[70kg/mm2 class and having excellent low-temperature toughness
JPS5877528A (en) * 1981-10-31 1983-05-10 Nippon Steel Corp Manufacture of high tensile steel with superior toughness at low temperature

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996218A (en) * 1982-11-24 1984-06-02 Sumitomo Metal Ind Ltd Manufacture of low-carbon high-tension tough steel plate having two-phase structure
JPH0118967B2 (en) * 1982-11-24 1989-04-10 Sumitomo Metal Ind
EP0190312A1 (en) * 1984-08-06 1986-08-13 The Regents Of The University Of California Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes
JPS6164824A (en) * 1984-09-05 1986-04-03 Kobe Steel Ltd Manufacture of 50kgf/mm2-class steel plate for low temperature use
JPS6293313A (en) * 1985-10-21 1987-04-28 Kobe Steel Ltd Manufacture of accerelatedly cooled steel sheet superior in stress relief annealing characteristic
JPS62148790A (en) * 1985-12-23 1987-07-02 積水ハウス株式会社 Shutter opening and closing apparatus
JPS62170459A (en) * 1986-01-22 1987-07-27 Sumitomo Metal Ind Ltd High tension steel plate for high heat input welding
JPS63235430A (en) * 1987-03-24 1988-09-30 Nippon Steel Corp Manufacture of tempered high-tensile steel stock excellent in toughness and weldability
JPS6455335A (en) * 1987-08-26 1989-03-02 Nippon Kokan Kk Production of high-tensile steel having low yield ratio
JPH01129953A (en) * 1987-11-16 1989-05-23 Kobe Steel Ltd High strength non-heat treated steel and its manufacture
WO1996023909A1 (en) * 1995-02-03 1996-08-08 Nippon Steel Corporation High-strength line-pipe steel having low yield ratio and excellent low-temperature toughness
EP0757113A1 (en) * 1995-02-03 1997-02-05 Nippon Steel Corporation High-strength line-pipe steel having low yield ratio and excellent low-temperature toughness
EP0757113A4 (en) * 1995-02-03 1998-05-20 Nippon Steel Corp High-strength line-pipe steel having low yield ratio and excellent low-temperature toughness
US5755895A (en) * 1995-02-03 1998-05-26 Nippon Steel Corporation High strength line pipe steel having low yield ratio and excellent in low temperature toughness
US5858130A (en) * 1997-06-25 1999-01-12 Bethlehem Steel Corporation Composition and method for producing an alloy steel and a product therefrom for structural applications
EP2853615A1 (en) * 2003-06-12 2015-04-01 JFE Steel Corporation Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe, and method for manufacturing the same
JP2005048289A (en) * 2003-07-16 2005-02-24 Jfe Steel Kk Low yield ratio, high strength and high toughness steel sheet, and its production method
JP4507730B2 (en) * 2003-07-16 2010-07-21 Jfeスチール株式会社 Low yield ratio high strength high toughness steel sheet and method for producing the same
JP2008248338A (en) * 2007-03-30 2008-10-16 Kobe Steel Ltd Steel member having excellent fatigue crack propagation resistance and weld heat affected zone low temperature toughness
KR20160117536A (en) 2014-03-17 2016-10-10 제이에프이 스틸 가부시키가이샤 Steel material for welding
CN107904504A (en) * 2017-11-10 2018-04-13 钢铁研究总院 What a kind of normalizing state was delivered goods can Large Heat Input Welding EH36 special heavy plates and preparation method
CN111492085A (en) * 2017-12-22 2020-08-04 株式会社Posco High-strength steel material for polar environment having excellent fracture resistance at low temperature and method for producing same
CN111492085B (en) * 2017-12-22 2021-10-29 株式会社Posco High-strength steel material for polar environment having excellent fracture resistance at low temperature and method for producing same

Similar Documents

Publication Publication Date Title
JPH0127128B2 (en)
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JPS5983722A (en) Preparation of low carbon equivalent unnormalized high tensile steel plate
JPS6155572B2 (en)
JP4205922B2 (en) High strength steel pipe excellent in deformation performance, low temperature toughness and HAZ toughness and method for producing the same
JPH04285119A (en) Production of thick-walled high tensile strength steel plate excellent in toughness at low temperature
JPS5834131A (en) Production of nonrefined high tensile steel plate having excellent toughness and weldability
JPS6141968B2 (en)
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same
JPS609086B2 (en) Manufacturing method of high toughness and high tensile strength steel
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JP2598357B2 (en) Manufacturing method of high strength steel sheet with excellent low temperature toughness
JPS62174324A (en) Manufacture of high yield point steel for low temperature superior in toughness welding heat affected-zone
JPS602364B2 (en) Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness
JPS60181229A (en) Production of low-yield ratio high-tension thick steel plate
JPH05148539A (en) Production of steel for uoe steel pipe which is less embrittled by heating in (gamma+alpha) two-phase region
JPS6057490B2 (en) Manufacturing method of high-strength steel plate with low yield ratio
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
JPH07150247A (en) Production of steel tube with high strength and low yield ratio for construction use
JPS63118012A (en) Production of low yield ratio high tensile thick steel plate
JPS6289815A (en) Manufacture of high yield point steel for low temperature
JPH11264017A (en) Production of non-heat treated high tensile strength steel with small quality deviation and excellent in weldability
JPH07188748A (en) Production of steel tube having high strength and low yield ratio for construction use
JPH07207335A (en) Production of high tensile steel which is excellent in weldability and high in uniform elongation
JPS61127814A (en) Manufacture of high tension steel plate having excellent low-temperature toughness