JPS60181229A - Production of low-yield ratio high-tension thick steel plate - Google Patents
Production of low-yield ratio high-tension thick steel plateInfo
- Publication number
- JPS60181229A JPS60181229A JP3480784A JP3480784A JPS60181229A JP S60181229 A JPS60181229 A JP S60181229A JP 3480784 A JP3480784 A JP 3480784A JP 3480784 A JP3480784 A JP 3480784A JP S60181229 A JPS60181229 A JP S60181229A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- yield ratio
- rolling
- low
- steel plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
技術分野
本発明は低降伏比高張力厚鋼板の製造法に係9、特に主
としてフェライトとマルテンサイト(一部微細ペイナイ
ト)より成る降伏比80%以下の低降伏比の高張力厚鋼
板全制御圧処後、特別の冷却処理を施すことなく空冷し
て製造する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for producing a high tensile strength steel plate with a low yield ratio of 80% or less, which is mainly composed of ferrite and martensite (partially fine paynite). The present invention relates to a method for manufacturing a high tensile strength steel plate by air cooling without any special cooling treatment after fully controlled pressure treatment.
背景技術 近年、高張力鋼板では下記の2点が問題となっている。Background technology In recent years, the following two points have become a problem with high-strength steel plates.
(1)降伏比の高い高張力鋼板は一般に一様伸び値が低
く、引張破断伸びが低いことから構造物用鋼板としての
安全性からは降伏比の低い鋼材が望ましい。(1) High-strength steel plates with a high yield ratio generally have a low uniform elongation value and a low tensile elongation at break, so steel materials with a low yield ratio are desirable from the viewpoint of safety as steel plates for structures.
(2)降伏応力の増加は冷開成形時における、例えばラ
インパイプ材のU−0プレスなどの冷間加工が困難であ
り、成形時は強度が低く、加工後に高強度となる低降伏
比鋼が望ましい。(2) The increase in yield stress is caused by the difficulty of cold working such as U-0 pressing of line pipe materials during cold-open forming, and low yield ratio steels have low strength during forming but become high strength after forming. is desirable.
これらの背景から低降伏比を有する高張力厚鋼板の需要
が高まっている。Against this background, demand for high tensile strength steel plates with a low yield ratio is increasing.
一方、制御圧延鋼で低降伏比高張力鋼を得るにはミクロ
組織的にはフェライトとマルテンサイトの二相より成る
複合組織を有する場合冷却過程においてマルテンサイト
変態した第二相の周辺のフェライト中に可動転位が多数
導入され、これが低降伏応力で動くために低降伏比化す
ると考えられており、第二相がマルテンサイト化するほ
ど低降伏比になると期待されている。On the other hand, in order to obtain a high tensile strength steel with a low yield ratio using control rolled steel, if the microstructure has a composite structure consisting of two phases of ferrite and martensite, the ferrite surrounding the second phase transformed into martensite during the cooling process. It is thought that a large number of mobile dislocations are introduced into the material, which move with a low yield stress, resulting in a low yield ratio, and it is expected that the more the second phase becomes martensitic, the lower the yield ratio will be.
又ホットストリップミルにょる熱延薄鋼板では圧延後の
冷却速度を大きくとることができるため複合組織化し易
く低降伏比も比較的容易である。In addition, hot-rolled thin steel sheets produced in a hot strip mill can be cooled at a high cooling rate after rolling, making it easy to form a complex structure and relatively easily achieve a low yield ratio.
然るに鋼板の厚さが大きくなると、冷却速度音大きくと
ることができず又厚鋼板は薄鋼板に比し全圧下率が小さ
く、パス間隔も長いため、オーステナイト粒の細粒化効
果が小さく、フェライト核の生成も少なくなり粗大なベ
イナイト組織となり易く降伏比は下るが低温靭性が劣化
する。そのため従来、厚鋼板においてはフェライトとマ
ルテンサイトとから成る複合組織を有する鋼を製造する
ことは難しく、特に圧延後に特別の冷却処理を施さない
で圧延のま\(空冷)の材料で必要最小限の合金成分で
経済性に優れた低降伏比高張力厚鋼板を製造することは
極めて困難であった。僅かに炭素を低くしてマンガン、
モリブデンを高めたアシキュラーフェライト鋼が知られ
ている程度であるが、これとてもどこまで高価な合金成
分を減少することができるかは材質設計の上では確める
手段がなく試行錯誤によるしかない。However, as the thickness of the steel plate increases, it is not possible to increase the cooling rate and noise, and thick steel plates have a smaller total reduction ratio and longer pass intervals than thin steel plates, so the effect of refining austenite grains is small and ferrite grains are reduced. Nucleation also decreases, making it easier to form a coarse bainite structure, which lowers the yield ratio but deteriorates low-temperature toughness. For this reason, conventionally, it has been difficult to manufacture thick steel plates with a composite structure consisting of ferrite and martensite, and in particular, it has been difficult to produce steel with a composite structure consisting of ferrite and martensite, and in particular, it has been difficult to produce steel sheets that have a composite structure consisting of ferrite and martensite. It has been extremely difficult to manufacture economical, low yield ratio, high tensile strength steel plates with such alloy components. Manganese with slightly lower carbon,
Although acicular ferrite steel with increased molybdenum content is known, there is no way to confirm in material design how much expensive alloying elements can be reduced, and the only method is trial and error.
発明の概要
従って本発明は主としてフェライトとマルテンサイト(
一部微細ペイナイト)とから成る降伏比80%以下の低
降伏比を有する高張力厚鋼板を制御圧延後に特別の冷却
処理を施すことなく空冷して製造する方法を提供するこ
とを目的とするものであ夛、とりわけその材質設計段階
で、低降伏比鋼に必要な最小の合金成分系を合理的に決
定する経済的に優れた製造技術の発明に関するものであ
る。Summary of the Invention Therefore, the present invention mainly uses ferrite and martensite (
The object of the present invention is to provide a method for producing a high-strength thick steel plate having a low yield ratio of 80% or less, which is made up of (partially fine paynite), by air-cooling it without any special cooling treatment after controlled rolling. In particular, the present invention relates to the invention of an economically superior manufacturing technique that rationally determines the minimum alloy composition system necessary for low yield ratio steel at the material design stage.
3、発明の詳細な説明
本発明において、まず重要なる点は、圧延のま\で低降
伏比を有する高張力鋼を得るための適性な合金設計技術
であると考えられる。一般的にはO、Mn 、 Or
、 Ni 、 Mo などの焼入性を増す成分元素を増
加させればよいのであるが、経済性、溶接性などの観点
からは必要最小限の合金元素添加に止めて低降伏比の鋼
を製造することが望ましい。従ってその境界条件は試行
錯誤的な経験とテストによってのみしか判らず、定量的
な判定が困難である。本発明はこの様な観点から材質設
計の段階において低降伏比化を判、−メ
定する合金ハフ謙−ター(P) tl−これまでにない
独特な発想から見い出し、圧延のま\で低降伏[ヒ
化高張力鋼の製造法を開発したものである。3. Detailed Description of the Invention In the present invention, the first important point is considered to be an appropriate alloy design technique for obtaining a high tensile strength steel having a low yield ratio during rolling. Generally O, Mn, Or
It is possible to increase component elements that increase hardenability, such as , Ni, and Mo, but from the viewpoint of economy and weldability, it is recommended to limit the addition of alloying elements to the minimum necessary to produce steel with a low yield ratio. It is desirable to do so. Therefore, the boundary conditions can only be determined through trial-and-error experience and testing, and quantitative determination is difficult. From this point of view, the present invention has been developed based on an unprecedented and unique idea to identify and measure the reduction of yield ratio at the stage of material design. A method for producing high-strength arsenide steel was developed.
本発明の低降伏比高張力鋼は又ミクロ組織的には細粒フ
エライ)kベースに少量のベイナイト又はマルテンサイ
トヲ生成せしめて、二相組織を作pあげるところKある
。フェライト以外の第二相がパーライトになるが又は本
発明の目的とするベイナイト、マルテンサイトになるか
はr→α変態時の変態末期における未変態7部への溶質
元素の濃縮度により変り、0全土体とした前述の溶質元
素が濃縮するのであるが、低降伏比鋼の材質設計におい
ては0は必要条件ではあるが十分条件ではない。つまり
、本発明においては炭素は強度、低温靭性調整元素とし
ての役割を果すものである。何故ならば、炭素鋼で炭素
を増量すれば、焼入鋼では焼入性が増加するが、制御圧
延材のような空冷材ではパーライトの体積比を増加させ
る作用を示すのみで、それは本発明の目的とするフェラ
イト中マルテンサイトの二相組織を作ることにならない
。未変態7部のパーライト変態を妨げ、マルテンサイト
変態させるには炭素以外の合金元素で焼入性を高めなけ
ればならない。逆に謂えば、 [101チと、熱処理の
概念からは焼入性が極めて小さいような極低炭素鋼にお
いても合金元素の添加により、フェライト中マルテンサ
イト組織を作ることができる。即ち低降伏比化は炭素量
に関係なく可能な訳であり、合金パラメーターとしては
Cを除いた成分元素で判断するのがより適切であると着
眼したものである。従来、この種の合金パラメーターと
しては炭素轟音式の如く、すべて他の合金元素を炭素の
相当量に換算してしまうやり方が一般的であったが、こ
の一般的な方法では前述の如く主成分として0全含んで
しまうために低降伏比の目安となり得ない。また本発明
者らはp、sなどの不可避的不純物光Xl−除く種k(
1)合金元素(81、Mn 、 Ou 、 Ni 。The low yield ratio high tensile strength steel of the present invention also has a microstructure in which a small amount of bainite or martensite is formed on a fine-grained ferrite base to form a two-phase structure. The second phase other than ferrite becomes pearlite, or whether it becomes bainite or martensite, which is the object of the present invention, depends on the concentration of solute elements in the untransformed 7 parts at the final stage of r→α transformation, and 0. The above-mentioned solute elements are concentrated throughout the body, but zero is a necessary condition but not a sufficient condition in the material design of low yield ratio steel. That is, in the present invention, carbon plays a role as an element that adjusts strength and low-temperature toughness. This is because increasing the amount of carbon in carbon steel increases the hardenability of hardened steel, but in air-cooled materials such as controlled rolled materials, the effect is only to increase the volume ratio of pearlite. The desired two-phase structure of martensite in ferrite will not be created. In order to prevent pearlite transformation of the untransformed 7 parts and cause martensitic transformation, it is necessary to improve hardenability with an alloying element other than carbon. Conversely, even in ultra-low carbon steels such as [101], which have extremely low hardenability from the concept of heat treatment, it is possible to create a martensitic structure in ferrite by adding alloying elements. In other words, it is possible to achieve a low yield ratio regardless of the carbon content, and we have focused on the fact that it is more appropriate to judge alloy parameters based on component elements other than C. Conventionally, this type of alloy parameter was generally calculated by converting all other alloying elements into the equivalent amount of carbon, such as the carbon roaring method, but in this general method, as mentioned above, the main component Since it includes all zeros, it cannot be used as a guide for a low yield ratio. In addition, the present inventors have discovered that unavoidable impurity light such as p, s, etc.
1) Alloying elements (81, Mn, Ou, Ni.
Or 、 Mo 、 V 、 B 、 Nb 、 Ti
) に関し、降伏比に関する影響を検討した結果、こ
れらの元素すべてが第二相の焼入性に影響を与え、圧延
材の降伏比を正確に予測するためには各元素の効果すべ
てを考慮しなければならないこと全確認した。Or, Mo, V, B, Nb, Ti
), and as a result of examining the effects on the yield ratio, it was found that all of these elements affect the hardenability of the second phase, and in order to accurately predict the yield ratio of rolled materials, it is necessary to consider all the effects of each element. I have confirmed everything that needs to be done.
このような観点から本発明者らは種々検討した結果、
P(%):81150+Mn/20+Ou/20+Ni
/60+Or/20+M o/15 + V/10 +
5 Bなる合金パラメーターが下記成分組成において
最も精度よくベイナイト、マルテンサイト生成を含んだ
二相鋼の推定が可能であることを見い出したものである
。第1図は下記成分組成を有する鋼の降伏比と合金パラ
メーター(P)との関係を示したものであるが、これよ
り明らかなよは以下に示すような成分組成と合金パラメ
ーター(P)とを有することを特徴とする本のである。As a result of various studies conducted by the present inventors from this point of view, P (%): 81150+Mn/20+Ou/20+Ni
/60+Or/20+Mo/15 + V/10 +
It has been found that the alloy parameter 5B allows the most accurate estimation of a duplex steel containing bainite and martensite formation in the following component composition. Figure 1 shows the relationship between the yield ratio and alloy parameter (P) of steel with the following chemical composition, but it is clear from this that the chemical composition and alloy parameter (P) as shown below This is a book characterized by having the following.
即ちOα01〜0.20%;S1Q、07〜2.0%:
Mn 0.8〜2.5 % : sol At α0
05へα08%を含み、さらに必要に応じ0u(L10
〜α50%;N1a10〜5.0% ; Or α05
〜2.0%:V、Wb、Ti G、01〜120%;B
0.0005〜α0050%:Mo a05へ1,0%
の1種又は2種以上を含み、かつP(%)≧110を有
し、残部はF’e 及び不可避的不純物元素より成るも
のである。こ\において
P(%) =81150 +Mn/20 + Ou/2
0 + Ni/60 + Or/20 +Mo/15
+ V/10 + 5 B次に本発明における高張力厚
鋼板の成分限定理由について説明する。That is, Oα01-0.20%; S1Q, 07-2.0%:
Mn 0.8-2.5%: sol At α0
Including α08% to 05, and further adding 0u (L10
~α50%; N1a10~5.0%; Or α05
~2.0%: V, Wb, Ti G, 01-120%; B
0.0005~α0050%: 1.0% to Mo a05
and has P (%)≧110, with the remainder consisting of F'e and inevitable impurity elements. In this case, P (%) = 81150 +Mn/20 + Ou/2
0 + Ni/60 + Or/20 + Mo/15
+ V/10 + 5 B Next, the reason for limiting the components of the high tensile strength steel plate in the present invention will be explained.
C:強度レベルに最も関与する成分であるとともに第二
相の生成量に関与し低降伏比化には重要な元素であり、
α01チ未満では第二相分率が低過ぎて殆んどフェライ
ト単相となり強度が低下する。一方、α20%を超える
と第二相分率が過大となり靭性、加工性、溶接性に悪影
響を与えるので[101〜α20%とする。C: It is the component most involved in the strength level, as well as the amount of second phase produced, and is an important element for lowering the yield ratio.
If it is less than α01, the second phase fraction is too low and becomes almost a single ferrite phase, resulting in a decrease in strength. On the other hand, if α exceeds 20%, the second phase fraction becomes excessive and adversely affects toughness, workability, and weldability.
81:81 はフェライトの析出を促進し、未変態γへ
の合金元素の濃化を促し複合組織の形成に寄与する。ま
た強度−延性バランスを損うことなく、大巾な同浴強化
が図れる。これらの作用は11oy%の含有で有効であ
るが、2.0%’(i超えると靭性や溶接性を著しく劣
化させるのでα07A−2,0qbとする。81:81 promotes the precipitation of ferrite, promotes the concentration of alloying elements in untransformed γ, and contributes to the formation of a composite structure. Moreover, the bath can be strengthened to a large extent without impairing the strength-ductility balance. These effects are effective at a content of 11oy%, but if the content exceeds 2.0%'(i), the toughness and weldability will deteriorate significantly, so α07A-2.0qb is used.
Mn:鋼の強度および焼入性を増加させる比較的安価な
元素で、低降伏比高張力化に効果的である。焼入性お5
よび強度の確保には、α8チ以上の含有が必要であるが
、2.5%を超えると浴接性を劣化させたり、全面のベ
イトナイト化を生じて延性の劣化をもたらすので(18
〜2.5%に限定する。Mn: A relatively inexpensive element that increases the strength and hardenability of steel, and is effective in achieving a low yield ratio and high tensile strength. Hardenability 5
It is necessary to contain α8 or more to ensure strength and strength, but if it exceeds 2.5%, it will deteriorate the bath weldability or cause the entire surface to turn into batonite, resulting in deterioration of ductility (18
-2.5%.
sob kl : AA は脱酸剤として鋼の清浄性を
高める他に、Si と同様にr→α変態全促進する効果
をもち、この作用はα005%で有効であるが、sol
Aj が[108%を超えると清浄性が劣化したり、
溶接性に悪影響全没ぼすので上限は[108%とする。sob kl: In addition to improving the cleanliness of steel as a deoxidizing agent, AA also has the effect of promoting the r→α transformation like Si, and this effect is effective at α005%, but when sol
If Aj exceeds [108%, cleanliness may deteriorate,
Since it has an adverse effect on weldability and completely destroys the weldability, the upper limit is set to 108%.
紐
上記0 、 Si 、 Mn 、 sol kl の各
限定1會不可避的不純物元累及び残部のFe fもって
本発明の基本成分とするが、さらに必要により、Nl。The above-mentioned 0, Si, Mn, and sol kl unavoidable impurity elements and the remaining Fe are the basic components of the present invention, and if necessary, Nl.
Ou 、 Or 、 Mo 、 B 、 Ti 、 N
b 、 V t−含有する高張力鋼板においても、本発
明はより有効に達成することができる。Ou, Or, Mo, B, Ti, N
The present invention can be more effectively achieved even in high-strength steel sheets containing b, Vt-.
これらの限定理由を以下に示す。The reasons for these limitations are shown below.
N1;溶接性、靭性に悪影響を与えることなく強度を向
上させる効果を有し、また焼入性を高めるのに有用な元
素である。110%未満ではこれらの効果が殆んど期待
できず、又高価な元素であるため11超える添加は製造
コストの上昇を招き、本発明の目的及び効果から5%會
超す添加を必要としないので上限を5%とする。N1: An element that has the effect of improving strength without adversely affecting weldability and toughness, and is also useful for increasing hardenability. If it is less than 110%, hardly any of these effects can be expected, and since it is an expensive element, addition of more than 11% will increase manufacturing costs, and the purpose and effects of the present invention do not require addition of more than 5%. The upper limit is set at 5%.
Ou:Ou はN1 とtt y同様の効果含有するば
かりでなく、さらに耐食性を向上させる効果を有するが
、[15%を超えると熱間圧延中にクランクが発生し易
くなり、又鋼板の表面性状全劣化させるのでその上限’
i[15%とする。Ou: Ou not only has the same effects as N1 and tty, but also has the effect of further improving corrosion resistance; however, if it exceeds 15%, cranking is likely to occur during hot rolling, and the surface properties of the steel sheet It completely degrades, so the upper limit is '
i[15%.
Or:焼入性を高め、複合組織全生成するに蟲って効果
的な元素であり、その作用はQ、05%あれば有効であ
るが、2.0%全超えると溶接熱影響部の靭性全劣化さ
せるなど、浴接性に悪影響を与えるため上限は2.0チ
とする。Or: It is an extremely effective element in increasing hardenability and generating the entire composite structure, and its effect is effective at Q, 05%, but when it exceeds 2.0%, it causes damage to the weld heat affected zone. The upper limit is set at 2.0 inches because it has an adverse effect on bath weldability, such as total deterioration of toughness.
Motor と同様、焼入性を高め、第二相のマルテン
サイト化を促進し強度を向上させ、その作用はα05%
で有効であるが、1.0%全超えると溶接性の劣化、製
造コストの著しい上昇をもたらす。Similar to Motor, it improves hardenability, promotes martensitic formation of the second phase, and improves strength, and its effect is α05%.
However, if the content exceeds 1.0%, weldability deteriorates and manufacturing costs significantly increase.
B:α0005%未満では強度増加作用及び降伏比低下
作用(第二相のマルテンサイト化による)が少な(、[
1,0030%を超えるとこれらの作用全飽和し、また
延性、靭性の劣化を招くので[10005〜[100!
10 %IC[定する。B: When α is less than 5%, the strength increasing effect and yield ratio decreasing effect (due to martensite formation of the second phase) are small (, [
If it exceeds 1,0030%, these effects will be fully saturated and deterioration of ductility and toughness will result [10005~[100!
10% IC [determine.
’ri:’[’i はTiNとして析出し、γ粒金微細
化してγ→αの変態を促進し、かつ前述のBの効果を促
進するので、複合組織全製造するに当って有利な元素で
あり、その作用は101%で有効であるが、[1,2%
を超える添加ではTieの多量析出が生じ、降伏比を高
める原因となるので[12チを上限とする。'ri:'['i precipitates as TiN, refines the γ grains, promotes the γ→α transformation, and promotes the effect of B mentioned above, so it is an advantageous element in producing the entire composite structure. The effect is 101% effective, but [1.2%
If the addition exceeds 12%, a large amount of Tie will precipitate, causing an increase in the yield ratio, so the upper limit is set at 12%.
Ml)、V:組織の微細化の促進と強度、靭性の向上を
もたらし、その作用は101%で有効であるが、a2%
を超えると浴接熱影響部の靭性全署しく劣化させたり、
降伏比の上昇をもたらすのでα01%〜α20饅とする
。Ml), V: Promotes microstructural refinement and improves strength and toughness, and is effective at 101%, but a2%
Exceeding this may cause a severe deterioration of the toughness of the heat-affected zone of the bath.
Since it increases the yield ratio, α01% to α20 is selected.
本発明は前述のような成分組成含有する合金鋼をさらに
下記に示す制御圧延後空冷することにより、低降伏比高
張力厚鋼板を得るものである。即ち圧延加熱温度全AC
,以上、1200℃以下として圧延前のγ粒の粗大化を
できるだけ抑制した後、未再結晶γ域(Ara以上〜9
00℃)における累積圧下率を少くとも50%とし、さ
らに必要に応じ強度を得るために(γ+α)二相域にお
いて15%以上の圧下を行なうものであるが、上記圧延
条件における限定理由について以下に説明する。In the present invention, a steel plate having a low yield ratio and high tensile strength is obtained by further subjecting an alloy steel having the above-mentioned composition to the following controlled rolling and air cooling. That is, rolling heating temperature total AC
, above, after suppressing coarsening of γ grains as much as possible before rolling at 1200°C or lower,
The cumulative rolling reduction rate at 00°C) is at least 50%, and if necessary, rolling is performed by 15% or more in the (γ + α) two-phase region in order to obtain strength, but the reasons for the limitations on the above rolling conditions are as follows. Explain.
(a) 7111熱温度:
1200t4−超えて加熱すると、γ粒が粗大化し過ぎ
、その後の圧延過程においても充分に細粒化せず、粗大
ベイナイトが生成し易くなり、靭性に悪影響を与える。(a) 7111 thermal temperature: When heated above 1200 t4-, the γ grains become too coarse and are not sufficiently refined in the subsequent rolling process, making coarse bainite more likely to form, which adversely affects toughness.
又このような粗大γ粒はγ→α変態を遅延させ、未変態
7部への合金元素の濃化が減少し、その結果低降伏比を
妨げる怖れがある。さらにNJV。Moreover, such coarse γ grains retard the γ→α transformation and reduce the concentration of alloying elements in the untransformed 7 parts, which may hinder a low yield ratio. More N.J.V.
T1 などの析出物生成元素を含有する場合、1200
℃會超える過剰なヵロ熱は強度増加をもたらす反面、靭
性、延性を著しく害し、さらに可動転位へのビン止め効
果により降伏比全上昇させる原因となる。以上の理由か
ら加熱温度の上限を1200℃とした。特に、細粒子の
γ→α変態活性化による未変態7部への合金元素濃縮を
利用するという観点から1050℃以下の加熱が望まし
い。When containing precipitate forming elements such as T1, 1200
Excessive Calorie heat in excess of 10°C increases strength, but significantly impairs toughness and ductility, and also causes a total increase in yield ratio due to the binning effect on mobile dislocations. For the above reasons, the upper limit of the heating temperature was set to 1200°C. In particular, heating at 1050° C. or lower is desirable from the viewpoint of utilizing the concentration of alloying elements to 7 parts untransformed by activating the γ→α transformation of the fine particles.
(1)) 未再結晶γ域における累積圧下率:未再結晶
γ域の圧下はγ粒の扁平化をもたら踵さらに1粒内に変
形帯を導入Yα核の生成場所を大巾に増加させる。これ
は細粒α全生成し、強度、靭性を大巾に向上させるだけ
でなく、r→α変態を活性化し、未変態γへの合金元素
の濃化を促進する。これらの作用は50チ以上の圧下で
有効である。(1)) Cumulative reduction rate in the unrecrystallized γ region: Reduction in the unrecrystallized γ region flattens the γ grains, introduces a deformation zone within one grain, and greatly increases the location where Yα nuclei are generated. let This not only generates fine grains α and greatly improves strength and toughness, but also activates the r→α transformation and promotes the concentration of alloying elements in untransformed γ. These effects are effective under a pressure of 50 inches or more.
(0)(γ+α)二相域における圧延:二相域圧延は強
度の増加とシャルピー破面遷移温度の低下に有効である
が、15%未満の圧下ではこれらの効果が期待できない
。(0) (γ+α) Rolling in the two-phase region: Rolling in the two-phase region is effective in increasing strength and lowering the Charpy fracture transition temperature, but these effects cannot be expected at a reduction of less than 15%.
次に本発明を実施例を示して説明する。Next, the present invention will be explained by showing examples.
実施例+11
下記第1表に示す化学成分を有する供試材t真空浴製し
て150ゆのインボッ)k製造し、これf150m厚の
スラブに熱間鍛造後手片に切断し、この試料11050
℃に加熱し、粗圧延後930〜780℃の未再結晶γ域
にて75優の累積圧下した後空冷した圧延材(板厚:第
2表
第2表(続き)
実施例(2)
第1表に示す鋼No、B及びQ(ともに本発明の成分筒
゛囲内)の圧延条件の変化による機械的性質の変化を下
記第3表に示す。Example +11 A sample material having the chemical composition shown in Table 1 below was manufactured in a vacuum bath in a 150 mm ingot, which was hot forged into a 150 m thick slab and then cut into pieces.
℃, and after rough rolling, the rolled material was subjected to a cumulative reduction of 75% in the unrecrystallized γ range of 930 to 780℃, and then air-cooled (plate thickness: Table 2 Table 2 (Continued) Example (2) Table 3 below shows changes in mechanical properties of steels No., B, and Q (all within the composition range of the present invention) shown in Table 1 due to changes in rolling conditions.
本発明は上記実施例からも明らかなように鋼の成分組成
、加熱温度、熱間圧延における累積圧下率を限定すれば
空冷するだけで圧延のま\で降伏比80チ以下の低降伏
比の高張力厚鋼板を製造することができる。As is clear from the above embodiments, the present invention is capable of achieving a low yield ratio of 80 inches or less during rolling by simply cooling the steel by limiting the chemical composition, heating temperature, and cumulative reduction rate during hot rolling. High tensile strength steel plates can be manufactured.
添付図面、第1図は降伏比と合金パラメーター(P)と
の関係を示した図表でおる。The attached drawing, Figure 1, is a chart showing the relationship between yield ratio and alloy parameter (P).
Claims (1)
11.8−−λ5 % ; aoIAt[1005〜α
08qb全含み、さらに必要に応じ0ua10〜a50
%:Ni Q、10〜5.0%;Or a05〜2.0
%;v、Nb、’ri Q、ol−12o%: B C
LOOO5,0,00!to%;Mo aos−1,0
%01種又は2種以上全含み、かつ下記の式を満足し残
部はFθ 及び不可避的不純物より成る鋼’i、850
〜1200℃に加熱し、少くとも未再結晶オーステナイ
ト域にて累積圧下率50%以上の圧下全行ない、さらに
必要に応じオーステナイト+フエライトニ相域にて15
チ以上の圧下全行ない、上記圧延後空冷すること全特徴
とする低降伏比高張力厚鋼板の製造法 P(%)≧ (Llo 但しP(%) = 5i150 + Mn/20 +
Ou/20 + Ni/60+Or/20 + Mo/
15 + V/10 + 5B[Claims] 0[α20% to LOl; 5ia07~2.0%; Mn1
11.8--λ5%; aoIAt[1005~α
Includes all 08qb, plus 0ua10 to a50 if necessary
%: Ni Q, 10-5.0%; Or a05-2.0
%;v, Nb,'ri Q, ol-12o%: B C
LOOO5,0,00! to%; Mo aos-1,0
Steel 'i, 850, which contains all of %01 or 2 or more species and satisfies the following formula, with the remainder consisting of Fθ and unavoidable impurities.
Heating to ~1200°C, rolling is carried out at least in the unrecrystallized austenite region with a cumulative reduction rate of 50% or more, and if necessary, in the austenite + ferrite dual phase region.
A method for manufacturing a steel plate with a low yield ratio and high tensile strength, which is characterized by performing all rolling steps of 1 or more, and air cooling after the above-mentioned rolling.
Ou/20 + Ni/60+Or/20 + Mo/
15 + V/10 + 5B
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3480784A JPS60181229A (en) | 1984-02-25 | 1984-02-25 | Production of low-yield ratio high-tension thick steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3480784A JPS60181229A (en) | 1984-02-25 | 1984-02-25 | Production of low-yield ratio high-tension thick steel plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60181229A true JPS60181229A (en) | 1985-09-14 |
Family
ID=12424486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3480784A Pending JPS60181229A (en) | 1984-02-25 | 1984-02-25 | Production of low-yield ratio high-tension thick steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60181229A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63282240A (en) * | 1987-05-12 | 1988-11-18 | Nippon Steel Corp | High tensile strength rolled steel plate having excellent fatigue characteristics |
JPH05320752A (en) * | 1992-05-22 | 1993-12-03 | Sumitomo Metal Ind Ltd | Production of low yield ratio and high toughness steel |
EP0757113A1 (en) * | 1995-02-03 | 1997-02-05 | Nippon Steel Corporation | High-strength line-pipe steel having low yield ratio and excellent low-temperature toughness |
JP2003096517A (en) * | 2001-09-20 | 2003-04-03 | Nippon Steel Corp | Nonwater cooling type production method for thin high strength steel sheet having high absorbed energy |
JP2005048289A (en) * | 2003-07-16 | 2005-02-24 | Jfe Steel Kk | Low yield ratio, high strength and high toughness steel sheet, and its production method |
CN111206186A (en) * | 2020-02-24 | 2020-05-29 | 攀钢集团攀枝花钢铁研究院有限公司 | High-hole-expansion-performance cold-rolled dual-phase steel with tensile strength of 780MPa and preparation method thereof |
-
1984
- 1984-02-25 JP JP3480784A patent/JPS60181229A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63282240A (en) * | 1987-05-12 | 1988-11-18 | Nippon Steel Corp | High tensile strength rolled steel plate having excellent fatigue characteristics |
JPH05320752A (en) * | 1992-05-22 | 1993-12-03 | Sumitomo Metal Ind Ltd | Production of low yield ratio and high toughness steel |
EP0757113A1 (en) * | 1995-02-03 | 1997-02-05 | Nippon Steel Corporation | High-strength line-pipe steel having low yield ratio and excellent low-temperature toughness |
EP0757113A4 (en) * | 1995-02-03 | 1998-05-20 | Nippon Steel Corp | High-strength line-pipe steel having low yield ratio and excellent low-temperature toughness |
JP2003096517A (en) * | 2001-09-20 | 2003-04-03 | Nippon Steel Corp | Nonwater cooling type production method for thin high strength steel sheet having high absorbed energy |
JP2005048289A (en) * | 2003-07-16 | 2005-02-24 | Jfe Steel Kk | Low yield ratio, high strength and high toughness steel sheet, and its production method |
JP4507730B2 (en) * | 2003-07-16 | 2010-07-21 | Jfeスチール株式会社 | Low yield ratio high strength high toughness steel sheet and method for producing the same |
CN111206186A (en) * | 2020-02-24 | 2020-05-29 | 攀钢集团攀枝花钢铁研究院有限公司 | High-hole-expansion-performance cold-rolled dual-phase steel with tensile strength of 780MPa and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3653736B1 (en) | Hot-rolled steel strip and manufacturing method | |
US4138278A (en) | Method for producing a steel sheet having remarkably excellent toughness at low temperatures | |
JP6048436B2 (en) | Tempered high tensile steel plate and method for producing the same | |
JP7339339B2 (en) | Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same | |
JP4379085B2 (en) | Manufacturing method of high strength and high toughness thick steel plate | |
JPH08176659A (en) | Production of high tensile strength steel with low yield ratio | |
JP4265152B2 (en) | High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same | |
JPH07278656A (en) | Production of low yield ratio high tensile strength steel | |
JP7508469B2 (en) | Ultra-high strength steel plate with excellent shear workability and its manufacturing method | |
JPS5810442B2 (en) | Manufacturing method for high-toughness, high-strength steel with excellent workability | |
JPH01184226A (en) | Production of steel sheet having high-ductility high-strength multiple structure | |
JPH09279233A (en) | Production of high tension steel excellent in toughness | |
JPS60181229A (en) | Production of low-yield ratio high-tension thick steel plate | |
JPH10237547A (en) | Cold rolled steel sheet with high ductility and high strength, and its production | |
JP4824142B2 (en) | Steel for line pipe with good strength and ductility and method for producing the same | |
JP4038166B2 (en) | Steel plate excellent in earthquake resistance and weldability and manufacturing method thereof | |
JP2002363685A (en) | Low yield ratio high strength cold rolled steel sheet | |
JP7265008B2 (en) | Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method | |
JPH05245657A (en) | Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal | |
JP2598357B2 (en) | Manufacturing method of high strength steel sheet with excellent low temperature toughness | |
JPS6167717A (en) | Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone | |
JPH09324217A (en) | Manufacture of high strength steel for line pipe, excellent in hic resistance | |
JPH08283838A (en) | Production of low yield ratio, high ductility steel excellent in strength, toughness and ductility | |
JPH07233414A (en) | Production of low yield ratio high tensile strength steel plate excellent in uniform elongation | |
JPH08225883A (en) | Production of high tensile strength steel plate excellent in strength and toughness |