JPH09279233A - Production of high tension steel excellent in toughness - Google Patents

Production of high tension steel excellent in toughness

Info

Publication number
JPH09279233A
JPH09279233A JP8782896A JP8782896A JPH09279233A JP H09279233 A JPH09279233 A JP H09279233A JP 8782896 A JP8782896 A JP 8782896A JP 8782896 A JP8782896 A JP 8782896A JP H09279233 A JPH09279233 A JP H09279233A
Authority
JP
Japan
Prior art keywords
temperature
cooling
steel
strength
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8782896A
Other languages
Japanese (ja)
Other versions
JP3383148B2 (en
Inventor
Masaaki Fujioka
政昭 藤岡
Takashi Fujita
崇史 藤田
Hiroyuki Shirahata
浩幸 白幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08782896A priority Critical patent/JP3383148B2/en
Publication of JPH09279233A publication Critical patent/JPH09279233A/en
Application granted granted Critical
Publication of JP3383148B2 publication Critical patent/JP3383148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To impart a high strength and high toughness by rolling with controlling a low C and low Mn steel in a specific composition and micronizing the structure. SOLUTION: The composition is, by weight%, 0.03 to 0.45% C, 0.01 to 0.50% Si, 0.02 to 5.0% Mn, 0.001 to 0.1% Al, and the remainder part is Fe, B and inevitable impurity. The cast billet in this composition is executed with hot machining of rolling, etc., without cooling after casting, or it is once cooled to the room temperature, re-heated to, the temperature range of Ac3 point to 1250 deg.C and it is hot machined to be a steel. In this case, one pass or more than two passes, with continuing interval within 20sec., is executed at a temp. of 500 to 700 deg.C, the rolling strain rate of 0.1 to 20sec, the total strain amount is made as 0.8 to 5 and then it is cooled. Further, it is preferred to forcibly cool to the room temperature to <=500 deg.C, within 90sec. with the cooling velocity of 2 to <=20sec., after finishing of hot rolling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱間圧延によって
製造される鋼製品(薄鋼板、厚鋼板、線材、形鋼、棒鋼
など)において、その基本特性たる強度・靱性に優れた
高張力鋼の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel product (a thin steel plate, a thick steel plate, a wire rod, a shaped steel, a steel bar, etc.) produced by hot rolling, which is a high-strength steel excellent in basic strength and toughness as basic characteristics. The present invention relates to a manufacturing method of.

【0002】[0002]

【従来の技術】近年、鋼製品の軽量化、鋼構造物の使用
条件の過酷化にともない、より強靱で安全性の高い鋼の
開発が求められている。この様な要求に対し、従来、鋼
板の製造方法を改善し、金属組織の結晶粒の細粒化を図
り、鋼の強度、靱性を改善するための圧延方法が開発さ
れてきた。この様な方法の例としては、いわゆる制御圧
延法が上げられ、加速冷却法と組み合わせた製造法とし
て、特開昭63−223124号公報や特開昭63−1
28117号公報などに示されている。
2. Description of the Related Art In recent years, with the weight reduction of steel products and the severer conditions of use of steel structures, there has been a demand for the development of tougher and safer steel. In order to meet such demands, conventionally, a rolling method has been developed for improving the method for producing a steel sheet, for refining the crystal grains of the metal structure, and for improving the strength and toughness of the steel. An example of such a method is a so-called controlled rolling method, and as a manufacturing method combined with an accelerated cooling method, JP-A-63-223124 and JP-A-63-1 are known.
No. 28117 is disclosed.

【0003】これら従来法に示されている制御圧延法で
は、比較的高温のオーステナイト(以下、γと略記)の
再結晶温度域において圧延パス間で生じる静的再結晶を
利用し、γ粒を細粒化する。次いで、鋼板の温度が低下
するのを待ち、γの再結晶が生じない温度域(未再結晶
温度域)で、再び圧延を行うことによってγの結晶中に
転位などの欠陥を導入することが行われている。この様
な欠陥は、γがフェライト等に変態するに際して、γ粒
界と同様に、フェライト等の変態生成組織の核生成場所
となるため、冷却時に多数の結晶粒を一斉に生成させ、
金属組織をいっそう微細にすることが可能だからであ
る。
In the controlled rolling method shown in these conventional methods, the static recrystallization that occurs between rolling passes in the recrystallization temperature range of a relatively high temperature austenite (hereinafter abbreviated as γ) is utilized, and Atomize. Then, after waiting for the temperature of the steel sheet to decrease, it is possible to introduce defects such as dislocations into the γ crystal by rolling again in a temperature range in which γ recrystallization does not occur (unrecrystallized temperature range). Has been done. Such a defect, when γ is transformed into ferrite or the like, serves as a nucleation site for a transformation generation structure of ferrite or the like, similarly to the γ grain boundary, so that a large number of crystal grains are simultaneously produced during cooling,
This is because it is possible to make the metal structure finer.

【0004】[0004]

【発明が解決しようとする課題】しかし、このような方
法で得られるフェライトの粒径は小さいといってもせい
ぜい5μm程度であり、より結晶粒を微細化する方法が
求められている。
However, even if the ferrite obtained by such a method has a small grain size, it is at most about 5 μm, and there is a demand for a method of further refining the crystal grains.

【0005】[0005]

【課題を解決するための手段】本発明は制御圧延や加速
冷却といった従来の結晶粒微細化手段では得られないよ
うな顕著な細粒を得ることができる加工、冷却方法によ
り、強靱な高張力鋼の製造方法を提供することを目的と
する。上記課題を解決する手段として、以下の製造方法
を創作した。 (1)重量%で、C :0.03〜0.45%、Si:
0.01〜0.50%、Mn:0.02〜5.0%、A
l:0.001〜0.1%を含有し、残部がFeおよび
不可避的不純物からなる鋼片を鋳造後冷却することなく
そのまま圧延等による熱間加工を行うか、あるいは一度
室温まで冷却した後に再びAc3 点〜1250℃の温度
に再加熱し、熱間加工を行って鋼材を製造するに際し
て、一連の熱間加工のうち、1パスまたはパス間時間を
20秒以内の連続する2パス以上の加工を700℃以下
500℃以上の温度かつ圧延の歪速度を0.1〜20/
秒とし、その総歪量を0.8以上5以下となるように加
工を行い、その後、放冷する靱性に優れた高張力鋼の製
造方法。
The present invention uses a processing and cooling method capable of obtaining remarkable fine grains that cannot be obtained by the conventional grain refining means such as controlled rolling and accelerated cooling. An object is to provide a method for manufacturing steel. As a means for solving the above problems, the following manufacturing method was created. (1)% by weight, C: 0.03 to 0.45%, Si:
0.01 to 0.50%, Mn: 0.02 to 5.0%, A
l: containing 0.001 to 0.1%, the balance being Fe and unavoidable impurities, and then hot working by rolling etc. without cooling after casting, or after cooling once to room temperature When re-heating to a temperature of Ac 3 points to 1250 ° C. again and performing hot working to manufacture a steel material, in one series of hot working, one pass or two or more consecutive passes within 20 seconds of the time between passes Is processed at a temperature of 700 ° C. or lower and a temperature of 500 ° C. or higher and the strain rate of rolling is 0.1 to 20 /
Second, a method for producing a high-strength steel excellent in toughness, in which processing is performed so that the total strain amount is 0.8 or more and 5 or less and then allowed to cool.

【0006】(2)重量%で、C :0.03〜0.4
5%、Si:0.01〜0.50%、Mn:0.02〜
5.0%、Al:0.001〜0.1%を含有し、残部
がFeおよび不可避的不純物からなる鋼片を鋳造後冷却
することなくそのままに熱間加工を施すか熱間加工を行
わずそのまま一度600℃〜室温までの温度まで冷却す
るか、もしくは鋳造後一度室温まで冷却した後でAc3
〜1250℃の温度に再加熱し熱間加工するか熱間加工
を行わずそのまま600℃〜室温までの温度まで冷却す
るかして、その後700℃以下500℃以上の温度に加
熱し、1パスまたはパス間時間を20秒以内の連続する
2パス以上の加工を700℃以下500℃以上の温度、
かつ圧延の歪速度を0.1〜20/秒とし、その総歪量
を0.8以上5以下となる条件で加工を行い、その後、
放冷する靱性に優れた高張力鋼の製造方法。
(2) C: 0.03 to 0.4 by weight%
5%, Si: 0.01 to 0.50%, Mn: 0.02
A steel slab containing 5.0% and Al: 0.001 to 0.1%, the balance of which is Fe and unavoidable impurities, is hot-worked or hot-worked as it is without cooling after casting. Without cooling once to a temperature of 600 ° C to room temperature, or after cooling once to a room temperature after casting and then reheating to a temperature of Ac 3 point to 1250 ° C and hot working or without hot working 600 After cooling to a temperature from ℃ to room temperature, it is then heated to a temperature of 700 ° C or less and 500 ° C or more, and one pass or two or more consecutive passes within 20 seconds between passes are 700 ° C or less and 500 ° C or less. Above temperature,
And the strain rate of rolling is set to 0.1 to 20 / sec, and processing is performed under the condition that the total strain amount is 0.8 or more and 5 or less.
A method for producing a high-strength steel excellent in toughness, which is allowed to cool.

【0007】(3)上記の(1)または(2)記載の熱
間加工を行った後、熱間加工終了後90秒以内に室温〜
500℃未満の温度まで2℃/秒〜200℃/秒以下の
冷却速度で強制冷却することを特徴とする強度・靱性に
優れた高張力鋼の製造方法。 (4)上記の(3)記載の熱間加工および冷却を行った
後、300℃〜Ac1の温度で焼き戻しを行うことを特
徴とする強度・靱性に優れた高張力鋼の製造方法。
(3) After performing the hot working described in (1) or (2) above, at room temperature to within 90 seconds after the end of the hot working.
A method for producing a high-strength steel having excellent strength and toughness, which comprises forcibly cooling to a temperature of less than 500 ° C at a cooling rate of 2 ° C / sec to 200 ° C / sec or less. (4) A method for producing a high-strength steel excellent in strength and toughness, which comprises performing hot working and cooling as described in (3) above, followed by tempering at a temperature of 300 ° C to Ac 1 .

【0008】(5)さらに、重量%で、Nb:0.00
1〜0.05%、Ti:0.001〜0.1%、V :
0.001〜0.1%のいずれか1種、または2種以上
を含有することを特徴とする上記(1)〜(4)のいず
れかの1項に記載の強度・靱性に優れた高張力鋼の製造
方法。
(5) Furthermore, in% by weight, Nb: 0.00
1 to 0.05%, Ti: 0.001 to 0.1%, V:
0.001 to 0.1% of any one kind or two or more kinds is contained, and the strength and toughness are excellent and high. Method of manufacturing tensile steel.

【0009】(6)さらに、重量%で、Mo:0.01
〜1%、Ni:0.01〜5%、Cr:0.01〜3
%、Cu:0.01〜3%、B :0.0001〜0.
003%のいずれか1種、または2種以上を含有するこ
とを特徴とする上記(1)〜(5)のいずれかの1項に
記載の強度・靱性に優れた高張力鋼の製造方法。
(6) Further, in weight%, Mo: 0.01
~ 1%, Ni: 0.01-5%, Cr: 0.01-3
%, Cu: 0.01 to 3%, B: 0.0001 to 0.
Any one kind of 003% or 2 kinds or more is contained, The manufacturing method of the high strength steel excellent in strength and toughness as described in any one of said (1)-(5) characterized by the above-mentioned.

【0010】(7)さらに、重量%で、REM:0.0
02〜0.10%、Ca :0.0003〜0.003
0%のいずれか1種、または2種以上を含有することを
特徴とする上記(1)〜(6)のいずれかの1項に記載
の強度・靱性に優れた高張力鋼の製造方法にある。
(7) Further, in% by weight, REM: 0.0
02 to 0.10%, Ca: 0.0003 to 0.003
The method for producing a high-strength steel excellent in strength and toughness according to any one of the above items (1) to (6), characterized by containing 0% of any one kind or two kinds or more. is there.

【0011】以下、本発明について詳細に説明する。ま
ず、従来の制御圧延による細粒化方法を冶金的な見地か
ら検討してみると前述したように、主に以下の効果によ
るものであると考えられる。 比較的高温のオーステナイト(以下、γと略記)の再
結晶温度域において圧延パス間で生じる静的再結晶を利
用し、γ粒を細粒化する。 さらに、比較的低温であるところのγの再結晶が生じ
ない温度域(未再結晶温度域)で圧延を行うことによっ
て、γの結晶中に転位などの欠陥を多数導入する。 上記のようなγ粒界や転位などの欠陥は、γがフェラ
イト等に変態するに際して、変態生成組織の核生成場所
となるため、金属組織を微細にする。
Hereinafter, the present invention will be described in detail. First, when the conventional method of controlling grain refining by controlled rolling is examined from a metallurgical point of view, as described above, it is considered that the main effects are as follows. In the recrystallization temperature range of a relatively high temperature austenite (hereinafter, abbreviated as γ), static crystallization that occurs between rolling passes is used to refine γ grains. Further, by rolling in a temperature range (non-recrystallization temperature range) where γ recrystallization does not occur at a relatively low temperature, many defects such as dislocations are introduced into γ crystals. The defects such as γ grain boundaries and dislocations described above serve as nucleation sites of the transformation-generated structure when γ is transformed into ferrite or the like, and thus the metal structure is made fine.

【0012】これらのうち〜はいずれもフェライト
等の変態生成組織の核生成場所を提供するものであっ
て、これにより最終的なフェライトの結晶粒径を微細に
するものであり、いずれもオーステナイトからフェライ
トへの変態時に発生するフェライト粒数を増加させ微細
化を図る。しかし、このような変態を利用した微細化で
は通常の鋼のオーステナイトからフェライトへの変態開
始温度は750℃から800℃と鋼中の鉄原子の拡散が
比較的速い温度であるために、結晶粒成長が速く、せい
ぜい5μm程度の結晶粒しか得られない。また、強制冷
却によりフェライト変態の温度を強制的に低下させるこ
とができるがこのような場合には生成するフェライトが
針状であったり、ベイナイトが生成するなど靱性の観点
から好ましくない組織となる。
[0012] Of these, each of (1) to (3) provides a nucleation site for a transformation forming structure of ferrite or the like, which makes the final ferrite crystal grain size finer, and all of them are made of austenite. The number of ferrite grains generated during transformation into ferrite is increased to achieve fineness. However, in the refinement utilizing such transformation, the transformation start temperature of ordinary steel from austenite to ferrite is 750 ° C to 800 ° C, and the diffusion of iron atoms in the steel is relatively fast. The growth is fast, and only crystal grains of about 5 μm can be obtained. Further, the temperature of the ferrite transformation can be forcibly lowered by forced cooling, but in such a case, the resulting ferrite has an acicular shape or bainite is formed, which is an unfavorable structure from the viewpoint of toughness.

【0013】そこで本発明者らは、上記のような変態を
利用した細粒化の限界を打破し、著しい細粒のフェライ
ト組織を得る方法としてフェライトとオーステナイトま
たはフェライトとパーライト、ベイナイト、マルテンサ
イトの混合組織を適正な条件で加工、冷却し、フェライ
ト粒を圧延途中、ロール下において再結晶(動的再結晶
または回復)を生じせしめることにより、フェライト結
晶粒を図1に示すよう極めて微細とすることができるこ
とを見いだし、これらの現象を調査、解析し、請求項1
〜7の靱性に優れた高張力鋼の製造法を発明した。
Therefore, the inventors of the present invention have overcome the limitation of grain refinement utilizing the above-mentioned transformation to obtain a ferrite structure of extremely fine grain, as a method of obtaining ferrite and austenite or ferrite and pearlite, bainite and martensite. By processing and cooling the mixed structure under appropriate conditions and causing recrystallization (dynamic recrystallization or recovery) under the roll of the ferrite grains during rolling, the ferrite grains are made extremely fine as shown in FIG. We found that we could, and investigated and analyzed these phenomena.
Invented is a method for producing a high-strength steel having excellent toughness of ~ 7.

【0014】本発明の根幹となる技術の要点は以下の通
りである。フェライトの動的再結晶(または回復)によ
り結晶粒を1μm以下に微細化できる。このときの、微
細かつ均一なフェライト粒を得るためには以下のような
加工および冷却に関する条件が必要である。まず、再結
晶を生じせしめる加工前の組織は、フェライトとオース
テナイトまたはフェライトとパーライト、ベイナイト、
マルテンサイトなどの第2相との混合組織である。これ
は、第2相とフェライトの間の変形抵抗差のためフェラ
イトがより加工されやすくなることと加工によりフェラ
イトが伸延、再結晶する際に第2相により分断されてい
るために極めて薄く伸び、再結晶後の粒成長、合体も押
さえられる為と考えられる。
The main points of the technique which is the basis of the present invention are as follows. The crystal grains can be made finer to 1 μm or less by the dynamic recrystallization (or recovery) of ferrite. At this time, in order to obtain fine and uniform ferrite grains, the following processing and cooling conditions are required. First, the structure before processing that causes recrystallization is ferrite and austenite or ferrite and pearlite, bainite,
It is a mixed structure with a second phase such as martensite. This is because the ferrite is more easily processed due to the difference in deformation resistance between the second phase and the ferrite, and the ferrite is elongated by the processing, and the ferrite is divided by the second phase when recrystallized, so that the elongation is extremely thin, It is considered that grain growth and coalescence after recrystallization can be suppressed.

【0015】次に、加工を行う温度については前記の加
工前組織を得るためフェライトと第2相が共存する温度
でなければならず、Ac3 〜室温である必要があるが、
本発明の主眼は第2相が微量に存在するフェライト主体
の組織を動的再結晶させることによるのでフェライトの
組織分率がある程度(少なくとも60%程度)必要であ
るが、これを安定的に達成するには700℃以下である
ことが必要である。また、加工による動的再結晶後の粒
成長を抑制する観点からも加工温度は700℃以下であ
ることが望ましい。しかし、加工温度が低すぎると原子
の拡散が著しく遅延し安定的に動的再結晶を生じさせら
れないこのような観点から500℃以上の温度で加工す
ることが必要である。
Next, the processing temperature must be a temperature at which the ferrite and the second phase coexist in order to obtain the above-described structure before processing, and it is necessary that the temperature is between Ac 3 and room temperature.
Since the main purpose of the present invention is to dynamically recrystallize the structure of ferrite mainly containing a small amount of the second phase, a certain amount of ferrite structure fraction (at least about 60%) is required, but this is stably achieved. In order to achieve this, the temperature must be 700 ° C. or lower. Further, the processing temperature is preferably 700 ° C. or lower from the viewpoint of suppressing grain growth after dynamic recrystallization due to processing. However, if the processing temperature is too low, the diffusion of atoms is significantly delayed, and dynamic recrystallization cannot be stably generated. From such a viewpoint, it is necessary to process at a temperature of 500 ° C. or higher.

【0016】次に、加工における歪み量および歪み速度
は安定的に動的再結晶を生じさせ、かつ再結晶後の結晶
粒径を微細にできるように設定することが必要である。
図2は0.14%C−0.25%Si−1.2%Mn−
0.01%Nb−0.01%Tiを含む鋼を本発明の条
件で加工し、図1のような細粒組織を得たときの応力−
歪み曲線である。これには動的再結晶によると考えられ
る加工中の軟化が生じており、さらに軟化は繰り返し生
じ、再結晶が繰り返し生じていることが推定される。こ
の様な場合、第1回目の軟化に於いてほぼ金属組織は細
粒かつ均一なものとなりその後はほぼ定常状態にあるも
のと考えられる。
Next, the strain amount and strain rate in processing must be set so that dynamic recrystallization can be stably generated and the crystal grain size after recrystallization can be made fine.
FIG. 2 shows 0.14% C-0.25% Si-1.2% Mn-
Stress when a steel containing 0.01% Nb-0.01% Ti is processed under the conditions of the present invention to obtain a fine grain structure as shown in FIG.
It is a distortion curve. It is presumed that softening occurs during processing, which is considered to be due to dynamic recrystallization, and further softening occurs repeatedly, and recrystallization repeatedly occurs. In such a case, it is considered that in the first softening, the metal structure becomes fine-grained and uniform, and thereafter it is in a substantially steady state.

【0017】従って、動的再結晶により好ましい組織を
得るにはある程度以上の歪み量が必要であり、本発明の
温度範囲では0.8以上の歪みが必要であることが実験
的に確認された。また、歪み速度についてはこれが小さ
いほど動的再結晶が生じやすいが、結晶粒径の微細化が
できない。また、歪み速度が大きすぎると動的再結晶が
生じず、加工時の荷重も極めて大きくなることが解っ
た。そこで、動的再結晶が安定的に生じ、結晶粒の微細
化が可能な範囲を検討した結果、適当な歪み速度の範囲
が0.1〜20であることが解った。
Therefore, it has been experimentally confirmed that a certain amount of strain is required to obtain a preferable structure by dynamic recrystallization, and that strain of 0.8 or more is required in the temperature range of the present invention. . Regarding the strain rate, the smaller the strain rate, the more easily dynamic recrystallization occurs, but the grain size cannot be reduced. It was also found that if the strain rate is too high, dynamic recrystallization does not occur and the load during processing becomes extremely large. Then, as a result of examining the range in which the dynamic recrystallization is stably generated and the crystal grains can be made finer, it has been found that the appropriate strain rate range is 0.1 to 20.

【0018】次に、上記の加工は1パスで行っても2パ
ス以上で行ってもパス間時間を短時間とすればその効果
は基本的に変わらない。本発明の温度範囲では加工温度
が比較的低くパス間での回復がそれほど速くなくパス間
時間を20秒以内とすれば、その間の回復は小さく、多
パスでの歪みがほぼ累積するからである。最後に、上記
の加工により加工直後には極めて微細なフェライト組織
を得ることができるが、これを加工終了後、速やかに冷
却するとフェライトの結晶粒成長を抑制可能とし、より
優れた特性を得ることを可能とする。また、加工時の第
2相としてオーステナイトが存在する場合には水冷によ
ってオーステナイトは、マルテンサイト、ベイナイトと
なり鋼を強化できるが延性、靱性を劣化させる可能性が
ある。このような場合には水冷を冷却途中で停止させる
か、水冷後に焼き戻しを行うことで強度、靱性、延性の
優れた鋼の製造ができることとなる。
Next, whether the above-mentioned processing is performed in one pass or in two or more passes, the effect is basically the same if the time between passes is short. This is because, in the temperature range of the present invention, the processing temperature is relatively low and the recovery between passes is not so fast, and if the interpass time is within 20 seconds, the recovery during that period is small and the strains in multiple passes are almost accumulated. . Finally, by the above processing, it is possible to obtain an extremely fine ferrite structure immediately after processing, but it is possible to suppress the crystal grain growth of ferrite by cooling it rapidly after processing and obtain more excellent properties. Is possible. When austenite is present as the second phase during processing, water cooling transforms austenite into martensite and bainite, which can strengthen the steel but may deteriorate ductility and toughness. In such a case, water cooling can be stopped during cooling, or tempering can be performed after water cooling, whereby steel with excellent strength, toughness, and ductility can be manufactured.

【0019】以下には、各成分、製造条件の限定の理由
について述べる。Cは鋼の強化を行うのに有効な元素で
あり0.03%未満では十分な強度が得られないととも
に本願が必須とする第2相が安定的に生成しない。一
方、その含有量が0.45%を越えると、溶接性を劣化
させる。Siは脱酸元素として、また、鋼の強化元素と
して有効であるが、0.01%未満の含有量ではその効
果がない。一方、0.5%を越えると、鋼の表面性状を
損なう。
The reasons for limiting each component and manufacturing conditions will be described below. C is an element effective for strengthening steel, and if it is less than 0.03%, sufficient strength cannot be obtained and the second phase essential to the present invention is not stably generated. On the other hand, if its content exceeds 0.45%, the weldability is deteriorated. Si is effective as a deoxidizing element and as a strengthening element for steel, but it is not effective when the content is less than 0.01%. On the other hand, if it exceeds 0.5%, the surface properties of steel are impaired.

【0020】Mnは鋼の強化に有効な元素であり、0.
02%未満では十分な効果が得られない。一方、その含
有量が5.0%を越えると鋼の加工性を劣化させる。A
lは脱酸元素およびオーステナイト温度域への再加熱時
の結晶粒として添加されるが0.001%未満の含有量
ではその効果がなく、0.1%を越えると、鋼の表面性
状を劣化させる。Ti、VおよびNbは、いずれも微量
の添加で結晶粒の微細化と析出強化の面で有効に機能す
るので溶接部の靱性を劣化させない範囲で使用しても良
い。このような観点からその添加量の上限をTi、Vで
は0.1%、Nbでは0.05%とする。また、その添
加量の下限を0.001%とするのはこれ未満では効果
がないからである。
Mn is an element effective for strengthening steel, and M.
If it is less than 02%, a sufficient effect cannot be obtained. On the other hand, if its content exceeds 5.0%, the workability of steel deteriorates. A
l is added as a deoxidizing element and as crystal grains at the time of reheating to the austenite temperature range, but if the content is less than 0.001%, there is no effect, and if it exceeds 0.1%, the surface properties of steel deteriorate. Let Each of Ti, V and Nb effectively functions in terms of grain refinement and precipitation strengthening when added in a small amount, and thus may be used in a range that does not deteriorate the toughness of the welded portion. From this point of view, the upper limits of the amounts added are 0.1% for Ti and V, and 0.05% for Nb. Further, the lower limit of the amount added is 0.001% because if it is less than this, there is no effect.

【0021】Cu,Ni.Cr,Mo,Bはいずれも鋼
の焼入れ性を向上させる元素であり、本発明の場合、そ
の添加により鋼の強度を高めることができる。しかし、
過度の添加は鋼の靱性および溶接性を損なうため、0.
01%≦Cu≦3.0%、0.01%≦Ni≦5.0
%、0.01%≦Cr≦3.0%、0.01%≦Mo≦
1.0%、0.0001%≦B≦0.003%に限定す
る。Cu,Ni,Cr,Moのそれぞれの下限を0.0
1%、Bの下限を0.0001%としたのはこれ未満で
は効果がないからである。
Cu, Ni. Cr, Mo, and B are all elements that improve the hardenability of steel, and in the case of the present invention, the addition of Cr can increase the strength of steel. But,
Since excessive addition impairs the toughness and weldability of steel,
01% ≤ Cu ≤ 3.0%, 0.01% ≤ Ni ≤ 5.0
%, 0.01% ≦ Cr ≦ 3.0%, 0.01% ≦ Mo ≦
It is limited to 1.0% and 0.0001% ≦ B ≦ 0.003%. The lower limit of each of Cu, Ni, Cr and Mo is set to 0.0
The lower limit of 1% and B is set to 0.0001% because the effect is not achieved below this range.

【0022】REM、CaはSの無害化に有効である
が、添加量が少ないとその効果が無く、また、過度の添
加は靱性を損なうためREMについては0.002〜
0.10%、Caについては0.0003〜0.003
0%に限定する。その他、不可避的不純物であるP、S
の含有量はそれぞれ0.02%以下、0.008%以下
が好ましい。
REM and Ca are effective for detoxifying S, but if the addition amount is small, the effect is not obtained, and excessive addition impairs toughness, so REM is 0.002 to 0.002.
0.10%, 0.0003 to 0.003 for Ca
Limited to 0%. In addition, inevitable impurities such as P and S
The content of each is preferably 0.02% or less and 0.008% or less.

【0023】次に、本発明における製造条件に付いて述
べる。本発明はいかなる鋳造条件で鋳造された鋼片につ
いても有効であるので、特に鋳造条件を特定する必要は
ない。また、本発明の根幹となる第2相が存在する状態
での加工は、一度完全なオーステナイト域(Ac3 以上
の温度)まで加熱し、その冷却過程の700℃〜500
℃の間で加工を行う場合(請求項1)と一度600℃〜
室温までの温度に冷却し、その後の昇温過程で加工を行
う場合(請求項2)が考えられる。
Next, the manufacturing conditions in the present invention will be described. Since the present invention is effective for a steel slab cast under any casting condition, it is not necessary to specify the casting condition. Further, the processing in the state in which the second phase, which is the basis of the present invention, exists is once heated to a complete austenite region (a temperature of Ac 3 or higher) and then 700 ° C. to 500 ° C. in the cooling process.
When processing is carried out between ℃ (Claim 1) and once 600 ℃ ~
A case may be considered in which the temperature is cooled to room temperature and the processing is performed in the subsequent temperature rising process (claim 2).

【0024】前者の場合には、鋳片を鋳造後、冷却する
こと無くそのまま熱間加工を開始しても一度室温まで冷
却した鋳片をAc3 点〜1250℃に再加熱した後に圧
延を開始しても良い。ここで再加熱の温度をAc3 点以
上としたのはこれ未満では圧延時の鋼の金属組織が完全
なオーステナイト組織とはならないからである。また再
加熱温度の上限を1250℃としたのはこれ以上の温度
では鋼の金属組織が粗大化し、所望の靱性が得られない
からである。
In the former case, after casting the cast slab, even if the hot working is started as it is without cooling, the cast slab once cooled to room temperature is reheated to Ac 3 point to 1250 ° C. and then rolled. You may. Here, the reheating temperature is set to Ac 3 or higher because the metal structure of the steel at the time of rolling does not become a complete austenite structure below this. Further, the upper limit of the reheating temperature is set to 1250 ° C. because the metal structure of steel becomes coarse at a temperature higher than this temperature and desired toughness cannot be obtained.

【0025】また、後者の場合の加工は、鋼片を鋳造後
熱間加工することなくそのまま一度600℃〜室温まで
の温度まで冷却した後に700℃以下500℃以上の温
度に再加熱して実施するか、もしくは鋳造後そのまま熱
間加工を行い、一度600℃〜室温までの温度まで冷却
した後に700℃以下500℃以上の温度に再加熱して
実施するか、もしくは鋳造後一度室温まで冷却した鋳片
をAc3 点〜1250℃に再加熱した後に熱間加工を行
うかもしくは熱間加工を行わずに600℃〜室温までの
温度まで冷却した後に700℃以下500℃以上の温度
に再加熱して実施すれば良い。
In the latter case, the steel slab is not hot-worked after casting but is once cooled to a temperature of 600 ° C. to room temperature and then reheated to a temperature of 700 ° C. or lower and 500 ° C. or higher. Or, after the casting, hot working as it is, once cooled to a temperature of 600 ° C. to room temperature and then reheated to a temperature of 700 ° C. or less and 500 ° C. or higher, or once cooled to room temperature after casting. The slab is reheated to Ac 3 point to 1250 ° C and then hot-worked or cooled to a temperature of 600 ° C to room temperature without hot-working and then reheated to 700 ° C or lower and 500 ° C or higher. You can do it.

【0026】鋳造後直接でも、鋳造後加工を行った後で
も、鋳造後に冷却し再度オーステナイト域に再加熱した
後でも、オーステナイト域より一度600℃〜室温まで
の温度まで冷却すれば鋼の金属組織は主にフェライトお
よび第2相であるパーライト、ベイナイト、マルテンサ
イト等の組織となり本発明の主要件を満たすからであ
る。なお、600℃〜室温までの温度まで冷却するに先
立っての加工や再加熱は600℃〜室温に冷却した際の
フェライト結晶粒を微細にするので本発明に対しては有
利に作用する。
The metallographic structure of steel can be obtained by directly cooling from the austenite region to a temperature of 600 ° C. to room temperature, directly after casting, after performing post-casting processing, after cooling after casting, and after reheating to the austenite region. Is mainly composed of ferrite and the second phase, such as pearlite, bainite, and martensite, and satisfies the main requirements of the present invention. It should be noted that the processing and reheating prior to cooling to a temperature of 600 ° C. to room temperature make the ferrite crystal grains fine when cooled to 600 ° C. to room temperature, which is advantageous for the present invention.

【0027】次にフェライトの動的再結晶を生じさせる
加工は、700℃〜500℃で行う必要がある。これ
は、700℃以上ではオーステナイトの体積分率が大き
すぎフェライト部分を微細化できたとしてもそれが一部
分にすぎず、目的とする組織が得られないからである。
それは、同一条件で加工を受けたフェライト部分とオー
ステナイトで加工を受けフェライトに変態した部分では
フェライト部分の方が結晶粒径はかなり微細だからであ
る。また、同時に動的再結晶したフェライト部分も加工
温度が高くなるほど結晶粒は大きくなる傾向があり加工
温度はできるだけ低い方が好ましい。しかしながら、加
工温度が低すぎると原子の拡散が生じにくく、再結晶が
起こりにくくなる。このような場合、加工されたフェラ
イト粒は単に偏平するだけとなり、微細な整粒組織が得
られず、鋼の特性に異方性が発生する。そこで、安定的
にフェライトの再結晶が生じるためには500℃以上の
温度域で加工を行うことが必要である。
Next, the processing for causing the dynamic recrystallization of ferrite must be carried out at 700 ° C to 500 ° C. This is because at 700 ° C. or higher, the volume fraction of austenite is too large, and even if the ferrite portion can be made fine, it is only a part of it and the desired structure cannot be obtained.
This is because the ferrite part processed under the same conditions and the part processed by austenite and transformed into ferrite have a much smaller crystal grain size. At the same time, as the processing temperature becomes higher, the crystal grains also tend to become larger in the dynamically recrystallized ferrite portion, and the processing temperature is preferably as low as possible. However, if the processing temperature is too low, the diffusion of atoms is less likely to occur and recrystallization is less likely to occur. In such a case, the processed ferrite grains are simply flattened, a fine grain size control structure cannot be obtained, and anisotropy occurs in the characteristics of the steel. Therefore, in order for ferrite recrystallization to occur stably, it is necessary to perform processing in a temperature range of 500 ° C. or higher.

【0028】また、700℃〜500℃での加工におけ
る歪み量は、この温度範囲で加工中に組織全体に再結晶
が生じかつ再結晶後の結晶粒径が微細であることが必要
である。組織全体に再結晶が生じるためには加工量が一
定量以上必要であり、このような観点から一連の加工に
よる総歪み量は0.8以上の歪みが必要である。また、
歪み量が0.8以上確保されれば、歪み量は大きければ
大きい程良いが、通常の圧延等の加工においては5以上
の歪み量を確保するのは難しい。そこで本発明では与え
る歪みの上限を5とした。
The strain amount during processing at 700 ° C. to 500 ° C. requires that recrystallization occurs in the entire structure during processing in this temperature range and the crystal grain size after recrystallization is fine. In order to cause recrystallization in the entire structure, the processing amount is required to be a certain amount or more. From this viewpoint, the total strain amount due to the series of processing is required to be 0.8 or more. Also,
If the strain amount is secured at 0.8 or more, the larger the strain amount is, the better. However, it is difficult to secure the strain amount of 5 or more in the ordinary processing such as rolling. Therefore, in the present invention, the upper limit of the strain applied is set to 5.

【0029】また、加工時の歪速度は小さいほど動的再
結晶が生じやすく歪み速度が大きいと生じにくい。一
方、歪み速度が小さいと加工中の転位の減少(回復)が
速く、その結果、再結晶後に得られる結晶粒径は大き
く、歪み速度が大きい場合には結晶粒径は小さい。この
ような動的再結晶の生じ易さと、再結晶後の結晶粒径の
両者を考慮すると歪み速度には適正な領域が存在する。
このような観点から加工中の歪み速度を0.1/秒以上
20/秒以下と限定した。0.1/秒未満では圧延に要
する時間が長すぎこの間に転位の回復が生じてしまい、
α中に多数の転位を導入することができず、動的再結晶
が生じても微細な結晶粒を得られないからである。ま
た、圧延時の歪み速度を20/秒以下としたのは20/
秒超では700℃〜500℃の温度域で動的再結晶を生
じさせるのが難しいからである。上記の圧延は、1パス
で行うか多パスで行う場合には、パス間時間を20秒以
内とすることが必要である。これはパス間時間を20秒
以上とするとパス間でフェライトの回復が進行してしま
い歪みの累積効果が得られないからである。
Further, as the strain rate during processing is smaller, dynamic recrystallization is more likely to occur, and when the strain rate is higher, it is less likely to occur. On the other hand, when the strain rate is low, the dislocations during processing are reduced (recovered) quickly, and as a result, the crystal grain size obtained after recrystallization is large, and when the strain rate is high, the crystal grain size is small. Considering both the easiness of such dynamic recrystallization and the crystal grain size after recrystallization, there is an appropriate region for the strain rate.
From this point of view, the strain rate during processing is limited to 0.1 / sec or more and 20 / sec or less. If it is less than 0.1 / sec, the time required for rolling is too long, and dislocation recovery occurs during this period.
This is because a large number of dislocations cannot be introduced into α and fine crystal grains cannot be obtained even if dynamic recrystallization occurs. The strain rate during rolling is set to 20 / sec or less because it is 20 / sec.
This is because it is difficult to cause dynamic recrystallization in the temperature range of 700 ° C. to 500 ° C. for more than a second. When the above rolling is performed in one pass or in multiple passes, the time between passes needs to be 20 seconds or less. This is because if the interpass time is set to 20 seconds or more, the ferrite recovery progresses between the passes, and the cumulative effect of strain cannot be obtained.

【0030】次に、動的再結晶を生ぜしめる一連の熱間
圧延に引き続いて、強制冷却を行う方法について説明す
る。まず、強制冷却の効果については以下の2点が考え
られる。まず、強制的に冷却することによって、加工後
に得られた微細なフェライト組織がその後の放冷の間の
結晶粒成長により成長しその有効性の低減を抑制するた
めである。また、第2の理由は、特に、オーステナイト
からの冷却過程で加工を行う場合に第2相として存在す
る微量のオーステナイトを未変態のまま平衡状態に於け
る変態開始点(Ac3 点)以下の温度に保ち来たし、過
冷度の高い状態から変態を生ぜしめることにより、変態
組織の核生成の駆動力を著しく上昇させ、多数の結晶粒
を一斉に生成させてフェライトやパーライトといった変
態後組織の細粒化を図るのが第一点の目的であり、この
ような細粒化効果は、オーステナイトが加工を受け、オ
ーステナイト粒内に多くの転位等の欠陥が導入されてい
る場合に顕著に現れる。また、冷却により変態を低温で
生じさせることによって、オーステナイト部分を微細な
フェライトと比較的強度の高いベイナイトやマルテンサ
イト組織とし、鋼の強度を向上することができる。
Next, a method of performing forced cooling following a series of hot rolling that causes dynamic recrystallization will be described. First, the following two points can be considered regarding the effect of forced cooling. First, by forcibly cooling, the fine ferrite structure obtained after processing grows due to the growth of crystal grains during subsequent cooling, and the reduction of its effectiveness is suppressed. In addition, the second reason is that a trace amount of austenite existing as the second phase when the processing is performed in the cooling process from austenite is not more than the transformation start point (Ac 3 point) in the equilibrium state without transformation. By maintaining the temperature and causing transformation from a state of high supercooling, the driving force for nucleation of the transformation structure is significantly increased and a large number of crystal grains are simultaneously generated to transform the transformed structure such as ferrite and pearlite. The first purpose is to achieve fine graining, and such fine graining effect is prominent when austenite undergoes processing and many defects such as dislocations are introduced into the austenite grains. . Further, by causing the transformation to occur at a low temperature by cooling, the austenite portion has fine ferrite and bainite or martensite structure having a relatively high strength, and the strength of the steel can be improved.

【0031】本発明においては、これらの観点から強制
冷却によるフェライトの細粒化効果を発揮させ、さらに
場合によってはベイナイトやマルテンサイトを若干生成
させることにより強化を図るために、請求項3では動的
再結晶を生ぜしめる熱間圧延に引き続いて、90秒以内
に強制冷却を開始し、室温〜500℃未満室温以上の温
度までを2〜200℃/秒で冷却を行うことを規定して
いる。以下に限定の理由を述べる。
In the present invention, from the above viewpoints, the effect of grain refining of ferrite by forced cooling is exerted, and in some cases, bainite and martensite are slightly generated to strengthen the ferrite. It is specified that, following hot rolling that causes static recrystallization, forced cooling is started within 90 seconds, and cooling is performed at room temperature to less than 500 ° C. to room temperature or more at 2 to 200 ° C./second. . The reasons for limitation will be described below.

【0032】まず、冷却開始を加工終了から90秒以内
としたのは、圧延時に動的再結晶により形成された微細
なフェライト組織が粒成長によって粗大化するのを防ぐ
ためであって、これを越えてからの冷却開始ではその効
果が最大限に発揮されず、加工後に放冷した場合とあま
り変わらなくなり水冷の効果が顕著に現れないからであ
る。つぎに、冷却終了温度を室温〜500℃未満とした
のは500℃以上の温度では温度が高すぎ、加工によっ
て得られた微細なフェライト組織に粒成長を抑制できな
いからであり、室温以上としたのはこれ以下の温度への
冷却は通常の水冷等では実施しにくいからである。
First, the reason why cooling was started within 90 seconds from the end of processing was to prevent the fine ferrite structure formed by dynamic recrystallization during rolling from coarsening due to grain growth. This is because the effect is not maximized when cooling is started after the temperature exceeds the limit, and the effect of water cooling does not appear remarkably as it is when it is left to cool after processing. Next, the reason why the cooling end temperature is set to room temperature to less than 500 ° C. is that the temperature is too high at a temperature of 500 ° C. or higher and grain growth cannot be suppressed in the fine ferrite structure obtained by processing, and the temperature is set to room temperature or higher. This is because cooling to a temperature below this is difficult to carry out with ordinary water cooling or the like.

【0033】また、請求項4は、上記のような冷却を行
った際に加工後にオーステナイトであった部位が非常に
強度の高いマルテンサイトに変態し、鋼の強度を過度に
高めた場合には同時に著しい靱性の劣化が生じる場合が
ある。このような場合、冷却後にさらに300℃〜Ac
1 の温度で焼き戻しを行うことにより強度、靱性の優れ
た鋼とすることができる。焼き戻しは、マルテンサイト
の生成によって著しく劣化する靱性を改善することを目
的として実施するものであり、焼戻し温度を300℃以
上としたのはこれ未満では温度が低すぎ固溶炭素を短時
間で容易に析出させることができないからであり、焼戻
し温度をAc1 点以下としたのはAc1点を超えると変
態が生じてしまい強度の低下や組織の不均一さのために
かえって靱性が劣化してしまうからである。
Further, according to claim 4, when the austenite portion after processing is transformed into martensite having a very high strength when the above-mentioned cooling is performed and the strength of the steel is excessively increased, At the same time, significant deterioration of toughness may occur. In such a case, after cooling, the temperature is further increased to 300 ° C to Ac
By tempering at a temperature of 1 , a steel having excellent strength and toughness can be obtained. The tempering is carried out for the purpose of improving the toughness that is significantly deteriorated by the formation of martensite. The tempering temperature is set to 300 ° C. or higher because if the temperature is lower than this, the temperature is too low and solid solution carbon is formed in a short time. is because it is impossible to easily precipitated, the tempering temperature was less than Ac 1 point is rather toughness is deteriorated due to non-uniformity and a decrease in tissue strength will occur is transformed exceeds Ac 1 point This is because it will end up.

【0034】[0034]

【実施例】次に本発明の実施例によって本発明の有効性
を示す。表1は実施例の鋼の成分を示すものである。な
お表中で、〇印で示した鋼は比較鋼であることを示して
おり、本発明に一致しない項目を下線で示してある。次
に、このような成分の鋼を用い種々の製造条件で製造し
た鋼板について得られた強度、靱性を製造条件とともに
表2及び表3に示す。強度としては降伏強度(YS(k
gf/mm2 ))および引張強度(TS(kgf/mm
2 ))を示してある。また、靱性はシャルピー衝撃試験
における延性−脆性遷移温度(vTrs(℃))を示し
た。何れの鋼の場合も本発明の主要用件である500〜
700℃での加工は同加工を行わなかったものに比較し
て顕著に強度、靱性が改善していることが判る。また、
本発明法に示す製造条件はいずれも比較法に比べ明らか
に良い特性を示している。本発明法により強度・靱性に
優れた高張力鋼を製造することが可能であり、本発明は
有効である。
EXAMPLES The effectiveness of the present invention will be shown by the examples of the present invention. Table 1 shows the components of the steels of the examples. In the table, the steel marked with a circle indicates that it is a comparative steel, and the items that do not correspond to the present invention are underlined. Next, Table 2 and Table 3 show the strength and toughness obtained for the steel plates manufactured under various manufacturing conditions using the steels having such components. As the strength, the yield strength (YS (k
gf / mm 2 )) and tensile strength (TS (kgf / mm
2 )) is shown. Moreover, the toughness showed the ductility-brittleness transition temperature (vTrs (° C)) in the Charpy impact test. In the case of any steel, the main requirement of the present invention is 500 to
It can be seen that the processing at 700 ° C. significantly improves the strength and toughness as compared with the case where the same processing is not performed. Also,
The manufacturing conditions shown in the method of the present invention all show clearly better characteristics than the comparative method. The method of the present invention makes it possible to produce high-strength steel excellent in strength and toughness, and the present invention is effective.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【発明の効果】以上述べたように、本発明によれば強
度、靱性に優れた高張力鋼板を安価に提供することがで
きる。
As described above, according to the present invention, it is possible to inexpensively provide a high-strength steel sheet having excellent strength and toughness.

【図面の簡単な説明】[Brief description of drawings]

【図1】動的再結晶(または回復)によって得られる微
細フェライト組織を示す模式図
FIG. 1 is a schematic diagram showing a fine ferrite structure obtained by dynamic recrystallization (or recovery).

【図2】動的再結晶(または回復)による応力−歪み曲
線の変化の説明図である。
FIG. 2 is an explanatory diagram of changes in a stress-strain curve due to dynamic recrystallization (or recovery).

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.03〜0.45%、 Si:0.01〜0.50%、 Mn:0.02〜5.0%、 Al:0.001〜0.1% を含有し、残部がFeおよび不可避的不純物からなる鋼
片を鋳造後冷却することなくそのまま圧延等による熱間
加工を行うか、あるいは一度室温まで冷却した後に再び
C3点〜1250℃の温度に再加熱し、熱間加工を行っ
て鋼材を製造するに際して、一連の熱間加工のうち、1
パスまたはパス間時間を20秒以内の連続する2パス以
上の加工を700℃以下500℃以上の温度かつ圧延の
歪速度を0.1〜20/秒とし、その総歪量を0.8以
上5以下となるように加工を行い、その後、放冷する靱
性に優れた高張力鋼の製造方法。
1. By weight%, C: 0.03 to 0.45%, Si: 0.01 to 0.50%, Mn: 0.02 to 5.0%, Al: 0.001 to 0. A steel slab containing 1% of which the balance is Fe and unavoidable impurities is hot-worked by rolling without casting after cooling after casting, or once cooled to room temperature and then once again at an AC 3 point to 1250 ° C. When reheating to temperature and performing hot working to produce steel, one of the series of hot working
Processing of two or more consecutive passes within 20 seconds between passes or passes is performed at a temperature of 700 ° C or lower and a strain rate of rolling of 0.1 to 20 / sec, and the total strain amount is 0.8 or more. A method for producing a high-strength steel excellent in toughness, which is processed so as to be 5 or less and then allowed to cool.
【請求項2】 重量%で、 C :0.03〜0.45%、 Si:0.01〜0.50%、 Mn:0.02〜5.0%、 Al:0.001〜0.1% を含有し、残部がFeおよび不可避的不純物からなる鋼
片を鋳造後冷却することなくそのままに熱間加工を施す
か熱間加工を行わずそのまま一度600℃〜室温までの
温度まで冷却するか、もしくは鋳造後一度室温まで冷却
した後でAc3 点〜1250℃の温度に再加熱し熱間加
工するか熱間加工を行わずそのまま600℃〜室温まで
の温度まで冷却するかして、その後700℃以下500
℃以上の温度に加熱し、1パスまたはパス間時間を20
秒以内の連続する2パス以上の加工を700℃以下50
0℃以上の温度、かつ圧延の歪速度を0.1〜20/秒
とし、その総歪量を0.8以上5以下となる条件で加工
を行い、その後、放冷する靱性に優れた高張力鋼の製造
方法。
2. C .: 0.03 to 0.45%, Si: 0.01 to 0.50%, Mn: 0.02 to 5.0%, Al: 0.001 to 0. After casting, a steel slab containing 1% and the balance Fe and unavoidable impurities is hot-worked without cooling after casting, or is once cooled to a temperature of 600 ° C to room temperature without hot-working. Or, after cooling once to room temperature after casting, it is reheated to a temperature of Ac 3 point to 1250 ° C. and hot-worked, or it is cooled to a temperature of 600 ° C.-room temperature without hot working, After that, 700 ℃ or less 500
Heat to a temperature of ℃ or more and pass for 1 pass or time between passes.
Processing of two or more consecutive passes within seconds is 700 ° C or less 50
It is processed at a temperature of 0 ° C. or higher, a strain rate of rolling of 0.1 to 20 / sec, and a total strain amount of 0.8 or more and 5 or less, and then allowed to cool. Method of manufacturing tensile steel.
【請求項3】 請求項1または請求項2記載の熱間加工
を行った後、熱間加工終了後90秒以内に室温〜500
℃未満の温度まで2℃/秒〜200℃/秒以下の冷却速
度で強制冷却することを特徴とする強度・靱性に優れた
高張力鋼の製造方法。
3. After performing hot working according to claim 1 or 2, room temperature to 500 within 90 seconds after completion of hot working.
A method for producing a high-strength steel having excellent strength and toughness, which comprises forcibly cooling to a temperature of less than 0 ° C at a cooling rate of 2 ° C / sec to 200 ° C / sec or less.
【請求項4】 請求項3記載の熱間加工および冷却を行
った後、300℃〜Ac1 の温度で焼き戻しを行うこと
を特徴とする強度・靱性に優れた高張力鋼の製造方法。
4. A method for producing a high-strength steel excellent in strength and toughness, which comprises performing hot working and cooling according to claim 3 and then tempering at a temperature of 300 ° C. to Ac 1 .
【請求項5】 さらに、重量%で、 Nb:0.001〜0.05%、 Ti:0.001〜0.1%、 V :0.001〜0.1% のいずれか1種、または2種以上を含有することを特徴
とする請求項1〜4のいずれかの1項に記載の強度・靱
性に優れた高張力鋼の製造方法。
5. Further, in weight%, any one of Nb: 0.001 to 0.05%, Ti: 0.001 to 0.1%, V: 0.001 to 0.1%, or The method for producing a high-strength steel excellent in strength and toughness according to any one of claims 1 to 4, characterized by containing two or more kinds.
【請求項6】 さらに、重量%で、 Mo:0.01〜1%、 Ni:0.01〜5%、 Cr:0.01〜3%、 Cu:0.01〜3%、 B :0.0001〜0.003% のいずれか1種、または2種以上を含有することを特徴
とする請求項1〜5のいずれかの1項に記載の強度・靱
性に優れた高張力鋼の製造方法。
6. Further, by weight%, Mo: 0.01 to 1%, Ni: 0.01 to 5%, Cr: 0.01 to 3%, Cu: 0.01 to 3%, B: 0. 1.0001-0.003% of any one kind, or two or more kinds are contained, The manufacture of the high strength steel excellent in strength and toughness according to any one of claims 1 to 5. Method.
【請求項7】 さらに、重量%で、 REM:0.002〜0.10%、 Ca :0.0003〜0.0030% のいずれか1種、または2種以上を含有することを特徴
とする請求項1〜6のいずれかの1項に記載の強度・靱
性に優れた高張力鋼の製造方法。
7. The composition further comprises, by weight, any one or more of REM: 0.002 to 0.10% and Ca: 0.0003 to 0.0030%. A method for producing a high-strength steel excellent in strength and toughness according to any one of claims 1 to 6.
JP08782896A 1996-04-10 1996-04-10 Manufacturing method of high strength steel with excellent toughness Expired - Fee Related JP3383148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08782896A JP3383148B2 (en) 1996-04-10 1996-04-10 Manufacturing method of high strength steel with excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08782896A JP3383148B2 (en) 1996-04-10 1996-04-10 Manufacturing method of high strength steel with excellent toughness

Publications (2)

Publication Number Publication Date
JPH09279233A true JPH09279233A (en) 1997-10-28
JP3383148B2 JP3383148B2 (en) 2003-03-04

Family

ID=13925818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08782896A Expired - Fee Related JP3383148B2 (en) 1996-04-10 1996-04-10 Manufacturing method of high strength steel with excellent toughness

Country Status (1)

Country Link
JP (1) JP3383148B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998049362A1 (en) * 1997-04-30 1998-11-05 Kawasaki Steel Corporation Steel material having high ductility and high strength and process for production thereof
JP2000199011A (en) * 1999-01-05 2000-07-18 Kawasaki Steel Corp Production of steel small in variation of material and excellent in low temperature toughness of weld zone
JP2000309822A (en) * 1998-08-31 2000-11-07 Natl Res Inst For Metals Production of supper fine structure steel
JP2002069531A (en) * 2000-08-31 2002-03-08 National Institute For Materials Science Superfine ferritic steel and its production method
EP1394279A1 (en) * 2001-03-27 2004-03-03 Japan Science and Technology Corporation High strength and high ductility steel plate having hyperfine crystal grain structure produced by subjecting ordinary low carbon steel to low strain working and annealing, and method for production thereof
CN100386449C (en) * 2003-05-20 2008-05-07 独立行政法人物质·材料研究机构 Controlled warm-rolling method
US20090177417A1 (en) * 2006-02-01 2009-07-09 Shigeru Yonemura Fracture prediction method, device, a program arrangement and computer-accessible medium therefor
JP2010106298A (en) * 2008-10-29 2010-05-13 Jfe Steel Corp Method for manufacturing thick steel plate excellent in weldability and ductility in plate thickness direction
CN103627972A (en) * 2013-11-07 2014-03-12 中冶陕压重工设备有限公司 ZG25MnSY3 casting material and preparation method thereof
CN113025888A (en) * 2021-02-07 2021-06-25 首钢集团有限公司 Abrasion-resistant high-strength steel and preparation method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998049362A1 (en) * 1997-04-30 1998-11-05 Kawasaki Steel Corporation Steel material having high ductility and high strength and process for production thereof
CN1088117C (en) * 1997-04-30 2002-07-24 川崎制铁株式会社 Steel material having high ductility and high strength and process for producing same
JP2000309822A (en) * 1998-08-31 2000-11-07 Natl Res Inst For Metals Production of supper fine structure steel
JP2000199011A (en) * 1999-01-05 2000-07-18 Kawasaki Steel Corp Production of steel small in variation of material and excellent in low temperature toughness of weld zone
JP2002069531A (en) * 2000-08-31 2002-03-08 National Institute For Materials Science Superfine ferritic steel and its production method
JP4581066B2 (en) * 2000-08-31 2010-11-17 独立行政法人物質・材料研究機構 Ultrafine ferritic steel and its manufacturing method
EP1394279A4 (en) * 2001-03-27 2004-07-21 Japan Science & Tech Agency High strength and high ductility steel plate having hyperfine crystal grain structure produced by subjecting ordinary low carbon steel to low strain working and annealing, and method for production thereof
EP1394279A1 (en) * 2001-03-27 2004-03-03 Japan Science and Technology Corporation High strength and high ductility steel plate having hyperfine crystal grain structure produced by subjecting ordinary low carbon steel to low strain working and annealing, and method for production thereof
CN100386449C (en) * 2003-05-20 2008-05-07 独立行政法人物质·材料研究机构 Controlled warm-rolling method
US20090177417A1 (en) * 2006-02-01 2009-07-09 Shigeru Yonemura Fracture prediction method, device, a program arrangement and computer-accessible medium therefor
US8990028B2 (en) * 2006-02-01 2015-03-24 Nippon Steel & Sumitomo Metal Corporation Fracture prediction method, device, a program arrangement and computer-accessible medium therefor
JP2010106298A (en) * 2008-10-29 2010-05-13 Jfe Steel Corp Method for manufacturing thick steel plate excellent in weldability and ductility in plate thickness direction
CN103627972A (en) * 2013-11-07 2014-03-12 中冶陕压重工设备有限公司 ZG25MnSY3 casting material and preparation method thereof
CN113025888A (en) * 2021-02-07 2021-06-25 首钢集团有限公司 Abrasion-resistant high-strength steel and preparation method thereof

Also Published As

Publication number Publication date
JP3383148B2 (en) 2003-03-04

Similar Documents

Publication Publication Date Title
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JP2001020039A (en) High strength hot rolled steel sheet excellent in stretch flanging property and fatigue characteristic and its production
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
KR20010060760A (en) structural steel having High strength and method for menufactreing it
JP4405026B2 (en) Method for producing high-tensile strength steel with fine grain
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP3261515B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JPS63145745A (en) Hot rolled high tensile steel plate and its production
JP3462922B2 (en) Manufacturing method of high strength steel sheet with excellent strength and toughness
JP2555436B2 (en) Hot-rolled steel sheet with excellent workability and its manufacturing method
JP2003034825A (en) Method for manufacturing high strength cold-rolled steel sheet
JPS583012B2 (en) Manufacturing method of high toughness high tensile strength steel plate
JPH08283838A (en) Production of low yield ratio, high ductility steel excellent in strength, toughness and ductility
JP2000096137A (en) Production of steel having fine crystal grain structure
JPH05271770A (en) Manufacture of fine-grained thick steel plate
JPH07233414A (en) Production of low yield ratio high tensile strength steel plate excellent in uniform elongation
JPH08197105A (en) Manufacture of extremely thick wide-flange steel excellent in strength, toughness and weldability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131220

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131220

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131220

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees