JPS5810442B2 - Manufacturing method for high-toughness, high-strength steel with excellent workability - Google Patents

Manufacturing method for high-toughness, high-strength steel with excellent workability

Info

Publication number
JPS5810442B2
JPS5810442B2 JP53113804A JP11380478A JPS5810442B2 JP S5810442 B2 JPS5810442 B2 JP S5810442B2 JP 53113804 A JP53113804 A JP 53113804A JP 11380478 A JP11380478 A JP 11380478A JP S5810442 B2 JPS5810442 B2 JP S5810442B2
Authority
JP
Japan
Prior art keywords
steel
less
ferrite
toughness
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53113804A
Other languages
Japanese (ja)
Other versions
JPS5541927A (en
Inventor
小川隆郎
柚鳥登明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP53113804A priority Critical patent/JPS5810442B2/en
Publication of JPS5541927A publication Critical patent/JPS5541927A/en
Publication of JPS5810442B2 publication Critical patent/JPS5810442B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 本発明は引張強度50kg/mm2以上を有し、加工性
の優れた高靭性高張力鋼の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing high-toughness, high-strength steel having a tensile strength of 50 kg/mm2 or more and excellent workability.

引張強度50〜100Kg/mm2級高張力鋼の用途は
広く、構造物、造船等な適用される場合には良好な溶接
性が要求される。
Class 2 high tensile strength steel with a tensile strength of 50 to 100 kg/mm has a wide range of uses, and good weldability is required when it is applied to structures, shipbuilding, etc.

一方、産業機械分野やパイプ用素材、ボルト用素材のご
とき所定寸法に加工され、その後必要に応じて溶接され
る鋼では優れた冷間加工性、および溶接材が要求される
On the other hand, excellent cold workability and welding materials are required for steel that is processed into predetermined dimensions and then welded as necessary, such as in the industrial machinery field, pipe materials, and bolt materials.

従来の非調質型高張力鋼や調質型高張力鋼において強度
上昇を図るために多量の添加元素が使われ、必然的にC
当量が高くなり溶接性に望ましいとは言い難い。
In order to increase the strength of conventional non-heat treated high tensile strength steel and heat treated high tensile strength steel, large amounts of additive elements are used, which inevitably results in the addition of C.
The equivalent weight becomes high, which is not desirable for weldability.

このような鋼の高強度化は降伏比の増大、靭性、延性の
劣化を伴い本質的な問題を有する。
Increasing the strength of such steel has essential problems, including an increase in yield ratio and deterioration of toughness and ductility.

したがって、高強度鋼は冷間加工時のワレ発生やスプリ
ングバックによる形状凍結不良を生じ易い。
Therefore, high-strength steel is susceptible to cracking during cold working and defective shape freezing due to springback.

本発明はかかる問題に対処すべく従来と異なった方法で
鋼の強度上昇を図るものであり、所要強度を得るための
C当量を大幅に下げることにより溶接性を改善し、さら
に、極低降伏比を実現し、優れた冷間加工性を具備せし
める方法である。
The present invention aims to increase the strength of steel by a method different from the conventional methods in order to address such problems.It improves weldability by significantly lowering the C equivalent to obtain the required strength, and furthermore, it achieves extremely low yield. This is a method that achieves the same ratio and provides excellent cold workability.

すなわち本発明はC:0.005〜0.2%、Mn:0
.3〜2.5%、Si 1.0%以下、Nb、Vの1種
又は2種を0.005〜0.2%含有し、あるいはさら
にAllが0.1%以下、Niが0.15%以下、Cr
、Mo。
That is, in the present invention, C: 0.005 to 0.2%, Mn: 0
.. 3 to 2.5%, 1.0% or less of Si, 0.005 to 0.2% of one or both of Nb and V, or further contains 0.1% or less of All, and 0.15% of Ni. % or less, Cr
, Mo.

Cuがそれぞれ0.7%以下、Tiが0.05%以下、
Ceが0.02%以下、Caが0.003%以下の1種
又は2種以上を含有し、残部が鉄及び不可避不純物より
成る鋼を1000℃〜1300°Cに加熱し、少なくと
も980°C以下Ar3温度範囲で減面率30%以上加
工して、冷却途中のフェライト相析出温度域において、
フェライト相として5〜60%析出後に急冷してフェラ
イト・マルテンサイトの2相層状組織となす加工性の優
れた高靭性高張力鋼の製造方法がある。
Cu is 0.7% or less, Ti is 0.05% or less, respectively.
A steel containing one or more of 0.02% or less of Ce and 0.003% or less of Ca, with the balance consisting of iron and unavoidable impurities, is heated to 1000°C to 1300°C, and then heated to at least 980°C. Processing is performed at an area reduction rate of 30% or more in the Ar3 temperature range below, and in the ferrite phase precipitation temperature range during cooling,
There is a method for producing high-toughness, high-strength steel with excellent workability, in which 5 to 60% of the ferrite phase is precipitated and then rapidly cooled to form a two-phase layered structure of ferrite and martensite.

本発明において鋼はAr3以上で熱間加工がなされる。In the present invention, the steel is hot worked at Ar3 or higher.

その際、オーステナイト粒の粗大化を防止し、Nbある
いは■の炭窒化物生成元素を溶体化するためにも100
0℃〜1300°C好しくは1050〜1200℃でオ
ーステナイト化するのが車重しい。
At that time, 100%
The car is heavy when it is austenitized at 0°C to 1300°C, preferably 1050 to 1200°C.

熱間加工によりオーステナイト粒の細粒化を図り、オー
ステナイトの再結晶進行が著しく遅滞する温度範囲、9
80℃以下As3点で減面率30%以上で加工する。
Temperature range in which austenite grains are refined by hot working and the progress of recrystallization of austenite is significantly delayed, 9
Process at 3 points of As at 80°C or lower with an area reduction rate of 30% or more.

該当温度における加工はオーステナイトに多量の歪を導
入するものであり、硬化したオーステナイトは通常のC
CT曲線におけるフェライト相析出温度域を高温、短時
間側に移行せしめる。
Processing at the relevant temperature introduces a large amount of strain into the austenite, and the hardened austenite becomes
The ferrite phase precipitation temperature range in the CT curve is shifted to the high temperature and short time side.

980℃を超えてはオーステナイトが再結晶を起しやす
く、加工減面率30%以下ではオーステナイトに歪を与
える効果が認められないからである。
This is because when the temperature exceeds 980° C., austenite tends to recrystallize, and when the working area reduction rate is 30% or less, no effect of imparting strain to austenite is observed.

加工後、冷却途中のフェライト相析出温度域において、
フェライト相の析出に伴って、未変態オーステナイト部
にCが濃化される。
After processing, in the ferrite phase precipitation temperature range during cooling,
As the ferrite phase precipitates, C becomes concentrated in the untransformed austenite portion.

フェライト相として5〜60%析出後にC濃度の高い未
変態オーステナイトを急冷して微細フェライト粒とみか
け上C濃度の高いマルテンサイトの2相層状組織を得る
After precipitation of 5 to 60% as a ferrite phase, untransformed austenite with a high C concentration is rapidly cooled to obtain a two-phase layered structure of fine ferrite grains and martensite with an apparent high C concentration.

硬化オーステナイトから析出するフェライト粒は微細で
延性、靭性に好ましく、マルテンサイトはC濃縮により
極めて高い強度を有し、オースフオーム鋼の例で周知の
ように、硬化オーステナイトからのマルテンサイトは靭
性に富む。
The ferrite grains that precipitate from hardened austenite are fine and are favorable for ductility and toughness, and martensite has extremely high strength due to C enrichment, and as is well known from the example of ausform steel, martensite from hardened austenite is rich in toughness. .

従来の(γ+α)2相域加熱焼入れによるフェライト・
マルテンサイト2相鋼はフェライト粒の微細化が難しく
、かつ、フェライト粒は強度の高いマルテンサイトに囲
まれた分散分布をなし、フェライト部の応力集中が高く
フェライト部の早期破壊が生じ易い欠点を有する。
Ferrite by conventional (γ + α) two-phase region heating quenching.
Martensitic dual-phase steel has the disadvantage that it is difficult to refine the ferrite grains, and the ferrite grains are distributed in a dispersed manner surrounded by high-strength martensite, resulting in high stress concentration in the ferrite part, which tends to cause early fracture of the ferrite part. have

本発明によるフェライト・マルテンサイト2相層状組織
鋼はフェライト粒の微細が容易であること、それらが列
をなして分布し、マルテンサイトと層状をなすことから
フェライトの早期破壊が防止され、高い延性、靭性が確
保される。
The ferrite-martensitic dual-phase layered structure steel according to the present invention has easily fine ferrite grains, and because they are distributed in rows and form a layer with martensite, early fracture of ferrite is prevented, and it has high ductility. , toughness is ensured.

冷却途中の急冷前のフェライト析出領域におけるフェラ
イト析出量は5〜60%であり、フェライト量が5%以
下ではフェライト・マルテンサイト2相層状組織として
の効果を減じ、極低降伏比が実現されない。
The amount of ferrite precipitated in the ferrite precipitation region before quenching during cooling is 5 to 60%, and if the ferrite amount is less than 5%, the effect of the ferrite-martensite two-phase layered structure is reduced and an extremely low yield ratio cannot be achieved.

フェライト量70%以上では鋼の強度上昇を図る曲にお
いて効果が少ない。
If the amount of ferrite is 70% or more, there is little effect in bending to increase the strength of steel.

また、急冷時に上部ベーナイトか生成しやすくなるので
、鋼の靭性劣化を誘起する。
Additionally, upper bainite tends to form during rapid cooling, which induces deterioration in the toughness of the steel.

フェライト5〜60%析出後の急冷により未変態オース
テナイ1〜からのマルテンサイトが生成するが、低C鋼
の場合や急冷度合によってなお若干量(10〜20%程
度以下)のフェライトの析出が認められる。
Martensite is generated from untransformed austenite by quenching after precipitation of 5 to 60% ferrite, but a small amount (less than 10 to 20%) of ferrite is still observed to precipitate depending on the low C steel and the degree of quenching. It will be done.

このフェライト結晶粒は上述の如く微細で延性、靭性に
好ましいものである。
As mentioned above, the ferrite crystal grains are fine and are favorable for ductility and toughness.

フェライト量調整のための熱間加工後の冷却は、加工後
約780〜680°Cから急冷することが望ましい。
For cooling after hot working to adjust the amount of ferrite, it is desirable to rapidly cool from about 780 to 680°C after working.

急冷は水冷あるいは強制空冷によって400°C以下才
で冷却するのが車重しい。
Rapid cooling requires water cooling or forced air cooling to cool the vehicle below 400°C, which is heavy.

この場合の冷却速度は5〜b以上である。The cooling rate in this case is 5-b or more.

次に本発明の方法における鋼の成分限定理由は次の通り
である。
Next, the reasons for limiting the composition of steel in the method of the present invention are as follows.

Cは0.005%以下の溶製は高価であり、強度上昇効
果も少ない。
Melting C at 0.005% or less is expensive and has little effect on increasing strength.

0.2%以上の含有は溶接性を著しく劣化させるので上
限を0.2%とする。
Since a content of 0.2% or more significantly deteriorates weldability, the upper limit is set at 0.2%.

鳩は強靭化に必要で、0.3%以下ではその効果が少な
く、2.5%を超える含有は効果が飽和し、上部ベーナ
イトが生成しやすくなる。
Dove is necessary for toughening, and if the content is less than 0.3%, the effect will be small, and if the content exceeds 2.5%, the effect will be saturated and upper bainite will be likely to be generated.

Nb。■は微細な炭窒化物を生成し、オーステナイトの
再結晶遅滞温度範囲を広くする効果があり、本発明の効
力発揮を助長するが0.005%未満では効果がなく、
02%以上の含有は効果が飽和する。
Nb. (3) produces fine carbonitrides, which has the effect of widening the recrystallization retardation temperature range of austenite, and helps the present invention to exhibit its effectiveness; however, if it is less than 0.005%, it is ineffective;
If the content exceeds 0.02%, the effect will be saturated.

Siは固溶体強化作用を通じて強度上昇に効果が犬であ
るが、1.0%を超える含有は著しい靭性劣化をもたら
すので1.0%以下とする。
Although Si is effective in increasing strength through its solid solution strengthening effect, its content exceeding 1.0% causes significant deterioration of toughness, so it is limited to 1.0% or less.

Cr、Mo、Cuの少量含有は強度上昇に好捷しいが0
.7%を超える含有はフェライト相の析出量調整が難か
しくなり、かつ、靭性溶接性を害するのでそれぞれ0.
7%以下とする。
Small amounts of Cr, Mo, and Cu are good for increasing strength, but 0
.. If the content exceeds 7%, it becomes difficult to adjust the amount of ferrite phase precipitation, and the toughness and weldability are impaired.
7% or less.

Niは強靭性を高める効果を有するが、1.5%を超え
る含有は効果が飽和するので1.5%以下とした。
Ni has the effect of increasing toughness, but if the content exceeds 1.5%, the effect will be saturated, so it was set to 1.5% or less.

A/は脱酸の安定化、結晶粒微細化を図る目的で添加す
るが、0.1%を超える含有はそれらの効果が飽和し、
介在物が急増して延性を害するので0、1%以下とした
A/ is added for the purpose of stabilizing deoxidation and refining crystal grains, but if the content exceeds 0.1%, these effects will be saturated.
Since inclusions increase rapidly and impair ductility, the content was set at 0.1% or less.

Tiは強度上昇と溶接部靭性の改善作用を有するが、0
.05%を超える含有はその効果が飽和する。
Ti has the effect of increasing strength and improving weld toughness, but 0
.. If the content exceeds 0.05%, the effect will be saturated.

Ce、Caは介在物調整を目的に用いるが、Ceは0.
02%、Caは0.003%を超える含有はその効果が
飽和する。
Ce and Ca are used for the purpose of inclusion adjustment, but Ce is 0.
If the content exceeds 0.02% and Ca content exceeds 0.003%, the effect is saturated.

なお、本発明はすぐれた溶接性を得るためにC当量(=
C+Si/24+Mn/6+Ni/40+Cr15+M
o/4+V/14)は0.40%以下とすることが車重
しい。
In addition, in the present invention, in order to obtain excellent weldability, the C equivalent (=
C+Si/24+Mn/6+Ni/40+Cr15+M
o/4+V/14) is 0.40% or less because it makes the car heavier.

次に本発明の実施例を比較例と共に示す。Next, examples of the present invention will be shown together with comparative examples.

実施例 1 第1表に供試材の化学成分を示す。Example 1 Table 1 shows the chemical composition of the sample materials.

供試材A〜D鋼は本発明に適用する鋼、E鋼は80 k
g1ma級非調質型高張力鋼、F鋼は100 kg/m
a級調質型高張力鋼である。
Test materials A to D steels are steels applicable to the present invention, and E steel is 80k.
G1ma class non-heat treated high tensile strength steel, F steel: 100 kg/m
It is a class A tempered high tensile strength steel.

供試材A、〜D鋼については、オーステナイト化温度1
150℃に加熱し、980℃よりの減面率70%、合計
減面率85%で制御圧延した。
For steel samples A and D, the austenitizing temperature was 1.
It was heated to 150°C and controlled rolling was performed at a reduction in area of 70% from 980°C and a total reduction of area of 85%.

圧延仕上げ温度は830°Cである。The rolling finishing temperature is 830°C.

A鋼では圧延後空冷44秒で770℃より水冷したもの
と(A1鋼とする)、空冷110秒で720℃より水冷
したもの(A2鋼とする)を製造した。
Steel A was manufactured by water-cooling from 770°C with air cooling for 44 seconds after rolling (A1 steel) and water-cooling from 720°C with air cooling for 110 seconds after rolling (A2 steel).

A1.A2鋼のフェライト分率はそれぞれ18%、58
%であった。
A1. The ferrite fraction of A2 steel is 18% and 58, respectively.
%Met.

ざらにA1.A2鋼を400°Cで焼戻したもの(それ
ぞれA11鋼、A21鋼とする)と、600℃で焼戻し
だもの(それぞれ、A12鋼、A22鋼とする)を得た
Rani A1. A2 steel was tempered at 400°C (referred to as A11 steel and A21 steel, respectively) and one tempered at 600°C (referred to as A12 steel and A22 steel, respectively) was obtained.

B−D鋼は圧延後空冷して720℃より水冷した。After rolling, the BD steel was air cooled and then water cooled from 720°C.

フェライト分率はB鋼で59%、C鋼で55%、D鋼で
33%であった。
The ferrite fraction was 59% in B steel, 55% in C steel, and 33% in D steel.

比較鋼Eは熱間圧延のままでベーナイト組織、比較鋼F
は熱間圧延後焼入れ焼戻し処理を行なったもので、焼戻
しマルテンサイト組織を有する。
Comparative steel E has a bainitic structure as hot rolled, and comparative steel F has a bainitic structure.
The steel was hot-rolled and then quenched and tempered, and has a tempered martensitic structure.

これらの材料の機械的性質等を第2表に示す。Table 2 shows the mechanical properties of these materials.

第2表から知られるように、本発明の方法により製造し
た鋼は、通常の80〜100Kp/−縁高高力鋼に比較
して、C当量が大幅に低く、引張強度は焼入れ材で9’
O〜100Kg/mm2を有し、降伏比は70%程度以
下、伸びは22%以上、特に均−伸びを大きくしたのが
特徴である。
As can be seen from Table 2, the steel produced by the method of the present invention has a significantly lower C equivalent and a tensile strength of 9' for the hardened material compared to the ordinary 80-100 Kp/- edge high strength steel.
It is characterized by a yield ratio of about 70% or less, an elongation of 22% or more, and a particularly high average elongation.

破面遷移温度(vTrs)は−90℃以下で良好である
The fracture surface transition temperature (vTrs) is -90°C or lower, which is good.

焼戻し後は引張強度が低下し、降伏強度はほぼ一定値を
示ずので、降伏比は高くなるが比較鋼よりも低降伏比を
有する。
After tempering, the tensile strength decreases and the yield strength does not show a nearly constant value, so the yield ratio is higher but lower than the comparative steel.

第1図に強度と伸びのバランスを示す。Figure 1 shows the balance between strength and elongation.

同一強度レベルで比較すると、本発明による鋼はC当量
が低く、延性に優れる。
When compared at the same strength level, the steel according to the invention has a low C equivalent and excellent ductility.

実施例 2 第3表に供試材の化学成分を示す。Example 2 Table 3 shows the chemical composition of the sample materials.

供試材Gはボルト等の冷間鍛造用として本発明に適用す
る鋼、Hは比較鋼である。
Sample material G is a steel applied to the present invention for cold forging bolts and the like, and sample material H is a comparative steel.

供試材G鋼についてはオーステナイト化温度1150℃
に加熱し、980℃よりの減面率64%、合計減面率8
8%で制御圧延し13.5mmφの線材とした。
For the specimen G steel, the austenitizing temperature was 1150°C.
heating to 980°C, area reduction rate 64%, total area reduction rate 8
Control rolling was performed at 8% to obtain a wire rod of 13.5 mmφ.

圧延仕上温度は830℃である。G鋼では圧延後800
℃より水冷したもの(G1鋼とする)と740℃より水
冷したもの(G2鋼とする)を製造した。
The rolling finishing temperature is 830°C. 800 after rolling for G steel
Two types were manufactured: one water-cooled from 740°C (referred to as G1 steel) and one water-cooled from 740°C (referred to as G2 steel).

一方H鋼についてはオーステナイト化温度1150℃に
加熱し、950°Cで圧延を終了し冷却した。
On the other hand, H steel was heated to an austenitizing temperature of 1150°C, finished rolling at 950°C, and cooled.

これらG1.G2及びH鋼についてはそれぞれ更に18
%の伸線加工(Gll l G21 l H1鋼とする
)及;びさらに300℃×2分の熱処理(G1□、G2
□。
These G1. 18 more for G2 and H steel each
% wire drawing processing (Gll l G21 l H1 steel); and further heat treatment at 300°C x 2 minutes (G1□, G2
□.

H2とする)を行なった。H2) was carried out.

これらの材料の機械的性質を第4表に示す。The mechanical properties of these materials are shown in Table 4.

第4表から知られるように、本発明の方法により製造し
た鋼の圧延材は、比較例に比べて極めて低い降伏比であ
り、伸縮加工等の冷間加工時の加工工具への負担が小さ
く、また強度も高いことから非調質ボルト用素材として
好適である。
As can be seen from Table 4, the steel rolled material manufactured by the method of the present invention has an extremely low yield ratio compared to the comparative example, and the load on processing tools during cold working such as expansion and contraction is small. Also, since it has high strength, it is suitable as a material for non-tempered bolts.

実施例 3 第5表に供試材の化学成分を示す。Example 3 Table 5 shows the chemical components of the test materials.

供試材JはPC鋼線等高強度鋼線として本発明に適用す
る鋼・Kは高炭素鋼線用鋼である。
Test material J is a steel applied to the present invention as a high-strength steel wire such as a PC steel wire, and test material K is a steel for high carbon steel wire.

供試材に鋼についてはオーステナイト化温度1150°
Cに加熱し、980℃よりの減面率64%、合計減面率
88%で制御圧延し13.5mmφの線材とした。
For steel specimens, the austenitizing temperature is 1150°.
C and controlled rolling at a reduction in area of 64% from 980°C and a total reduction of area of 88% to obtain a wire rod of 13.5 mmφ.

圧延仕上温度は830℃である。J鋼では圧延後800
℃、770℃及び740℃より水冷したもの(それぞれ
Jl、J2.J3鋼とする)を製造した。
The rolling finishing temperature is 830°C. 800 after rolling for J steel
℃, 770°C and 740°C (designated as Jl, J2 and J3 steels, respectively) were produced.

これらJl、J2.J3鋼について2%ストレッチ加工
し、300°Cで2分間熱処理した。
These Jl, J2. J3 steel was subjected to 2% stretch processing and heat treated at 300°C for 2 minutes.

(それぞれJll、J21.J31とする)一方に鋼は
通常圧延し、その後鉛パテンテイングし、更に15チ伸
線加工、430°C×3分の熱処理を施したものである
(Represented as Jll, J21, and J31, respectively) On the one hand, the steel was conventionally rolled, then lead patented, and further subjected to 15-inch wire drawing and heat treatment at 430° C. for 3 minutes.

これらの材料の機械的性質を第6表に示す。第6表から
知られるように、本発明の方法により製造した鋼の圧延
材は高強度低降伏比であり、加工がじやすく、シかも熱
処理によって降伏比が0.9以上とすることができ、P
C鋼線(棒)として好適な材料である。
The mechanical properties of these materials are shown in Table 6. As is known from Table 6, the rolled steel material manufactured by the method of the present invention has high strength and low yield ratio, is easy to process, and can be made to have a yield ratio of 0.9 or more by heat treatment. , P
It is a suitable material for C steel wire (bar).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高張力鋼の引張強さと伸びの関%を示す。 Figure 1 shows the relationship between tensile strength and elongation of high tensile strength steel.

Claims (1)

【特許請求の範囲】 1 C:0.005〜0.2%、Mrl: 03〜2.
5%。 Si:1.0%以下、Nb、Vの1種又は2種を0.0
05〜0.2%含有し残部が鉄及び不可避不純物より成
る鋼を1000℃〜1300℃に加熱し、少なくシとも
980°C以下Ar3の温度範囲で減面率30%以上加
工して、冷却途中のフェライト相析出温度域において、
フェライト相として5〜6O%析出後に急冷してフェラ
イト・マルテンサイトの2相層状組織となす加工性の優
れた高靭性高張力鋼の製造方法。 2 C:0.005〜0.2%、Mn:0.3〜2.5
%。 Si1.0%以下、Nb、Vの1種又は2種を0.00
5〜0.2%含有し、さらにAIo、1%以下、Ni1
.5%以下、Cr、Mo、Cuそれぞれ0.7%以下、
TiO,05%。 以下、CeO,02%以下、Ca0.03%以下の1種
又は2種以上を含有し、残部が鉄及び不可避不純物より
成る鋼を1000°C〜1300℃に加熱し、少なくと
も980℃以下Ar3の温度範囲で減面率30%以上加
工して、冷却途中のフェライト相析出温度域において、
フェライト相として5〜60%析出後に急冷してフェラ
イト・マルテンサイトの2相層状組織となす加工性の優
れた高靭性高張力鋼の製造方法。
[Claims] 1C: 0.005-0.2%, Mrl: 03-2.
5%. Si: 1.0% or less, one or both of Nb and V 0.0%
A steel containing 05 to 0.2% with the balance consisting of iron and unavoidable impurities is heated to 1000°C to 1300°C, processed at a temperature range of at least 980°C or less with an area reduction of 30% or more, and then cooled. In the intermediate ferrite phase precipitation temperature range,
A method for producing high-toughness, high-strength steel with excellent workability, in which 5 to 60% of ferrite phase is precipitated and then rapidly cooled to form a two-phase layered structure of ferrite and martensite. 2C: 0.005-0.2%, Mn: 0.3-2.5
%. Si 1.0% or less, one or both of Nb and V 0.00%
Contains 5 to 0.2%, and further contains AIo, 1% or less, Ni1
.. 5% or less, Cr, Mo, Cu each 0.7% or less,
TiO, 05%. Hereinafter, steel containing one or more of CeO, 0.02% or less, Ca 0.03% or less, and the balance consisting of iron and unavoidable impurities, is heated to 1000°C to 1300°C, and Ar3 is heated to at least 980°C or less. Machining with an area reduction rate of 30% or more in a temperature range, and in the ferrite phase precipitation temperature range during cooling,
A method for producing high-toughness, high-strength steel with excellent workability, in which 5 to 60% of the ferrite phase is precipitated and then rapidly cooled to form a two-phase layered structure of ferrite and martensite.
JP53113804A 1978-09-16 1978-09-16 Manufacturing method for high-toughness, high-strength steel with excellent workability Expired JPS5810442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53113804A JPS5810442B2 (en) 1978-09-16 1978-09-16 Manufacturing method for high-toughness, high-strength steel with excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53113804A JPS5810442B2 (en) 1978-09-16 1978-09-16 Manufacturing method for high-toughness, high-strength steel with excellent workability

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP347881A Division JPS56123324A (en) 1981-01-12 1981-01-12 Production of high-strength steel of superior workability

Publications (2)

Publication Number Publication Date
JPS5541927A JPS5541927A (en) 1980-03-25
JPS5810442B2 true JPS5810442B2 (en) 1983-02-25

Family

ID=14621477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53113804A Expired JPS5810442B2 (en) 1978-09-16 1978-09-16 Manufacturing method for high-toughness, high-strength steel with excellent workability

Country Status (1)

Country Link
JP (1) JPS5810442B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761824A3 (en) * 1995-08-29 1998-04-22 Kawasaki Steel Corporation Heavy-wall structural steel and method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126916A (en) * 1981-01-29 1982-08-06 Sumitomo Metal Ind Ltd Production of high-tensile strength steel sheet excellent in workability and weldability
JPS5831025A (en) * 1981-08-14 1983-02-23 Nippon Steel Corp Production of high strength and high toughness steel
JPS59170242A (en) * 1983-03-16 1984-09-26 Nippon Steel Corp Hot worked steel material containing ultrafine ferrite particles and its production
JPH0640424B2 (en) * 1986-07-05 1994-05-25 日新製鋼株式会社 Floppy disk center core and manufacturing method thereof
US5454883A (en) * 1993-02-02 1995-10-03 Nippon Steel Corporation High toughness low yield ratio, high fatigue strength steel plate and process of producing same
EP1662014B1 (en) 2003-06-12 2018-03-07 JFE Steel Corporation Steel plate and welded steel tube exhibiting low yield ratio, high strength and high toughness and method for production thereof
KR101450977B1 (en) 2009-09-30 2014-10-15 제이에프이 스틸 가부시키가이샤 Steel plate having low yield ratio, high strength and high uniform elongation and method for producing same
WO2011040624A1 (en) 2009-09-30 2011-04-07 Jfeスチール株式会社 Steel plate with low yield ratio, high strength, and high toughness and process for producing same
JP5516785B2 (en) 2012-03-29 2014-06-11 Jfeスチール株式会社 Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
JP5516784B2 (en) 2012-03-29 2014-06-11 Jfeスチール株式会社 Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
CN115786683A (en) 2017-10-31 2023-03-14 杰富意钢铁株式会社 Manufacturing equipment and manufacturing method of thick steel plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282624A (en) * 1975-12-30 1977-07-11 Nippon Steel Corp Preparation of high tensile steel excelling in ductility and toughness

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282624A (en) * 1975-12-30 1977-07-11 Nippon Steel Corp Preparation of high tensile steel excelling in ductility and toughness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761824A3 (en) * 1995-08-29 1998-04-22 Kawasaki Steel Corporation Heavy-wall structural steel and method

Also Published As

Publication number Publication date
JPS5541927A (en) 1980-03-25

Similar Documents

Publication Publication Date Title
WO2001079567A1 (en) Method for manufacturing high strength bolt excellent in resistance to delayed fracture and to relaxation
JP4120531B2 (en) Manufacturing method of high strength thick steel plate for building structure with excellent super tough heat input welding heat affected zone toughness
JPS5810442B2 (en) Manufacturing method for high-toughness, high-strength steel with excellent workability
JPH08176659A (en) Production of high tensile strength steel with low yield ratio
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JPH0425343B2 (en)
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JPS60181229A (en) Production of low-yield ratio high-tension thick steel plate
JP3214731B2 (en) Method for producing non-heat treated steel bar with excellent low temperature toughness
JPH059576A (en) Production of non-heattreated bar steel excellent in toughness at low temperature
JP3229107B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation
JPH0526850B2 (en)
KR910003883B1 (en) Making process for high tension steel
JP2905639B2 (en) Method for producing 780 N / mm2 grade steel sheet with extremely low yield ratio
JPS62149845A (en) Cu precipitation type steel products having excellent toughness of welded zone and its production
JPS6339644B2 (en)
JPH0670249B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
JPS62149814A (en) Production of low-carbon high-strength seamless steel pipe by direct hardening method
JPH0967620A (en) Production of heat treated type high tensile strength steel plate excellent in brittle crack arrest property
JPH02190423A (en) Manufacture of steel plate having excellent ctod properties in weld zone
EP4118245A1 (en) Method of manufacturing a steel article and article