JPH0425343B2 - - Google Patents

Info

Publication number
JPH0425343B2
JPH0425343B2 JP61042721A JP4272186A JPH0425343B2 JP H0425343 B2 JPH0425343 B2 JP H0425343B2 JP 61042721 A JP61042721 A JP 61042721A JP 4272186 A JP4272186 A JP 4272186A JP H0425343 B2 JPH0425343 B2 JP H0425343B2
Authority
JP
Japan
Prior art keywords
toughness
ferrite
steel
strength
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61042721A
Other languages
Japanese (ja)
Other versions
JPS62199750A (en
Inventor
Toshimichi Mori
Takeo Harada
Kenichiro Naito
Takashi Ueno
Morio Hosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4272186A priority Critical patent/JPS62199750A/en
Publication of JPS62199750A publication Critical patent/JPS62199750A/en
Publication of JPH0425343B2 publication Critical patent/JPH0425343B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は靭性の優れた非調質棒鋼およびその製
造方法である。さらに詳しくは自動車用ボルトや
ロボツト等の製造に用いられる素材棒鋼の製造方
法に関し、冷間引き抜きあるいは冷間押し出し等
の冷間加工を施すことによりあるいは熱間圧延の
ままで、従来の焼入れ焼戻し熱処理を行なつた調
質材と同等以上の高強度と高靭性を有する非調質
棒鋼およびその製造方法に関するものである。 又、本発明は自動車および建設機械用のシヤフ
トやピン部品等の製造に用いられる素材棒鋼の製
造方法に関し、熱間圧延のままで、従来の焼入れ
焼戻し熱処理を行なつた調質材と同等以上の高強
度と高靭性を有する非調質棒鋼およびその製造方
法に関するものである。 〔従来の技術〕 自動車用ボルトやロツド等の機械構造用部品は
高強度と共に高靭性が要求される。従来これらの
部品は中炭素鋼あるいは中性炭素低合金棒鋼鋼を
素材として用い冷間あるいは熱間加工により成形
後焼入れ焼戻し熱処理を行ない強靭化する方法で
製造されている。この熱処理を省略し、冷間加工
を施したままあるいは熱間圧延ままで高強度かつ
高靭性の非調質棒鋼の製造が可能になれば、省エ
ネルギーおよびコストの面でのメリツトは極めて
大きい。 又自動車および建設機械用シヤフトやピン部品
等の機械構造用部品は70Kgf/mm2以上の高強度と
ともに高靭性が要求される。従来これらの部品は
中炭素鋼あるいは中炭素低合金鋼棒鋼を素材とし
て用い切削して成形後焼入れ焼戻し熱処理を行な
う方法で製造されている。この熱処理を省略し、
熱間圧延ままで高強度かつ高靭性の非調質棒鋼の
製造が可能になれば、省エネルギーおよびコスト
の面でメリツトは極めて大きい。 熱間圧延ままで高強度かつ高靭性を有する非調
質鋼の開発は、棒鋼の分野のみならず薄鋼板や厚
鋼板分野においてもさかんに行なわれている。例
えば特公昭58−2570号のように、鋼板の分野にお
いては、靭性に有害なパーライトの析出を阻止し
フエライト単相となるようにCを0.25%以下に抑
えた低炭素鋼にNbやVを添加してその炭窒化物
の析出により強化し、さらにAr3点直上あるいは
二相域温度にて圧延を行なうことによりフエライ
トを細粒化することを組も合わせて、強靭化を図
つてきた。しかしシヤフト等の棒鋼を素材とする
機械構造用部品の製造においては、最終工程でそ
の耐摩耗性を向上させるため高周波焼入れ表面硬
化処理を行なうことが必須とされており、そのた
めCが従来材並の0.30〜0.55%の中炭素鋼を素材
として用いざるを得ない。 中炭素非調質鋼の場合、強度が高く靭性の低い
パーライトが主体の組織となるため、高強度比較
的容易に得られる高い靭性は得難い。例えば特開
昭59−9122号、同59−170222号等に見られるよう
に、強度が70〜100Kgf/mm2級の非調質鋼では衝
撃値(uE20)はたはだか10Kgf・m/cm2と低く、
JIS G 4051に記載されているS45C焼入れ焼戻
し材参考値の下限値(8Kgf・m/cm2)にようや
く到達する程度である。このような低靭性の問題
が中炭素非調質鋼実用化の障害となつている。 又強度は冷間加工を施した場合それによつても
付加することが可能であるが、靭性は冷間加工を
施すほど劣化するため低靭性の素材は使用するこ
とができない。さらに素材強度が70Kgf/mm2を越
えると冷間加工性(工具寿命や加工負荷)が劣化
する問題があり、このため冷間加工用としては素
材強度が70〜90Kgf/mm2の冷間加工性が良くしか
も靭性の優れた素材棒鋼が要望されていた。 〔発明が解決しようとする問題点〕 本発明は中炭素鋼において熱間圧延まま高強度
かつ高靭性で、しかも冷間加工を施しても低靭性
とならない中炭素非調質鋼とその製造方法を開示
するものである。 〔問題点を解決するための手段〕 本発明者らは中炭素鋼を用いて、強度が70Kg
f/mm2以上でかつ靭性の優れた非調質鋼を目標に
研究を行なつた結果 (a) 圧延まま材の強度は炭素当量Ceq(=%C+
%Si/7+%Mn/5+%Cr/9+%V)を調
整することにより制御可能である。 (b) 圧延仕上げ温度を低下することにより従来知
られてきたフエライトおよびパーライト結晶粒
の微細化による靭性向上効果の他に、ある特定
温度以下とすると微細フエライトの変態が促進
され、靭性の高いフエライトの分率が急激に増
加することにより靭性向上が期待できる。さら
に圧延温度を低下させ、二相域圧延となると圧
延中に析出したフエライトが加工を受けること
により靭性は低下してしまう。 (c) しかし中炭素普通鋼では前記特定温度域での
仕上げ圧延により靭性の高い微細フエライトの
分率を増加させたとしてもフエライト分率の増
加にともなつてCが過剰となり、パーライト中
のC量が増加してパーライトが脆化するため、
鋼材全体での靭性の向上は小さい。 (d) Vは固溶した鋼を前記特定温度域にて仕上げ
圧延を行なうと、Vが微細フエライトの分率増
加にともない発生する過剰なCと反応し、靭性
を損なわずに強度を高める微細炭化物の析出が
促進されることにより強度の低下およびパーラ
イトの脆化を防止し、高強度でありながら低炭
素鋼と同等程度まで靭性を向上させることが可
能となる。 等の知見を見いだした。 これにより強度が70Kgf/mm2以上でかつ常温で
シヤルピー衝撃値(uE20)が18Kgf・m/cm2以上
と従来中炭素非調質鋼に比べ靭性が飛躍的に高
く、また中炭素調質鋼と比較しても同等以上の強
度を有する中炭素非調質鋼およびその製造方法を
発明するに至つた。 以下本発明において、特許請求範囲の限定理由
について述べる。 まず鋼成分について、Cは強度および高周波焼
入れ表面硬化による耐摩耗性向上のために0.30%
以上必要であるが、0.50%を越えると靭性および
冷間加工性を損なうため、0.30〜0.50%とした。 Siは脱酸を促進し強度を上昇させるのに有効な
元素であるが、靭性を損なうため上限を0.30%と
した。 Mnは強度を上昇させかつ組織を微細にして靭
性を上昇させるのに有効な元素で、0.60%未満で
はその効果が小さい。しかし2.0%を越えると靭
性を急に劣化させるので、0.60〜2.00%とした。 Vは前記の如く本発明に重要な添加元素で0.06
%未満ではその効果は小さく、0.30%以上ではそ
の効果は飽和するため、0.06〜0.30%とした。 Alは窒化物を形成し結晶粒を微細化する効果
がありsol−Alで0.020%以上必要であるが、0.060
%を越えると被削性を損なうため、0.020〜0.060
%とした。 NはAlの窒化物およびVの炭窒化物形成のた
めに必要な元素で0.0020%を下限とするが0.0070
%を越えると靭性を損なうことから、0.0020〜
0.0070%とした。 なおVのかわりにNbを0.01〜0.20%を添加して
も同様な効果を得られるが、同一の機械的性質を
有する非調質鋼を製造する場合Nb添加鋼のほう
がV添加鋼に比較して成分的にコスト高につくこ
とや加熱温度を上昇させる必要がある等の欠点が
ある。 本発明において圧延まま材の強度はCeq=%C
+%Si/7+%Mn/5+%Cr/9+%Vで示さ
れる炭素当量と相関関係があり、70〜90Kgf/mm2
とするためには炭素当量が0.60〜0.90未満必要で
ある。 炭素当量の式からわかるように、Crも強度を
向上させるのに有効な元素であり、0.01%未満で
はその効果がなく、0.50%越すと強度向上の効果
はほぼ飽和し、コスト的に見合わなくなるので、
Crは0.01〜0.50%の範囲で添加すべきである。 本発明は前記のように、従来知られているフエ
ライト結晶粒を微細化することによる靭性向上だ
けでなくフエライトの分率を増加させることによ
る大幅な靭性向上が大きな特徴である。上記の成
分範囲の鋼では制御圧延を行なわないと、そのフ
エライト分率は含有炭素量が(%C)の場合0.5
−0.63×(%C)以下であるが、特定温度域での
制御圧延を行なうと0.5−0.63×(%C)を上回り
この時靭性が大幅に向上することからフエライト
分率の下限値を0.5−0.63×(%C)とした。この
際フエライト粒度はNo.7〜9からNo.10以上No.12程
度まで微細化して靭性向上に寄与しており、フエ
ライト粒度の下限値をNo.10とした。また硬質組織
であるベイナイトあるいはマルテンサイトの発生
は靭性および冷間加工性を劣化させるため、フエ
ライト−パーライト組織であることとした。 ここで、フエライト粒度はJIS G 0552比較法
に準じ測定した粒度番号であり、フエライト分率
は光学顕微鏡機能を備えた画像解析装置(商品
名:日本レギユレーター株式会社製の
LUZEX500)でパーライト組織と混在している
フエライト組織占有量を測定し表わす。 圧延および冷却条件について以下に述べる。加
熱温度は特に限定しないが、Vを鋼中に固溶させ
所定の効果を出させることが重要であり、V添加
鋼で一般に適用されている1000℃以上、望ましく
は1050℃以上とすべきである。 最終仕上げ圧延温度を650〜800℃としたのは、
前記のフエライト分率を増加させる特定温度範囲
にあたり、本発明の成分の鋼では650℃未満では
二相域圧延にかかるため靭性は逆に低下し、800
℃を越えるフエライト分率増加の効果は急に小さ
くなるためである。 さらに圧延後の冷却速度であるが、前記のよう
に本発明鋼はフエライト−パーライト組織である
ことが重要であり、ベイナイトあるいはマルテン
サイトが析出すると靭性を劣化させることから、
ベイナイトあるいはマルテンサイトの析出を阻止
すべく2.0℃/sec以下とした。 〔実施例〕 以下に本発明の実施例をもつて説明する。 第1表に供試材の成分を示す。供試材はすべて
転炉で溶製しRH処理後連続鋳造により鋳造した
もので、120mm角鋼片から30mm丸棒鋼に圧延した。
圧延後の冷却速度は、いずれも0.8〜1.0℃/sec内
にした。供試材は圧延ままあるいは熱処理を施さ
れた後、引張試験および常温でのシヤルピーUノ
ツチ衝撃試験により評価された。第2表にこれら
の結果を示す。番号に丸印を付してあるのが本発
明例でありそれ以外は比較例である。同表にさら
にフエライト粒度および含有炭素量に応じたフエ
ライト分率の目標値とその実測値も併せ示した。
なお比較例11は調質鋼として一般に使用されてい
るJIS S45C規格鋼であり熱処理方法はJIS G
4051を参考とした。 本発明の実施例,,,,,はいず
れも圧延ままで70〜90Kgf/mm2の強度とともに18
Kgf・m/cm2以上の衝撃値を達成している。比較
例5は従来非調質鋼の圧延条件であり、仕上げ温
度が高いためフエライト結晶粒が大きいとともに
フエライト分率が小さく、靭性が劣化している。
比較例8はVの添加がないため、同じく比較例9
はN過多のため、靭性が劣化している。比較例10
は炭素当量過多のため、強度が過大で冷間加工に
向かない。 第2表には本発明の実施例,,,,
,に関して減面率15%の冷間引き抜きを行な
つた場合の冷間加工材の強度と靭性を併せて示し
てあるが、いずれも90Kgf/mm2以上の強度ととも
に12Kgf・m/cm2以上の衝撃値を確保している。
これを比較例11であるS45C調質鋼と比較すると、
本発明鋼は強度は同等であり、靭性いずれも高
く、従来調質鋼で製造されてきた機械構造用部品
の非調質化が可能であることがわかる。 第1図は本発明鋼の代表例として実施例の圧
延まま材の組織を示す顕微鏡写真を示し、そのフ
エライト粒度およびフエライト分率を示したもの
である。第2図は前記供試材記号Cを用いた場合
の圧延最終仕上げ温度とフエライト粒度、フエラ
イト分率および圧延まま材の引張強度、衝撃値の
関係を示す図である。本発明である最集仕上げ温
度650〜800℃の範囲でフエライト分率は急激に増
加するとともにフエライト粒は微細となり、それ
により衝撃値は急激に向上するが強度の低下はほ
とんどなく、この実施例の目的の強度70〜90Kg
f/mm2、衝撃値18Kgf・m/cm2以上の材質が圧延
ままで得られる。
[Industrial Field of Application] The present invention is a non-tempered steel bar with excellent toughness and a method for producing the same. More specifically, regarding the manufacturing method of raw steel bars used for manufacturing automobile bolts, robots, etc., it is possible to process them by cold working such as cold drawing or cold extrusion, or by applying conventional quenching and tempering heat treatment to the steel bars as they are hot rolled. The present invention relates to a non-tempered steel bar having high strength and toughness equivalent to or higher than tempered steel bars, and a method for manufacturing the same. The present invention also relates to a method for producing raw steel bars used in the production of shafts and pin parts for automobiles and construction machinery. The present invention relates to a non-tempered steel bar having high strength and toughness, and a method for producing the same. [Prior Art] Machine structural parts such as bolts and rods for automobiles are required to have high strength and high toughness. Conventionally, these parts have been manufactured by using medium carbon steel or neutral carbon low alloy steel bars as raw materials and toughening them by performing quenching and tempering heat treatment after forming by cold or hot working. If it were possible to omit this heat treatment and produce a high-strength, high-toughness non-tempered steel bar with cold working or hot rolling, the benefits would be extremely large in terms of energy saving and cost. In addition, mechanical structural parts such as shafts and pin parts for automobiles and construction machinery are required to have high strength of 70 kgf/mm 2 or more and high toughness. Conventionally, these parts have been manufactured by using medium carbon steel or medium carbon low alloy steel bars as raw materials, cutting them, forming them, and then subjecting them to quenching and tempering heat treatment. This heat treatment is omitted,
If it were possible to produce high-strength, high-toughness non-tempered steel bars as hot-rolled, the benefits would be extremely large in terms of energy savings and costs. The development of non-tempered steel that has high strength and high toughness even when hot-rolled is being actively carried out not only in the field of steel bars but also in the fields of thin steel plates and thick steel plates. For example, in the field of steel sheets, as in Japanese Patent Publication No. 58-2570, Nb and V are added to low carbon steel with C content below 0.25% to prevent the precipitation of pearlite, which is harmful to toughness, and to form a single phase of ferrite. In order to strengthen the ferrite, toughness has been achieved by adding carbonitrides to the carbonitrides to precipitate them, and by rolling the ferrite at temperatures just above the Ar 3 point or in the two-phase region to make the ferrite grains finer. However, in the manufacture of machine structural parts such as shafts made of steel bars, it is essential to perform surface hardening treatment by induction hardening in the final process to improve the wear resistance. There is no choice but to use medium carbon steel with a content of 0.30 to 0.55% as the material. In the case of medium carbon non-tempered steel, the structure is mainly pearlite, which has high strength and low toughness, so it is difficult to obtain high toughness, which is relatively easy to obtain. For example, as seen in JP-A-59-9122 and JP-A-59-170222, the impact value (uE 20 ) of grade 2 non-thermal steel with a strength of 70 to 100 Kgf/mm is just 10 Kgf・m/cm. As low as 2 ,
It barely reaches the lower limit of the reference value for S45C quenched and tempered material (8 kgf·m/cm 2 ) listed in JIS G 4051. This problem of low toughness is an obstacle to the practical application of medium carbon non-thermal treated steel. Strength can also be added by cold working, but the toughness deteriorates the more cold working is applied, so materials with low toughness cannot be used. Furthermore, if the material strength exceeds 70 Kgf/ mm2 , there is a problem that cold workability (tool life and machining load) deteriorates, so cold working with a material strength of 70 to 90 Kgf/ mm2 is recommended for cold working. There was a demand for a steel bar material with good properties and toughness. [Problems to be Solved by the Invention] The present invention provides a medium carbon non-heat treated medium carbon steel that has high strength and high toughness as hot rolled and does not have low toughness even after cold working, and a method for producing the same. This is to disclose. [Means for solving the problem] The present inventors used medium carbon steel to achieve a strength of 70 kg.
The results of research aimed at producing non-tempered steel with f/mm 2 or higher and excellent toughness (a) The strength of as-rolled material is determined by the carbon equivalent Ceq (=%C+
It can be controlled by adjusting %Si/7+%Mn/5+%Cr/9+%V). (b) In addition to the conventionally known effect of improving toughness by refining ferrite and pearlite crystal grains by lowering the rolling finishing temperature, lowering the temperature below a certain level promotes the transformation of fine ferrite, resulting in the production of ferrite with high toughness. An improvement in toughness can be expected by a rapid increase in the fraction of . Furthermore, when the rolling temperature is lowered and rolling is performed in a two-phase region, the ferrite precipitated during rolling is processed, resulting in a decrease in toughness. (c) However, in medium carbon ordinary steel, even if the fraction of fine ferrite with high toughness is increased by finish rolling in the above-mentioned specific temperature range, as the ferrite fraction increases, C becomes excessive, and the C in pearlite increases. As the amount increases, pearlite becomes brittle,
The improvement in toughness of the steel as a whole is small. (d) When finish rolling of steel in which V is a solid solution is performed in the above specified temperature range, V reacts with excess C generated as the fraction of fine ferrite increases, forming fine particles that increase strength without impairing toughness. By promoting the precipitation of carbides, it is possible to prevent a decrease in strength and embrittlement of pearlite, and improve toughness to the same level as low carbon steel while maintaining high strength. We found the following knowledge. As a result, the strength is 70Kgf/mm 2 or more, and the Charpy impact value (uE 20 ) at room temperature is 18Kgf・m/cm 2 or more, which is dramatically higher than conventional medium carbon non-heat treated steel, and the medium carbon heat treatment The inventors have invented a medium-carbon non-tempered steel that has strength equal to or higher than that of steel, and a method for producing the same. In the present invention, reasons for limiting the scope of claims will be described below. First, regarding the steel composition, C is 0.30% to improve strength and wear resistance through induction hardening and surface hardening.
The above amount is necessary, but if it exceeds 0.50%, toughness and cold workability will be impaired, so it is set at 0.30 to 0.50%. Si is an effective element for promoting deoxidation and increasing strength, but since it impairs toughness, the upper limit was set at 0.30%. Mn is an element effective in increasing strength and making the structure finer to increase toughness, and if it is less than 0.60%, the effect is small. However, if it exceeds 2.0%, the toughness will suddenly deteriorate, so it is set at 0.60 to 2.00%. As mentioned above, V is an important additive element for the present invention and is 0.06
If it is less than 0.3%, the effect is small, and if it is more than 0.30%, the effect is saturated, so it was set at 0.06 to 0.30%. Al has the effect of forming nitrides and refining crystal grains, and 0.020% or more is required for sol-Al, but 0.060% or more is required for sol-Al.
If it exceeds 0.020 to 0.060, machinability will be impaired.
%. N is an element necessary for forming Al nitride and V carbonitride, and the lower limit is 0.0020%, but 0.0070%.
If it exceeds 0.0020%, the toughness will be impaired.
It was set as 0.0070%. Note that the same effect can be obtained by adding 0.01 to 0.20% Nb instead of V, but when producing non-tempered steel with the same mechanical properties, Nb-added steel is better than V-added steel. However, there are disadvantages such as high cost due to the components and the need to increase the heating temperature. In the present invention, the strength of the as-rolled material is Ceq = %C
There is a correlation with the carbon equivalent shown by +%Si/7+%Mn/5+%Cr/9+%V, 70-90Kgf/mm 2
In order to achieve this, the carbon equivalent must be between 0.60 and less than 0.90. As can be seen from the formula for carbon equivalent, Cr is also an effective element for improving strength, and if it is less than 0.01%, it has no effect, and if it exceeds 0.50%, the strength improvement effect is almost saturated, and it is not worth it in terms of cost. Because it will disappear,
Cr should be added in the range of 0.01-0.50%. As mentioned above, the major feature of the present invention is that it not only improves toughness by making the conventionally known ferrite crystal grains fine, but also significantly improves toughness by increasing the fraction of ferrite. If steel with the above composition range is not subjected to controlled rolling, the ferrite fraction will be 0.5 if the carbon content is (%C).
-0.63 x (%C) or less, but if controlled rolling is performed in a specific temperature range, it will exceed 0.5 - 0.63 x (%C), and the toughness will significantly improve, so the lower limit of the ferrite fraction was set at 0.5 −0.63×(%C). At this time, the ferrite particle size was refined from No. 7 to 9 to about No. 10 or more and No. 12, which contributed to improving the toughness, and the lower limit of the ferrite particle size was set to No. 10. Furthermore, since the occurrence of bainite or martensite, which are hard structures, deteriorates toughness and cold workability, it was decided to have a ferrite-pearlite structure. Here, the ferrite particle size is the particle size number measured according to the JIS G 0552 comparative method, and the ferrite fraction is measured using an image analysis device equipped with an optical microscope function (product name: Nippon Regulator Co., Ltd.).
LUZEX500) to measure and express the amount of ferrite structure mixed with pearlite structure. The rolling and cooling conditions will be described below. The heating temperature is not particularly limited, but it is important to dissolve V in the steel to produce the desired effect, and it should be at least 1000°C, which is generally applied for V-added steel, and preferably at 1050°C or more. be. The final finish rolling temperature was set at 650 to 800℃ because
In the specific temperature range in which the ferrite fraction increases, the steel with the composition of the present invention undergoes rolling in the two-phase region at temperatures below 650°C, resulting in a decrease in toughness;
This is because the effect of increasing the ferrite fraction above °C suddenly decreases. Furthermore, regarding the cooling rate after rolling, as mentioned above, it is important that the steel of the present invention has a ferrite-pearlite structure, and the precipitation of bainite or martensite deteriorates the toughness.
The temperature was set at 2.0°C/sec or less to prevent precipitation of bainite or martensite. [Example] The present invention will be explained below using an example. Table 1 shows the components of the sample materials. All test materials were melted in a converter, RH treated, and then cast by continuous casting, and rolled from 120 mm square steel pieces to 30 mm round steel bars.
The cooling rate after rolling was 0.8 to 1.0° C./sec in all cases. The test materials were evaluated by a tensile test and a sharpie U-notch impact test at room temperature either as rolled or after being heat treated. Table 2 shows these results. Examples with a circle attached to the number are examples of the present invention, and the others are comparative examples. The table also shows target values and actual measured values for the ferrite fraction depending on the ferrite particle size and carbon content.
Comparative Example 11 is JIS S45C standard steel, which is generally used as tempered steel, and the heat treatment method was JIS G.
4051 was used as a reference. The embodiments of the present invention, , , , all have a strength of 70 to 90 Kgf/mm 2 and a strength of 18
It has achieved an impact value of Kgf・m/cm 2 or more. Comparative Example 5 has rolling conditions for conventional non-tempered steel, and the finishing temperature is high, so the ferrite crystal grains are large, the ferrite fraction is small, and the toughness is degraded.
Since Comparative Example 8 does not contain V, it is also similar to Comparative Example 9.
The toughness deteriorated due to excessive N content. Comparative example 10
has too much carbon equivalent, so its strength is too high and it is not suitable for cold working. Table 2 shows examples of the present invention.
, the strength and toughness of the cold-worked material when cold drawing is performed with an area reduction rate of 15% are shown, both of which have a strength of 90Kgf/mm2 or more and a strength of 12Kgf・m/cm2 or more. The impact value is ensured.
Comparing this with S45C tempered steel, which is Comparative Example 11,
It can be seen that the steels of the present invention have the same strength and high toughness, and that it is possible to non-thermalize mechanical structural parts that have conventionally been manufactured with heat-treated steel. FIG. 1 shows a micrograph showing the structure of an as-rolled material of an example as a representative example of the steel of the present invention, and shows its ferrite grain size and ferrite fraction. FIG. 2 is a diagram showing the relationship between the final finishing temperature of rolling, ferrite particle size, ferrite fraction, tensile strength and impact value of the as-rolled material when the above-mentioned sample material symbol C is used. In the range of the final finishing temperature of 650 to 800°C, which is the range of the present invention, the ferrite fraction increases rapidly and the ferrite grains become fine, so that the impact value rapidly increases, but there is almost no decrease in strength. Target strength of 70~90Kg
f/mm 2 and impact value of 18 Kgf·m/cm 2 or more can be obtained as rolled.

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上に説明したように本発明は鋼材成分・金属
組織および圧延方法を限定することにより、従来
の中炭素非調質棒鋼に見られた低靭性という問題
を解決し、冷間加工性のために70Kgf/mm2以上の
強度とするとともに衝撃値が18Kgf・m/cm2以上
という優れた靭性を有する中炭素非調質棒鋼およ
びその製造方法を確立した工業的に極めて価値の
高いものである。
As explained above, the present invention solves the problem of low toughness seen in conventional medium carbon non-tempered steel bars by limiting the steel material composition, metallographic structure, and rolling method, and improves cold workability. This is a medium-carbon non-tempered steel bar with a strength of 70 Kgf/mm 2 or more and an impact value of 18 Kgf/cm 2 or more, and a method for producing the same, which is extremely valuable industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例(A)−鋼の金属組織を
示す顕微鏡写真。第2図は圧延最終仕上げ温度と
フエライト粒度、フエライト分率および圧延まま
材の引張強度、衝撃値の関係を示す図である。
FIG. 1 is a micrograph showing the metallographic structure of steel in Example (A) of the present invention. FIG. 2 is a diagram showing the relationship between final finishing temperature of rolling, ferrite particle size, ferrite fraction, tensile strength of as-rolled material, and impact value.

Claims (1)

【特許請求の範囲】 1 C 0.30〜0.50%、 Si 0.30%以下、 Mn 0.60〜2.00%、 Cr 0.01〜0.50%、 V 0.06〜0.30%、 sol−Al 0.020〜0.060%、 N 0.0020〜0.0070%、 ただし、%C+%Si/7+%Mn/5+%Cr/
9+%Vの値が0.60〜0.90未満として含有し、残
余はFeおよび不可避的不純物からなる成分で、
しかもフエライト粒度がNo.10以上かつフエライト
分率が含有炭素量(%C)に応じて0.5−0.63×
(%C)以上であるフエライト−パーライト組織
を有した圧延まま棒鋼で、引張強度が70〜90Kg
f/mm2でかつ常温でのシヤルピー衝撃値が18Kg
f・m/cm2以上であることを特徴とする靭性の優
れた非調質棒鋼。 2 C 0.30〜0.50%、 Si 0.30%以下、 Cr 0.01〜0.50%、 Mn 0.60〜2.00%、 V 0.06〜0.30%、 sol−Al 0.020〜0.060%、 N 0.0020〜0.0070%、 ただし、%C+%Si/7+%Mn/5+%Cr/
9+%Vの値が0.60〜0.90未満として含有し、残
余はFeおよび不可避的不純物からなる成分を有
する鋼片を加熱し、つづく熱間圧延において最終
仕上げ温度を650〜800℃で行い、圧延後500℃ま
でを2.0℃/sec以下の冷却速度で冷却することを
特徴とする靭性の優れた非調質棒鋼の製造方法。
[Claims] 1 C 0.30-0.50%, Si 0.30% or less, Mn 0.60-2.00%, Cr 0.01-0.50%, V 0.06-0.30%, sol-Al 0.020-0.060%, N 0.0020-0.0070%, However, %C+%Si/7+%Mn/5+%Cr/
9+%V value is contained as less than 0.60 to 0.90, the remainder is a component consisting of Fe and unavoidable impurities,
Moreover, the ferrite particle size is No. 10 or more and the ferrite fraction is 0.5-0.63× depending on the carbon content (%C).
As-rolled steel bar with a ferrite-pearlite structure of (%C) or more, with a tensile strength of 70 to 90 kg
f/mm 2 and a Charpy impact value of 18Kg at room temperature.
A non-tempered steel bar with excellent toughness characterized by a toughness of f・m/cm 2 or more. 2 C 0.30-0.50%, Si 0.30% or less, Cr 0.01-0.50%, Mn 0.60-2.00%, V 0.06-0.30%, sol-Al 0.020-0.060%, N 0.0020-0.0070%, however, %C + %Si /7+%Mn/5+%Cr/
A steel billet containing a 9+% V value of less than 0.60 to 0.90, with the remainder consisting of Fe and unavoidable impurities is heated, followed by hot rolling at a final finishing temperature of 650 to 800°C, and after rolling. A method for producing a non-tempered steel bar with excellent toughness, characterized by cooling up to 500°C at a cooling rate of 2.0°C/sec or less.
JP4272186A 1986-02-27 1986-02-27 Unrefined steel bar having superior toughness and its manufacture Granted JPS62199750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4272186A JPS62199750A (en) 1986-02-27 1986-02-27 Unrefined steel bar having superior toughness and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4272186A JPS62199750A (en) 1986-02-27 1986-02-27 Unrefined steel bar having superior toughness and its manufacture

Publications (2)

Publication Number Publication Date
JPS62199750A JPS62199750A (en) 1987-09-03
JPH0425343B2 true JPH0425343B2 (en) 1992-04-30

Family

ID=12643930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4272186A Granted JPS62199750A (en) 1986-02-27 1986-02-27 Unrefined steel bar having superior toughness and its manufacture

Country Status (1)

Country Link
JP (1) JPS62199750A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290751A (en) * 1988-05-19 1989-11-22 Topy Ind Ltd High-strength non-heattreated steel bar
JP2732104B2 (en) * 1988-12-29 1998-03-25 愛知製鋼株式会社 Structural steel with excellent durability ratio
JP5266804B2 (en) * 2008-03-07 2013-08-21 Jfeスチール株式会社 Method for producing rolled non-heat treated steel
JP5206056B2 (en) * 2008-03-21 2013-06-12 Jfeスチール株式会社 Manufacturing method of non-tempered steel
JP5565102B2 (en) * 2010-05-27 2014-08-06 Jfeスチール株式会社 Steel for machine structure and manufacturing method thereof
IN2014KN01143A (en) * 2011-12-07 2015-10-16 Jfe Steel Corp
CN113646448B (en) * 2019-04-10 2023-08-11 日本制铁株式会社 Steel shaft component
WO2021172604A1 (en) * 2020-02-24 2021-09-02 주식회사 포스코 Non-heat treated wire rod with excellent wire drawability and impact toughness and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123920A (en) * 1981-01-22 1982-08-02 Daido Steel Co Ltd Production of structural steel
JPS57123921A (en) * 1981-01-23 1982-08-02 Daido Steel Co Ltd Production of structural steel
JPS5852458A (en) * 1981-09-22 1983-03-28 Kawasaki Steel Corp Nonquenched and tempered steel with high strength and toughness
JPS599122A (en) * 1982-07-05 1984-01-18 Kawasaki Steel Corp Manufacture of unnormalized high strength and high toughness steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123920A (en) * 1981-01-22 1982-08-02 Daido Steel Co Ltd Production of structural steel
JPS57123921A (en) * 1981-01-23 1982-08-02 Daido Steel Co Ltd Production of structural steel
JPS5852458A (en) * 1981-09-22 1983-03-28 Kawasaki Steel Corp Nonquenched and tempered steel with high strength and toughness
JPS599122A (en) * 1982-07-05 1984-01-18 Kawasaki Steel Corp Manufacture of unnormalized high strength and high toughness steel

Also Published As

Publication number Publication date
JPS62199750A (en) 1987-09-03

Similar Documents

Publication Publication Date Title
CN109023036B (en) Ultrahigh-strength hot-rolled complex-phase steel plate and production method thereof
MXPA97008775A (en) Process to produce steel pipe without seams of great strength having excellent resistance to the fissure by tensions by sulf
JP2016534230A (en) High hardness hot rolled steel product and method for producing the same
WO2007074986A1 (en) Steel wire having excellent cold heading quality and quenching property, and method for producing the same
WO2001002615A1 (en) Cold workable steel bar or wire and process
CN112011725A (en) Steel plate with excellent low-temperature toughness and manufacturing method thereof
CN103882330A (en) Non-quenched and tempered steel plate with low yield ratio and super high strength and producing method thereof
CN113528944B (en) 1000MPa easily-formed wear-resistant steel plate and preparation method thereof
KR100428581B1 (en) A non qt steel having superior strength and toughness and a method for manufacturing wire rod by using it
CN112877591B (en) High-strength and high-toughness hardware tool and steel for chain and manufacturing method thereof
CN110358970B (en) Welded structure bainite high-strength steel with yield strength of 1100MPa and preparation method thereof
JPH0425343B2 (en)
KR100536660B1 (en) Steel wire with superior impact absorption energy at law temperature and the method of making the same
JP3554506B2 (en) Manufacturing method of hot-rolled wire and bar for machine structure
JP3149741B2 (en) Non-heat treated steel excellent in fatigue resistance and its manufacturing method
CN108467997B (en) Precipitation-strengthened ferritic steel with yield strength of 1100MPa and production method thereof
JPH01176031A (en) Manufacture of non-heattreated steel for hot forging
JPH04154936A (en) Precipitation hardening nitriding steel
JP2756535B2 (en) Manufacturing method for strong steel bars
JPH0526850B2 (en)
KR100328051B1 (en) A Method of manufacturing high strength steel sheet
JPH059576A (en) Production of non-heattreated bar steel excellent in toughness at low temperature
JP3214731B2 (en) Method for producing non-heat treated steel bar with excellent low temperature toughness
JP2000160285A (en) High-strength and high-toughness non-heat treated steel
CN114341386B (en) Steel material excellent in strength and low-temperature impact toughness and method for producing same