JP2708540B2 - Method for producing high-strength steel sheet mainly composed of ferrite structure - Google Patents

Method for producing high-strength steel sheet mainly composed of ferrite structure

Info

Publication number
JP2708540B2
JP2708540B2 JP1086792A JP8679289A JP2708540B2 JP 2708540 B2 JP2708540 B2 JP 2708540B2 JP 1086792 A JP1086792 A JP 1086792A JP 8679289 A JP8679289 A JP 8679289A JP 2708540 B2 JP2708540 B2 JP 2708540B2
Authority
JP
Japan
Prior art keywords
less
temperature
rolling
ferrite
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1086792A
Other languages
Japanese (ja)
Other versions
JPH02267221A (en
Inventor
智也 小関
尚隆 出来
虔一 天野
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP1086792A priority Critical patent/JP2708540B2/en
Publication of JPH02267221A publication Critical patent/JPH02267221A/en
Application granted granted Critical
Publication of JP2708540B2 publication Critical patent/JP2708540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、直接焼入れ−焼もどし処理による厚鋼板の
製造方法に係り、特に、引張強さ60kgf/mm2以上の一般
用途の高強度鋼板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a steel plate by direct quenching and tempering, and in particular, a high strength steel plate for general use having a tensile strength of 60 kgf / mm 2 or more. And a method for producing the same.

<従来の技術> 直接焼入れ−焼もどし処理により製造された鋼材は、
通常の再加熱焼入れ−焼もどし処理により製造した鋼材
に比べて、オーステナイト中に十分添加元素が固溶し、
かつ均質化され、オーステナイト粒も大きいため焼入れ
性が向上し、高強度が得られやすいことが知られてい
る。
<Conventional technology> Steel materials manufactured by direct quenching-tempering treatment are:
Compared to the steel material manufactured by the normal reheating quenching-tempering process, the added element is more fully dissolved in austenite,
It is known that quenching properties are improved due to homogenization and large austenite grains, and high strength is easily obtained.

そしてこの直接焼入れ−焼もどし処理での圧延仕上げ
温度は、特開昭61−23715号公報や特開昭61−48517号公
報にみられるように一般にAr3点以上の高温が選定され
る。すなわち、圧延仕上げ温度がAr3点温度以下になっ
た場合、軟質のフェライトが析出して鋼板強度の低下が
生ずるため好ましくないと一般に考えられているからで
ある。
The rolling finish temperature in the direct quenching-tempering process is generally selected to be as high as three or more Ar points as disclosed in JP-A-61-23715 and JP-A-61-48517. That is, it is generally considered unfavorable when the rolling finish temperature is lower than or equal to the Ar 3 point temperature because soft ferrite is precipitated and the steel sheet strength is reduced.

しかし、ここで圧延仕上げ温度を高温とした場合、鋼
板のオーステナイト粒は粗大であり、再加熱焼入れ−焼
もどし処理材に比べて靱性面が不利となる。そこで、こ
の改善を目的に、例えば特公昭61−60891号公報にみら
れるように、成分系,再結晶域や未再結晶域での圧延な
どに種々の工夫がなされている。
However, when the rolling finishing temperature is set to a high temperature here, the austenite grains of the steel sheet are coarse, and the toughness is disadvantageous as compared with the reheat-quenched-tempered material. Therefore, for the purpose of this improvement, various attempts have been made in, for example, rolling in a component system, a recrystallized region or a non-recrystallized region as disclosed in Japanese Patent Publication No. 61-60891.

しかしながら、上述の技術は、比較的高成分系におい
て加熱温度や圧延条件を厳密にコントロールしたもので
あり、高度の制御技術が要求されると同時に経済性も損
なわれる。加えて、比較的薄肉の鋼板製造においては、
圧延中の温度低下があり、高温圧延仕上げ温度の確保に
多大の設備投資や圧延の配慮が必要であり、また確保で
きた場合でも焼入れ冷却速度の変化で鋼板強度が著しく
変わるため、所定の特性の鋼板を安定して大量に製造す
ることは困難であった。
However, the above-mentioned technique strictly controls the heating temperature and the rolling conditions in a relatively high-component system, and requires a high-level control technique and also impairs economic efficiency. In addition, in the production of relatively thin steel plates,
There is a drop in temperature during rolling, and a great deal of capital investment and consideration of rolling is necessary to secure a high-temperature finishing temperature.Even if the temperature can be secured, the strength of the steel sheet changes significantly due to changes in the quenching cooling rate. It was difficult to stably produce a large number of steel sheets.

また一方で、フェライト析出に着目した技術が特開昭
52−59017号公報や特開昭55−41927号公報に開陳されて
いる。ここで前者は薄鋼板を急冷し、マルテンサイト組
織に5〜20%の微量フェライトを混合させ破壊伝播停止
特性の向上をはかったものであり、後者は圧延仕上げ温
度Ar3点以上とした薄肉鋼板を空冷し、フェライトが5
〜60%析出した時点で急冷し、良加工性の薄肉鋼板を製
造するものである。両技術とも冷却速度のかなり早い薄
肉鋼板の焼入れを対象としたものであり、また主強化機
構はマルテンサイト変態強化によっており、その故フェ
ライト析出量に上限を設けている。
On the other hand, a technique focusing on ferrite precipitation is disclosed in
It is disclosed in JP-A-52-59017 and JP-A-55-41927. Wherein the former are those quenching the steel sheet, thereby improving the fracture propagation arrestability by mixing 5-20% of trace ferrite martensite structure, thin steel sheet latter was the rolling finishing temperature Ar 3 point or more Air cooling and ferrite is 5
It is quenched at the time of precipitation of 析出 60% to produce a thin steel plate with good workability. Both techniques are intended for the quenching of thin steel plates with a very fast cooling rate, and the main strengthening mechanism is by martensitic transformation strengthening, and therefore has an upper limit on the amount of ferrite precipitation.

しかしながら、これらの技術によっても前述したよう
に、冷却速度の変化に伴い鋼板の引張特性が大いに変動
することが予想され、やはり大量,安定製造に困難さが
残る。
However, even with these techniques, as described above, it is expected that the tensile properties of the steel sheet will fluctuate greatly with a change in the cooling rate, and there will still be difficulties in mass production and stable production.

<発明が解決しようとする課題> 本発明は、製造条件が比較的容易で、かつ低コストな
成分系で焼入れ冷却速度による強度変化の少ない引張強
さ60kgf/mm2以上の高強度鋼板の製造方法を提供するこ
とを目的とするものである。
<Problems to be Solved by the Invention> The present invention is directed to the production of a high-strength steel sheet having a tensile strength of 60 kgf / mm 2 or more, in which the production conditions are relatively easy, the cost is low, and the strength does not change much due to the quenching cooling rate. It is intended to provide a method.

<課題を解決するための手段> 本発明に至ったヒント,要件は以下の通りである。<Means for Solving the Problems> Hints and requirements leading to the present invention are as follows.

引張強さ60kgf/mm2級鋼板においては、組織的にフ
ェライト+ベイナイト(又はマルテンサイト)混合で十
分所望する強度が得られ、またフェライト析出で組織が
微細化し低温靱性も改善されることが期待できる。
For a 60 kgf / mm 2 grade steel sheet, the desired strength can be obtained by mixing the ferrite and bainite (or martensite) systematically, and the ferrite precipitation is expected to refine the structure and improve the low-temperature toughness. it can.

フェライト+ベイナイト(又はマルテンサイト)混
合組織鋼板の強度は、 σT.S.=σ・fF+σ・(1−fF) の混合則で説明可能である。ここでσT.S.は鋼板の引張
強さ,σはフェライトの引張強さ,fFはフェライト相
の面積率,σはフェライト以外の第2相の引張強さを
示す。そのため、一般には軟質のフェライト相の多量析
出でσT.S.はσに近づき鋼板の引張り強さは低下する
ことが推定できるものの、σとσを上昇させればfF
が大きくても所定の強度を確保できることが予想され
る。
The strength of the ferrite + bainite (or martensite) mixed structure steel sheet can be explained by a mixing rule of σ TS = σ F · f F + σ B · (1−f F ). Here, σ TS indicates the tensile strength of the steel sheet, σ F indicates the tensile strength of ferrite, f F indicates the area ratio of the ferrite phase, and σ B indicates the tensile strength of the second phase other than ferrite. Therefore, although it is generally assumed that σ TS approaches σ F and the tensile strength of the steel sheet decreases due to a large amount of soft ferrite phase precipitation, if σ F and σ B are increased, f F
It is expected that a predetermined strength can be ensured even if is large.

上記σの上昇は、圧延歪の蓄積で、またσの上
昇はCの濃縮で達成可能である。
The increase in σ F can be achieved by accumulation of rolling strain, and the increase in σ B can be achieved by enrichment of C.

フェライト+ベイナイト(又はマルテンサイト)混
合組織鋼板の引張強さは、焼入れ冷却速度によって大き
な変化を受けにくい。
The tensile strength of the ferrite + bainite (or martensite) mixed structure steel sheet is not easily affected by the quenching cooling rate.

以上のヒントに基づき、本発明者らは、フェライトの
加工硬化および析出量の制御に着目した低温での圧延実
験と、第2相のσを高めるCの最適量などについて詳
細に検討し本発明に至った。
Based on the above hints, the present inventors studied in detail a low-temperature rolling experiment focusing on the control of the work hardening and the amount of precipitation of ferrite, and studied in detail the optimum amount of C for increasing σ B of the second phase and the like. Invented the invention.

すなわち、本発明は、重量%で、C:0.06〜0.25%,Si:
0.05〜0.50%,Mn:0.60〜2.50%,Mo:0.03〜0.30%,Al:0.
010〜0.100%,P:0.015%以下を含み、さらに必要に応じ
てV:0.080%以下,Ni:1.5%以下,Cu:1.5%以下,Cr:1.0%
以下,Nb:0.100%以下,Ca:0.01%以下,REM:0.01%以下及
びTi:0.05%以下の1種又は2種以上を含み、残部Fe及
び不可避的不純物からなる鋼に熱間圧延を施し、(Ar3
−30)℃から圧延仕上げ温度の温度範囲で圧下率20〜40
%で圧延し、フェライト析出量を70%以上とした後、直
ちに1〜15℃/sの冷却速度で150℃以下の温度まで冷却
し、次いでAc1点以下の温度で焼もどすことを特徴とす
るフェライト組織を主体とする高強度鋼板の製造方法で
ある。
That is, the present invention provides, by weight%, C: 0.06 to 0.25%, Si:
0.05 ~ 0.50%, Mn: 0.60 ~ 2.50%, Mo: 0.03 ~ 0.30%, Al: 0.
010 to 0.100%, P: 0.015% or less, and if necessary, V: 0.080% or less, Ni: 1.5% or less, Cu: 1.5% or less, Cr: 1.0%
The following, Nb: 0.10% or less, Ca: 0.01% or less, REM: 0.01% or less, and one or more of Ti: 0.05% or less, and hot rolling is performed on steel consisting of the balance of Fe and unavoidable impurities. , (Ar 3
-30) 20% to 40% reduction in the temperature range from ℃ to the rolling finish temperature
%, And after the ferrite precipitation amount is increased to 70% or more, immediately cooled at a cooling rate of 1 to 15 ° C / s to a temperature of 150 ° C or less, and then tempered at a temperature of 1 Ac or less. This is a method for producing a high-strength steel sheet mainly containing a ferrite structure.

<作 用> 以下に、まず化学成分の限定理由を述べる。<Operation> First, the reasons for limiting the chemical components will be described.

Cは、フェライト以外の第2相の強度確保から0.06%
(重量%以下同じ)以上必要であるが、0.25%を超える
と母材の靱性および溶接性が低下するため0.06〜0.25%
の範囲とする。
C is 0.06% from securing the strength of the second phase other than ferrite
(Same as the weight% or less) is required, but if it exceeds 0.25%, the toughness and weldability of the base material will decrease, so 0.06 to 0.25%
Range.

Mnは、フェライトに固溶しフェライトの硬さを上昇さ
せると共にAr2変態温度やMs点を下げ焼入れ性を高める
ため0.60%以上必要であるが、2.50%を超えると鋼板加
工性や溶接性が低下するため0.60〜2.50%の範囲とす
る。
Mn is required to be at least 0.60% to form a solid solution in ferrite, increase the ferrite hardness, lower the Ar 2 transformation temperature and Ms point, and increase the quenchability, but if it exceeds 2.50%, the steel sheet workability and weldability will increase. Since it decreases, it is set in the range of 0.60 to 2.50%.

Siは、製鋼時の脱酸剤として、またフェライトの固溶
強化による強度確保のため0.05%以上必要であるが、0.
50%を超えると鋼板および溶接部の靱性が劣化するため
0.05〜0.50%の範囲とする。
Si is required as a deoxidizing agent at the time of steelmaking and 0.05% or more to secure strength by solid solution strengthening of ferrite.
If it exceeds 50%, the toughness of the steel sheet and welded parts will deteriorate.
The range is 0.05 to 0.50%.

Moは、高温圧延域におけるオーステナイト粒の整細粒
化に効果を有し、またパーライト変態を抑制し、かつAr
1変態点を低下する効果を有するため本発明に必須の元
素であるが、0.03%未満ではその効果がなく、また0.30
%を超えるとその効果が飽和するため、0.03〜0.30%の
範囲とする。
Mo has an effect on refinement of austenite grains in the high-temperature rolling zone, suppresses pearlite transformation, and
(1) Since the element has an effect of lowering the transformation point, it is an essential element in the present invention.
%, The effect saturates, so the content is set in the range of 0.03 to 0.30%.

Alは、脱酸作用があり、0.010%以上必要であるが、
0.100%を超えると鋼板および溶接部靱性が劣化するた
め0.010〜0.100%の範囲とする。
Al has a deoxidizing effect and requires 0.010% or more.
If it exceeds 0.100%, the toughness of the steel sheet and the welded portion deteriorates, so the content is made 0.010 to 0.100%.

Pは、鋼板及び溶接部の靱性を劣化させ、また焼もど
し脆化を助長するため0.015%以下とする。
P is set to 0.015% or less because it deteriorates the toughness of the steel sheet and the welded portion and promotes tempering embrittlement.

さらに、上記成分に加えて、鋼はおよび溶接部の強
度,靱性の改善を目的とし、下記成分を1種又は2種以
上添加できる。
Further, in addition to the above components, one or more of the following components can be added to steel for the purpose of improving the strength and toughness of the welded portion.

Vは、焼入れ性を向上し、かつ焼もどし軟化抵抗を増
大させると共にフェライトを硬化させる作用があるが、
0.08%を超えると溶接部の靱性が劣化するため0.08%以
下とする。
V has the effect of improving hardenability, increasing tempering softening resistance, and hardening ferrite.
If it exceeds 0.08%, the toughness of the weld will deteriorate, so the content is made 0.08% or less.

Niは、鋼板及び溶接部の強度,靱性の向上に効果があ
るが、経済性の点から1.5%以下とする。
Ni is effective in improving the strength and toughness of the steel sheet and the welded portion, but is set to 1.5% or less from the viewpoint of economy.

Cuは、鋼板の強度上昇に効果があるが、多過ぎると熱
間加工性や溶接性が低下するため、その上限を1.5%と
する。
Although Cu is effective in increasing the strength of the steel sheet, if it is too much, the hot workability and the weldability decrease, so the upper limit is made 1.5%.

Crは、鋼板および溶接部の強度上昇に効果があるが、
多過ぎると溶接性の低下およびSR割れ感受性を高めるた
め、その上限を1.0%とする。
Cr is effective in increasing the strength of steel sheets and welds,
If the content is too large, the weldability is reduced and the sensitivity to SR cracking is increased, so the upper limit is made 1.0%.

Nbは、炭窒化物を形成し、オーステナイト粒の成長を
抑制し粒の微細化を容易にすると共に、未再結晶温度域
を拡大させ、圧延歪の蓄積を容易にし、また焼もどし軟
化抵抗をあげるため鋼板の強度確保に有効であるが、多
過ぎると溶接部の靱性が著しく劣化するため、その上限
を0.100%とする。
Nb forms carbonitrides, suppresses the growth of austenite grains, facilitates grain refinement, expands the non-recrystallization temperature range, facilitates accumulation of rolling strain, and reduces temper softening resistance. Therefore, it is effective to secure the strength of the steel sheet, but if too much, the toughness of the welded portion is significantly deteriorated. Therefore, the upper limit is set to 0.100%.

Caは、硫化物の形態制御効果をもち、異方性の軽減を
もたらすが、多過ぎると清浄度が低下するため、その上
限を0.01%とする。
Ca has a sulfide morphological control effect and reduces anisotropy, but if too much, the cleanliness is reduced, so the upper limit is made 0.01%.

REMは、溶接部靱性の向上に効果を有するが、0.01%
を超えるとその効果が飽和するため、上限を0.01%とす
る。
REM is effective in improving weld toughness, but 0.01%
If the value exceeds, the effect is saturated, so the upper limit is made 0.01%.

Tiは、強度上昇と溶接部靱性の改善に効果を有する
が、多過ぎると効果が飽和し、かつ表面割れの恐れも生
じてくるため、その上限を0.05%とする。
Ti has the effect of increasing the strength and improving the toughness of the welded portion. However, if the content is too large, the effect is saturated and the possibility of surface cracking may occur, so the upper limit is made 0.05%.

次に、圧延条件の限定理由について述べる。 Next, the reasons for limiting the rolling conditions will be described.

本発明の基本的特徴は、多量のフェライトを析出し、
かつ圧延歪によりそれらフェライトを硬化させると共
に、フェライト以外の第2相を硬化させることにある。
そのため、圧延後期においては、フェライトが析出し、
かつ圧延歪が解放されない温度域と圧延条件の選定が重
要となり、また成分的には第2相が十分硬化するに足る
C量の含有が必要となる。
The basic feature of the present invention is to precipitate a large amount of ferrite,
Another object of the present invention is to harden the ferrite by rolling strain and to harden a second phase other than the ferrite.
Therefore, in the latter half of the rolling, ferrite precipitates,
In addition, it is important to select a temperature range in which the rolling strain is not released and rolling conditions, and it is necessary to contain a sufficient amount of C to sufficiently cure the second phase.

(Ar3−30)℃から圧延仕上げ温度の温度範囲で圧下
率20〜40%で圧延し、フェライト析出量を70%以上とす
る。
Roll at a rolling reduction of 20 to 40% in the temperature range from (Ar 3 −30) ° C. to the rolling finish temperature, and make the ferrite precipitation amount 70% or more.

ここで、圧延仕上げ温度が(Ar3−30)℃を超えると
フェライトの析出量が少なく、また加工歪の蓄積も少な
く所望する性能を満足できない。さらに、圧延仕上げ温
度は650℃以上とするのが好ましい。圧延仕上げ温度が6
50℃未満では圧延機への負担及び圧延効率の著しい阻害
を生じるため好ましくない。
Here, when the rolling finish temperature exceeds (Ar 3 −30) ° C., the amount of ferrite precipitated is small, and the accumulation of processing strain is small, so that the desired performance cannot be satisfied. Further, the rolling finish temperature is preferably set to 650 ° C. or higher. Rolling finish temperature is 6
If the temperature is lower than 50 ° C., the load on the rolling mill and the rolling efficiency are significantly impaired, which is not preferable.

また、かかる温度範囲での累積圧下率が20%未満では
フェライトの析出と圧延歪の蓄積が不十分であり、40%
を超えると圧延機の負担が著しく増大し、かつ材質の異
方性も顕著となるため、圧下率の範囲を20〜40%とす
る。
If the cumulative draft in this temperature range is less than 20%, precipitation of ferrite and accumulation of rolling strain are insufficient, and
If it exceeds, the load on the rolling mill increases significantly, and the anisotropy of the material becomes remarkable. Therefore, the range of the rolling reduction is set to 20 to 40%.

またフェライト析出量が70%未満では、本発明成分範
囲内で第2相の硬化が不十分となり所望する強度が得ら
れないため、析出させるフェライト量を70%以上とす
る。
If the amount of ferrite deposited is less than 70%, the curing of the second phase is insufficient within the range of the present invention, and the desired strength cannot be obtained. Therefore, the amount of ferrite to be precipitated is set to 70% or more.

次に一例として、0.10%C−0.25%Si−1.30%Mn−0.
012%P−0.12%Mo−0.032%Alを含む鋼を、本発明法で
製造した場合の各種焼入れ冷却速度におけるフェライト
析出量とその硬さ、第2相の硬さ及び鋼板の強度を900
℃高温仕上げ鋼板のそれらと比較し第1図に示す。
Next, as an example, 0.10% C-0.25% Si-1.30% Mn-0.
When a steel containing 012% P-0.12% Mo-0.032% Al was manufactured by the method of the present invention, the amount of ferrite precipitated and its hardness, the hardness of the second phase and the strength of the steel sheet at various quenching cooling rates were 900.
Fig. 1 shows a comparison with those of the high-temperature finished steel sheets at ℃.

図から本発明法によった場合、各冷却速度において比
較例に比べて析出フェライト量が増大しており、またフ
ェライトの硬さ、第2相の硬さともより硬化している。
鋼板の引張強さは、本発明法では各冷却速度でほぼ一定
して60kgf/mm2以上の値を有していることがわかる。こ
こで15℃/s超の急冷却速度域では、フェライト量が減少
するため、第2相の増加により靱性が劣化しやすく、強
度と靱性のバランスがくずれる。一方、15℃/s以下の緩
冷却速度域では第2相硬化が著しく鋼板の引張強さは高
い値を有したままで、しかも優れた靱性が得られる。
From the figure, when the method of the present invention is used, the amount of precipitated ferrite is increased as compared with the comparative example at each cooling rate, and both the hardness of the ferrite and the hardness of the second phase are hardened.
It can be seen that the tensile strength of the steel sheet is substantially constant at each cooling rate and has a value of 60 kgf / mm 2 or more in the method of the present invention. Here, in a rapid cooling rate region of more than 15 ° C./s, since the amount of ferrite decreases, the toughness is likely to deteriorate due to the increase in the second phase, and the balance between strength and toughness is lost. On the other hand, in the slow cooling rate range of 15 ° C./s or less, the second phase hardening is remarkable, and excellent toughness can be obtained while maintaining the high tensile strength of the steel sheet.

また冷却速度が1℃/s未満の遅い冷却では強度の低下
が著しい。従って、冷却速度1〜15℃/sの範囲で靱性に
優れ、鋼板引張強さ60kgf/mm2以上を安定的に確保でき
る。冷却は、第2相を完全に焼入れる150℃以下まで行
い、その後第2相の靱性回復および鋼板の強度調整のた
め、Ac1点以下の温度で焼もどし処理を行う。
Further, when the cooling rate is slow at less than 1 ° C./s, the strength is significantly reduced. Therefore, it has excellent toughness in the cooling rate range of 1 to 15 ° C./s, and can stably secure a steel sheet tensile strength of 60 kgf / mm 2 or more. The cooling is performed to 150 ° C. or less, in which the second phase is completely quenched, and then tempering is performed at a temperature of 1 point or less of Ac in order to recover the toughness of the second phase and adjust the strength of the steel sheet.

なお、熱間圧延にあたり、スラブ加熱温度は特に規定
しないが、常法に従い、添加元素が完全固溶し、かつオ
ーステナイト粒の著しい粗大化が生じない1050〜1200℃
が好ましい。
In the hot rolling, the slab heating temperature is not particularly specified, but according to a conventional method, the added element is completely dissolved, and austenite grains are not significantly coarsened at 1050 to 1200 ° C.
Is preferred.

また、高温再結晶温度域での圧延も特に規定しない
が、十分な圧延−再結晶の繰り返しでオーステナイト粒
を微細化した方が靱性向上に有利であるため50%以上の
圧下が望ましい。
Rolling in a high temperature recrystallization temperature region is not particularly specified, but reduction of 50% or more is desirable because it is more advantageous to refine austenite grains by sufficient rolling and recrystallization to improve toughness.

本発明は、上述したように、従来のできるだけ高温圧
延仕上げとしてベイナイトやマルテンサイト面積率を増
加させ高張力化をはかろうとする技術思想とは全く異な
り、逆にできるだけ圧延を低温で仕上げて多量の加工フ
ェライトとC濃化した第2相の混合で高張力化を達成し
ようとする全く新しい技術である。
As described above, the present invention is completely different from the conventional technical idea of increasing the area ratio of bainite or martensite as a high-temperature rolling finish as much as possible to achieve high tensile strength. This is a completely new technique for achieving high tensile strength by mixing the processed ferrite and the C-enriched second phase.

<実施例> 真空溶解法で、表1に示す各成分鋼塊を溶製し、熱間
圧延で板厚15mm,50mm及び100mm鋼板として所定の焼入れ
を行った。焼入れ条件を表2に示す。これら各種鋼板を
600℃で焼もどし処理し、衝撃試験片と丸棒引張試験片
を採取し、材質特性の調査を行った。
<Examples> Ingots of the respective components shown in Table 1 were smelted by a vacuum melting method, and predetermined quenching was performed by hot rolling as steel plates having a thickness of 15 mm, 50 mm, and 100 mm. Table 2 shows the quenching conditions. These various steel plates
After tempering at 600 ° C, impact test pieces and round bar tensile test pieces were sampled and investigated for material properties.

得られた結果を表3−1と表3−2に示す。表から鋼
Aは、低C系であり焼入れ性が低く所定の強度を満足で
きないことがわかる。本発明範囲成分鋼B,CとEは、本
発明法の圧延により60kgf/mm2以上の引張強さを有し、v
Trsも−80℃以下の良好な靱性を有している。さらに、
本発明法の適用で冷却速度が変化してもほぼ同一の機械
的性質となることがわかる。比較鋼DとFはMo無添加と
Cの過剰添加系であり、本発明法が十分に発揮されず、
両成分系とも靱性は劣化していることがわかる。
The obtained results are shown in Table 3-1 and Table 3-2. From the table, it can be seen that Steel A is a low C type steel, has low hardenability, and cannot satisfy a predetermined strength. Component steels B, C and E of the present invention have a tensile strength of 60 kgf / mm 2 or more by rolling according to the method of the present invention, and v
Trs also has good toughness of -80 ° C or less. further,
It can be seen that the same mechanical properties are obtained even when the cooling rate changes by applying the method of the present invention. Comparative steels D and F are a system in which Mo was not added and C was excessively added, and the method of the present invention was not sufficiently exhibited.
It can be seen that the toughness of both components is deteriorated.

発明鋼G〜Jは、強度上昇および靱性改善を目的に、
V,Cu,Ni,CrおよびNbを添加したものであるが、本発明法
との組み合わせで最も良好な強度,靱性バランスを有す
ることがわかる。
Invention steels G to J are intended to increase strength and improve toughness.
Although V, Cu, Ni, Cr and Nb were added, it is understood that the combination with the method of the present invention has the best balance of strength and toughness.

<発明の効果> 本発明は、経済的な製造プロセスである直接焼入れ−
焼もどしプロセスでの引張強さ60kgf/mm2以上級鋼板の
製造法に関するものであり、しかも省成分系での低コス
ト化製造を可能にしたばかりでなく、焼入れ冷却速度が
大幅に変化しても同一の機械的性質を有する鋼板が製造
可能となり、安定した大量生産に道を拡くものであり、
産業上の効果は顕著なものがある。
<Effect of the Invention> The present invention is directed to direct quenching which is an economical manufacturing process.
Relates the preparation of tensile strength 60 kgf / mm 2 or more grade steel in tempering process, yet not only enabled the cost manufacture of saving component system, quenching cooling rate also vary considerably It is possible to manufacture steel sheets with the same mechanical properties, expanding the way to stable mass production,
The industrial effects are significant.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明法と比較法で鋼板製造した場合の冷却速
度と各種機械的特性の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the cooling rate and various mechanical properties when a steel sheet is manufactured by the method of the present invention and the comparative method.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−145717(JP,A) 特開 昭59−211529(JP,A) 特開 昭62−196326(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-145717 (JP, A) JP-A-59-211529 (JP, A) JP-A-62-196326 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C:0.06〜0.25%,Si:0.05〜0.50
%,Mn:0.60〜2.50%,Mo:0.03〜0.30%,Al:0.010〜0.100
%,P:0.015%以下を含み、残部Fe及び不可避的不純物か
らなる鋼に熱間圧延を施し、(Ar3−30)℃から圧延仕
上げ温度の温度範囲で圧下率20〜40%で圧延し、フェラ
イト析出量を70%以上とした後、直ちに1〜15℃/sの冷
却速度で150℃以下の温度まで冷却し、次いでAc1点以下
の温度で焼もどすことを特徴とするフェライト組織を主
体とする高強度鋼板の製造方法。
(1) C: 0.06 to 0.25%, Si: 0.05 to 0.50% by weight
%, Mn: 0.60 ~ 2.50%, Mo: 0.03 ~ 0.30%, Al: 0.010 ~ 0.100
%, P: 0.015% or less, hot rolling is performed on steel consisting of the balance of Fe and unavoidable impurities, and rolling at a rolling reduction of 20 to 40% in the temperature range of (Ar 3 −30) ° C to the rolling finishing temperature. Immediately after the ferrite precipitation amount is increased to 70% or more, the ferrite structure is cooled at a cooling rate of 1 to 15 ° C / s to a temperature of 150 ° C or less, and then tempered at a temperature of 1 point or less of Ac. Manufacturing method of high strength steel sheet mainly.
【請求項2】重量%で、C:0.06〜0.25%,Si:0.05〜0.50
%,Mn:0.60〜2.50%,Mo:0.03〜0.30%,Al:0.010〜0.100
%,P:0.015%以下を含み、さらにV:0.080%以下,Ni:1.5
%以下,Cu:1.5%以下,Cr:1.0%以下,Nb:0.100%以下,C
a:0.01%以下,REM:0.01%以下及びTi:0.05%以下の1種
又は2種以上を含み、残部Fe及び不可避的不純物からな
る鋼に熱間圧延を施し、(Ar3−30)℃から圧延仕上げ
温度の温度範囲で圧下率20〜40%で圧延し、フェライト
析出量を70%以上とした後、直ちに1〜15℃/sの冷却速
度で150℃以下の温度まで冷却し、次いでAc1点以下の温
度で焼もどすことを特徴とするフェライト組織を主体と
する高強度鋼板の製造方法。
2. C .: 0.06 to 0.25% by weight, Si: 0.05 to 0.50% by weight.
%, Mn: 0.60 ~ 2.50%, Mo: 0.03 ~ 0.30%, Al: 0.010 ~ 0.100
%, P: 0.015% or less, V: 0.080% or less, Ni: 1.5
%, Cu: 1.5% or less, Cr: 1.0% or less, Nb: 0.100% or less, C
a: Hot rolling is performed on steel containing one or more of 0.01% or less, REM: 0.01% or less and Ti: 0.05% or less, the balance being Fe and unavoidable impurities, and (Ar 3 −30) ° C. After rolling at a rolling reduction temperature of 20 to 40% in the temperature range of the rolling finish temperature and making the amount of ferrite precipitation 70% or more, immediately cool at a cooling rate of 1 to 15 ° C / s to a temperature of 150 ° C or less, and then Ac A method for producing a high-strength steel sheet mainly comprising a ferrite structure, which is tempered at a temperature of 1 point or less.
JP1086792A 1989-04-07 1989-04-07 Method for producing high-strength steel sheet mainly composed of ferrite structure Expired - Fee Related JP2708540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1086792A JP2708540B2 (en) 1989-04-07 1989-04-07 Method for producing high-strength steel sheet mainly composed of ferrite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086792A JP2708540B2 (en) 1989-04-07 1989-04-07 Method for producing high-strength steel sheet mainly composed of ferrite structure

Publications (2)

Publication Number Publication Date
JPH02267221A JPH02267221A (en) 1990-11-01
JP2708540B2 true JP2708540B2 (en) 1998-02-04

Family

ID=13896628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086792A Expired - Fee Related JP2708540B2 (en) 1989-04-07 1989-04-07 Method for producing high-strength steel sheet mainly composed of ferrite structure

Country Status (1)

Country Link
JP (1) JP2708540B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233769B2 (en) * 1983-05-17 1990-07-30 Nippon Steel Corp YOSETSUSEINISUGURETAGOKUATSU50KIROKONOSEIZOHOHO
JPS62196326A (en) * 1986-02-24 1987-08-29 Sumitomo Metal Ind Ltd Manufacture of high-strength steel excellent in surface toughness

Also Published As

Publication number Publication date
JPH02267221A (en) 1990-11-01

Similar Documents

Publication Publication Date Title
CN106011643B (en) A kind of tensile strength 590MPa grades of cold-rolled biphase steels and preparation method thereof
EP3653736B1 (en) Hot-rolled steel strip and manufacturing method
JPH10509768A (en) High strength secondary hardened steel with excellent toughness and weldability
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP2655901B2 (en) Manufacturing method of direct quenching type high strength steel sheet with excellent toughness
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JPH05222450A (en) Production of high tensile steel plate
JP2708540B2 (en) Method for producing high-strength steel sheet mainly composed of ferrite structure
JPH0277521A (en) Production of ultra-high-tension steel sheet for welding having excellent homogeneity in thickness direction
JPH0717947B2 (en) Low yield ratio high strength steel sheet manufacturing method
JPS5828327B2 (en) Method for producing ultra-low carbon high tensile strength steel with extremely excellent ductility
JPH1192860A (en) Steel having ultrafine ferritic structure
JP2546888B2 (en) Manufacturing method of high-strength steel sheet with excellent weldability and toughness
KR100368241B1 (en) A method for manufacturing hot rolled trip steels with excellent flange formability
JP2944540B2 (en) Manufacturing method of direct quenching high strength steel sheet with excellent toughness
JPH07233414A (en) Production of low yield ratio high tensile strength steel plate excellent in uniform elongation
JPH0670249B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
JPH08225883A (en) Production of high tensile strength steel plate excellent in strength and toughness
JPH0215122A (en) Production of high strength and high toughness thick steel plate having excellent weldability
KR20240031547A (en) Thick steel plate and method of manufacturing the same
KR20230004237A (en) Cold-rolled steel sheet and method of manufacturing the same
JPH02270913A (en) Manufacture of high toughness and high tension steel plate having low yield ratio
JPH0670250B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees