JPS63190117A - Production of high tension steel plate having high toughness and less than 90% low yield ratio by direct quenching method - Google Patents

Production of high tension steel plate having high toughness and less than 90% low yield ratio by direct quenching method

Info

Publication number
JPS63190117A
JPS63190117A JP2050587A JP2050587A JPS63190117A JP S63190117 A JPS63190117 A JP S63190117A JP 2050587 A JP2050587 A JP 2050587A JP 2050587 A JP2050587 A JP 2050587A JP S63190117 A JPS63190117 A JP S63190117A
Authority
JP
Japan
Prior art keywords
steel
steel plate
yield ratio
toughness
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2050587A
Other languages
Japanese (ja)
Other versions
JPH0579728B2 (en
Inventor
Koichi Nakajima
幸一 中島
Hisae Terajima
寺嶋 久栄
Chiaki Shiga
千晃 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2050587A priority Critical patent/JPS63190117A/en
Publication of JPS63190117A publication Critical patent/JPS63190117A/en
Publication of JPH0579728B2 publication Critical patent/JPH0579728B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling

Abstract

PURPOSE:To easily obtain a very thick high tension steel plate having high toughness, low yield ratio and little strength distribution toward plate thickness direction by treating the steel slab specifying component content and regulating carbon equivalent, by the prescribed condition. CONSTITUTION:The steel containing 0.05-0.13wt.% C, 0.05-0.19% Si, 0.70-1.30% Mn, 0.40-1.10% Cr, 0.40-1.10 Mo, 0.01-0.10% V, 0.01-0.10% Al, 0.0005-0.002% B, <=0.045% N and in the range of 0.42-0.65% carbon equivalent Ceq. showd in the equation, is used. The slab of this steel is hot-rolled after heating at 1,000-1,150 deg.C, so that finishing temp. is 880-960 deg.C on the steel plate surface, and the quenching is started within 10-60sec after finishing the above rolling. In this way, the above high tension steel plate having <=90% yield ratio can be produced, and safety of the steel structure of bridge, pressure vessel, etc., can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、直接焼入れ法による降伏比90%以下の高
靭性低降伏比高張力鋼板の製造方法に関し、とくに鋼板
の変形能を増大させ、鋼構造物の安全性増加を目指して
高張力鋼の低降伏比化を図り、橋梁、建築、水圧鉄管お
よび圧力容器などへの有利な適用を成就しようとするも
のである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing a high tensile strength steel plate with a yield ratio of 90% or less using a direct quenching method, in particular, increasing the deformability of the steel plate, The aim is to reduce the yield ratio of high-strength steel with the aim of increasing the safety of steel structures, and to achieve advantageous applications in bridges, architecture, penstocks, pressure vessels, etc.

一般に引張強さが40kgf/mxr”級の軟鋼では、
その降伏比の値がおよそ60〜70%程度と低いのに反
し、鋼の引張強さを増大させるにつれて降伏比は高くな
る傾向にあり、近年使用量の増しつつある引張強さ70
〜110 kgf7wm”級の高張力鋼では通常降伏比
が90%以上のように高くなるため、建造物の設計上の
要注意事項とされている。
In general, mild steel with a tensile strength of 40 kgf/mxr" class,
Although its yield ratio is low at around 60-70%, the yield ratio tends to increase as the tensile strength of steel increases.
Since the yield ratio of high tensile strength steel of ~110 kgf7wm'' class is usually as high as 90% or more, this is an important consideration when designing buildings.

降伏比は、鋼板が降伏したのち破断にいたるまでの余裕
を示すものと考えられ、その値が低いほど変形能が大き
く、一様伸びおよび全伸びが大きいので、鋼構造物の安
全性の点で有利であるのは明らかである。
The yield ratio is considered to indicate the margin from when a steel plate yields until it breaks, and the lower the value, the greater the deformability, and the greater the uniform elongation and total elongation, so it is important for the safety of steel structures. It is clear that it is advantageous.

また、鋼構造物の疲労特性向上の面からも低降伏比の高
張力鋼板の開発が要望される。
Furthermore, from the perspective of improving the fatigue properties of steel structures, there is a need for the development of high-strength steel plates with low yield ratios.

(従来の技術) 引張強さ70〜110 kgf/m”もの高張力鋼を製
造するには、その強度確保のために組織をマルテンサイ
ト主体とする必要があるが、焼入れままでは靭性が低く
かつ板厚方向の強度が不均一である。
(Prior art) In order to manufacture high-strength steel with a tensile strength of 70 to 110 kgf/m, it is necessary to make the structure mainly martensite in order to ensure its strength, but if it is not quenched, it has low toughness and The strength in the thickness direction is uneven.

従って、従来焼入れ後600°C程度の温度で焼もどし
処理を施すことによって鋼板の靭性向上と板厚方向の強
度の均一化が図られてきたわけであるが、この場合、鋼
板の降伏比は90%を超える高い値となるのは避は難か
った。
Therefore, conventionally, tempering treatment at a temperature of about 600°C after quenching has been used to improve the toughness of steel plates and make the strength uniform in the thickness direction, but in this case, the yield ratio of steel plates is 90. It was unavoidable that the value would be as high as %.

この問題を解決する試みとして、焼もどし工程を省いて
焼入れままでの低降伏比を利用することも考えられては
いるが、前述の如く単なる焼入れまま鋼板では靭性が低
く、とくに板厚方向の強度不均一となるために、未だ実
用に供しうる鋼板は製造されていない。
As an attempt to solve this problem, it has been considered to omit the tempering process and utilize the low yield ratio of as-quenched steel sheets, but as mentioned above, simply as-quenched steel sheets have low toughness, especially in the thickness direction. Due to non-uniform strength, steel plates that can be put to practical use have not yet been manufactured.

また、二相域焼入れ法によってマルテンサイト地にフェ
ライトを混合させた二相混合組織とすることによって降
伏比を低下させる試みが80kgf/n+m”扱高張力
鋼について報じられている(“低降伏比80キロ級高張
力鋼およびその溶接部の基本特性″、溶接学会論文集、
  3−3.1985 (参照))。しかし、この場合
もフェライトが軟かいため従来の焼入れ一焼もどし鋼板
と同程度の強度を得るには炭素当量を従来鋼より高める
必要があって、鋼構造物建造時に最も重要である鋼板の
溶接割れ感受性が増加する欠点は不可避である。
In addition, an attempt to lower the yield ratio by creating a two-phase mixed structure in which ferrite is mixed with martensite using the two-phase region quenching method has been reported for high tensile strength steel treated with 80 kgf/n+m ("low yield ratio"). "Basic properties of 80 kg class high tensile strength steel and its welded parts", Proceedings of the Welding Society of Japan,
3-3.1985 (Reference)). However, in this case as well, the ferrite is soft, so in order to obtain the same strength as conventional hardened and tempered steel sheets, the carbon equivalent must be higher than that of conventional steels, and welding of steel sheets, which is most important when constructing steel structures, is necessary. The disadvantage of increased cracking susceptibility is inevitable.

(発明が解決しようとする問題点) 従来の70〜110 )cgf/mm”扱網の焼入れ一
焼もどし鋼と同等以下の炭素当量で、同等程度の強度を
もち、しかも降伏比を90%以下となし得る低降伏比高
張力鋼の製造を可能にすることにあわせて従来の焼入れ
まま鋼において認められた板厚方向の強度分布差をたと
え板厚75m以上の極厚鋼板においても低減することが
、この発明の目的とするところである。
(Problems to be solved by the invention) It has a carbon equivalent equal to or less than the conventional quenched and tempered steel of 70 to 110) cgf/mm, has the same strength, and has a yield ratio of 90% or less. In addition to making it possible to manufacture high-strength steel with a low yield ratio that can be achieved, it is also necessary to reduce the strength distribution difference in the thickness direction that is observed in conventional as-quenched steel, even in extremely thick steel plates with a thickness of 75 m or more. This is the objective of this invention.

(問題点を解決するための手段) この発明は C: 0.05〜0.13 wt%(以下単に%で示す
)、Si : 0.05〜〜0.19%、 Mn : 0.70〜1.30%、 Cr : 0.40〜1.10%、 Mo : 0.40〜1.10%、 V  : 0.01〜0.10 wt %、Al 70
.01〜0.10 wt%、B  :0.0005〜0
.002%およびN  :0.0045%以下 を含有し、かつ下記式であらわされる炭素当量Ceq。
(Means for Solving the Problems) This invention includes C: 0.05 to 0.13 wt% (hereinafter simply expressed as %), Si: 0.05 to 0.19%, Mn: 0.70 to 1.30%, Cr: 0.40-1.10%, Mo: 0.40-1.10%, V: 0.01-0.10 wt%, Al 70
.. 01-0.10 wt%, B: 0.0005-0
.. 002% and N: 0.0045% or less, and has a carbon equivalent Ceq represented by the following formula.

が0.42〜0.65%である鋼スラブを、1000〜
1150℃に加熱後、圧延仕上げ温度が鋼板表面で88
0〜960℃となる熱間圧延を施し、該圧延終了後10
〜60秒の間に焼入れを開始することから成る、直接焼
入れ法による降伏比90%以下の高靭性低降伏比高張力
鋼板の製造方法である。
A steel slab with a content of 0.42% to 0.65%,
After heating to 1150℃, the rolling finishing temperature is 88℃ on the surface of the steel plate.
Hot rolling is carried out at a temperature of 0 to 960°C, and after the rolling is completed, 10
This is a method for producing a high-toughness, low-yield-ratio, high-strength steel plate with a yield ratio of 90% or less by a direct quenching method, which comprises starting quenching for ~60 seconds.

この発明の発想の基礎は概ね次のとおりである。The basis of the idea of this invention is roughly as follows.

1、再結晶オーステナイトが主体となる適切な圧延仕上
げ温度を選定することによって板厚方向の強度変化を少
な(する。
1. By selecting an appropriate rolling finishing temperature where recrystallized austenite is the main component, changes in strength in the sheet thickness direction can be minimized.

2、圧延終了後、焼入れ開始までの適切な時間範囲を選
定することによって、Bの焼入れ性向上効果を有効利用
する。
2. Effectively utilize the hardenability improvement effect of B by selecting an appropriate time range from the end of rolling to the start of hardening.

3、直接焼入れままで高靭性となる化学成分組成を見出
し、それに基づいて成分設計する。
3. Find a chemical composition that provides high toughness even when directly quenched, and design the composition based on that.

発明者らは多数の鋼を溶製し、そのスラブを950〜1
250℃の種々の温度に加熱後、750〜960℃の種
々の温度で圧延を終了させた後、所定時間その温度に保
持したのち焼入れることによって、圧延仕上げ温度およ
び圧延終了後焼入れまでの時間が鋼板の強度および靭性
におよぼす影響について詳細に調べた。
The inventors melted a large number of steels and made a slab of 950-1
After heating to various temperatures of 250°C, finishing rolling at various temperatures of 750 to 960°C, holding at that temperature for a predetermined time, and then quenching, the finishing temperature of rolling and the time from completion of rolling to quenching can be determined. The influence of this on the strength and toughness of steel sheets was investigated in detail.

その結果、未再結晶オーステナイトが主体となる温度域
で圧延を終了してから、焼入れる場合には、焼入れ温度
が低いため焼入れ性が低下し、極厚鋼板の板厚中心部に
おいて充分な強度が得られなかった。
As a result, when quenching is performed after rolling in a temperature range where unrecrystallized austenite is the main component, the low quenching temperature reduces hardenability, resulting in insufficient strength at the center of the thickness of the extra-thick steel plate. was not obtained.

一方、再結晶オーステナイト温度域で圧延を終了し、所
定の時間が経過した後、焼入れる場合は、焼入れままで
充分な靭性を有し、かつ板厚中心部まで充分な強度を有
する鋼板が得られた。
On the other hand, if rolling is finished in the recrystallized austenite temperature range and quenched after a predetermined period of time, a steel plate with sufficient toughness as quenched and sufficient strength up to the center of the plate thickness can be obtained. It was done.

ここに高強度、高靭性が得られるのは、Bの挙動が大き
く寄与している。つまりBはオーステナイト粒界に存在
する時に、粒界エネルギを下げて焼入れ性を向上させる
が、圧延終了後再結晶オーステナイト結晶粒の粒界にB
が存在する間に焼入れることによってBの効果が効果的
に発揮されるのである。
The behavior of B greatly contributes to the high strength and toughness achieved here. In other words, when B exists at the austenite grain boundaries, it lowers the grain boundary energy and improves hardenability, but after rolling, B exists at the grain boundaries of the recrystallized austenite grains.
By quenching while B is present, the effect of B is effectively exhibited.

この発明においては、このようなりの効果を最も有効に
活用するため、圧延終了後Bが粒界に存在する間すなわ
ち10〜60秒の間に焼入れを開始するようにしたとこ
ろに大きな特徴がある。
The major feature of this invention is that in order to make the most effective use of this effect, quenching is started while B is present at the grain boundaries after rolling, that is, between 10 and 60 seconds. .

(作 用) つぎに、各成分の限定理由を述べる。(for production) Next, the reasons for limiting each component will be described.

S−は、マルテンサイトの強化に最も有効な成分である
。0.05%未満では強化効果が小さく、強度を得るた
めには他の合金成分を多量に添加する必要が生じ好まし
くない。一方、0.13%を超えるとマルテンサイトが
脆弱化して靭性の劣化を招く。−針は、脱酸剤としての
作用の他に合金元素としての役割を持ち、この発明にお
いては炭化物の析出に影響を与えるので極めて重要な成
分である。
S- is the most effective component for strengthening martensite. If it is less than 0.05%, the reinforcing effect will be small, and in order to obtain strength, it will be necessary to add large amounts of other alloy components, which is not preferable. On the other hand, if it exceeds 0.13%, martensite becomes brittle, leading to deterioration of toughness. - Needles have a role as an alloying element in addition to acting as a deoxidizing agent, and are an extremely important component in this invention because they influence the precipitation of carbides.

Siが0.05%未満では脱酸剤としての効果は得られ
ず、一方その量が0.19%を超えると低Si化による
靭性向上効果が期待できない。
If the Si content is less than 0.05%, no effect as a deoxidizer can be obtained, while if the amount exceeds 0.19%, the effect of improving toughness due to the reduction in Si cannot be expected.

ハは、強度確保のために0.70%以上必要であるが、
1.30%を超えると溶接性や加工性を劣化させるので
0.70〜1.30%の範囲とする。
C is required to be 0.70% or more to ensure strength, but
If it exceeds 1.30%, weldability and workability will deteriorate, so the content should be in the range of 0.70 to 1.30%.

虹は、0.40%未満では強度上昇効果に乏しく、一方
1.10%を超えると直接焼入れ時に炭化物を析出し、
靭性劣化の一因となる。
If Niji is less than 0.40%, the effect of increasing strength is poor, while if it exceeds 1.10%, carbide will precipitate during direct quenching.
Contributes to toughness deterioration.

ムは、焼入れ性向上および整粒効果の点から必要であり
、その効果を得るには0.40%以上必要である。しか
し1.10%を超えるとその効果が減少するので経済性
の点から0.40〜1.10%に限定する。
Mu is necessary from the viewpoint of improving hardenability and grain size regulating effect, and in order to obtain this effect, 0.40% or more is required. However, if it exceeds 1.10%, the effect decreases, so from the point of view of economy, it is limited to 0.40 to 1.10%.

y−は、焼戻し時に2次析出硬化により強度を上昇させ
る元素であるが、0.01%未満では十分な効果が得ら
れず、0.10%を超える添加は溶接性を害するので、
0.01〜0,10%の範囲に限定した。
Y- is an element that increases strength through secondary precipitation hardening during tempering, but if it is less than 0.01%, a sufficient effect cannot be obtained, and if it is added more than 0.10%, it will impair weldability.
It was limited to a range of 0.01 to 0.10%.

」しは、脱酸およびB添加の効果を発揮させ、かつNを
AINとして固定する目的で添加するが、0.01%よ
り少ないとその添加効果に乏しく、一方0.10%を超
えると、悪影響を与えるので、0.01〜0.10%の
範囲に限定した。
B is added for the purpose of exhibiting the effects of deoxidation and addition of B, and fixing N as AIN, but if it is less than 0.01%, the effect of addition is poor, while if it exceeds 0.10%, Since it has an adverse effect, it is limited to a range of 0.01 to 0.10%.

しは、極く微量で鋼板の焼入れ性を高めるのできわめて
重要な成分である。とくにこの発明の鋼の開発の上で最
も重要な成分と云える。
It is an extremely important component because it improves the hardenability of steel sheets even in extremely small amounts. In particular, it can be said to be the most important component in the development of the steel of this invention.

しかし、その添加量が0.0005%未満の場合にはB
による焼入れ性向上効果は期待できず、一方0.002
%を超えるとB析出物を形成して焼入れ性向上に有効な
り量をかえって減少させ、またB析出物自体も焼入れ性
を低下させるので好ましくない。
However, if the amount added is less than 0.0005%, B
The effect of improving hardenability cannot be expected by 0.002
If it exceeds %, B precipitates are formed and the effective amount for improving hardenability is actually reduced, and the B precipitates themselves also reduce hardenability, which is not preferable.

Lは、BN等の窒化物を形成してBの焼入れ性向上効果
を低減することおよび靭性の劣化を招くことから可能な
限り低減することが好ましい。0.0045%以下とす
る場合には鋼板の靭性を損なうことなくBを効果的に作
用せしめる。
It is preferable to reduce L as much as possible since it forms nitrides such as BN and reduces the hardenability improvement effect of B and causes deterioration of toughness. When the content is 0.0045% or less, B can be effectively used without impairing the toughness of the steel sheet.

次に下記(1)式 %式%() で示される炭素当il印虹が0.42%未満であると7
0kg f /wa ”以上の引張強さと良好な靭性を
同時に得ることは困難となり、また溶接熱影響部の軟化
を生ずる。一方、Ceq、が0.65%を超えると溶接
割れ感受性が増して割れ防止予熱温度が高くなり、溶接
施工能率の面から好ましくない。
Next, if the carbon per il mark rainbow shown by the following formula (1) % formula % () is less than 0.42%, 7
It is difficult to simultaneously obtain a tensile strength of 0 kg f/wa'' or more and good toughness, and the weld heat affected zone becomes softened.On the other hand, if Ceq exceeds 0.65%, the weld cracking susceptibility increases and cracking occurs. Preventive preheating temperature becomes high, which is unfavorable from the viewpoint of welding efficiency.

以上必須成分について説明したが、この発明ではその他
靭性の向上や焼入性向上を目的としてNiを4%以下の
範囲で添加することができる。ここでNiの含有量を上
記範囲に限定した理由は4%を超えて添加しても得られ
る効果に比較してコストが高くなるからである。
Although the essential components have been described above, in the present invention, Ni can be added in an amount of 4% or less for the purpose of improving toughness and hardenability. The reason why the Ni content is limited to the above range is that the cost is higher than the effect obtained even if it is added in excess of 4%.

またこの発明においては、Vの代りに0.015〜0.
050%のNbを添加しもしくはNbとν併用でも同様
の効果が得られる。
Further, in this invention, instead of V, 0.015 to 0.
A similar effect can be obtained by adding 050% Nb or by using Nb and ν in combination.

さらに、x −7’ uA”Wの変化による材質バラツ
キを避け、圧延時の鋼板表層部と中心部の温度差を小さ
くして、安定した材質の鋼板を製造するためにはスラブ
加熱温度を限定する必要がある。
Furthermore, in order to avoid material variations due to changes in x -7'uA"W, reduce the temperature difference between the surface layer and center of the steel plate during rolling, and produce a steel plate with stable material, it is necessary to limit the slab heating temperature. There is a need to.

この発明においては加熱温度が1150℃を超えるとオ
ーステナイト粒の粗大化によって強度は得られるものの
靭性が劣化する。一方、スラブ加熱温度が1000°C
未満の場合にはオーステナイト粒は細粒化して強度の低
下が生じ、それに伴なって靭性も劣化する。
In the present invention, if the heating temperature exceeds 1150°C, the austenite grains become coarser, and although strength is obtained, toughness deteriorates. On the other hand, the slab heating temperature is 1000°C
If it is less than 1, the austenite grains become finer and the strength decreases, and the toughness also deteriorates accordingly.

従って、安定した強度と靭性を備えた鋼板を製造するた
めには圧延前のスラブは1000〜1150°Cの温度
範囲に加熱する必要がある。
Therefore, in order to produce a steel plate with stable strength and toughness, it is necessary to heat the slab before rolling to a temperature range of 1000 to 1150°C.

圧延比よザ1皮も鋼板の材質に与える影響は太き(、圧
延仕上げ温度は鋼板表面温度で880〜960°Cとす
る必要がある。
The rolling ratio and the roughness also have a large effect on the material quality of the steel plate (the rolling finishing temperature needs to be 880 to 960°C at the surface temperature of the steel plate.

というのは鋼板表面温度が880℃未満では、圧延終了
後再結晶が生じ難く、一方960°Cを超えると結晶粒
が粗大化し、靭性の劣化を招くからである。
This is because if the steel plate surface temperature is less than 880°C, recrystallization is difficult to occur after rolling, while if it exceeds 960°C, crystal grains become coarse, leading to deterioration of toughness.

ついで上記の如き仕上げ圧延後、焼入れ処理を施すわけ
であるが、焼入れ開始時間は、圧延終了後、10〜60
秒の間とする必要がある。というのは圧延終了後、再結
晶オーステナイト粒界にBが移動するためには少なくと
も10秒かかるので、10秒未満で焼入れしても充分な
強度が得られず、一方60秒を超えるとBNが析出する
ので焼入れ性が低下するからである。
Then, after finishing rolling as described above, quenching treatment is performed, and the quenching start time is 10 to 60 minutes after finishing rolling.
It needs to be between seconds. This is because after rolling, it takes at least 10 seconds for B to move to the recrystallized austenite grain boundaries, so even if quenched for less than 10 seconds, sufficient strength cannot be obtained; on the other hand, if it exceeds 60 seconds, BN will This is because hardenability deteriorates due to precipitation.

また、この発明の鋼においては、焼入れ後400°C以
下の低温域であればとくにm旦を施してもその強度、靭
性および降伏比に大きな変化は生じない。−例を第1図
に示す。
In addition, in the steel of the present invention, after quenching, if the temperature is at a low temperature of 400° C. or less, no significant change will occur in the strength, toughness, and yield ratio even if the steel is subjected to m days of quenching. - An example is shown in FIG.

(実施例) 表1はこの発明に従う化学組成を有する鋼塊と好適成分
範囲を逸脱した化学組成の鋼塊、計3鋼塊を溶製し、ス
ラブ加熱温度、圧延仕上げ温度。
(Example) Table 1 shows the slab heating temperature and rolling finishing temperature of a total of three steel ingots, one with a chemical composition according to the present invention and one with a chemical composition outside the preferred range.

圧延終了後から焼入れまでの時間を違えて板厚100腫
の鋼板を製造し、板厚2および2位置におけるY、S、
、 T、S、オヨび一60°Cで(7)2mmV/ッチ
シャルビー吸収エネルギを調べた結果である。
Steel plates with a thickness of 100 mm were manufactured at different times from the end of rolling to quenching, and Y, S,
This is the result of examining the (7) 2mmV/ch Charby absorbed energy at 60°C.

化学組成、スラブ加熱温度、圧延仕上げ温度。Chemical composition, slab heating temperature, rolling finishing temperature.

圧延終了後から焼入れまでの時間のいずれもがこの発明
の範囲内にある場合には板厚2および%位置いずれにお
いても良好な強度と靭性を有する低降伏比の高張力鋼板
が得られた。
When the time from the end of rolling to quenching was within the range of the present invention, a high tensile strength steel plate with a low yield ratio and good strength and toughness was obtained at both the plate thickness of 2 and the % position.

一方、上記製造条件のいずれか一つが欠けると化学組成
が同一であっても強度は低く、また+Aも位置における
靭性はきわめて低い。とくに製造条件がこの発明範囲内
であっても化学組成が範囲外の場合は、V、 tおよび
VG tいずれの位置においても靭性は低かった。
On the other hand, if any one of the above manufacturing conditions is lacking, the strength will be low even if the chemical composition is the same, and the toughness at the +A position will be extremely low. In particular, even if the manufacturing conditions were within the range of this invention, when the chemical composition was outside the range, the toughness was low at any of the V, t, and VG t positions.

(発明の効果) この発明は、従来の焼入れ一焼もどし法と同等ないしは
それ以下の炭素当量の組成で、同程度の強度を有しかつ
高靭性低降伏比の極厚高張力鋼板を容易に得ることがで
き、従来法と比較すると省工程、省エネルギーおよび添
加元素の削減などの面で有利なだけでなく、引張強さ7
0〜110 kgf/lrm”級の高張力鋼を用いる橋
梁、建築、海洋構造物。
(Effects of the invention) This invention can easily produce an extra-thick high-strength steel plate with a carbon equivalent composition equivalent to or lower than that of the conventional quenching and tempering method, and having the same strength and high toughness and low yield ratio. Compared to conventional methods, it is not only advantageous in terms of process saving, energy saving, and reduction of added elements, but also has a tensile strength of 7.
Bridges, buildings, and marine structures using high-strength steel of 0 to 110 kgf/lrm" class.

水圧鉄管、圧力容器等の網構造物の安全性を高めること
ができるので、これらの分野に広く適用することが可能
である。
Since the safety of network structures such as penstocks and pressure vessels can be improved, it can be widely applied to these fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、鋼板の強度や靭性に及ぼす焼もどし温度の影
響を示したグラフである。
FIG. 1 is a graph showing the influence of tempering temperature on the strength and toughness of a steel plate.

Claims (1)

【特許請求の範囲】 1、C:0.05〜0.13wt%、 Si:0.05〜0.19wt%、 Mn:0.70〜1.30wt%、 Cr:0.40〜1.10wt%、 Mo:0.40〜1.10wt%、 V:0.01〜0.10wt%、 Al:0.01〜0.10wt%、 B:0.0005〜0.002wt%およびN:0.0
045wt%以下 を含有し、かつ下記式であらわされる炭素当量Ceq.
が0.42〜0.65wt%である鋼スラブを、100
0〜1150℃に加熱後、圧延仕上げ温度が鋼板表面で
880〜960℃となる熱間圧延を施し、該圧延終了後
10〜60秒の間に焼入れを開始することを特徴とする
、直接焼入れ法による降伏比90%以下の高靭性低降伏
比高張力鋼板の製造方法。 記 Ceq.=(C)+1/24(Si)+1/6(Mn)
+1/5(Cr)+1/4(Mo)+1/40(Ni)
+1/14(V) (式中の元素記号は合金成分含有量〔wt%〕)
[Claims] 1. C: 0.05 to 0.13 wt%, Si: 0.05 to 0.19 wt%, Mn: 0.70 to 1.30 wt%, Cr: 0.40 to 1.10 wt% %, Mo: 0.40-1.10 wt%, V: 0.01-0.10 wt%, Al: 0.01-0.10 wt%, B: 0.0005-0.002 wt% and N: 0. 0
045 wt% or less and has a carbon equivalent Ceq.
A steel slab containing 0.42 to 0.65 wt% of
Direct quenching, characterized in that after heating to 0 to 1150°C, hot rolling is carried out so that the rolling finish temperature is 880 to 960°C on the surface of the steel sheet, and quenching is started within 10 to 60 seconds after the end of the rolling. A method for producing a high-toughness, low-yield-ratio, high-strength steel plate with a yield ratio of 90% or less by a method. Ceq. =(C)+1/24(Si)+1/6(Mn)
+1/5(Cr)+1/4(Mo)+1/40(Ni)
+1/14 (V) (Element symbols in the formula are alloy component content [wt%])
JP2050587A 1987-02-02 1987-02-02 Production of high tension steel plate having high toughness and less than 90% low yield ratio by direct quenching method Granted JPS63190117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2050587A JPS63190117A (en) 1987-02-02 1987-02-02 Production of high tension steel plate having high toughness and less than 90% low yield ratio by direct quenching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2050587A JPS63190117A (en) 1987-02-02 1987-02-02 Production of high tension steel plate having high toughness and less than 90% low yield ratio by direct quenching method

Publications (2)

Publication Number Publication Date
JPS63190117A true JPS63190117A (en) 1988-08-05
JPH0579728B2 JPH0579728B2 (en) 1993-11-04

Family

ID=12029017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2050587A Granted JPS63190117A (en) 1987-02-02 1987-02-02 Production of high tension steel plate having high toughness and less than 90% low yield ratio by direct quenching method

Country Status (1)

Country Link
JP (1) JPS63190117A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02270913A (en) * 1989-04-11 1990-11-06 Kawasaki Steel Corp Manufacture of high toughness and high tension steel plate having low yield ratio
JP2000160279A (en) * 1998-11-30 2000-06-13 Ishikawajima Harima Heavy Ind Co Ltd Steel excellent in impact penetration resistance, and its manufacture
WO2010119989A1 (en) * 2009-04-17 2010-10-21 新日本製鐵株式会社 MASS PRODUCED 780 MPa GRADE HIGH TENSION STEEL SHEET HAVING EXCELLENT LOW-TEMPERATURE TOUGHNESS AND METHOD FOR PRODUCING THE SAME
EP2360283A4 (en) * 2008-04-09 2011-08-24 Nippon Steel Corp PROCESS FOR PRODUCTION OF 780MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATES EXCELLENT IN LOW-TEMPERATURE TOUGHNESS
CN103710640A (en) * 2013-12-30 2014-04-09 钢铁研究总院 Economical thermal refined 690MPa-grade steel plate with high strength and high tenacity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148517A (en) * 1984-08-10 1986-03-10 Nippon Kokan Kk <Nkk> Manufacture of high tension steel having >=60kg/mm2 tensile strength

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148517A (en) * 1984-08-10 1986-03-10 Nippon Kokan Kk <Nkk> Manufacture of high tension steel having >=60kg/mm2 tensile strength

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02270913A (en) * 1989-04-11 1990-11-06 Kawasaki Steel Corp Manufacture of high toughness and high tension steel plate having low yield ratio
JP2000160279A (en) * 1998-11-30 2000-06-13 Ishikawajima Harima Heavy Ind Co Ltd Steel excellent in impact penetration resistance, and its manufacture
EP2360283A4 (en) * 2008-04-09 2011-08-24 Nippon Steel Corp PROCESS FOR PRODUCTION OF 780MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATES EXCELLENT IN LOW-TEMPERATURE TOUGHNESS
EP2360283A1 (en) * 2008-04-09 2011-08-24 Nippon Steel Corporation PROCESS FOR PRODUCTION OF 780MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATES EXCELLENT IN LOW-TEMPERATURE TOUGHNESS
WO2010119989A1 (en) * 2009-04-17 2010-10-21 新日本製鐵株式会社 MASS PRODUCED 780 MPa GRADE HIGH TENSION STEEL SHEET HAVING EXCELLENT LOW-TEMPERATURE TOUGHNESS AND METHOD FOR PRODUCING THE SAME
JP4842402B2 (en) * 2009-04-17 2011-12-21 新日本製鐵株式会社 Manufacturing method of high production type 780 MPa class high strength steel sheet with excellent low temperature toughness
CN103710640A (en) * 2013-12-30 2014-04-09 钢铁研究总院 Economical thermal refined 690MPa-grade steel plate with high strength and high tenacity

Also Published As

Publication number Publication date
JPH0579728B2 (en) 1993-11-04

Similar Documents

Publication Publication Date Title
JP3990724B2 (en) High strength secondary hardened steel with excellent toughness and weldability
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JPH0127128B2 (en)
JP2000256795A (en) Continuously cast slab free from surface cracking and production of non-refining high tensile strength steel material using the slab
JPH04285119A (en) Production of thick-walled high tensile strength steel plate excellent in toughness at low temperature
JP4112733B2 (en) Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JP2007191785A (en) Method for manufacturing high-tensile steel material superior in weld cracking resistance
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JPS63190117A (en) Production of high tension steel plate having high toughness and less than 90% low yield ratio by direct quenching method
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JPH0277521A (en) Production of ultra-high-tension steel sheet for welding having excellent homogeneity in thickness direction
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JPH02129317A (en) Production of 80kgf/mm2 class high tension steel having excellent weldability
KR910003883B1 (en) Making process for high tension steel
JPS6256518A (en) Production of high strength steel sheet for high heat input welding
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
KR100311791B1 (en) METHOD FOR MANUFACTURING QUENCHED AND TEMPERED STEEL WITH SUPERIOR TENSILE STRENGTH OF AROUND 600MPa AND IMPROVED TOUGHNESS IN WELDED PART
JPS6286122A (en) Production of structural steel having high strength and high weldability
KR910006028B1 (en) Steel for welding
JPH04110423A (en) Production of 80kgf/mm2 class steel plate having superior weldability and low yield ratio
JPS6117885B2 (en)
JPH02270913A (en) Manufacture of high toughness and high tension steel plate having low yield ratio
JPS63266023A (en) Manufacture of high-tensile steel plate combining high toughness with low yielding ratio and having &lt;=90% yielding ratio by direct quenching method
JPH01149923A (en) Production of high-strength and high-toughness steel sheet having excellent weldability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees