JP5234921B2 - High-strength thick steel plate with excellent strain aging characteristics and manufacturing method thereof - Google Patents

High-strength thick steel plate with excellent strain aging characteristics and manufacturing method thereof Download PDF

Info

Publication number
JP5234921B2
JP5234921B2 JP2008071936A JP2008071936A JP5234921B2 JP 5234921 B2 JP5234921 B2 JP 5234921B2 JP 2008071936 A JP2008071936 A JP 2008071936A JP 2008071936 A JP2008071936 A JP 2008071936A JP 5234921 B2 JP5234921 B2 JP 5234921B2
Authority
JP
Japan
Prior art keywords
temperature
steel sheet
average
less
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008071936A
Other languages
Japanese (ja)
Other versions
JP2009228020A (en
Inventor
雅人 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008071936A priority Critical patent/JP5234921B2/en
Priority to CN2009101289342A priority patent/CN101838771B/en
Priority to KR1020090023135A priority patent/KR101096930B1/en
Publication of JP2009228020A publication Critical patent/JP2009228020A/en
Application granted granted Critical
Publication of JP5234921B2 publication Critical patent/JP5234921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Description

本発明は、主として船舶の構造材料の素材として用いられる厚肉鋼板に関するものであり、特に高強度を確保しつつ、歪(ひずみ)を付与した後の靭性低下を極力低減できるような高強度厚肉鋼板、およびこうした鋼板を製造する有用な方法に関するものである。   The present invention relates to a thick steel plate that is mainly used as a material for ship structural materials, and particularly has a high strength thickness that can reduce as much as possible a decrease in toughness after imparting strain while ensuring high strength. It relates to a meat steel plate and a useful method for producing such a steel plate.

近年、コンテナ船の超大型化が進められており、それに伴って船舶の構造部材の厚肉化が進められている状況である。例えば、2002年最大積載個数の6000TEUから、現在では10000TEU化する計画が進められており、鋼板の更なる厚肉化・高強度化が必要となっている。特にコンテナ船のハッチコーナ部では、応力が集中することや、コンテナ積載数増加の観点からコーナ曲率rを小さくするために、高強度の厚肉(例えば、板厚が60mm以上)の高張力鋼板が求められている。また安全性を確保するという観点から、歪を受けた後の靭性の確保も必要となる。   In recent years, ultra-large container ships have been promoted, and accordingly, the structural members of ships are becoming thicker. For example, from the 2002 maximum loading capacity of 6000 TEU, a plan to change it to 10,000 TEU is now underway, and it is necessary to further increase the thickness and strength of the steel sheet. In particular, in the hatch corner portion of a container ship, in order to reduce the corner curvature r from the viewpoint of increasing stress and increasing the number of containers loaded, a high-strength steel plate (for example, a thickness of 60 mm or more) is required. It has been demanded. Also, from the viewpoint of ensuring safety, it is also necessary to ensure toughness after being subjected to strain.

鋼板が歪を受けた場合には歪時効が発生するが、この歪時効は歪付与によって発生した転位を鋼中のCやNが固定するために鋼板の降伏強度が上昇し、その結果として母材靭性(鋼板靭性)が低下する現象である。また歪時効による靭性の劣化は、鋼板が高強度であるほど生じやすい。こうしたことから、上記のような用途に用いられる高強度厚肉鋼板には、歪時効による靭性劣化を生じさせない特性(本発明では、この特性を「歪時効特性」と呼んでいる)が良好であることも要求される。   Strain aging occurs when the steel plate is strained. This strain aging increases the yield strength of the steel plate because C and N in the steel fix the dislocations generated by applying the strain. This is a phenomenon in which material toughness (steel plate toughness) decreases. Further, the deterioration of toughness due to strain aging is more likely to occur as the steel sheet has higher strength. For this reason, the high-strength thick steel plates used for the above applications have good properties that do not cause toughness deterioration due to strain aging (this property is referred to as “strain aging properties” in the present invention). It is also required to be.

歪時効による靭性の劣化を防止するためには、鋼板中のフリーのCやNの量を減少させることが有用であることが知られている。歪時効特性を改善した鋼板として、例えば特許文献1の技術が提案されている。この技術では、鋼板中のTiやNbの含有量を制御することによって、フリーのC,Nを析出物として固定し、また仕上げ圧延時の未再結晶温度域での圧下を施すことにより、大角粒界の結晶粒を微細化させ、これによってフリーC,Nをトラップし、歪時効による靭性劣化を抑制するものである。そして、この技術では、低温側の未再結晶温度域における圧延を主眼においた製造方法を実施している。しかしながら、大角粒界の結晶粒を微細化しただけでは、歪時効特性が必ずしも良好になるとは限らず、NK船級における造船Eグレードで要求される低温靭性(−40℃での吸収エネルギーvE-40で100J以上)を確保できない場合がある。
特許第3848091号公報
In order to prevent toughness deterioration due to strain aging, it is known that it is useful to reduce the amount of free C and N in the steel sheet. As a steel plate with improved strain aging characteristics, for example, the technique of Patent Document 1 has been proposed. In this technique, by controlling the content of Ti and Nb in the steel sheet, free C and N are fixed as precipitates, and by rolling in the non-recrystallization temperature range during finish rolling, The crystal grains at the grain boundaries are refined, thereby trapping free C and N and suppressing toughness deterioration due to strain aging. And in this technique, the manufacturing method which implemented rolling in the low recrystallization temperature range by the side of low temperature is implemented. However, just by refining the crystal grains at the large-angle grain boundaries, the strain aging characteristics are not necessarily improved, and the low temperature toughness required for shipbuilding E grade in the NK class (absorbed energy at −40 ° C. vE −40 100J or more) may not be secured.
Japanese Patent No. 3848091

本発明は上記の様な事情に着目してなされたものであって、その目的は、各結晶方位関係を適切に規定することによって、高強度を確保しつつ、歪時効特性をも良好な高強度厚肉鋼板、およびこうした鋼板を製造する有用な方法を提供することにある。   The present invention has been made paying attention to the circumstances as described above, and its purpose is to appropriately define each crystal orientation relationship, thereby ensuring high strength and high strain aging characteristics. It is to provide a strong thick steel plate and a useful method for producing such a steel plate.

上記目的を達成することのできた本発明の高強度厚肉鋼板とは、C:0.10〜0.16%(「質量%」の意味、化学成分組成について以下同じ)、Si:0.15〜0.30%、Mn:1.30〜1.60%、Al:0.015〜0.05%、Cu:0.15〜0.35、Ni:0.10〜0.30%、Mo:0.10〜0.25%、V:0.030〜0.05%、Nb:0.005〜0.015%、Ca:0.005%以下(0%を含まない)およびN:0.002〜0.008%を夫々含有し、残部が鉄および不可避不純物である鋼板であって、2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径Dが35μm以下であると共に、結晶方位分布差から測定されるランダム粒界分率Rが50面積%以上である点に要旨を有するものである。   The high-strength thick steel plate of the present invention that has achieved the above object is C: 0.10 to 0.16% (meaning “mass%”, the same applies to the chemical composition), Si: 0.15 ˜0.30%, Mn: 1.30 to 1.60%, Al: 0.015 to 0.05%, Cu: 0.15 to 0.35, Ni: 0.10 to 0.30%, Mo : 0.10 to 0.25%, V: 0.030 to 0.05%, Nb: 0.005 to 0.015%, Ca: 0.005% or less (excluding 0%) and N: 0 0.002 to 0.008% of each steel sheet, the balance being iron and inevitable impurities, the average equivalent circle diameter of the crystal grains surrounded by large-angle grain boundaries where the orientation difference between the two crystals is 15 ° or more It is necessary that D is 35 μm or less and the random grain boundary fraction R measured from the crystal orientation distribution difference is 50 area% or more. And it has a.

本発明の鋼板においては、必要によって、更に(a)Ti:0.005〜0.020%、(b)Cr:0.10%以下(0%を含まない)等を含有することも有効であり、含有される元素の種類に応じてその特性が更に改善される。   In the steel sheet of the present invention, it is effective to further contain (a) Ti: 0.005 to 0.020%, (b) Cr: 0.10% or less (not including 0%), etc., if necessary. In addition, the characteristics are further improved depending on the type of element contained.

上記のような高強度厚肉鋼板では、降伏点が480MPa以上、引張強度590MPa以上であり、且つ10%の歪を付与した後に250℃、1時間の時効処理を施したときの−40℃での平均衝撃吸収エネルギーvE-40が100J以上であるような特性が発揮されることになる。 In the high-strength thick steel plate as described above, the yield point is 480 MPa or more, the tensile strength is 590 MPa or more, and after applying 10% strain, at -40 ° C. when subjected to aging treatment at 250 ° C. for 1 hour. Thus, the characteristic that the average impact absorption energy vE- 40 is 100 J or more is exhibited.

また上記のような本発明の鋼板を製造するに当たっては、鋼片をAc3変態点以上〜1200℃の温度に加熱し、鋼板の平均温度が900℃以上のオーステナイト再結晶温度域にて累積圧下率が10%以上の圧延を施し、その後、鋼板の平均温度が800℃以上、890℃以下の未再結晶温度域にて、鋼板全体のパス間の平均冷却速度が0.3℃/秒以上となるような冷却を施しながら、累積圧下率が25%以上、50%未満となる圧延を施し、鋼板の平均温度が(Ar3変態点+10℃)以上、(Ar3変態点+90℃)以下の温度域から、鋼板表面温度が500℃以下となる温度域まで平均冷却速度:5℃/秒以上の冷却速度で冷却し、500℃以上、Ac1変態未満の温度範囲で焼戻し処理を行うようにすれば良い。 Moreover, in manufacturing the steel plate of the present invention as described above, the steel slab is heated to a temperature of Ac 3 transformation point or higher to 1200 ° C., and the cumulative reduction is performed in the austenite recrystallization temperature range where the average temperature of the steel plate is 900 ° C. or higher. The steel sheet is subjected to rolling at a rate of 10% or more, and then the average cooling rate between the passes of the entire steel sheet is 0.3 ° C./second or more in the non-recrystallization temperature range where the average temperature of the steel sheet is 800 ° C. or more and 890 ° C. or less. The steel sheet is rolled so that the cumulative reduction ratio is 25% or more and less than 50% while being cooled so that the average temperature of the steel sheet is (Ar 3 transformation point + 10 ° C.) or more and (Ar 3 transformation point + 90 ° C.) or less. From the temperature range to the temperature range where the steel sheet surface temperature is 500 ° C. or lower, the average cooling rate is cooled at a cooling rate of 5 ° C./second or more, and the tempering treatment is performed in the temperature range of 500 ° C. or higher and less than the Ac 1 transformation. You can do it.

本発明の鋼板においては、化学成分組成と共に、結晶方位関係および特定の結晶方位差を有する結晶粒の粒径を適切に規定することによって、歪時効特性に優れたものとした鋼板が実現でき、こうした鋼板は、超大型コンテナ船のハッチコーナ部等の素材として有用である。   In the steel sheet of the present invention, along with the chemical composition, by appropriately defining the grain size of crystal grains having a crystal orientation relationship and a specific crystal orientation difference, a steel sheet having excellent strain aging characteristics can be realized, Such a steel plate is useful as a material for a hatch corner portion of a super-large container ship.

本発明者は、鋼板の歪時効特性を改善するための手段について様々な角度から検討した。その結果、次のような知見が得られた。即ち、鋼板の組織では何通りかの方位関係を持って生成することになるのであるが、鋼板の化学成分組成、組織の生成温度、その他の条件等によって選択される各結晶格子の方位関係が変化することになり、一定の結晶方位差を有する結晶粒を微細化すると共に、大角粒界のうちのランダム粒界の分率(面積%)を50面積%以上に増大させれば、鋼板の歪時効特性が良好になることを見出し、本発明を完成した。以下、本発明が完成させた経緯に沿って、本発明の作用効果について説明する。   The inventor has studied means for improving the strain aging characteristics of a steel sheet from various angles. As a result, the following knowledge was obtained. In other words, the structure of the steel sheet is generated with some orientation relation, but the orientation relation of each crystal lattice selected by the chemical composition of the steel sheet, the formation temperature of the structure, other conditions, etc. If the crystal grains having a certain crystal orientation difference are refined and the fraction (area%) of the random grain boundaries among the large angle grain boundaries is increased to 50 area% or more, The present inventors have found that strain aging characteristics are improved and completed the present invention. Hereinafter, the effects of the present invention will be described along the background of the completion of the present invention.

歪時効は、歪付与によって発生した転位を鋼中のフリーのC,Nが固定するために、降伏強度が上昇し、その結果として母材靭性(鋼板靭性)が低下する現象である。従って、歪時効特性を良好にするため(歪時効による特性劣化を防止するため)には、フリーのC,Nをトラップして転位が固定されないようにすることが重要である。   Strain aging is a phenomenon in which the yield strength increases and the base material toughness (steel plate toughness) decreases as a result of free C and N in the steel fixing dislocations generated by applying strain. Therefore, in order to improve the strain aging characteristics (to prevent characteristic deterioration due to strain aging), it is important to trap free C and N so that dislocations are not fixed.

上記のような効果を達成するためには、2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径Dが35μm以下である要件を満足させる必要がある。結晶の方位差が15°以上の大角粒界は、高度エネルギーの粒界であるため、C,N等の侵入型元素が入り込み、安定化するため、有効なトラップサイトとなる。そして、歪時効特性を良好にするうえでは、大角粒界で囲まれた結晶粒の平均円相当径D(以下、「平均大角粒径D」と呼ぶことがある)が35μm以下であることが必要である。尚、前記「結晶方位差」は、「ずれ角」若しくは「傾角」とも呼ばれているものである。またこうした結晶方位差を測定するには、EBSP法(Electoron Backscattering Pattern法)を採用すれば良い。   In order to achieve the effect as described above, it is necessary to satisfy the requirement that the average equivalent circle diameter D of the crystal grains surrounded by the large-angle grain boundary where the orientation difference between the two crystals is 15 ° or more is 35 μm or less. . A large-angle grain boundary having a crystal misorientation of 15 ° or more is a high-energy grain boundary, so that an interstitial element such as C and N enters and stabilizes, so that it becomes an effective trap site. In order to improve the strain aging characteristics, the average equivalent circle diameter D (hereinafter sometimes referred to as “average large angle particle diameter D”) of the crystal grains surrounded by the large angle grain boundaries is 35 μm or less. is necessary. The “crystal orientation difference” is also called “shift angle” or “tilt angle”. Moreover, in order to measure such a crystal orientation difference, an EBSP method (Electron Backscattering Pattern Method) may be employed.

平均大角粒径Dの微細化を図ることが、歪時効特性を良好にする上で有効なことは既に知られている(前記特許文献1)。しかしながら、こうした平均大角粒径Dの微細化を図るだけでは、歪時効特性が必ずしも良好にならない場合があることも知見している。   It has already been known that refinement of the average large-angle particle diameter D is effective in improving the strain aging characteristics (Patent Document 1). However, it has also been found that the strain aging characteristics may not always be improved by simply refining the average large angle particle diameter D.

そこで、本発明者は、こうした不都合をなくすために、更に検討を進めた。その結果、大角粒界(2つの結晶の方位差が15°以上)で囲まれた結晶粒のうち、ランダム粒界の分率(面積%)を増大させて50%以上としたとき、良好な歪時効特性が得られたのである。   Therefore, the present inventor further studied to eliminate such inconvenience. As a result, when the fraction (area%) of the random grain boundary is increased to 50% or more among the crystal grains surrounded by the large-angle grain boundary (the orientation difference between the two crystals is 15 ° or more), it is good. Strain aging characteristics were obtained.

結晶方位差が15°以上の大角粒界においても、全てのずれ角においてエネルギーが高いわけではなく、ある特定のずれ角で粒界エネルギーが極端に低い対応粒界と呼ばれる粒界が存在する(例えば、「材料組織学」:高木節雄、津崎兼彰 朝倉書店発行 第45頁)。大角粒界は、対応粒界とランダム粒界に分け合うことができ、対応粒界では、フリーのC,N等の侵入型元素が入り込む可能性が低い。こうしたことから、平均大角粒径Dの微細化を図るだけではなく、ランダム粒界の分率を増加させることが、鋼板の歪時効特性を改善する上で重要な要件となる。   Even at a large-angle grain boundary having a crystal orientation difference of 15 ° or more, energy is not high at all shift angles, and there exists a grain boundary called a corresponding grain boundary at which a grain boundary energy is extremely low at a specific shift angle ( For example, “Materials Histology”: Nobuo Takagi, Kanaki Tsuzaki, Asakura Shoten, page 45). Large-angle grain boundaries can be divided into corresponding grain boundaries and random grain boundaries, and there is a low possibility that free interstitial elements such as C and N enter the corresponding grain boundaries. For these reasons, it is important not only to refine the average large-angle grain diameter D but also to increase the fraction of random grain boundaries in order to improve the strain aging characteristics of the steel sheet.

ところで、平均大角粒径Dの微細化を図るためには、低温側未再結晶温度域における圧延により、オーステナイト粒(γ粒)の成長を抑制できると共に、効率的に歪を変態前のγ粒に導入でき、変態後の組織を微細化できることになる。しかしながら、一般に低温で加工歪を多く導入するほど、変態後のバリアント(立方晶に存在する結晶学的に等価な方位関係)の選択が決定されるため、ランダム粒界が減少する方向になると考えられる(例えば、「再結晶と材料組織」:古林英一 内田老鶴圃発行 第45頁)。こうしたことが、従来の技術において(前記特許文献1)、良好な歪時効特性が発揮されなかった理由と考えられる。   By the way, in order to reduce the average large-angle grain size D, the growth of austenite grains (γ grains) can be suppressed by rolling in the low-temperature-side non-recrystallization temperature region, and strain can be efficiently transformed before transformation. The structure after transformation can be refined. However, in general, the more the processing strain is introduced at a low temperature, the selection of the variant after the transformation (crystallographically equivalent orientation relationship existing in the cubic crystal) is determined, so the random grain boundary tends to decrease. (For example, “Recrystallization and Material Structure”: Eiichi Furubayashi, Uchida Otsukuru, page 45). This is considered to be the reason why the good strain aging characteristics were not exhibited in the conventional technique (Patent Document 1).

一方、圧延温度域が高温側になるほど、初期γ粒に導入される加工歪量が少なくなるため、バリアント選択性がなくなり、ランダム粒界の分率が増加しやすくなる(例えば、「再結晶と材料組織」:古林英一 内田老鶴圃発行 第45頁)。また冷却開始温度が高まるため、焼入れ性効果が高まり、ランダム粒界の導入を促進できる。しかしながら、圧延温度域が高いため、加工発熱による温度上昇の影響を受けやすく、変態前γ粒が成長し、変態後の平均大角粒径Dの増大(即ち、結晶粒の粗大化)が懸念されることになる。   On the other hand, as the rolling temperature region becomes higher, the amount of processing strain introduced into the initial γ grains decreases, so that the variant selectivity is lost and the fraction of random grain boundaries tends to increase (for example, “recrystallization and "Material organization": Eiichi Furubayashi, Uchida Otsukaku, page 45). Further, since the cooling start temperature is increased, the hardenability effect is increased, and the introduction of random grain boundaries can be promoted. However, since the rolling temperature range is high, it is easily affected by temperature rise due to processing heat generation, and γ grains before transformation grow, and there is a concern about increase in average large-angle grain diameter D after transformation (that is, coarsening of crystal grains). Will be.

上記のような2つの技術を両立させるためには、その製造条件を厳密に規定する必要がある。本発明の鋼板を製造するために詳細な条件については後述するが、本発明の製造方法におけるポイントは次の通りである。   In order to make the above two technologies compatible, it is necessary to strictly define the manufacturing conditions. Detailed conditions for producing the steel sheet of the present invention will be described later, but the points in the production method of the present invention are as follows.

高温未再結晶域で従来通りに圧延した場合には、ランダム粒界の分率を増大させる方向に作用するのであるが、変態前γ粒の成長が起こり、変態後の大角粒界サイズの粗大化が懸念されることになる。そこで本発明では、高温側の未再結晶温度域で積極冷却を実施しながら、圧延を行うことによって、塑性変形発熱による鋼板の温度上昇を抑制し、ランダム粒界の増加および変態前γ粒の成長抑制を両立するようにしたのである。その詳細な条件については、後述する。   When rolling in the high-temperature non-recrystallized region as usual, it acts in the direction of increasing the fraction of random grain boundaries, but growth of γ grains occurs before transformation, and the large-angle grain boundary size after transformation is coarse. There is a concern about the change. Therefore, in the present invention, by performing rolling while actively cooling in the non-recrystallization temperature region on the high temperature side, the temperature rise of the steel sheet due to heat generated by plastic deformation is suppressed, and the increase of random grain boundaries and γ grains before transformation He tried to balance growth control. The detailed conditions will be described later.

本発明の鋼板においては、その化学成分組成についても適切に制御する必要があるが、これらの成分の範囲限定理由は、次の通りである。   In the steel plate of the present invention, it is necessary to appropriately control the chemical component composition, but the reasons for limiting the ranges of these components are as follows.

[C:0.10〜0.16%]
Cは、鋼板の強度確保のために必要な元素である。造船用厚肉鋼板としての最低強度、即ち概ね590MPa程度(使用する鋼材の肉厚にもよるが)を得るためには、0.10%以上含有させる必要がある。しかし、0.16%を超えて過剰に含有させると、溶接性や母材靭性に悪影響を及ぼすことになる。こうしたことから、C含有量は0.10〜0.16%とした。尚、C含有量の好ましい下限は0.11%であり、好ましい上限は0.14%である。
[C: 0.10 to 0.16%]
C is an element necessary for ensuring the strength of the steel sheet. In order to obtain the minimum strength as a thick steel plate for shipbuilding, that is, about 590 MPa (depending on the thickness of the steel material to be used), it is necessary to contain 0.10% or more. However, if the content exceeds 0.16%, the weldability and the base metal toughness are adversely affected. For these reasons, the C content is set to 0.10 to 0.16%. In addition, the minimum with preferable C content is 0.11%, and a preferable upper limit is 0.14%.

[Si:0.15〜0.30%]
Siは、母材の強度向上および溶鋼の脱酸成分として有用な元素である。その効果を有効に発揮させるためには、0.15%以上含有させることが必要である。しかし、0.30%を超えて過剰に含有させると溶接性や母材靭性が劣化する。尚、Si含有量の好ましい下限は0.17%であり、好ましい上限は0.25%である。
[Si: 0.15 to 0.30%]
Si is an element useful for improving the strength of the base material and deoxidizing the molten steel. In order to exhibit the effect effectively, it is necessary to contain 0.15% or more. However, if the content exceeds 0.30%, weldability and base metal toughness deteriorate. In addition, the minimum with preferable Si content is 0.17%, and a preferable upper limit is 0.25%.

[Mn:1.30〜1.60%]
Mnは、鋼板の強度向上元素として有用であり、こうした効果を発揮させるためには1.30%以上含有させる必要である。しかし、過剰に含有させると溶接性や母材靭性の劣化を招くので、1.60%以下とする必要がある。尚、Mn含有量の好ましい下限は1.4%であり、好ましい上限は1.5%である。
[Mn: 1.30 to 1.60%]
Mn is useful as an element for improving the strength of a steel sheet, and in order to exert such effects, it is necessary to contain Mn in an amount of 1.30% or more. However, if it is contained excessively, weldability and base metal toughness are deteriorated, so it is necessary to be 1.60% or less. In addition, the minimum with preferable Mn content is 1.4%, and a preferable upper limit is 1.5%.

[Al:0.015〜0.05%]
Alは脱酸として有用であると共に、窒化物(AlN)を形成して母材組織の細粒化に寄与する元素である。こうした効果を発揮させるためには、Alは0.015%以上含有させる必要がある。しかし、Al含有量が過剰になると、鋼板の靭性を粗大するので0.05%以下とする必要がある。尚、Al含有量の好ましい下限は0.020%であり、好ましい上限は0.04%である。
[Al: 0.015 to 0.05%]
Al is an element that is useful as deoxidation and contributes to the refinement of the base material structure by forming nitride (AlN). In order to exhibit such an effect, Al needs to be contained 0.015% or more. However, if the Al content is excessive, the toughness of the steel sheet is coarsened, so it is necessary to make it 0.05% or less. In addition, the minimum with preferable Al content is 0.020%, and a preferable upper limit is 0.04%.

[Cu:0.15〜0.35%]
Cuは、オーステナイト結晶粒の微細化に有効な元素である。こうした効果を発揮させるためには、Cuは0.15%以上含有させる必要がある。しかし、Cu含有量が過剰になると、母材の溶接性を劣化させるので、0.35%以下とする必要がある。尚、Cuを単独添加すると、熱間割れが発生しやすくなるので、下記のNiも同時に含有させ熱間割れを防止する必要がある。
[Cu: 0.15-0.35%]
Cu is an element effective for miniaturization of austenite crystal grains. In order to exhibit such an effect, it is necessary to contain 0.15% or more of Cu. However, if the Cu content is excessive, the weldability of the base material is deteriorated, so it is necessary to make it 0.35% or less. In addition, since it will become easy to generate | occur | produce a hot crack when Cu is added independently, it is necessary to contain the following Ni simultaneously and to prevent a hot crack.

[Ni:0.10〜0.30%]
Niは、低温靭性の向上に有効な元素である。こうした効果を発揮させるためには、Niは0.10%以上含有させる必要がある。しかし、Ni含有量が過剰になると、コスト上昇を招くので0.30%以下とする必要がある。尚、Ni含有量の好ましい下限は0.15%であり、好ましい上限は0.25%である。
[Ni: 0.10 to 0.30%]
Ni is an element effective for improving low-temperature toughness. In order to exert such effects, Ni needs to be contained by 0.10% or more. However, if the Ni content is excessive, the cost is increased, so it is necessary to set it to 0.30% or less. In addition, the minimum with preferable Ni content is 0.15%, and a preferable upper limit is 0.25%.

[Mo:0.10〜0.25%]
Moは、炭窒化物を析出させ、鋼板の強度を上昇させる上で有効な元素である。こうした効果を発揮させるためには、0.10%以上含有させる必要がある。しかし、Moの含有量が過剰になると、溶接性および母材靭性が劣化するので、0.25%以下とする必要がある。
[Mo: 0.10 to 0.25%]
Mo is an element effective for precipitating carbonitrides and increasing the strength of the steel sheet. In order to exhibit such an effect, it is necessary to contain 0.10% or more. However, if the Mo content is excessive, weldability and base metal toughness deteriorate, so it is necessary to set the content to 0.25% or less.

[V:0.030〜0.05%およびNb:0.005〜0.015%]
VおよびNbは、炭窒化物の形成により、圧延中のオーステナイト粒の微細化および再結晶抑制作用を発揮し、変態後の組織(例えばフェライト組織)の微細化に有効な元素である。こうした効果を発揮させるためには、Vで0.030%以上、Nbで0.005%以上含有させる必要がある。しかし、これらの含有量が過剰になると、鋼板の溶接性を阻害するのでVで0.05%以下、Nbで0.015%以下とする必要がある。
[V: 0.030 to 0.05% and Nb: 0.005 to 0.015%]
V and Nb are elements effective for refining austenite grains during rolling and suppressing recrystallization due to the formation of carbonitride, and for refining the structure after transformation (for example, ferrite structure). In order to exert such an effect, it is necessary to contain 0.030% or more in V and 0.005% or more in Nb. However, if these contents are excessive, the weldability of the steel sheet is hindered, so it is necessary to set V to 0.05% or less and Nb to 0.015% or less.

[Ca:0.005%以下(0%を含まない)]
Caは、母材靭性の向上に有効な元素である。こうした効果は、その含有量が増加するにつれて増大するが、Caを過剰に含有させてもその効果が飽和するので、Ca含有量は0.005%以下とすることが好ましい。尚、上記の効果を有効に発揮させるためには、Caで0.0005%以上含有させることがより好ましい。
[Ca: 0.005% or less (excluding 0%)]
Ca is an element effective for improving the base material toughness. Such an effect increases as the content thereof increases. However, even if Ca is excessively contained, the effect is saturated, so the Ca content is preferably 0.005% or less. In addition, in order to exhibit said effect effectively, it is more preferable to contain 0.0005% or more with Ca.

[N:0.002〜0.008%]
Nは、鋼に含まれるAl,Nb,Ti,Nb,V等の元素と窒化物を形成し、母材組織を細粒化させる効果を発揮する元素である。こうした効果を発揮させるためには、Nは0.002%以上含有させる必要がある。しかし、Nの含有量が過剰になると、固溶Nの増大を招き、特に溶接部の靭性が劣化するので、0.008%以下とする必要がある。
[N: 0.002 to 0.008%]
N is an element that exhibits the effect of forming nitrides with elements such as Al, Nb, Ti, Nb, and V contained in steel and making the base material structure finer. In order to exhibit such an effect, N needs to be contained by 0.002% or more. However, if the N content is excessive, the amount of solute N is increased, and particularly the toughness of the welded portion is deteriorated.

本発明の鋼板における基本成分は上記の通りであり、残部は鉄および不可避不純物(例えば、P,S,B,O等)からなるものであるが、必要によって、(a)Ti:0.005〜0.020%、(b)Cr:0.10%以下(0%を含まない)、等を含有することも有効であり、含有される元素の種類に応じてその特性が更に改善される。これらの元素を含有させるときの範囲限定理由は次の通りである。   The basic components in the steel sheet of the present invention are as described above, and the balance is composed of iron and inevitable impurities (for example, P, S, B, O, etc.), but if necessary, (a) Ti: 0.005 It is also effective to contain ~ 0.020%, (b) Cr: 0.10% or less (excluding 0%), etc., and the characteristics are further improved depending on the type of element contained. . The reasons for limiting the range when these elements are contained are as follows.

[Ti:0.005〜0.020%]
Tiは、鋼中にTiNを微細分散させてオーステナイト粒の粗大化を防止するのに有効な元素である。こうした効果を発揮させるためには、Tiは0.005%以上含有させることが好ましい。しかし、Tiの含有量が過剰になると、却って母材靭性が低下するので、0.020%以下とすることが好ましい。
[Ti: 0.005 to 0.020%]
Ti is an element effective for finely dispersing TiN in steel to prevent coarsening of austenite grains. In order to exhibit such an effect, it is preferable to contain Ti 0.005% or more. However, if the Ti content is excessive, the toughness of the base material is lowered, so that the content is preferably 0.020% or less.

[Cr:0.10%以下(0%を含まない)]
Crは、炭窒化物を析出させ、鋼板の強度を上昇させる上で有効な元素である。こうした効果はその含有量が増加するにつれて増大するが、その含有量が過剰になると、溶接性および母材靭性が劣化するので、0.10%以下とすることが好ましい。尚、Crによる上記効果を発揮させるためのより好ましい下限は0.03%である。
[Cr: 0.10% or less (excluding 0%)]
Cr is an effective element for precipitating carbonitride and increasing the strength of the steel sheet. Such an effect increases as the content increases. However, if the content is excessive, the weldability and the base metal toughness deteriorate. Therefore, the content is preferably 0.10% or less. In addition, the more preferable minimum for exhibiting the said effect by Cr is 0.03%.

本発明の鋼板を製造するに当たっては、鋼片をAc3変態点以上〜1200℃の温度に加熱し、鋼板の平均温度が900℃以上のオーステナイト再結晶温度域にて累積圧下率が10%以上の圧延を施し、その後、鋼板の平均温度が800℃以上、890℃以下の未再結晶温度域にて、鋼板全体のパス間の平均冷却速度が0.3℃/秒以上となるような冷却を施しながら、累積圧下率が25%以上、50%未満となる圧延を施し、鋼板の平均温度が(Ar3変態点+10℃)以上、(Ar3変態点+90℃)以下の温度域から、鋼板表面温度が500℃以下となる温度域まで平均冷却速度:5℃/秒以上の冷却速度で冷却し、500℃以上、Ac1変態未満の温度範囲で焼戻し処理を行うようにすれば良い。以下、これらの条件について順を追って説明する。 In producing the steel sheet of the present invention, the steel slab is heated to a temperature of not less than the Ac 3 transformation point to 1200 ° C., and the cumulative rolling reduction is not less than 10% in the austenite recrystallization temperature range where the average temperature of the steel sheet is 900 ° C. or more. After that, in the non-recrystallization temperature range where the average temperature of the steel sheet is 800 ° C. or higher and 890 ° C. or lower, cooling is performed such that the average cooling rate between passes of the entire steel sheet is 0.3 ° C./second or higher. From the temperature range in which the cumulative rolling reduction is 25% or more and less than 50%, and the average temperature of the steel sheet is (Ar 3 transformation point + 10 ° C.) or more and (Ar 3 transformation point + 90 ° C.) or less, The steel sheet may be cooled to a temperature range where the steel sheet surface temperature is 500 ° C. or less at an average cooling rate of 5 ° C./second or more, and tempered in a temperature range of 500 ° C. or more and less than the Ac 1 transformation. Hereinafter, these conditions will be described in order.

鋼片の加熱温度は、オーステナイトとするためにも、Ac3変態点とする必要がある。しかし、この加熱温度が高過ぎると、初期のオーステナイト組織が粗大化し過ぎるため、変態後の組織を充分に微細化することが困難となる。従って加熱温度は1200℃以下とするのがよい。 In order to set the heating temperature of the steel slab to austenite, it is necessary to set the Ac 3 transformation point. However, if the heating temperature is too high, the initial austenite structure becomes too coarse, and it becomes difficult to sufficiently refine the structure after transformation. Therefore, the heating temperature is preferably 1200 ° C. or lower.

対象部位[t/4部(t:板厚)]の平均温度が900℃以上のオーステナイトの再結晶温度域で圧下率は特に限定する必要はないが、生産性および仕上げ圧延圧下率上限の観点から、累積圧下率で10%以上とした方が好ましい。尚、このときの累積圧下率とは、下記(1)式によって求められる値である。   The reduction ratio is not particularly limited in the recrystallization temperature range of austenite where the average temperature of the target part [t / 4 part (t: plate thickness)] is 900 ° C. or higher, but the viewpoint of productivity and the upper limit of the finish rolling reduction ratio Therefore, it is preferable that the cumulative rolling reduction is 10% or more. The cumulative rolling reduction at this time is a value obtained by the following equation (1).

累積圧下率=[(t0−t1)/t0]×100(%)
但し、t0:鋼板平均温度が狙いの温度領域にある時の圧延開始厚(mm)
1:鋼板平均温度が狙いの温度領域にある時の圧延終了厚(mm)
Cumulative rolling reduction = [(t 0 −t 1 ) / t 0 ] × 100 (%)
However, t 0 : rolling start thickness (mm) when the steel sheet average temperature is in the target temperature range
t 1 : Finishing thickness (mm) when the average steel sheet temperature is in the target temperature range

対象部位の平均温度が800℃以上、890℃以下の比較的高温での圧延により、未再結晶温度域での圧延においてもランダム粒界を導入/増加させることができる。こうした効果を得るためには、累積圧下率で50%未満の圧下を行うことが必要である(後記図4参照)。このときの圧下率が50%以上となると、歪の加わり過ぎによるバリアントの選択が起こり、ランダム粒界が減少することになる。   Random grain boundaries can be introduced / increased in rolling in a non-recrystallization temperature region by rolling at a relatively high temperature of 800 ° C. or higher and 890 ° C. or lower in average temperature of the target part. In order to obtain such an effect, it is necessary to reduce the cumulative rolling rate by less than 50% (see FIG. 4 below). If the reduction ratio at this time is 50% or more, selection of variants due to excessive strain occurs and random grain boundaries decrease.

対象部位の平均温度が800℃以上、890℃以下の高温側未再結晶温度域での圧延において、積極的な冷却を実施することにより、高温側未再結晶温度域においても変態後の平均大角粒径Dを微細化することができる。こうした効果を発揮させるためには、そのときの圧下は累積圧下率で25%以上とし、且つ鋼板全体のパス間の平均冷却速度が0.3℃/秒以上となるような冷却する必要がある(後記図5参照)。   In rolling in the high temperature side non-recrystallization temperature range where the average temperature of the target part is 800 ° C. or more and 890 ° C. or less, the average large angle after transformation is achieved even in the high temperature side non-recrystallization temperature range by carrying out active cooling. The particle diameter D can be refined. In order to exert such an effect, it is necessary to perform cooling so that the reduction at that time is 25% or more in terms of cumulative reduction, and the average cooling rate between passes of the entire steel sheet is 0.3 ° C./second or more. (See FIG. 5 below).

未再結晶温度域での圧延では、変形抵抗が高いため、塑性変形発熱による鋼板温度の上昇が生じ、変態前γ粒の成長が起き、変態後の平均大角粒径Dの増大が懸念される。そのため、累積圧下率が25%以上であったとしても、パス間冷却速度が0.3℃/秒未満の場合は、塑性変形発熱での鋼板温度の上昇が生じ、変態前γ粒の成長粗大化を抑制することができない(後記図6参照)。また、パス間冷却速度(圧延中冷却速度)が0.4℃/秒を超えると、温度低下が速くなることによる加工歪量の増加や、圧延を800℃以上の温度で完了できない場合が生じ、ランダム粒界分率の減少が起こるため、冷却速度は0.3〜0.4℃/秒程度とすることが好ましい(後記試験No.14参照)。   In rolling in the non-recrystallization temperature range, since the deformation resistance is high, the steel sheet temperature rises due to heat generated by plastic deformation, γ grains grow before transformation, and there is a concern that the average large-angle grain size D after transformation increases. . Therefore, even if the cumulative rolling reduction is 25% or more, when the inter-pass cooling rate is less than 0.3 ° C./second, the steel plate temperature rises due to the plastic deformation heat generation, and the γ grains grow before transformation. Cannot be suppressed (see FIG. 6 below). In addition, when the inter-pass cooling rate (cooling rate during rolling) exceeds 0.4 ° C./second, an increase in processing strain due to a rapid decrease in temperature, and rolling may not be completed at a temperature of 800 ° C. or higher. Since the random grain boundary fraction is reduced, the cooling rate is preferably about 0.3 to 0.4 ° C./second (see Test No. 14 described later).

但し、圧延温度が890℃よりも高くなると、上記のような積極冷却を施しても、変態前γ粒の成長粗大化を抑制しきれず、平均大角粒径Dが増大する恐れがあるため(後記図9参照)、890℃以下にて圧延を開示する。圧延終了温度が800℃よりも低い場合には、低温圧延により、バリアントが選択され、ランダム粒界が減少することになる(後記図10参照)。   However, if the rolling temperature is higher than 890 ° C., even if the above-described positive cooling is performed, the growth coarsening of γ grains before transformation cannot be suppressed, and the average large-angle particle diameter D may increase (described later). FIG. 9) discloses rolling at 890 ° C. or lower. When the rolling end temperature is lower than 800 ° C., variants are selected by low temperature rolling, and random grain boundaries are reduced (see FIG. 10 described later).

仕上げ圧延終了後、鋼板の平均温度が(Ar3変態点+10℃)以上、(Ar3変態点+90℃)以下の温度域から、鋼板の平均冷却速度(DQ冷却速度)が5℃/秒以上で500℃以下まで冷却する。冷却開始時の温度が(Ar3変態点+90℃)を超えると、圧延終了から冷却開始までの待ち時間で、圧延によって導入した歪が消失してしまい、平均大角粒界径Dが増大する恐れがあるため(後記図7参照)、(Ar3変態点+90℃)以下の温度から冷却を開始する必要がある。この温度範囲から冷却を開始することにより、ランダム粒界の増加を得るのに必要な焼入れ性の確保が可能となる。しかしながら、冷却開始温度が(Ar3変態点+10℃)よりも低い場合には、焼入れ性不足によって、ランダム粒界分率の増加が難しくなる(後記図8参照)。また、冷却停止温度は、変態を完全に完了させるために、500℃以下とする。 After finishing rolling, the average cooling rate (DQ cooling rate) of the steel plate is 5 ° C./second or more from the temperature range where the average temperature of the steel plate is (Ar 3 transformation point + 10 ° C.) or more and (Ar 3 transformation point + 90 ° C.) or less. To 500 ° C. or lower. When the temperature at the start of cooling exceeds (Ar 3 transformation point + 90 ° C.), the strain introduced by rolling disappears during the waiting time from the end of rolling to the start of cooling, and the average large-angle grain boundary diameter D may increase. Therefore, it is necessary to start cooling from a temperature not higher than (Ar 3 transformation point + 90 ° C.). By starting the cooling from this temperature range, it is possible to ensure the hardenability necessary to obtain an increase in random grain boundaries. However, when the cooling start temperature is lower than (Ar 3 transformation point + 10 ° C.), it is difficult to increase the random grain boundary fraction due to insufficient hardenability (see FIG. 8 below). In addition, the cooling stop temperature is set to 500 ° C. or lower in order to completely complete the transformation.

上記のような積極冷却(加速冷却)を行った後は、500℃以上、Ac1変態未満の温度範囲で焼戻し処理を行う。この処理は、組織中に生成した島状マルテンサイト相(M−A相)を消滅させるためである。このような相が残存していた場合には、破壊の起点となる可能性がある。 After the positive cooling (accelerated cooling) as described above, tempering is performed in a temperature range of 500 ° C. or higher and lower than the Ac 1 transformation. This treatment is for eliminating the island-like martensite phase (MA phase) generated in the structure. If such a phase remains, it may become a starting point of destruction.

本発明の鋼板は、上記のような製造方法によって製造し、前述した要件を満足するものとなり、こうした鋼板では降伏点YPが480MPa以上、引張強度TSが590MPa以上であり、且つ10%の歪を付与した後に250℃、1時間の時効処理を施したときの−40℃での平均衝撃吸収エネルギーvE-40が100J以上であるような特性を発揮するものとなる。尚、本発明の高強度鋼板は、鋼板厚さが60mm以上となるような厚肉の場合を想定したものであり、こうした厚肉の鋼板の場合に特にその効果が顕著に発揮される。 The steel sheet of the present invention is manufactured by the manufacturing method as described above, and satisfies the above-described requirements. In such a steel sheet, the yield point YP is 480 MPa or more, the tensile strength TS is 590 MPa or more, and a strain of 10% is obtained. After the application, the characteristics are such that the average impact absorption energy vE- 40 at −40 ° C. when subjected to an aging treatment at 250 ° C. for 1 hour is 100 J or more. The high-strength steel sheet of the present invention assumes a case where the steel sheet has a thickness of 60 mm or more, and the effect is particularly remarkable in the case of such a thick steel sheet.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

下記表1に示す化学成分組成の各鋼種(鋼種A〜D)の鋼片を用い、下記表2に示す製造条件で[板厚(製品厚)、鋳片加熱温度、再結晶温度域圧下率(累積圧下率)、鋼板冷却速度、圧延開始温度、未再結晶温度域圧下率(累積圧下率)、パス間冷却速度、圧延終了温度、圧延後冷却開始温度、圧延後冷却速度(DQ冷却速度)、冷却停止温度、焼戻し温度]にて各種鋼板を製造した。このときの温度については、鋳片加熱温度、冷却停止温度および焼戻し温度については、鋼板の表面温度で管理したものであり、その他は平均温度で管理したものであり、詳細な温度管理手順は下記の通りである。また表1に示したAr3変態点およびAc変態点は、夫々後記(2)式、(3)式によって計算したものである。 Using steel slabs of each steel type (steel types A to D) having the chemical composition shown in Table 1 below, under the manufacturing conditions shown in Table 2 below, [plate thickness (product thickness), slab heating temperature, recrystallization temperature range reduction rate (Cumulative rolling reduction), steel sheet cooling rate, rolling start temperature, non-recrystallization temperature range rolling reduction (cumulative rolling reduction), interpass cooling rate, rolling end temperature, post rolling rolling start temperature, post rolling rolling cooling rate (DQ cooling rate) ), Cooling stop temperature, tempering temperature]. Regarding the temperature at this time, the slab heating temperature, the cooling stop temperature, and the tempering temperature are controlled by the surface temperature of the steel sheet, and the others are controlled by the average temperature. The detailed temperature management procedure is as follows. It is as follows. Further, the Ar 3 transformation point and Ac 1 transformation point shown in Table 1 are calculated by the following equations (2) and (3), respectively.

Figure 0005234921
Figure 0005234921

Figure 0005234921
Figure 0005234921

[圧延中の温度測定方法]
1.プロセスコンピュータを用い、加熱開始から加熱終了までの雰囲気温度や在炉時間に基づいて鋼片の加熱温度を算出する。
2.算出した加熱温度を用い、圧延中の圧延パススケジュールやパス間の冷却方法(水冷あるいは空冷)のデータに基づいて、板厚方向の任意の位置における圧延温度を差分法など計算に適した方法を用いて算出しつつ圧延を実施する。
3.鋼板の表面温度は圧延ライン上に設置された放射型温度計を用いて実測する。但し、プロセスコンピュータでも理論値を計算しておく。
4.粗圧延開始時、粗圧延終了時、仕上げ圧延開始時にそれぞれ実測した鋼板の表面温度を、プロセスコンピュータから算出される計算温度と照合する。
5.計算温度と実測温度の差が±30℃以上の場合は、計算温度が実測温度と一致するように再計算してプロセスコンピュータ上の計算温度とし、±30℃未満の場合は、プロセスコンピュータから算出された計算温度をそのまま用いる。
6.上記算出された計算温度を用い、制御対象としている領域の圧延温度を管理する。
[Temperature measurement method during rolling]
1. Using the process computer, the heating temperature of the steel slab is calculated based on the ambient temperature from the start of heating to the end of heating and the in-furnace time.
2. Using the calculated heating temperature, based on the rolling pass schedule during rolling and the data of the cooling method (water cooling or air cooling) between passes, a method suitable for calculation such as the difference method is used to calculate the rolling temperature at any position in the plate thickness direction. Rolling is carried out while calculating using this.
3. The surface temperature of the steel sheet is measured using a radiation type thermometer installed on the rolling line. However, the theoretical value is also calculated in the process computer.
4). The surface temperature of the steel sheet measured at the start of rough rolling, at the end of rough rolling, and at the start of finish rolling is collated with a calculated temperature calculated from a process computer.
5. If the difference between the calculated temperature and the measured temperature is ± 30 ° C or more, recalculate the calculated temperature so that it matches the measured temperature to obtain the calculated temperature on the process computer. If the calculated temperature is less than ± 30 ° C, calculate from the process computer. The calculated temperature is used as it is.
6). Using the calculated temperature calculated above, the rolling temperature in the region to be controlled is managed.

Ar3変態点(℃)=910−310×[C]−80×[Mn]−20×[Cu]−15×[Cr]−55×[Ni]−80×[Mo]+0.35(t2−8) …(2)
但し、[C],[Mn],[Cu],[Cr],[Ni]および[Mo]は、夫々C,Mn,Cu,Cr,NiおよびMoの含有量(質量%)を示し、t2は板厚(製品仕上げ厚さ:mm)を示す。
Ar 3 transformation point (° C.) = 910−310 × [C] −80 × [Mn] −20 × [Cu] −15 × [Cr] −55 × [Ni] −80 × [Mo] +0.35 (t 2 -8) ... (2)
However, [C], [Mn], [Cu], [Cr], [Ni] and [Mo] indicate the contents (mass%) of C, Mn, Cu, Cr, Ni and Mo, respectively, and t 2 indicates the plate thickness (finished product thickness: mm).

Ac1変態点(℃)=723−14×[Mn]+22×[Si]−14.4×[Ni]+23.3×[Cr] …(3)
但し、[Mn],[Si],[Ni],および[Cr]は、夫々Mn,Si,NiおよびCrの含有量(質量%)を示す。
Ac 1 transformation point (° C.) = 723-14 × [Mn] + 22 × [Si] −14.4 × [Ni] + 23.3 × [Cr] (3)
However, [Mn], [Si], [Ni], and [Cr] indicate the contents (mass%) of Mn, Si, Ni, and Cr, respectively.

得られた各鋼板について、平均大角粒径D(結晶方位差が15°以上の大角粒界で囲まれた結晶粒の平均径D)、結晶方位差分布(ランダム粒界分率R)を下記の方法で測定すると共に、母材引張特性、母材衝撃特性、および歪時効特性を下記の方法によって測定した。これらの結果を一括して、下記表3に示す。   For each steel plate obtained, the average large-angle grain size D (average diameter D of crystal grains surrounded by large-angle grain boundaries with a crystal orientation difference of 15 ° or more) and crystal orientation difference distribution (random grain boundary fraction R) are shown below. The base material tensile properties, base material impact properties, and strain aging properties were measured by the following methods. These results are collectively shown in Table 3 below.

[平均大角粒径Dの測定方法]
(a)鋼板の圧延方向に平行に切断した、板厚の表裏面を含むサンプルを準備した。
(b)#150〜#1000までの湿式エメリー研磨紙或はそれと同等の機能を有する研磨方法を用いて断面を研磨し、ダイヤモンドスラリー等の研磨剤を用いて鏡面仕上げを施す。
(c)上記断面において、Tex SEM Laboratries社のEBSP装置(商品名:「OIM」)を用い、板厚方向t/4(t:板厚)部において、測定領域:200×200(μm)、測定ピッチ:0.5μm間隔で測定し、結晶方位差が15°以上の境界を結晶粒界として大角粒界を測定した。このとき、測定方位の信頼性を示すコンフィデンス・インデックスが0.1よりも小さい測定点は解析対象から除外した。
(d)テキストデータの解析法として、結晶粒径が2.5μm以下のものは、測定ノイズと判断して削除し、観察面における平均粒径を(円相当径)算出し、平均大角粒径Dとした。
[Measurement Method of Average Large Angle Particle Size D]
(A) A sample including the front and back surfaces of the plate thickness cut in parallel with the rolling direction of the steel plate was prepared.
(B) A cross-section is polished using a wet emery polishing paper of # 150 to # 1000 or a polishing method having a function equivalent to that, and mirror-finished using an abrasive such as diamond slurry.
(C) In the above cross section, using an EBSP apparatus (trade name: “OIM”) manufactured by Tex SEM Laboratories, in a thickness direction t / 4 (t: thickness), measurement area: 200 × 200 (μm), Measurement pitch: Measured at intervals of 0.5 μm, and a large-angle grain boundary was measured using a boundary having a crystal orientation difference of 15 ° or more as a grain boundary. At this time, measurement points having a confidence index indicating the reliability of the measurement direction smaller than 0.1 were excluded from the analysis target.
(D) As an analysis method of the text data, those having a crystal grain size of 2.5 μm or less are judged to be measurement noise and deleted, and the average grain diameter on the observation surface is calculated (equivalent circle diameter). D.

[結晶方位差分布(ランダム粒界分率R)の測定方法]
(a)鋼板の圧延方向に平行に切断した、板厚の表裏面を含むサンプルを準備した。
(b)#150〜#1000までの湿式エメリー研磨紙或はそれと同等の機能を有する研磨方法を用いて断面を研磨し、ダイヤモンドスラリー等の研磨剤を用いて鏡面仕上げを施す。
(c)上記断面において、Tex SEM Laboratories社のEBSP装置(商品名:「OIM」)を用い、板厚方向t/4(t:板厚)部において、測定領域:200×200(μm)、測定ピッチ:0.5μm間隔で測定した。このとき、測定方位の信頼性を示すコンフィデンス・インデックスが0.1よりも小さい測定点は解析対象から除外した。
(d)結晶方位差が5.5°未満のものについては、測定ノイズと判断し、結晶方位差62.5°までの各方位差における分布を求めた。
(e)上記(d)の結晶方位差と対応マップを対応させることにより、ランダム粒界分率Rを算出した。具体的には、各対応粒界(Σ1〜49)を、結晶方位分布より得られる方位差15°以上の大角粒界の個数で割ることにより、各対応粒界の分布を求め、100%から差し引くことで[対応粒界以外をランダム粒界(>Σ49)とした]、ランダム粒界分率R(平均値)を測定した。
[Method of measuring crystal orientation difference distribution (random grain boundary fraction R)]
(A) A sample including the front and back surfaces of the plate thickness cut in parallel with the rolling direction of the steel plate was prepared.
(B) A cross-section is polished using a wet emery polishing paper of # 150 to # 1000 or a polishing method having a function equivalent to that, and mirror-finished using an abrasive such as diamond slurry.
(C) In the above cross section, using an EBSP apparatus (trade name: “OIM”) manufactured by Tex SEM Laboratories, in a thickness direction t / 4 (t: thickness), measurement area: 200 × 200 (μm), Measurement pitch: measured at intervals of 0.5 μm. At this time, measurement points having a confidence index indicating the reliability of the measurement direction smaller than 0.1 were excluded from the analysis target.
(D) The crystal orientation difference of less than 5.5 ° was determined as measurement noise, and the distribution at each orientation difference up to the crystal orientation difference of 62.5 ° was obtained.
(E) The random grain boundary fraction R was calculated by associating the crystal orientation difference of (d) with the corresponding map. Specifically, the distribution of each corresponding grain boundary is obtained by dividing each corresponding grain boundary (Σ1 to 49) by the number of large-angle grain boundaries having an orientation difference of 15 ° or more obtained from the crystal orientation distribution. By subtracting [random grain boundaries other than corresponding grain boundaries (> Σ49)] and random grain boundary fraction R (average value) were measured.

[母材引張特性の評価]
t/4(t:板厚)部から、NK(日本海事協会)船級が定めるU4号試験片を採取し、JIS Z 2241に従って引張試験を実施した。判定基準は、降伏点YP:480MPa以上、引張強度TS:590MPa以上とした。
[Evaluation of base material tensile properties]
From the t / 4 (t: plate thickness) part, a U4 test piece determined by the NK (Japan Maritime Association) classification was collected, and a tensile test was performed according to JIS Z2241. The judgment criteria were a yield point YP: 480 MPa or more and a tensile strength TS: 590 MPa or more.

[母材の衝撃特性の評価]
t/4(t:板厚)部から、NK(日本海事協会)船級が定めるU4号試験片を採取し、Vノッチシャルピー試験を行なった(JIS Z 2242に準拠した試験方法)。NK(日本海事協会)船級における造船Eグレードでは、母材の衝撃特性を試験温度:−40℃で求められるため、試験温度:−60℃での平均吸収エネルギー(vE-60)を測定した。そしてvE-60の値が100J以上のものを靭性に優れると評価した。
[Evaluation of impact characteristics of base material]
From the t / 4 (t: thickness) part, a U4 test piece defined by the NK (Japan Maritime Association) classification was collected and a V-notch Charpy test was performed (test method based on JIS Z 2242). In shipbuilding E grade in the NK (Nippon Kaiji Kyokai) class, the impact properties of the base material are determined at a test temperature of −40 ° C., so the average absorbed energy (vE −60 ) at the test temperature of −60 ° C. was measured. And it evaluated that the thing of the value of vE- 60 was 100J or more was excellent in toughness.

[母材の歪時効特性]
NK(日本海事協会)船級に規定されている方法にて歪時効を付与した。具体的には、引張試験片に、10%歪を付与した後、250℃×1時間の時効処理を施した。このときの試験片(TP)形状を図1に示す。その後、歪付与量が9.6〜10.4%の範囲である箇所からVノッチシャルピー試験片を採取し、JIS Z 2242に従って試験を実施し、試験温度:−40℃での平均吸収エネルギー(vE-40)を測定した。そしてvE-40の平均値が100J以上のものを歪時効特性に優れると評価した。尚、このときの歪付与量は、下記(4)式によって求められるものである。
[Strain aging characteristics of base material]
Strain aging was imparted by the method prescribed in the NK (Japan Maritime Association) classification. Specifically, after 10% strain was applied to the tensile test piece, an aging treatment was performed at 250 ° C. for 1 hour. The shape of the test piece (TP) at this time is shown in FIG. Thereafter, a V-notch Charpy test piece was collected from a location where the amount of strain applied was in the range of 9.6 to 10.4%, and the test was conducted according to JIS Z 2242. Test temperature: average absorbed energy at −40 ° C. ( vE- 40 ) was measured. And the thing whose average value of vE- 40 is 100J or more was evaluated as being excellent in strain aging characteristics. Note that the amount of strain imparted at this time is determined by the following equation (4).

歪付与量=(L−L0)/L0×100(%) …(4)
但し、L0:歪付与前の標点距離(mm)
L :歪付与後の標点距離(mm)
Strain imparting amount = (L−L 0 ) / L 0 × 100 (%) (4)
However, L 0 : Gage distance before giving strain (mm)
L: Gage distance after distortion (mm)

Figure 0005234921
Figure 0005234921

これらの結果から、次のように考察できる。試験No.1〜5、15,16、18、19、20のものは、本発明で規定する要件を満足するものであり、母材の引張特性および衝撃特性を確保しつつ、歪時効特性をも良好である高強度厚肉鋼板が実現できていることが分かる。   From these results, it can be considered as follows. Test No. 1 to 5, 15, 16, 18, 19, and 20 satisfy the requirements defined in the present invention, and have excellent strain aging characteristics while ensuring the tensile characteristics and impact characteristics of the base material. It can be seen that a certain high-strength thick steel plate can be realized.

これに対して、試験No.6〜14、17のものでは、本発明で規定する要件のいずれかを欠くものであり、少なくともいずれかの特性が劣化している。具体的には、試験No.6〜9のものは、未再結晶温度域での圧下率が本発明で規定する範囲(25%以上、50%未満)から外れるものであり、平均大角粒径Dの増大若しくはランダム粒界分率R不足が生じており、母材靭性、歪時効特性の少なくともいずれかの特性が劣化している。   In contrast, test no. Those of 6 to 14 and 17 lack any of the requirements defined in the present invention, and at least one of the characteristics is deteriorated. Specifically, Test No. 6 to 9 are those in which the rolling reduction in the non-recrystallization temperature region deviates from the range defined by the present invention (25% or more and less than 50%), and the increase in average large-angle particle diameter D or random grain boundary content. The rate R is insufficient, and at least one of the base material toughness and strain aging characteristics is deteriorated.

試験No.10、11のものは、圧延完了後冷却開始温度が本発明で規定する範囲[(Ar3変態点+10℃)以上、(Ar3変態点+90℃)以下]から外れるものであり、平均大角粒径Dの増大若しくはランダム粒界分率不足が生じており、母材靭性、歪時効特性の少なくともいずれかの特性が劣化している。 Test No. Nos. 10 and 11 are those in which the cooling start temperature after rolling is outside the range defined by the present invention [(Ar 3 transformation point + 10 ° C.) or more and (Ar 3 transformation point + 90 ° C.) or less], and the average large-angle grains An increase in the diameter D or an insufficient random grain boundary fraction occurs, and at least one of the base material toughness and strain aging characteristics is deteriorated.

試験No.12、13のものは、夫々圧延開始温度および圧延終了温度が本発明で規定する範囲(800℃以上、890℃以下)から外れるものであり、平均大角粒径Dの増大若しくはランダム粒界分率不足が生じており、母材靭性、歪時効特性の少なくともいずれかの特性が劣化している。   Test No. Nos. 12 and 13 are those in which the rolling start temperature and the rolling end temperature deviate from the ranges specified in the present invention (800 ° C. or more and 890 ° C. or less), respectively, and an increase in average large-angle particle size D or random grain boundary fraction. Insufficiency has occurred, and at least one of the base material toughness and strain aging characteristics has deteriorated.

試験No.14、17のものは、パス間冷却速度(圧延中冷却速度)が本発明で規定する好ましい範囲(0.3〜0.4℃/秒)から外れるものであり、平均大角粒径Dの増大若しくはランダム粒界分率不足が生じており、母材靭性、歪時効特性の少なくともいずれかの特性が劣化している。   Test No. Nos. 14 and 17 are those in which the inter-pass cooling rate (cooling rate during rolling) deviates from the preferred range (0.3 to 0.4 ° C./second) defined in the present invention, and the average large-angle particle size D is increased. Alternatively, the random grain boundary fraction is insufficient, and at least one of the base material toughness and strain aging characteristics is deteriorated.

これらの結果に基づき、平均大角粒径Dと歪時効特性(10%歪付与後靭性vE-40)の関係を図2に示すが、歪時効特性を達成するためには、平均大角粒径Dを35μm以下とすることが有用であることが分かる。またランダム粒界分率Rと歪時効特性(10%歪付与後靭性vE-40)の関係を図3に示すが、歪時効特性を達成するためには、ランダム粒界分率Rを50面積%以上とすることが有用であることが分かる。 Based on these results, the relationship between the average large-angle particle diameter D and the strain aging characteristics (10% strain imparted toughness vE -40 ) is shown in FIG. 2. In order to achieve the strain aging characteristics, the average large-angle particle diameter D It can be seen that it is useful to set the thickness to 35 μm or less. FIG. 3 shows the relationship between the random grain boundary fraction R and strain aging characteristics (10% strain imparted toughness vE- 40 ). In order to achieve the strain aging characteristics, the random grain boundary fraction R is 50 areas. It turns out that it is useful to set it as% or more.

未再結晶温度域での圧下率とランダム粒界分率の関係を図4に、未再結晶温度域での圧下率と平均大角粒径Dの関係を図5に夫々示すが、未再結晶温度域での圧下率を25%以上、50%未満とすることによって、ランダム粒界分率Rの確保や平均大角粒径Dの微細化が達成されていることが分かる。パス間冷却速度(圧延中冷却速度)と平均大角粒径Dの関係を図6に示すが、圧延中冷却速度を0.3℃/秒以上とすることによって、平均大角粒径Dの微細化が達成されていることが分かる。   FIG. 4 shows the relationship between the reduction rate in the non-recrystallization temperature range and the random grain boundary fraction, and FIG. 5 shows the relationship between the reduction rate in the non-recrystallization temperature range and the average large-angle grain size D. It can be seen that by setting the rolling reduction in the temperature range to 25% or more and less than 50%, the random grain boundary fraction R is ensured and the average large-angle particle diameter D is refined. FIG. 6 shows the relationship between the cooling rate between passes (cooling rate during rolling) and the average large-angle particle size D. By making the cooling rate during rolling 0.3 ° C./second or more, the average large-angle particle size D is refined. It can be seen that is achieved.

圧延後冷却開始温度(冷却開始温度:Ar3点からの位置)が平均大角粒径Dやランダム粒界分率Rに与える影響を、図7、8に夫々示すが(但し、未再結晶温度領域での圧下率が25〜30%のもの)、冷却開始温度を(Ar3変態点+10℃)以上、(Ar3変態点+90℃)以下とすることによって、平均大角粒界径Dの微細化やランダム粒界分率Rの確保が達成されていることが分かる。 FIGS. 7 and 8 show the influence of the cooling start temperature after rolling (cooling start temperature: position from the Ar 3 point) on the average large-angle grain size D and the random grain boundary fraction R, respectively (however, the non-recrystallization temperature) When the rolling reduction temperature in the region is 25 to 30%) and the cooling start temperature is (Ar 3 transformation point + 10 ° C.) or more and (Ar 3 transformation point + 90 ° C.) or less, the average large angle grain boundary diameter D is fine. It can be seen that the formation of a random grain boundary fraction R is achieved.

圧延開始温度と平均大角粒径Dの関係を図9に、圧延終了温度とランダム粒界分率Rの関係を図10に夫々示す(但し、未再結晶温度域圧下率:25〜30%のもの)。これらの結果から明らかな様に、圧延開始温度を890℃以下とすることによって平均大角粒径Dを35μm以下とできること、および圧延終了温度を800℃以上とすることによってランダム粒界分率Rを50面積%以上とできることが分かる。   FIG. 9 shows the relationship between the rolling start temperature and the average large-angle grain size D, and FIG. 10 shows the relationship between the rolling end temperature and the random grain boundary fraction R (however, the unrecrystallization temperature range reduction ratio: 25-30%). thing). As apparent from these results, the average large-angle particle diameter D can be made 35 μm or less by setting the rolling start temperature to 890 ° C. or less, and the random grain boundary fraction R is made to be by rolling the end temperature of 800 ° C. or more. It turns out that it can be 50 area% or more.

歪みを付与した引張試験片の形状を示す説明図である。It is explanatory drawing which shows the shape of the tension test piece which provided the distortion. 平均大角粒径Dと歪時効特性(10%歪付与後靭性vE-40)の関係を示すグラフである。It is a graph which shows the relationship between average large angle particle diameter D and a strain aging characteristic (10% strain imparted toughness vE- 40 ). ランダム粒界分率Rと歪時効特性(10%歪付与後靭性vE-40)の関係を示すグラフである。It is a graph which shows the relationship between the random grain boundary fraction R and a strain aging characteristic (10% strain imparted toughness vE- 40 ). 未再結晶温度域圧下率とランダム粒界分率Rの関係を示すグラフである。It is a graph which shows the relationship between the unrecrystallized temperature range reduction rate and the random grain boundary fraction R. 未再結晶温度域圧下率と平均大角粒径Dの関係を示すグラフである。4 is a graph showing the relationship between the unrecrystallized temperature range reduction rate and the average large-angle particle size D. 圧延中冷却速度と平均大角粒径Dの関係を示すグラフである。It is a graph which shows the relationship between the cooling rate during rolling, and the average large angle particle size D. 圧延後冷却開始温度(冷却開始温度:Ar3点からの位置)が平均大角粒径Dに与える影響を示すグラフである。After rolling cooling start temperature (cooling start temperature position from Ar 3 point) is a graph showing the effect on the average high angle grain size D. 圧延後冷却開始温度(冷却開始温度:Ar3点からの位置)がランダム粒界分率Rに与える影響を示すグラフである。Rolling After cooling start temperature (cooling start temperature position from Ar 3 point) is a graph showing the effect of random grain boundaries fraction R. 圧延開始温度と平均大角粒径Dの関係を示すグラフである。It is a graph which shows the relationship between rolling start temperature and average large angle particle size D. 圧延終了温度とランダム粒界分率Rの関係を示すグラフである。It is a graph which shows the relationship between rolling completion temperature and the random grain boundary fraction R.

Claims (3)

C:0.10〜0.16%(「質量%」の意味、化学成分組成について以下同じ)、Si:0.15〜0.30%、Mn:1.30〜1.60%、Al:0.015〜0.05%、Cu:0.15〜0.35、Ni:0.10〜0.30%、Mo:0.10〜0.25%、V:0.030〜0.05%、Nb:0.005〜0.015%、Ca:0.005%以下(0%を含まない)N:0.002〜0.008%、Ti:0.005〜0.020%および/またはCr:0.10%以下(0%を含まない)を夫々含有し、残部が鉄および不可避不純物である鋼板であって、2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径Dが35μm以下であると共に、結晶方位分布差から測定されるランダム粒界分率Rが50面積%以上であることを特徴とする歪時効特性に優れた高強度厚肉鋼板。 C: 0.10 to 0.16% (meaning “mass%”, the same applies to the chemical composition), Si: 0.15 to 0.30%, Mn: 1.30 to 1.60%, Al: 0.015~0.05%, Cu: 0.15~0.35%, Ni: 0.10~0.30%, Mo: 0.10~0.25%, V: 0.030~0. 05%, Nb: 0.005 to 0.015%, Ca: 0.005% or less (excluding 0%) , N: 0.002 to 0.008% , Ti: 0.005 to 0.020 % And / or Cr: steel plates each containing 0.10% or less (excluding 0%) , the balance being iron and unavoidable impurities, at a large angle grain boundary where the orientation difference between the two crystals is 15 ° or more The average equivalent circle diameter D of the enclosed crystal grains is 35 μm or less, and the random grain boundary fraction measured from the crystal orientation distribution difference High strength thick steel plate but excellent strain aging characteristic, characterized in that it is 50 area% or more. 降伏点が480MPa以上、引張強度590MPa以上であり、且つ10%の歪を付与した後に250℃、1時間の時効処理を施したときの−40℃での平均衝撃吸収エネルギーvE-40が100J以上である請求項1に記載の高強度厚肉鋼板。 The yield point is 480 MPa or more, the tensile strength is 590 MPa or more, and the average impact absorption energy vE- 40 at −40 ° C. is 100 J or more when aging treatment is performed at 250 ° C. for 1 hour after applying 10% strain. The high-strength thick steel plate according to claim 1 . 請求項1または2に記載の鋼板を製造するに当り、鋼片をAc変態点以上〜1200℃の温度に加熱し、鋼板の平均温度が900℃以上のオーステナイト再結晶温度域にて累積圧下率が10%以上の圧延を施し、その後、鋼板の平均温度が800℃以上、890℃以下の未再結晶温度域にて、鋼板全体のパス間の平均冷却速度が0.3℃/秒以上となるような冷却を施しながら、累積圧下率が25%以上、50%未満となる圧延を施し、引き続き鋼板の平均温度が(Ar変態点+10℃)以上、(Ar変態点+90℃)以下の温度域から、鋼板表面温度が500℃以下となる温度域まで平均冷却速度:5℃/秒以上の冷却速度で冷却し、500℃以上、Ac変態点未満の温度範囲で焼戻し処理を行うことを特徴とする歪時効特性に優れた高強度厚肉鋼板の製造方法。 In producing the steel sheet according to claim 1 or 2 , the steel slab is heated to a temperature of not less than the Ac 3 transformation point to 1200 ° C, and the cumulative reduction is performed in an austenite recrystallization temperature range where the average temperature of the steel sheet is 900 ° C or more. The steel sheet is subjected to rolling at a rate of 10% or more, and then the average cooling rate between the passes of the entire steel sheet is 0.3 ° C./second or more in the non-recrystallization temperature range where the average temperature of the steel sheet is 800 ° C. or more and 890 ° C. or less. The steel sheet is rolled so that the cumulative reduction ratio is 25% or more and less than 50% while cooling is performed, and the average temperature of the steel sheet is subsequently (Ar 3 transformation point + 10 ° C.) or more, (Ar 3 transformation point + 90 ° C.) The average cooling rate from the following temperature range to the temperature range where the steel sheet surface temperature is 500 ° C. or lower is cooled at a cooling rate of 5 ° C./second or more, and tempering is performed at a temperature range of 500 ° C. or higher and less than the Ac 1 transformation point. Strain aging characteristics characterized by A method for producing excellent high-strength thick steel plates.
JP2008071936A 2008-03-19 2008-03-19 High-strength thick steel plate with excellent strain aging characteristics and manufacturing method thereof Active JP5234921B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008071936A JP5234921B2 (en) 2008-03-19 2008-03-19 High-strength thick steel plate with excellent strain aging characteristics and manufacturing method thereof
CN2009101289342A CN101838771B (en) 2008-03-19 2009-03-17 High-strength thick steel sheet excellent in distortion aging property, and process for producing the same
KR1020090023135A KR101096930B1 (en) 2008-03-19 2009-03-18 High-strength thick steel sheet excellent in distortion aging property, and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008071936A JP5234921B2 (en) 2008-03-19 2008-03-19 High-strength thick steel plate with excellent strain aging characteristics and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009228020A JP2009228020A (en) 2009-10-08
JP5234921B2 true JP5234921B2 (en) 2013-07-10

Family

ID=41243757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008071936A Active JP5234921B2 (en) 2008-03-19 2008-03-19 High-strength thick steel plate with excellent strain aging characteristics and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP5234921B2 (en)
KR (1) KR101096930B1 (en)
CN (1) CN101838771B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5759109B2 (en) * 2010-03-09 2015-08-05 株式会社神戸製鋼所 Steel material excellent in brittle crack propagation stop property and method for producing the same
CN102912234A (en) * 2012-11-05 2013-02-06 南京钢铁股份有限公司 Manufacturing method for strain ageing resistant E36 level large thickness ship plate steel
JP6280824B2 (en) 2014-06-20 2018-02-14 株式会社神戸製鋼所 High strength steel plate and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180521A (en) * 1990-11-14 1992-06-26 Kobe Steel Ltd Production of high tensile thick steel plate having high yield strength and high toughness
JPH05195058A (en) * 1992-01-14 1993-08-03 Kobe Steel Ltd Production of thick steel plate having high toughness and high tensile strength
JPH0693370A (en) * 1992-09-16 1994-04-05 Nippon Steel Corp Medium-carbon fe-c steel material minimal in surface flaw
WO2001062997A1 (en) * 2000-02-23 2001-08-30 Kawasaki Steel Corporation High tensile hot-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
JP3848091B2 (en) * 2001-02-28 2006-11-22 株式会社神戸製鋼所 Steel sheet with less toughness deterioration due to strain aging
JP4415914B2 (en) * 2005-08-04 2010-02-17 住友金属工業株式会社 Method for producing hot-rolled steel sheet having fine ferrite structure
JP4676871B2 (en) 2005-12-19 2011-04-27 株式会社神戸製鋼所 Steel sheet with excellent fatigue crack growth control
JP4058097B2 (en) 2006-04-13 2008-03-05 新日本製鐵株式会社 High strength steel plate with excellent arrestability

Also Published As

Publication number Publication date
KR101096930B1 (en) 2011-12-22
JP2009228020A (en) 2009-10-08
CN101838771B (en) 2012-11-28
CN101838771A (en) 2010-09-22
KR20090100304A (en) 2009-09-23

Similar Documents

Publication Publication Date Title
JP5556948B1 (en) Low temperature steel sheet and method for producing the same
JP5764549B2 (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in formability and shape freezing property, and methods for producing them
JP5337412B2 (en) Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same
JP5821861B2 (en) High-strength hot-rolled steel sheet with excellent appearance and excellent balance between elongation and hole expansibility and method for producing the same
JP5487892B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent low temperature toughness
JP6682785B2 (en) Steel plate having excellent sour resistance and method of manufacturing the same
JP6834550B2 (en) Steel materials for tanks and their manufacturing methods
JP4283757B2 (en) Thick steel plate and manufacturing method thereof
JP5304924B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5114095B2 (en) Steel plate excellent in brittle crack propagation stop property and toughness at the center of plate thickness and method for producing the same
JP2018024905A (en) Structural high strength thick steel plate excellent in brittle crack arrest property and production method thereof
KR102098482B1 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
JP5612532B2 (en) Steel sheet excellent in low temperature toughness and weld joint fracture toughness and method for producing the same
JPWO2015181911A1 (en) Hot rolled steel sheet and manufacturing method thereof
JP6620575B2 (en) Thick steel plate and manufacturing method thereof
JP5139015B2 (en) Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same
JP6398452B2 (en) Steel for tank
JP5234921B2 (en) High-strength thick steel plate with excellent strain aging characteristics and manufacturing method thereof
JP6112265B2 (en) High-strength extra heavy steel plate and method for producing the same
JP4868762B2 (en) High-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy
JP2019173053A (en) High strength high ductility steel sheet
JP3848091B2 (en) Steel sheet with less toughness deterioration due to strain aging
JP2017160537A (en) High strength ultra thick steel sheet excellent in brittleness crack propagation stopping characteristics and heat affected zone toughness, and manufacturing method therefor
JP6338022B2 (en) High-strength extra-thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP6504131B2 (en) High strength thick steel plate and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3