JP6112265B2 - High-strength extra heavy steel plate and method for producing the same - Google Patents
High-strength extra heavy steel plate and method for producing the same Download PDFInfo
- Publication number
- JP6112265B2 JP6112265B2 JP2016553622A JP2016553622A JP6112265B2 JP 6112265 B2 JP6112265 B2 JP 6112265B2 JP 2016553622 A JP2016553622 A JP 2016553622A JP 2016553622 A JP2016553622 A JP 2016553622A JP 6112265 B2 JP6112265 B2 JP 6112265B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- temperature
- strength
- steel plate
- toughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 95
- 239000010959 steel Substances 0.000 title claims description 95
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000005096 rolling process Methods 0.000 claims description 44
- 238000001816 cooling Methods 0.000 claims description 28
- 230000009467 reduction Effects 0.000 claims description 23
- 230000001186 cumulative effect Effects 0.000 claims description 21
- 230000010354 integration Effects 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 16
- 229910001566 austenite Inorganic materials 0.000 claims description 10
- 238000005098 hot rolling Methods 0.000 claims description 10
- 238000009863 impact test Methods 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 238000001953 recrystallisation Methods 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims 1
- 230000000694 effects Effects 0.000 description 18
- 238000000034 method Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 13
- 229910000859 α-Fe Inorganic materials 0.000 description 13
- 238000012360 testing method Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 7
- 239000002344 surface layer Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 4
- 239000003949 liquefied natural gas Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000005496 tempering Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- RMLPZKRPSQVRAB-UHFFFAOYSA-N tris(3-methylphenyl) phosphate Chemical compound CC1=CC=CC(OP(=O)(OC=2C=C(C)C=CC=2)OC=2C=C(C)C=CC=2)=C1 RMLPZKRPSQVRAB-UHFFFAOYSA-N 0.000 description 2
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、船舶、海洋構造物、低温貯蔵タンク、建築・土木構造物等の大型構造物に使用する、板厚:70mm以上の、脆性き裂伝播停止特性に優れる、高強度極厚鋼板およびその製造方法に関する。 The present invention relates to a high-strength extra-thick steel plate excellent in brittle crack propagation stopping characteristics, having a plate thickness of 70 mm or more, used for large structures such as ships, marine structures, low-temperature storage tanks, and construction / civil engineering structures. It relates to the manufacturing method.
船舶や、海洋構造物、低温貯蔵タンク、建築・土木構造物等の大型構造物においては、脆性破壊に伴う事故が起きると、社会経済や環境などに及ぼす影響が大きい。このため、上記大型構造物は、安全性の向上が常に求められ、大型構造物の素材となる鋼板に対しては、使用温度における脆性き裂伝播停止特性が高いレベルで要求されている。 In large structures such as ships, marine structures, low-temperature storage tanks, and construction / civil engineering structures, if an accident associated with brittle fracture occurs, the impact on the socio-economic environment and the environment is large. For this reason, the large structure is always required to be improved in safety, and the steel sheet used as the material of the large structure is required to have a high level of brittle crack propagation stopping characteristics at the use temperature.
コンテナ船やバルクキャリアーなどの船舶においては、その構造上、船体外板に高強度の厚鋼板が使用され、最近では、船体の大型化に伴って一層の高強度化が求められ、素材となる厚鋼板の厚肉化が進んでいる。 Ships such as container ships and bulk carriers use high-strength thick steel plates for the hull outer plate due to their structure. Recently, as the hull size increases, higher strength is required and it becomes a material. Thick steel plates are becoming thicker.
一般に、鋼板の脆性き裂伝播停止特性は、高強度あるいは厚肉になるほど劣化する傾向にある。このため、大型構造物に使用される厚鋼板に対する、脆性き裂伝播停止特性への要求も一段と高度化している。 Generally, the brittle crack propagation stopping property of a steel sheet tends to deteriorate as the strength increases or the wall becomes thicker. For this reason, the request | requirement for the brittle crack propagation stop characteristic with respect to the thick steel plate used for a large-sized structure is further advanced.
ここで、鋼板の脆性き裂伝播停止特性を向上させる手段として、従来から、鋼中のNi含有量を増加させる方法が知られている。例えば、液化天然ガス(LNG)の貯槽タンクにおいては、9%Ni鋼が商業規模で使用されている。 Here, as a means for improving the brittle crack propagation stopping characteristic of a steel sheet, a method for increasing the Ni content in the steel has been conventionally known. For example, in liquefied natural gas (LNG) storage tanks, 9% Ni steel is used on a commercial scale.
但し、鋼中Ni含有量の増加は、製造コストの大幅な上昇を余儀なくさせる。このため、9%Ni鋼は、LNG貯槽タンク以外の用途に適用し難い。 However, an increase in the Ni content in the steel necessitates a significant increase in production costs. For this reason, 9% Ni steel is difficult to apply to uses other than the LNG storage tank.
他方、LNGのような極低温にまで至らない、例えば、船舶やラインパイプに使用される、板厚が50mm未満の比較的薄手の鋼板に対しては、TMCP法により細粒化を図り、低温靭性を向上させることで、優れた脆性き裂伝播停止特性を実現することができる。 On the other hand, for a comparatively thin steel plate with a thickness of less than 50 mm used for ships and line pipes, which does not reach extremely low temperatures such as LNG, the fine graining is attempted by the TMCP method. By improving toughness, excellent brittle crack propagation stopping characteristics can be realized.
また、合金コストを上昇させることなく、脆性き裂伝播停止特性を向上させるために、表層部の組織を超微細化した鋼板が、特許文献1において提案されている。 Further, in order to improve brittle crack propagation stopping characteristics without increasing the alloy cost, Patent Document 1 proposes a steel sheet in which the structure of the surface layer portion is made ultrafine.
上掲特許文献1に記載の脆性き裂伝播停止特性に優れた鋼板は、脆性き裂が伝播する際、鋼板表層部に発生するシアリップ(塑性変形領域)が脆性き裂伝播停止特性の向上に効果があることに着目して完成されたものである。シアリップ部分の結晶粒を微細化させることで、伝播する脆性き裂が有する伝播エネルギーを吸収することを特徴としている。 In the steel sheet having excellent brittle crack propagation stopping characteristics described in the above-mentioned Patent Document 1, when a brittle crack propagates, a shear lip (plastic deformation region) generated in the surface layer portion of the steel sheet improves brittle crack propagation stopping characteristics. It was completed by paying attention to its effectiveness. It is characterized by absorbing propagation energy possessed by a propagating brittle crack by refining the crystal grains of the shear lip portion.
また、同時に製造方法として、上掲特許文献1には、熱間圧延後の制御冷却によって表層部をAr3温度以下に冷却した後、制御冷却を停止して表層部を変態点以上に復熱させる工程を1回以上繰り返して行う間に、鋼板に圧下を加えることにより、繰り返し変態を生じさせ、または加工再結晶させることで、表層部分に超微細なフェライト組織またはベイナイト組織を生成させることが記載されている。At the same time, as a manufacturing method, the above-mentioned Patent Document 1 discloses that after cooling the surface layer portion to Ar 3 temperature or less by controlled cooling after hot rolling, the control cooling is stopped and the surface layer portion is reheated to the transformation point or more. During the process of repeating the process one or more times, by applying a reduction to the steel sheet, it is possible to repeatedly transform or to reprocess and recrystallize, thereby generating an ultrafine ferrite structure or bainite structure in the surface layer portion. Have been described.
特許文献2では、フェライト−パーライトを主体のミクロ組織とする鋼板において脆性き裂伝播停止特性を向上させるために、鋼板の両表面部を、円相当粒径:5μm以下で、かつアスペクト比:2以上のフェライト粒を有するフェライト組織を、面積率で50%以上有する層で構成しつつ、フェライト粒径のバラツキを抑えることが重要であることが記載されている。また、このバラツキを抑える方法として仕上げ圧延中の1パス当りの最大圧下率を12%以下とすることで局所的な再結晶現象を抑制することが記載されている。 In Patent Document 2, in order to improve brittle crack propagation stopping characteristics in a steel sheet mainly composed of ferrite-pearlite, both surface portions of the steel sheet have a circle-equivalent grain size of 5 μm or less and an aspect ratio of 2 It is described that it is important to suppress the variation in the ferrite grain size while constituting the ferrite structure having the above ferrite grains with a layer having an area ratio of 50% or more. In addition, as a method of suppressing this variation, it is described that the local recrystallization phenomenon is suppressed by setting the maximum reduction rate per pass during finish rolling to 12% or less.
特許文献3には、フェライト結晶粒の微細化だけでなく、フェライト結晶粒内に形成されるサブグレインに着目することで、脆性き裂伝播停止特性を向上させるという、TMCPの延長上にある技術が記載されている。 Patent Document 3 discloses a technique on the extension of TMCP that improves brittle crack propagation stopping characteristics by focusing on subgrains formed in ferrite crystal grains as well as refinement of ferrite crystal grains. Is described.
具体的には、板厚:30〜40mmの鋼板において、鋼板表層の冷却および復熱などの複雑な温度制御を必要とせずに、
(a)微細なフェライト結晶粒を確保する圧延条件、
(b)鋼板板厚の5%以上の部分に微細フェライト組織を生成する圧延条件、
(c)微細フェライトに集合組織を発達させるとともに加工(圧延)により導入した転位を熱的エネルギーにより再配置しサブグレインを形成させる圧延条件、および
(d)形成した微細なフェライト結晶粒と微細なサブグレイン粒の粗大化を抑制する冷却条件、
によって脆性き裂伝播停止特性を向上させる技術が記載されている。Specifically, in a steel sheet having a thickness of 30 to 40 mm, without requiring complicated temperature control such as cooling and recuperation of the steel sheet surface layer,
(A) rolling conditions to ensure fine ferrite crystal grains,
(B) rolling conditions for producing a fine ferrite structure in a portion of 5% or more of the steel plate thickness;
(C) Rolling conditions for developing a texture in fine ferrite and rearranging dislocations introduced by processing (rolling) by thermal energy to form subgrains; and (d) Fine ferrite grains formed and fine Cooling conditions to suppress coarsening of subgrain grains,
Describes a technique for improving the brittle crack propagation stopping characteristics.
また、制御圧延において、変態したフェライトに圧下を加えて集合組織を発達させることにより、脆性き裂伝播停止特性を向上させる方法も知られている。鋼板の破壊面上にセパレーションを板面と平行な方向に生ぜしめ、脆性き裂先端の応力を緩和させることにより、脆性破壊に対する抵抗を高める。 In addition, in controlled rolling, a method of improving the brittle crack propagation stopping property by developing a texture by reducing the transformed ferrite is also known. Separation occurs on the fracture surface of the steel plate in the direction parallel to the plate surface, and the stress at the brittle crack tip is relaxed, thereby increasing the resistance to brittle fracture.
例えば、特許文献4には、制御圧延により(110)面X線強度比を2以上とし、かつ円相当径20μm以上の粗大粒を10%以下とすることにより、耐脆性破壊特性を向上させることが記載されている。 For example, in Patent Document 4, the resistance to brittle fracture is improved by controlling the (110) plane X-ray intensity ratio to 2 or more and controlling coarse grains having an equivalent circle diameter of 20 μm or more to 10% or less by controlled rolling. Is described.
特許文献5には、継手部の脆性き裂伝播停止特性の優れた溶接構造用鋼として、所定の圧延面における(100)面のX線面強度比が1.5以上を有することを特徴とする鋼板が開示され、当該集合組織発達による応力負荷方向と、き裂伝播方向の角度のずれにより脆性き裂伝播停止特性に優れることが記載されている。 Patent Document 5 is characterized in that, as a welded structural steel excellent in brittle crack propagation stopping characteristics of a joint portion, the (100) plane X-ray plane strength ratio in a predetermined rolled surface has a value of 1.5 or more. Steel sheet is disclosed, and it is described that it has excellent brittle crack propagation stoppage characteristics due to the deviation of the stress load direction due to the texture development and the angle of crack propagation direction.
上掲特許文献1、2に記載の脆性き裂伝播停止特性に優れた鋼板の発明では、鋼板表層部のみを一旦冷却した後に復熱させ、かつ復熱中に加工を加えることによって、特定の組織を得る。このため、特許文献1、2に記載の技術は、実生産規模での制御が容易でなく、特に板厚が70mm以上の厚肉材製造では圧延、冷却設備への負荷が大きいプロセスである。 In the invention of the steel sheet excellent in the brittle crack propagation stop characteristic described in the above-mentioned Patent Documents 1 and 2, only the surface layer portion of the steel sheet is once cooled, reheated, and then subjected to processing during recuperation, thereby having a specific structure. Get. For this reason, the techniques described in Patent Documents 1 and 2 are processes that are not easy to control on the actual production scale, and are particularly heavy in the production of thick materials having a plate thickness of 70 mm or more, and are heavy on the rolling and cooling equipment.
また、最近の6,000TEUを超える大型コンテナ船では板厚:70mm以上の厚鋼板が使用される。非特許文献1は、板厚:65mmの鋼板の脆性き裂伝播停止特性を評価し、母材の大型脆性き裂伝播停止試験で脆性き裂が停止しない結果を報告している。 Further, in a large container ship exceeding the recent 6,000 TEU, a steel plate having a plate thickness of 70 mm or more is used. Non-Patent Document 1 evaluates the brittle crack propagation stopping characteristics of a steel sheet having a thickness of 65 mm, and reports a result that the brittle crack does not stop in a large brittle crack propagation stopping test of the base material.
さらに、非特許文献1において、供試材のESSO試験は、使用温度−10℃でのKcaの値が3000N/mm3/2に満たない結果を示しており、非特許文献1は、50mmを超える板厚の鋼板を適用した船体構造の場合、安全性確保が十分とまではいえないことを示唆している。Furthermore, in Non-Patent Document 1, the ESSO test of the specimen shows a result that the Kca value at the use temperature −10 ° C. is less than 3000 N / mm 3/2. This suggests that in the case of a hull structure using a steel plate with a thickness greater than that, safety cannot be ensured enough.
また、上述した特許文献1〜5に記載された鋼板は、いずれも、製造条件や開示されている実験データから、板厚:50mm程度が主な対象であって、70mm以上の厚肉材への適用については、所定の特性が得られるかが不明で、船体構造において必要な、板厚方向のき裂伝播特性に対しては全く検証されていない。 Moreover, as for the steel plates described in Patent Documents 1 to 5 described above, from the manufacturing conditions and the disclosed experimental data, the plate thickness: about 50 mm is the main target, and the thick material is 70 mm or more. As for the application, it is unclear whether a predetermined characteristic can be obtained, and the crack propagation characteristic in the plate thickness direction necessary for the hull structure has not been verified at all.
本発明は、上記した問題を有利に解決するもので、特に、板厚が70mm以上、脆性き裂伝播停止特性に優れた高強度極厚鋼板およびその製造方法を提供することを目的とする。 The present invention advantageously solves the above-described problems, and in particular, an object of the present invention is to provide a high-strength extra-thick steel plate having a plate thickness of 70 mm or more and excellent brittle crack propagation stopping characteristics, and a method for producing the same.
発明者らは、上記課題を解決するために、板厚:70mm以上でも優れた脆性き裂伝播停止特性を有する高強度極厚鋼板および当該鋼板を安定して得る製造方法について鋭意研究を重ねた。その結果、板厚中央における圧延面での(211)面集積度を1.7以上とし、かつ、鋼板表面(単に「表面」という場合がある)における圧延面での(200)面集積度を1.3以上とする集合組織を有し、靭性(vTrs)が−60℃以下である場合に、極めて優れた脆性き裂伝播停止特性が得られることを知見した。 In order to solve the above-mentioned problems, the inventors have conducted extensive research on a high-strength extra-thick steel plate having excellent brittle crack propagation stopping characteristics even at a thickness of 70 mm or more and a manufacturing method for stably obtaining the steel plate. . As a result, the (211) plane integration degree at the rolling surface at the center of the plate thickness is set to 1.7 or more, and the (200) plane integration degree at the rolling surface on the steel sheet surface (sometimes simply referred to as “surface”) is set. It has been found that when the texture is 1.3 or more and the toughness (vTrs) is −60 ° C. or less, extremely excellent brittle crack propagation stopping characteristics can be obtained.
本発明は、上記した知見に、さらに検討を加えて完成されたものであって、本発明の要旨構成は次のとおりである。 The present invention has been completed by further studying the above knowledge, and the gist of the present invention is as follows.
[1]板厚:70mm以上の高強度極厚鋼板であって、質量%で、C:0.03〜0.20%、Si:0.03〜0.5%、Mn:0.5〜2.2%、P:0.01%以下、S:0.005%以下、Ti:0.005〜0.03%、Al:0.005〜0.080%、Ni:0.1〜1.5%およびN:0.0050%以下を含有し、下記式(1)で定義されるCeq:0.39以上であり、残部がFeおよび不可避的不純物からなる成分組成と、板厚中央における圧延面での(211)面集積度が1.7以上であり、表面における圧延面での(200)面集積度が1.3以上である集合組織と、を有し、板厚1/4位置から採取したJIS 4号の衝撃試験片を用いて測定した靭性がvTrs:−40℃以下であり、表面から採取したJIS 4号の衝撃試験片を用いて測定した靭性がvTrs≦−60℃である脆性き裂伝播停止特性に優れた高強度極厚鋼板。
Ceq=C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5 (1)
(ここで、式(1)におけるC、Mn、Cu、Ni、Cr、MoおよびVは各元素の含有量(質量%)を意味し、含有しない場合は0とする。)
[2]前記成分組成は、さらに質量%で、Nb:0.005〜0.05%、Cu:0.1〜1.0%およびCr:0.01〜0.5%の1種または2種以上を含有する[1]に記載の脆性き裂伝播停止特性に優れた高強度極厚鋼板。[1] Thickness: A high-strength ultra-thick steel plate of 70 mm or more, in mass%, C: 0.03 to 0.20%, Si: 0.03 to 0.5%, Mn: 0.5 to 2.2%, P: 0.01% or less, S: 0.005% or less, Ti: 0.005-0.03%, Al: 0.005-0.080%, Ni: 0.1-1 .5% and N: 0.0050% or less, Ceq defined by the following formula (1): 0.39 or more, and the remaining component composition of Fe and inevitable impurities, A (211) plane integration degree on the rolled surface is 1.7 or more, and a (200) plane integration degree on the rolled surface on the surface is 1.3 or more, and has a thickness of 1/4 The toughness measured using the impact test piece of JIS No. 4 sampled from the position is vTrs: −40 ° C. or less, and JIS sampled from the surface A high-strength heavy steel plate excellent in brittle crack propagation stopping properties, wherein the toughness measured using No. 4 impact test piece is vTrs ≦ −60 ° C.
Ceq = C + Mn / 6 + Cu / 15 + Ni / 15 + Cr / 5 + Mo / 5 + V / 5 (1)
(Here, C, Mn, Cu, Ni, Cr, Mo and V in the formula (1) mean the content (% by mass) of each element, and 0 when not contained.)
[2] The component composition is further in mass%, and one or two of Nb: 0.005 to 0.05%, Cu: 0.1 to 1.0%, and Cr: 0.01 to 0.5%. The high-strength extra heavy steel plate having excellent brittle crack propagation stopping characteristics according to [1], which contains at least a seed.
[3]前記成分組成は、さらに質量%で、Mo:0.01〜0.5%、V:0.001〜0.10%、B:0.0030%以下、Ca:0.0050%以下、REM:0.0100%以下の1種または2種以上を含有する[1]または[2]に記載の脆性き裂伝播停止特性に優れた高強度極厚鋼板。 [3] The component composition is further in mass%, Mo: 0.01 to 0.5%, V: 0.001 to 0.10%, B: 0.0030% or less, Ca: 0.0050% or less. REM: A high-strength extra-thick steel plate having excellent brittle crack propagation stopping properties according to [1] or [2], which contains one or more of 0.0100% or less.
[4]板厚:70mm以上の脆性き裂伝播停止特性に優れた高強度極厚鋼板の製造方法であって、[1]〜[3]のいずれかに記載の成分組成を有する鋼素材を、1000〜1200℃の温度に加熱した後、板厚中央がオーステナイト再結晶温度域のときの累積圧下率:10%以上、板厚中央がオーステナイト未再結晶温度域のときの累積圧下率:50%以上、表面がAr3温度以下かつ板厚中央温度がAr3温度以上の温度域のときの累積圧下率10%以上の条件で熱間圧延を行った後、0.5℃/s以上の冷却速度にて500℃以下の冷却停止温度まで冷却するか、又は0.5℃/s以上の冷却速度にて400℃以下の冷却停止温度まで冷却して冷却後Ac1温度以下の温度に焼戻す脆性き裂伝播停止特性に優れた高強度極厚鋼板の製造方法。[4] Thickness: A method for producing a high-strength extra-thick steel plate excellent in brittle crack propagation stopping characteristics of 70 mm or more, comprising a steel material having the component composition according to any one of [1] to [3] , After being heated to a temperature of 1000 to 1200 ° C., the cumulative reduction ratio when the sheet thickness center is in the austenite recrystallization temperature range: 10% or more, the cumulative reduction ratio when the sheet thickness center is in the austenite non-recrystallization temperature range: 50 % After hot rolling under conditions of a cumulative reduction ratio of 10% or more when the surface is in a temperature range where the surface temperature is Ar 3 temperature or less and the center thickness is Ar 3 temperature or more, 0.5 ° C./s or more Cool to a cooling stop temperature of 500 ° C. or less at a cooling rate, or cool to a cooling stop temperature of 400 ° C. or less at a cooling rate of 0.5 ° C./s or more, and then baked to Ac 1 temperature or less after cooling Manufacture of high-strength ultra-thick steel plates with excellent brittle crack propagation stopping properties Law.
本発明によれば、板厚方向の集合組織が適切に制御されるので、本発明の高強度極厚鋼板は、板厚:70mm以上であっても、脆性き裂伝播停止特性に優れる。例えば、本発明の高強度極厚鋼板を、造船分野ではコンテナ船、バルクキャリアーの強力甲板部構造においてハッチサイドコーミングに接合される甲板部材へ適用することにより、船舶の安全性向上に寄与する。このように、本発明は、産業上極めて有用である。 According to the present invention, the texture in the plate thickness direction is appropriately controlled. Therefore, the high-strength extra heavy steel plate of the present invention is excellent in brittle crack propagation stopping characteristics even when the plate thickness is 70 mm or more. For example, in the shipbuilding field, the high-strength extra-thick steel plate according to the present invention is applied to a deck member joined to hatch side combing in a strong deck structure of a container ship or a bulk carrier, thereby contributing to an improvement in ship safety. Thus, the present invention is extremely useful in industry.
また、本発明の製造方法によれば、上記の有用な高強度極厚鋼板を、圧延条件を最適化することで製造できる。本発明の高強度極厚鋼板は、工業的に極めて簡易なプロセスで、安定して製造し得る。 Moreover, according to the manufacturing method of this invention, said useful high intensity | strength extra heavy steel plate can be manufactured by optimizing rolling conditions. The high-strength extra-thick steel plate of the present invention can be stably produced by an industrially very simple process.
また、本発明の高強度極厚鋼板は、上記の通り、脆性き裂伝播停止特性に優れるとともに、靭性にも優れ、高強度である。 Moreover, as described above, the high-strength extra-thick steel plate of the present invention is excellent in brittle crack propagation stopping characteristics, is excellent in toughness, and has high strength.
以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.
<成分組成>
本発明の高強度極厚鋼板は、質量%で、C:0.03〜0.20%、Si:0.03〜0.5%、Mn:0.5〜2.2%、P:0.01%以下、S:0.005%以下、Ti:0.005〜0.03%、Al:0.005〜0.080%、Ni:0.1〜1.5%およびN:0.0050%以下を含有し、下記式(1)で定義されるCeq:0.39以上である。
Ceq=C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5 (1)
ここで、式(1)における元素記号は各元素の含有量(質量%)を意味し、含有しない場合は0とする。<Ingredient composition>
The high-strength extra-thick steel plate of the present invention is mass%, C: 0.03 to 0.20%, Si: 0.03 to 0.5%, Mn: 0.5 to 2.2%, P: 0 0.01% or less, S: 0.005% or less, Ti: 0.005 to 0.03%, Al: 0.005 to 0.080%, Ni: 0.1 to 1.5%, and N: 0.0. 0050% or less, and Ceq defined by the following formula (1): 0.39 or more.
Ceq = C + Mn / 6 + Cu / 15 + Ni / 15 + Cr / 5 + Mo / 5 + V / 5 (1)
Here, the element symbol in Formula (1) means content (mass%) of each element, and is set to 0 when not containing.
また、上記成分以外に選択元素として、さらに質量%で、Nb:0.005〜0.05%、Cu:0.1〜1.0%およびCr:0.01〜0.5%の1種または2種以上、Mo:0.01〜0.5%、V:0.001〜0.10%、B:0.0030%以下、Ca:0.0050%以下、REM:0.0100%以下の1種または2種以上を含有してもよい。 In addition to the above components, as a selection element, Nb: 0.005-0.05%, Cu: 0.1-1.0% and Cr: 0.01-0.5% Or 2 or more types, Mo: 0.01-0.5%, V: 0.001-0.10%, B: 0.0030% or less, Ca: 0.0050% or less, REM: 0.0100% or less 1 type (s) or 2 or more types may be contained.
上記必須成分以外の残部はFeおよび不可避的不純物である。 The balance other than the essential components is Fe and inevitable impurities.
以下、各成分について説明する。本明細書において成分の含有量を表す「%」は「質量%」を意味する。 Hereinafter, each component will be described. In the present specification, “%” representing the content of a component means “% by mass”.
C:0.03〜0.20%
Cは、鋼の強度を向上させる元素である。本発明では、所望の強度を確保するために、C含有量を0.03%以上とする。また、C含有量が0.20%を超えると、溶接性が劣化するばかりか靭性にも悪影響がある。このため、C含有量は、0.03〜0.20%の範囲とする。なお、下限について好ましいC含有量は0.05%以上であり、上限について好ましいC含有量は0.15%以下である。C: 0.03-0.20%
C is an element that improves the strength of steel. In the present invention, in order to secure a desired strength, the C content is set to 0.03% or more. On the other hand, if the C content exceeds 0.20%, the weldability is deteriorated and the toughness is also adversely affected. For this reason, C content is taken as 0.03 to 0.20% of range. In addition, C content preferable about a lower limit is 0.05% or more, and C content preferable about an upper limit is 0.15% or less.
Si:0.03〜0.5%
Siは、脱酸元素として、また、鋼の強化元素として有効である。Si含有量が0.03%未満ではこれらの効果が得られない。一方、Si含有量が0.5%を超えると鋼の表面性状を損なうばかりか、靭性が極端に劣化する。従って、その含有量を0.03〜0.5%の範囲とする。Si: 0.03-0.5%
Si is effective as a deoxidizing element and as a strengthening element for steel. If the Si content is less than 0.03%, these effects cannot be obtained. On the other hand, when the Si content exceeds 0.5%, not only the surface properties of the steel are impaired, but also the toughness is extremely deteriorated. Therefore, the content is made 0.03 to 0.5% of range.
Mn:0.5〜2.2%
Mnは、強化元素として含まれる。Mn含有量が0.5%より少ないとその効果が十分でない一方で、2.2%を超えると溶接性が劣化し、鋼板コストも上昇する。そのため、Mn含有量は、0.5〜2.2%とする。Mn: 0.5 to 2.2%
Mn is included as a strengthening element. If the Mn content is less than 0.5%, the effect is not sufficient. On the other hand, if it exceeds 2.2%, the weldability deteriorates and the steel sheet cost also increases. Therefore, the Mn content is 0.5 to 2.2%.
P:0.01%以下、S:0.005%以下
P、Sは、鋼中の不可避的不純物である。これらの含有量が多くなると靭性が劣化する。板厚:70mm以上の鋼板において、良好な靭性を保つためには、P含有量は0.01%以下、S含有量は0.005%以下に抑制する。なお、それぞれ0.006%以下、0.003%以下がより望ましい範囲である。P: 0.01% or less, S: 0.005% or less P and S are inevitable impurities in steel. When these contents increase, toughness deteriorates. Plate thickness: In a steel plate of 70 mm or more, in order to maintain good toughness, the P content is suppressed to 0.01% or less and the S content is suppressed to 0.005% or less. Note that 0.006% or less and 0.003% or less are more desirable ranges, respectively.
Ti:0.005〜0.03%
Tiは、微量の含有により、窒化物、炭化物、あるいは炭窒化物を形成し、結晶粒を微細化して母材靭性を向上させる効果を有する。その効果はTi含有量を0.005%以上にすることによって得られる。また、Ti含有量が0.03%を超えると、母材および溶接熱影響部の靭性が低下する。そこで、Ti含有量は0.005〜0.03%とする。Ti: 0.005 to 0.03%
Ti has the effect of forming nitrides, carbides, or carbonitrides by adding a trace amount, and making the crystal grains finer to improve the base material toughness. The effect is acquired by making Ti content 0.005% or more. On the other hand, when the Ti content exceeds 0.03%, the toughness of the base material and the weld heat affected zone is lowered. Therefore, the Ti content is set to 0.005 to 0.03%.
Al:0.005〜0.080%
Alは、脱酸剤として作用し、Alを脱酸剤として用いるためにはAl含有量を0.005%以上にする必要がある。また、Al含有量が0.080%を超えると、靭性が低下するとともに、溶接した場合に、溶接金属部の靭性が低下する。このため、Al含有量は、0.005〜0.080%の範囲に規定した。なお、下限について好ましいAl含有量は、0.020以上であり、上限について好ましいAl含有量は0.040%以下である。Al: 0.005-0.080%
Al acts as a deoxidizer, and in order to use Al as a deoxidizer, the Al content needs to be 0.005% or more. Moreover, when Al content exceeds 0.080%, while toughness will fall, when welding, the toughness of a weld metal part will fall. For this reason, Al content was prescribed | regulated in the range of 0.005-0.080%. In addition, Al content preferable about a minimum is 0.020 or more, and Al content preferable about an upper limit is 0.040% or less.
Ni:0.1〜1.5%
Niは、鋼の焼入れ性を高める元素である。Niは、圧延後の強度向上に直接寄与するとともに、靭性、高温強度、あるいは耐候性などの機能向上のために含有させることができる。これらの効果は、いずれも、Ni含有量を0.1%以上にすることよって発揮される。また、過度のNi含有は靭性や溶接性を劣化させる。板厚:70mm以上の鋼板で十分な強度を保ちつつ靭性や溶接性を劣化させない範囲として、Ni含有量は0.1〜1.5%とする。Ni: 0.1 to 1.5%
Ni is an element that enhances the hardenability of steel. Ni can be directly added to improve the strength after rolling, and can be contained for improving functions such as toughness, high-temperature strength, and weather resistance. All of these effects are exhibited when the Ni content is 0.1% or more. Moreover, excessive Ni content deteriorates toughness and weldability. Plate thickness: Ni content is 0.1 to 1.5% as a range in which toughness and weldability are not deteriorated while maintaining sufficient strength with a steel plate of 70 mm or more.
N:0.0050%以下
Nは、鋼中のAlと結合し、圧延加工時の結晶粒径を調整し、鋼を強化する。この効果を得るためにはN含有量を0.0010%以上にすることが好ましい。また、N含有量が0.0050%を超えると靭性が劣化する。そこで、N含有量は0.0050%以下とする。N: 0.0050% or less N combines with Al in the steel, adjusts the crystal grain size during rolling, and strengthens the steel. In order to obtain this effect, the N content is preferably 0.0010% or more. Moreover, when N content exceeds 0.0050%, toughness will deteriorate. Therefore, the N content is 0.0050% or less.
以上が本発明の基本成分組成で残部は、Fe及び不可避的不純物である。本発明では、さらに特性を向上させるため、Nb、Cu、Cr、Mo、V、B、Ca、REMの一種または二種以上を含有することが可能である。なお、以下の任意成分において、下限値を特定した成分があるが、この下限値未満の場合には本発明の効果を害さないため、任意元素が下限値未満で含まれる場合にこの任意元素は不可避的不純物として含まれるとする。 The above is the basic component composition of the present invention, and the balance is Fe and inevitable impurities. In the present invention, in order to further improve the characteristics, it is possible to contain one or more of Nb, Cu, Cr, Mo, V, B, Ca, and REM. In addition, in the following optional components, there is a component that specifies the lower limit value, but in the case of less than this lower limit value, since the effect of the present invention is not impaired, this optional element is included when the optional element is included below the lower limit value It is assumed that it is included as an inevitable impurity.
Nb:0.005〜0.05%
Nbは、NbCとしてフェライト変態時あるいは再加熱時に析出し、高強度化に寄与する。また、Nbはオーステナイト域の圧延において未再結晶域を拡大させる効果を有し、フェライトの細粒化に寄与する。このためNb含有は靭性の改善にも有効である。その効果はNb含有量を0.005%以上にすることで発揮される。Nb含有量が0.05%を超えると、粗大なNbCが析出して、靭性の低下を招く場合がある。そこで、Nbを含有する場合、その含有量を0.05%以下とするのが好ましい。Nb: 0.005 to 0.05%
Nb precipitates as NbC during ferrite transformation or reheating, and contributes to increasing the strength. Nb has an effect of expanding the non-recrystallized region in rolling in the austenite region, and contributes to the refinement of ferrite. For this reason, Nb content is also effective in improving toughness. The effect is exhibited when the Nb content is 0.005% or more. If the Nb content exceeds 0.05%, coarse NbC may precipitate, leading to a decrease in toughness. Therefore, when Nb is contained, the content is preferably 0.05% or less.
Cu:0.1〜1.0%
Cuは、鋼の焼入れ性を高める元素である。この元素は、圧延後の強度向上に直接寄与するとともに、靭性、高温強度、あるいは耐候性などの機能向上のために含有させることができる。この元素含有による上記効果は、0.1%以上の含有によって発揮されるものの、過度の含有は靭性や溶接性を劣化させる。板厚:70mm以上でも十分な強度を保ちつつ靭性や溶接性を劣化させない範囲として、Cu含有量は0.1〜1.0%とすることが好ましい。Cu: 0.1 to 1.0%
Cu is an element that enhances the hardenability of steel. This element contributes directly to improving the strength after rolling, and can be contained for improving functions such as toughness, high-temperature strength, and weather resistance. Although the above effect due to the inclusion of this element is exhibited when the content is 0.1% or more, excessive inclusion deteriorates toughness and weldability. Plate thickness: It is preferable that the Cu content is 0.1 to 1.0% as a range that does not deteriorate toughness and weldability while maintaining sufficient strength even at 70 mm or more.
Cr:0.01〜0.5%
Crは、鋼の焼入れ性を高める元素である。この元素は、圧延後の強度向上に直接寄与するとともに、靭性、高温強度、あるいは耐候性などの機能向上のために含有させることができる。この元素含有による上記効果は、0.01%以上の含有によって発揮されるものの、過度の含有は靭性や溶接性を劣化させる。板厚:70mm以上でも十分な強度を保ちつつ靭性や溶接性を劣化させない範囲として、Cr含有量は0.01〜0.5%とすることが好ましい。Cr: 0.01 to 0.5%
Cr is an element that enhances the hardenability of steel. This element contributes directly to improving the strength after rolling, and can be contained for improving functions such as toughness, high-temperature strength, and weather resistance. Although the above effect due to the inclusion of elements is exhibited by the inclusion of 0.01% or more, excessive inclusion deteriorates toughness and weldability. Plate thickness: Cr content is preferably 0.01 to 0.5% as a range in which toughness and weldability are not deteriorated while maintaining sufficient strength even at 70 mm or more.
Mo:0.01〜0.5%
Moは、いずれも鋼の焼入れ性を高める元素である。この元素は、圧延後の強度向上に直接寄与するとともに、靭性、高温強度、あるいは耐候性などの機能向上のために含有させることができる。上記効果は、0.01%以上の含有によって発揮されるものの、過度の含有は靭性や溶接性を劣化させる。板厚:70mm以上でも十分な強度を保ちつつ靭性や溶接性を劣化させない範囲として、Mo含有量は0.01〜0.5%とすることが好ましい。Mo: 0.01 to 0.5%
Mo is an element that increases the hardenability of steel. This element contributes directly to improving the strength after rolling, and can be contained for improving functions such as toughness, high-temperature strength, and weather resistance. Although the above effect is exhibited by inclusion of 0.01% or more, excessive inclusion deteriorates toughness and weldability. Plate thickness: The Mo content is preferably 0.01 to 0.5% as a range that does not deteriorate toughness and weldability while maintaining sufficient strength even at 70 mm or more.
V:0.001〜0.10%
Vは、V(CN)として析出する析出強化によって、鋼の強度を向上させる元素である。この効果は、V含有量を0.001%以上にすることにより発揮される。しかし、V含有量が0.10%を超えると、靭性が低下する場合がある。このため、Vを含有させる場合には、V含有量を0.001〜0.10%の範囲とすることが好ましい。V: 0.001 to 0.10%
V is an element that improves the strength of the steel by precipitation strengthening that precipitates as V (CN). This effect is exhibited when the V content is 0.001% or more. However, if the V content exceeds 0.10%, the toughness may decrease. For this reason, when it contains V, it is preferable to make V content into the range of 0.001-0.10%.
B:0.0030%以下
Bは、鋼の焼入れ性を高める元素であり、B含有量が0.0030%以下のような微量でも上記効果が得られる。また、B含有量が0.0030%を超えると溶接部の靭性が低下するので、Bを含有させる場合には、B含有量は0.0030%以下とすることが好ましい。なお、上記効果を得る観点からは、B含有量の下限は0.0006%とすることが好ましい。B: 0.0030% or less B is an element that enhances the hardenability of steel, and the above effect can be obtained even with a B content of 0.0030% or less. Further, when the B content exceeds 0.0030%, the toughness of the welded portion is lowered. Therefore, when B is contained, the B content is preferably 0.0030% or less. From the viewpoint of obtaining the above effect, the lower limit of the B content is preferably 0.0006%.
Ca:0.0050%以下、REM:0.0100%以下
Ca、REMは、溶接熱影響部の組織を微細化し靭性を向上させる。これらの成分を含有しても本発明の効果が損なわれることはないので必要に応じて含有してもよい。しかし、過度に含有すると、粗大な介在物を形成し母材の靭性を劣化させる場合がある。そこで、これらの成分を含有させる場合には、含有量の上限をそれぞれ0.0050%、0.0100%とするのが好ましい。Ca: 0.0050% or less, REM: 0.0100% or less Ca and REM refine the structure of the weld heat affected zone and improve toughness. Even if it contains these components, since the effect of this invention is not impaired, you may contain as needed. However, when it contains excessively, a coarse inclusion may be formed and the toughness of a base material may be deteriorated. Therefore, when these components are contained, the upper limit of the content is preferably 0.0050% and 0.0100%, respectively.
Ceq:0.39以上
本発明に係る高強度極厚鋼板では、上記各成分が上記含有量の範囲にあることに加えて、下記式(1)で表すCeqを0.39以上に調整する。Ceq<0.39であると、板厚中央における圧延面での(211)面集積度を高くし難くなる。また、Ceqの上限は特に限定されないが溶接性を確保するため、Ceqは0.51以下であることが好ましい。
Ceq=C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5 (1)
ここで、式(1)におけるC、Mn、Cu、Ni、Cr、MoおよびVは各元素の含有量(質量%)を意味し、含有しない場合は0とする。Ceq: 0.39 or higher In the high-strength extra heavy steel plate according to the present invention, in addition to the above-described components being in the above-mentioned range, the Ceq represented by the following formula (1) is adjusted to 0.39 or higher. When Ceq <0.39, it is difficult to increase the degree of (211) plane integration on the rolled surface at the center of the plate thickness. Moreover, although the upper limit of Ceq is not specifically limited, in order to ensure weldability, it is preferable that Ceq is 0.51 or less.
Ceq = C + Mn / 6 + Cu / 15 + Ni / 15 + Cr / 5 + Mo / 5 + V / 5 (1)
Here, C, Mn, Cu, Ni, Cr, Mo and V in the formula (1) mean the content (% by mass) of each element, and 0 when not contained.
<集合組織>
本発明の高強度極厚鋼板は、板厚中央における圧延面での(211)面集積度が1.7以上、表面(極表面から表面下1mmの範囲)における圧延面での(200)面集積度が1.3以上を満たす集合組織を有する。上記の成分組成を採用するとともに、後述する製造条件で集合組織が上記範囲を満たすように制御することで、脆性き裂伝播停止特性に優れた高強度極厚鋼板が得られる。<Group organization>
The high-strength ultra-thick steel sheet of the present invention has a (211) plane integration degree of 1.7 or more at the rolled surface at the center of the plate thickness, and a (200) plane at the rolled surface on the surface (in the range of 1 mm below the surface) It has a texture with an accumulation degree of 1.3 or more. By adopting the above component composition and controlling the texture to satisfy the above range under the manufacturing conditions described later, a high-strength heavy steel plate excellent in brittle crack propagation stopping characteristics can be obtained.
<靭性>
本発明では、板厚1/4位置から採取したJIS 4号の衝撃試験片を用いて測定した靭性がvTrs:−40℃以下であり、表面から採取したJIS 4号の衝撃試験片を用いて測定した靭性がvTrs≦−60℃である。特定の位置の靭性が上記範囲にあることで、脆性き裂伝播停止特性が改善する。<Toughness>
In the present invention, the toughness measured using a JIS No. 4 impact test piece sampled from a ¼ position of the plate thickness is vTrs: −40 ° C. or less, and the JIS No. 4 impact test piece sampled from the surface is used. The measured toughness is vTrs ≦ −60 ° C. When the toughness at a specific position is within the above range, the brittle crack propagation stopping property is improved.
また、上記の成分組成の調整や集合組織や特定の位置での靭性の制御により、本発明の高強度極厚鋼板は、高強度及び高靭性(脆性き裂伝播停止特性等)を満たす。 Moreover, the high strength extra heavy steel sheet of the present invention satisfies high strength and high toughness (such as brittle crack propagation stopping characteristics) by adjusting the above component composition and controlling the texture and toughness at a specific position.
また、70mm以上の厚みであっても、本発明の高強度極厚鋼板は、脆性き裂伝播停止特性に優れる等の上記効果を有する。 Moreover, even if the thickness is 70 mm or more, the high-strength extra-thick steel sheet of the present invention has the above-described effects such as excellent brittle crack propagation stopping characteristics.
<製造方法>
上記成分組成の溶鋼を、転炉等で溶製し、連続鋳造等で鋼素材(スラブ)とし、1000〜1200℃に加熱後、熱間圧延を行う。<Manufacturing method>
Molten steel having the above component composition is melted in a converter or the like, made into a steel material (slab) by continuous casting or the like, heated to 1000 to 1200 ° C., and then hot-rolled.
加熱温度が1000℃未満では、オーステナイト再結晶温度域における圧延を行う時間が十分に確保できない。一方、加熱温度が1200℃超では、オーステナイト粒が粗大化し、靭性の低下を招くばかりか、酸化ロスが顕著となって、歩留が低下する。従って、鋼素材の加熱温度は、1000〜1200℃の範囲とする。鋼板の靭性向上の観点から好ましい加熱温度の範囲は1000〜1150℃である。なお、鋼素材の温度は鋼板の板厚中央温度を意味する。 If the heating temperature is less than 1000 ° C., sufficient time for rolling in the austenite recrystallization temperature region cannot be secured. On the other hand, when the heating temperature is higher than 1200 ° C., the austenite grains become coarse, leading to a decrease in toughness, and an oxidation loss becomes remarkable, resulting in a decrease in yield. Therefore, the heating temperature of the steel material is in the range of 1000 to 1200 ° C. A preferable heating temperature range is 1000 to 1150 ° C. from the viewpoint of improving the toughness of the steel sheet. In addition, the temperature of a steel raw material means the board thickness center temperature of a steel plate.
熱間圧延においては、まず、板厚中央の温度がオーステナイト再結晶温度域での累積圧下率を10%以上とする圧延を行う。この温度域での累積圧下率を10%以上とすることにより、板厚1/4位置におけるシャルピー破面遷移温度(vTrs):−40℃以下が達成される。累積圧下率が10%未満であると、オーステナイトの細粒化が不十分で靭性が向上せず、板厚1/4位置におけるシャルピー破面遷移温度:−40℃以下が達成されない。上記累積圧下率の上限は特に限定されないが、上記累積圧下率は細粒化の向上効果が小さくなるため45%以下であることが好ましい。なお、本発明の成分組成の場合、上記条件は、好ましくは、上記熱間圧延において1100〜950℃に含まれる温度域での累積圧下率を10%以上である。 In the hot rolling, first, rolling is performed so that the cumulative reduction ratio in the austenite recrystallization temperature range is 10% or more at the center of the plate thickness. By setting the cumulative rolling reduction in this temperature range to 10% or more, a Charpy fracture surface transition temperature (vTrs) at a thickness of 1/4 is achieved at −40 ° C. or less. When the cumulative rolling reduction is less than 10%, the austenite is not sufficiently refined and the toughness is not improved, and the Charpy fracture surface transition temperature at the ¼ thickness position: −40 ° C. or lower is not achieved. The upper limit of the cumulative rolling reduction is not particularly limited, but the cumulative rolling reduction is preferably 45% or less because the effect of improving the fine particles becomes small. In addition, in the case of the component composition of this invention, the said conditions, Preferably, the cumulative reduction in the temperature range contained in 1100-950 degreeC in the said hot rolling is 10% or more.
さらに、板厚中央の温度がオーステナイト未再結晶温度域にあるときの累積圧下率:50%以上の圧延を行う。この温度域での累積圧下率を50%以上とすることにより、板厚中央位置における圧延面での(211)面集積度が1.7以上となる集合組織が得られる。逆に、この温度域での累積圧下率が50%未満であると板厚中央位置における圧延面での(211)面集積度が1.7以上となる集合組織が得られない。上記累積圧下率の上限は特に限定されないが、上記累積圧下率は圧延能率を阻害しないように75%以下であることが好ましい。なお、本発明の成分組成の場合、上記条件は、好ましくは、熱間圧延において950℃未満700℃以上に含まれる温度域での累積圧下率を50%以上である。 Further, rolling is performed at a cumulative reduction ratio of 50% or more when the temperature at the center of the plate thickness is in the austenite non-recrystallization temperature range. By setting the cumulative rolling reduction in this temperature range to 50% or more, a texture in which the (211) plane integration degree on the rolled surface at the plate thickness center position is 1.7 or more is obtained. On the contrary, if the cumulative rolling reduction in this temperature range is less than 50%, a texture where the (211) plane integration degree on the rolled surface at the plate thickness center position is 1.7 or more cannot be obtained. The upper limit of the cumulative rolling reduction is not particularly limited, but the cumulative rolling reduction is preferably 75% or less so as not to inhibit the rolling efficiency. In the case of the component composition of the present invention, the above condition is preferably such that the cumulative rolling reduction in the temperature range included in the hot rolling at a temperature of less than 950 ° C. and 700 ° C. or more is 50% or more.
さらに、本発明では、熱間圧延において、表面がAr3温度以下かつ板厚中央温度がAr3温度以上の温度域にあるときに、累積圧下率10%以上の圧下を行う。この条件により、表面の圧延面での(200)面集積度が1.3以上、表面から採取した試験片を用いて測定した靭性(vTrs)が−60℃以下の組織が得られる。表面がこの温度域のときに累積圧下率が10%未満であると所望の集合組織および靭性が得られない。ここで、Ar3は、Ar3温度=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo(式中の元素記号は各元素の含有量(質量%)を意味し、含まないものは0とする)で表される。なお、表面の温度がAr3温度以下の中で圧延に好適な温度域はAr3〜Ar3−80℃である。また、板厚中央温度がAr3温度以上の中で、圧延に好適な温度域はAr3+80℃〜Ar3℃である。Furthermore, in the present invention, in hot rolling, when the surface is in the temperature range of Ar 3 temperature or lower and the plate thickness center temperature is higher than Ar 3 temperature, the rolling is performed at a cumulative reduction ratio of 10% or higher. Under this condition, a (200) plane integration degree on the rolled surface of the surface is 1.3 or more, and a toughness (vTrs) measured using a test piece collected from the surface is −60 ° C. or less. If the surface is in this temperature range and the cumulative rolling reduction is less than 10%, the desired texture and toughness cannot be obtained. Here, Ar 3 is Ar 3 temperature = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo (the element symbol in the formula means the content (mass%) of each element, and 0 does not include ). Incidentally, a suitable temperature range to the rolling in the temperature is below Ar 3 temperature of the surface is Ar 3 to Ar 3 -80 ° C.. Further, in the plate thickness center temperature is above Ar 3 temperature, the preferred temperature range in the rolling is Ar 3 + 80 ℃ ~Ar 3 ℃ .
なお、本発明における熱間圧延では、上記規定した温度域外での圧延を制限するものではなく、少なくとも、上記規定する温度域において規定の累積圧下率の圧下が行われていればよい。 In the hot rolling according to the present invention, rolling outside the specified temperature range is not limited, and it is sufficient that the specified cumulative reduction rate is reduced at least in the specified temperature range.
圧延が終了した鋼板は、0.5℃/s以上の冷却速度にて500℃以下の冷却停止温度まで冷却する。冷却速度が0.5℃/s未満の場合は、板厚中央位置における圧延面での(211)面集積度が1.7以上を確保することができない。 The rolled steel sheet is cooled to a cooling stop temperature of 500 ° C. or lower at a cooling rate of 0.5 ° C./s or higher. When the cooling rate is less than 0.5 ° C./s, the (211) plane integration degree on the rolled surface at the plate thickness center position cannot be secured to 1.7 or more.
圧延および冷却後に焼戻処理を行う場合は、直前の冷却での冷却停止温度を400℃以下にするとともに、板厚中央温度がAc1温度以下で焼戻処理を行うことが必要である。焼戻処理がAc1温度超えの場合には、圧延時に発達させた集合組織を失うこととなるからである。ここで、Ac1は、Ac1温度=751−26.6C+17.6Si−11.6Mn−169Al−23Cu−23Ni+24.1Cr+22.5Mo+233Nb−39.7V−5.7Ti−895B(式中の元素記号は各元素の含有量(質量%)を意味し、含まないものは0とする)で表される。When the tempering process is performed after rolling and cooling, it is necessary to set the cooling stop temperature in the immediately preceding cooling to 400 ° C. or lower and to perform the tempering process at a plate thickness central temperature of Ac 1 temperature or lower. This is because when the tempering process exceeds the Ac 1 temperature, the texture developed during rolling is lost. Here, Ac 1 is Ac 1 temperature = 751-26.6C + 17.6Si-11.6Mn-169Al-23Cu-23Ni + 24.1Cr + 22.5Mo + 233Nb-39.7V-5.7Ti-895B It means the content (mass%) of the element, and the one not contained is 0).
なお、以上の説明において、板厚中央温度は、放射温度計で測定した鋼板表面温度から、伝熱計算により求める。また、圧延後の冷却条件における温度条件は、板厚中央温度とし、冷却速度も板厚中央温度に基づいて算出された平均冷却速度を意味する。 In the above description, the plate thickness central temperature is obtained by heat transfer calculation from the steel plate surface temperature measured with a radiation thermometer. Further, the temperature condition in the cooling condition after rolling is the plate thickness central temperature, and the cooling rate is also an average cooling rate calculated based on the plate thickness central temperature.
次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.
表1に示す各成分組成の溶鋼(鋼記号:1〜19)を、転炉で溶製し、連続鋳造法で鋼素材とし、板厚:70〜120mmに熱間圧延後、冷却を行いNo.1〜27の供試鋼を得た。表2に加熱条件、熱間圧延条件と冷却条件を示す。また、焼戻しを行ったものについては焼戻温度も示した。 Molten steel (steel symbols: 1 to 19) having each component composition shown in Table 1 is melted in a converter and made into a steel material by a continuous casting method. After hot rolling to a plate thickness of 70 to 120 mm, cooling is performed and No. . 1-27 test steels were obtained. Table 2 shows heating conditions, hot rolling conditions and cooling conditions. Moreover, the tempering temperature was also shown about what tempered.
得られた鋼板について、板厚1/4位置より、Φ14のJIS 14A号試験片を採取し、引張試験を行い、降伏強度(YS)、引張強さ(TS)を測定した。YSが390MPa以上、TSが510MPa以上のものを良好と評価した。 About the obtained steel plate, the JIS14A test piece of (PHI) 14 was extract | collected from plate | board thickness 1/4 position, the tensile test was done, and the yield strength (YS) and the tensile strength (TS) were measured. A sample having a YS of 390 MPa or more and a TS of 510 MPa or more was evaluated as good.
板厚の1/4位置及び鋼板表面よりJIS 4号衝撃試験片を試験片の長手軸の方向が圧延方向と平行となるように採取し、シャルピー衝撃試験を行って、破面遷移温度(vTrs)を求めた。1/4位置のvTrsが−40℃以下、表面のvTrsが−60℃以下のものを良好とした。 A JIS No. 4 impact test specimen was taken from the 1/4 position of the plate thickness and the steel sheet surface so that the longitudinal axis direction of the test specimen was parallel to the rolling direction, and subjected to a Charpy impact test to determine the fracture surface transition temperature (vTrs ) The case where the vTrs at the 1/4 position was −40 ° C. or lower and the surface vTrs was −60 ° C. or lower was considered good.
また、鋼板の集合組織を評価するため、板厚中央における圧延面での(211)面集積度、および鋼板表面(極表面から表面下1mmの範囲)における(200)面集積度を測定した。 Further, in order to evaluate the texture of the steel sheet, the (211) plane integration degree on the rolling surface at the center of the plate thickness and the (200) plane integration degree on the steel sheet surface (range from the extreme surface to 1 mm below the surface) were measured.
面集積度は、X線回折装置(理学電機株式会社製)を使用し、Mo線源を用いて測定を行った。 The degree of surface integration was measured using an X-ray diffractometer (manufactured by Rigaku Corporation) and using a Mo ray source.
次に、脆性き裂伝播停止特性を評価するため、温度勾配型ESSO試験を行い、−10℃におけるKca値(以下、Kca(−10℃)N/mm3/2とも記す)を求めた。Kca(−10℃)が6000N/mm3/2以上のものを良好とした。Next, in order to evaluate the brittle crack propagation stopping characteristics, a temperature gradient type ESSO test was performed to obtain a Kca value at -10 ° C (hereinafter also referred to as Kca (-10 ° C) N / mm 3/2 ). A material having a Kca (−10 ° C.) of 6000 N / mm 3/2 or more was considered good.
表3にこれらの試験結果を示す。 Table 3 shows the results of these tests.
表3に示された結果から、本発明に従う供試鋼No.1〜10、27の場合、板厚中央における圧延面での(211)面集積度が1.7以上で、かつ鋼板表面における圧延面での(200)面集積度が1.3以上の集合組織を有し、靭性が(vTrs)−60℃以下であり、板厚1/4位置におけるシャルピー破面遷移温度が−40℃以下であり、Kca(−10℃)が6000N/mm3/2以上と優れた脆性き裂伝播停止特性が得られた。From the results shown in Table 3, the test steel No. In the case of 1 to 10 and 27, the (211) plane integration degree on the rolling surface at the center of the plate thickness is 1.7 or more and the (200) plane integration degree on the rolling surface on the steel sheet surface is 1.3 or more. It has a structure, toughness is (vTrs) −60 ° C. or lower, Charpy fracture surface transition temperature at ¼ position of the plate thickness is −40 ° C. or lower, and Kca (−10 ° C.) is 6000 N / mm 3/2. As described above, excellent brittle crack propagation stopping characteristics were obtained.
一方、本発明を外れる供試鋼No.11〜26(No.18除く)の場合、上記のいずれかの規定を満足しておらず、Kcaの値が5500N/mm3/2以下であった。No.18は強度が不足していた。On the other hand, the test steel No. In the case of 11 to 26 (excluding No. 18), one of the above-mentioned regulations was not satisfied, and the value of Kca was 5500 N / mm 3/2 or less. No. 18 was insufficient in strength.
Claims (4)
質量%で、C:0.03〜0.20%、Si:0.03〜0.5%、Mn:0.5〜2.2%、P:0.01%以下、S:0.005%以下、Ti:0.005〜0.03%、Al:0.005〜0.080%、Ni:0.1〜1.5%およびN:0.0050%以下を含有し、下記式(1)で定義されるCeq:0.39以上であり、残部がFeおよび不可避的不純物からなる成分組成と、
板厚中央における圧延面での(211)面集積度が1.7以上であり、鋼板表面での(200)面集積度が1.3以上である集合組織と、を有し、
板厚1/4位置から採取したJIS 4号の衝撃試験片を用いて測定した靭性がvTrs:−40℃以下であり、
表面から採取したJIS 4号の衝撃試験片を用いて測定した靭性がvTrs≦−60℃である高強度極厚鋼板。
Ceq=C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5 (1)
(ここで、式(1)におけるC、Mn、Cu、Ni、Cr、MoおよびVは各元素の含有量(質量%)を意味し、含有しない場合は0とする。) Plate thickness: A high-strength ultra-thick steel plate excellent in brittle crack propagation stopping characteristics of 70 mm or more,
In mass%, C: 0.03 to 0.20%, Si: 0.03 to 0.5%, Mn: 0.5 to 2.2%, P: 0.01% or less, S: 0.005 %: Ti: 0.005 to 0.03%, Al: 0.005 to 0.080%, Ni: 0.1 to 1.5% and N: 0.0050% or less. Ceq defined in 1): 0.39 or more, with the remaining component composition consisting of Fe and inevitable impurities,
A (211) plane integration degree at the rolled surface in the center of the plate thickness is 1.7 or more, and a (200) plane integration degree at the steel sheet surface is 1.3 or more,
The toughness measured using the impact test piece of JIS No. 4 taken from the 1/4 thickness position is vTrs: −40 ° C. or less,
A high-strength heavy steel plate having a toughness of vTrs ≦ −60 ° C. measured using a JIS No. 4 impact test specimen collected from the surface.
Ceq = C + Mn / 6 + Cu / 15 + Ni / 15 + Cr / 5 + Mo / 5 + V / 5 (1)
(Here, C, Mn, Cu, Ni, Cr, Mo and V in the formula (1) mean the content (% by mass) of each element, and 0 when not contained.)
請求項1〜3のいずれかに記載の成分組成を有する鋼素材を、1000〜1200℃の温度に加熱した後、
板厚中央がオーステナイト再結晶温度域のときの累積圧下率:10%以上、板厚中央がオーステナイト未再結晶温度域のときの累積圧下率:50%以上、表面がAr3温度以下かつ板厚中央温度がAr3温度以上の温度域のときの累積圧下率10%以上の条件で熱間圧延を行った後、
0.5℃/s以上の冷却速度にて500℃以下の冷却停止温度まで冷却するか、又は0.5℃/s以上の冷却速度にて400℃以下の冷却停止温度まで冷却して冷却後Ac1点以下の温度に焼戻す高強度極厚鋼板の製造方法。 The plate thickness according to any one of claims 1 to 3 , which is a method for producing a high-strength heavy steel plate excellent in brittle crack propagation stopping characteristics of 70 mm or more,
After heating the steel raw material which has the component composition in any one of Claims 1-3 to the temperature of 1000-1200 degreeC,
Cumulative rolling reduction when the sheet thickness center is in the austenite recrystallization temperature range: 10% or more Cumulative rolling reduction when the sheet thickness center is in the austenite non-recrystallization temperature range: 50% or more, the surface is Ar 3 temperature or less and the sheet thickness After performing hot rolling under conditions of a cumulative reduction ratio of 10% or more when the central temperature is in the temperature range of Ar 3 temperature or higher,
After cooling to a cooling stop temperature of 500 ° C. or less at a cooling rate of 0.5 ° C./s or after cooling to a cooling stop temperature of 400 ° C. or less at a cooling rate of 0.5 ° C./s or more Ac A method for producing a high-strength ultra-thick steel plate tempered to a temperature of 1 point or less.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015049371 | 2015-03-12 | ||
JP2015049371 | 2015-03-12 | ||
PCT/JP2016/001311 WO2016143345A1 (en) | 2015-03-12 | 2016-03-09 | High-strength thick steel sheet and method for manufacturing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6112265B2 true JP6112265B2 (en) | 2017-04-12 |
JPWO2016143345A1 JPWO2016143345A1 (en) | 2017-04-27 |
Family
ID=56880396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016553622A Active JP6112265B2 (en) | 2015-03-12 | 2016-03-09 | High-strength extra heavy steel plate and method for producing the same |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6112265B2 (en) |
KR (1) | KR101964247B1 (en) |
CN (1) | CN107208238B (en) |
TW (1) | TWI582245B (en) |
WO (1) | WO2016143345A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017145651A1 (en) * | 2016-02-24 | 2017-08-31 | Jfeスチール株式会社 | High strength ultra-thick steel plate having excellent brittle crack propagation stopping characteristics and manufaturing method of same |
KR101917455B1 (en) * | 2016-12-22 | 2018-11-09 | 주식회사 포스코 | Extremely thick steel having excellent surface part naval research laboratory-drop weight test property |
KR102326109B1 (en) * | 2019-12-16 | 2021-11-16 | 주식회사 포스코 | Steel sheet having excellent resistance of sulfide stress cracking and method of manufacturing the same |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS548349A (en) | 1977-06-22 | 1979-01-22 | Mitsubishi Electric Corp | Elevator door device |
JP2659661B2 (en) | 1993-01-06 | 1997-09-30 | 新日本製鐵株式会社 | Structural steel for welding with excellent brittle fracture propagation stopping performance at joints and method of manufacturing the same |
JPH07100814A (en) | 1993-10-04 | 1995-04-18 | Sekisui Chem Co Ltd | Manufacture of cement molded item |
JP3467767B2 (en) | 1998-03-13 | 2003-11-17 | Jfeスチール株式会社 | Steel with excellent brittle crack arrestability and method of manufacturing the same |
JP4077167B2 (en) | 2001-02-28 | 2008-04-16 | 株式会社神戸製鋼所 | Steel plate with excellent arrest properties and its manufacturing method |
JP5064150B2 (en) * | 2006-12-14 | 2012-10-31 | 新日本製鐵株式会社 | High strength steel plate with excellent brittle crack propagation stopping performance |
JP4946512B2 (en) * | 2007-02-28 | 2012-06-06 | Jfeスチール株式会社 | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same |
JP5146198B2 (en) * | 2008-08-22 | 2013-02-20 | Jfeスチール株式会社 | High-strength thick steel plate with excellent toughness and brittle crack propagation stopping characteristics for high heat input welds and its manufacturing method |
CN108130479A (en) * | 2011-02-08 | 2018-06-08 | 杰富意钢铁株式会社 | The excellent plate thickness of long brittle-cracking propagation stopping characteristics is the steel plate and its manufacturing method of more than 50mm |
JP5304924B2 (en) * | 2011-12-27 | 2013-10-02 | Jfeスチール株式会社 | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same |
WO2014155439A1 (en) * | 2013-03-26 | 2014-10-02 | Jfeスチール株式会社 | High strength thick steel plate with superior brittle crack arrestability for high heat input welding and method for manufacturing same |
-
2016
- 2016-03-09 KR KR1020177017113A patent/KR101964247B1/en active IP Right Grant
- 2016-03-09 WO PCT/JP2016/001311 patent/WO2016143345A1/en active Application Filing
- 2016-03-09 CN CN201680010045.4A patent/CN107208238B/en active Active
- 2016-03-09 JP JP2016553622A patent/JP6112265B2/en active Active
- 2016-03-11 TW TW105107530A patent/TWI582245B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201641713A (en) | 2016-12-01 |
WO2016143345A1 (en) | 2016-09-15 |
KR20170086102A (en) | 2017-07-25 |
CN107208238B (en) | 2018-11-23 |
KR101964247B1 (en) | 2019-04-01 |
TWI582245B (en) | 2017-05-11 |
JPWO2016143345A1 (en) | 2017-04-27 |
CN107208238A (en) | 2017-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5304925B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5733425B2 (en) | High-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5434145B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP6536514B2 (en) | High strength steel plate for structure excellent in brittle crack propagation arresting property and method of manufacturing the same | |
JP5304924B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5181496B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5035199B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP6112265B2 (en) | High-strength extra heavy steel plate and method for producing the same | |
JP5061649B2 (en) | Thick steel plate with a thickness of 50 mm or more with excellent brittle crack propagation stopping characteristics | |
JP5812193B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5949113B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5733424B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP6477743B2 (en) | High-strength ultra-thick steel plate excellent in brittle crack propagation stopping characteristics and weld heat-affected zone toughness and method for producing the same | |
JP6338022B2 (en) | High-strength extra-thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5838801B2 (en) | Thick steel plate and method for manufacturing thick steel plate | |
WO2018030186A1 (en) | Thick high-strength steel plate and production process therefor | |
JP5949114B2 (en) | Manufacturing method of structural high strength thick steel plate with excellent brittle crack propagation stopping characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170227 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6112265 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |