JP6477743B2 - High-strength ultra-thick steel plate excellent in brittle crack propagation stopping characteristics and weld heat-affected zone toughness and method for producing the same - Google Patents

High-strength ultra-thick steel plate excellent in brittle crack propagation stopping characteristics and weld heat-affected zone toughness and method for producing the same Download PDF

Info

Publication number
JP6477743B2
JP6477743B2 JP2017031036A JP2017031036A JP6477743B2 JP 6477743 B2 JP6477743 B2 JP 6477743B2 JP 2017031036 A JP2017031036 A JP 2017031036A JP 2017031036 A JP2017031036 A JP 2017031036A JP 6477743 B2 JP6477743 B2 JP 6477743B2
Authority
JP
Japan
Prior art keywords
less
temperature
thickness
crack propagation
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017031036A
Other languages
Japanese (ja)
Other versions
JP2017160537A (en
Inventor
孝一 中島
孝一 中島
克行 一宮
克行 一宮
長谷 和邦
和邦 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2017160537A publication Critical patent/JP2017160537A/en
Application granted granted Critical
Publication of JP6477743B2 publication Critical patent/JP6477743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、船舶、海洋構造物、低温貯蔵タンク、建築・土木構造物等の大型構造物に使用する、板厚70mm以上の脆性き裂伝播停止特性および溶接熱影響部靭性に優れた高強度極厚鋼板およびその製造方法に関する。   The present invention is used for large structures such as ships, marine structures, low-temperature storage tanks, construction / civil engineering structures, etc., and has high strength excellent in brittle crack propagation stopping characteristics with a thickness of 70 mm or more and weld heat affected zone toughness. The present invention relates to an extra-thick steel plate and a manufacturing method thereof.

船舶や、海洋構造物、低温貯蔵タンク、建築・土木構造物等の大型構造物においては、脆性破壊に伴う事故が起きると、社会経済や環境などに及ぼす影響が大きい。このため、上記大型構造物は、安全性の向上が常に求められ、大型構造物の素材となる鋼板に対しては、使用温度における脆性き裂伝播停止特性が高いレベルで要求されている。   In large structures such as ships, marine structures, low-temperature storage tanks, and construction / civil engineering structures, if an accident associated with brittle fracture occurs, the impact on the socio-economic environment and the environment is large. For this reason, the large structure is always required to be improved in safety, and the steel sheet used as the material of the large structure is required to have a high level of brittle crack propagation stopping characteristics at the use temperature.

コンテナ船やバルクキャリアーなどの船舶においては、その構造上、船体外板に高強度の厚鋼板が使用される。最近では、船体の大型化に伴って一層の高強度化が求められ、素材となる厚鋼板の厚肉化が進んでいる。   In a ship such as a container ship or a bulk carrier, a high-strength thick steel plate is used as a hull outer plate because of its structure. Recently, with the increase in size of the hull, further increase in strength has been demanded, and the thick steel plates used as materials have been increasing in thickness.

一般に、鋼板の脆性き裂伝播停止特性は、高強度あるいは厚肉になるほど劣化する傾向にある。このため、大型構造物に使用される厚鋼板に対する、脆性き裂伝播停止特性への要求も一段と高度化している。   Generally, the brittle crack propagation stopping property of a steel sheet tends to deteriorate as the strength increases or the wall becomes thicker. For this reason, the request | requirement for the brittle crack propagation stop characteristic with respect to the thick steel plate used for a large-sized structure is further advanced.

ここで、鋼板の脆性き裂伝播停止特性を向上させる手段として、従来から、鋼中のNi含有量を増加させる方法が知られている。例えば、液化天然ガス(LNG)の貯槽タンクにおいては、9%Ni鋼が商業規模で使用されている。   Here, as a means for improving the brittle crack propagation stopping characteristic of a steel sheet, a method for increasing the Ni content in the steel has been conventionally known. For example, in liquefied natural gas (LNG) storage tanks, 9% Ni steel is used on a commercial scale.

但し、鋼中Ni含有量の増加は、製造コストの大幅な上昇を余儀なくさせる。このため、9%Ni鋼は、LNG貯槽タンク以外の用途に適用し難い。   However, an increase in the Ni content in the steel necessitates a significant increase in production costs. For this reason, 9% Ni steel is difficult to apply to uses other than the LNG storage tank.

他方、LNGのような極低温にまで至らない、例えば、船舶やラインパイプに使用される、板厚が50mm未満の比較的薄手の鋼板に対しては、TMCP法により細粒化を図り、低温靭性を向上させることで、優れた脆性き裂伝播停止特性を実現することができる。   On the other hand, for a comparatively thin steel plate with a thickness of less than 50 mm used for ships and line pipes, which does not reach extremely low temperatures such as LNG, the fine graining is attempted by the TMCP method. By improving toughness, excellent brittle crack propagation stopping characteristics can be realized.

また、合金コストを上昇させることなく、脆性き裂伝播停止特性を向上させるために、表層部の組織を超微細化した鋼板が、特許文献1において提案されている。   Further, in order to improve brittle crack propagation stopping characteristics without increasing the alloy cost, Patent Document 1 proposes a steel sheet in which the structure of the surface layer portion is made ultrafine.

特許文献1に記載の脆性き裂伝播停止特性に優れた鋼板は、脆性き裂が伝播する際、鋼板表層部に発生するシアリップ(塑性変形領域)が脆性き裂伝播停止特性の向上に効果があることに着目して完成されたものであり、シアリップ部分の結晶粒を微細化させることで、伝播する脆性き裂が有する伝播エネルギーを吸収することを特徴としている。また、特許文献1には、熱間圧延後の制御冷却によって表層部をAr変態点以下に冷却した後、制御冷却を停止して表層部をAr変態点以上に復熱させる工程を1回以上繰り返して行う間に、鋼板に圧下を加えることにより、繰り返し変態を生じさせ、または加工再結晶させることで、表層部分に超微細なフェライト組織またはベイナイト組織を生成させることが記載されている。 In the steel sheet excellent in brittle crack propagation stopping characteristics described in Patent Document 1, when a brittle crack propagates, shear lip (plastic deformation region) generated in the steel sheet surface layer portion is effective in improving the brittle crack propagation stopping characteristics. It was completed by paying attention to certain things, and is characterized by absorbing the propagation energy of the propagating brittle crack by refining the crystal grains of the shear lip. Patent Document 1 includes a step of cooling the surface layer portion below the Ar 3 transformation point by controlled cooling after hot rolling, and then stopping the controlled cooling to reheat the surface layer portion above the Ar 3 transformation point. It is described that by repeatedly reducing the steel sheet by repeatedly rolling the steel sheet repeatedly or repeatedly, a superfine ferrite structure or a bainite structure is generated in the surface layer part by causing repetitive transformation or processing recrystallization. .

特許文献2では、フェライト−パーライトが主体のミクロ組織とする鋼板において、脆性き裂伝播停止特性を向上させるために、鋼板の両表面部を、円相当粒径:5μm以下で、かつアスペクト比:2以上のフェライト粒を有するフェライト組織を、面積率で50%以上有する層で構成しつつ、フェライト粒径のバラツキを抑えることが重要であること、このバラツキを抑える方法として仕上げ圧延中の1パス当りの最大圧下率を12%以下とすることで局所的な再結晶現象を抑制することが記載されている。   In Patent Document 2, in a steel sheet mainly composed of ferrite-pearlite, in order to improve brittle crack propagation stopping characteristics, both surface portions of the steel sheet have a circle-equivalent grain size of 5 μm or less and an aspect ratio: It is important to suppress the ferrite grain size variation while forming a ferrite structure having two or more ferrite grains in a layer having an area ratio of 50% or more, and one pass during finish rolling as a method of suppressing this variation. It is described that the local recrystallization phenomenon is suppressed by setting the maximum rolling reduction per hit to 12% or less.

特許文献3には、フェライト結晶粒の微細化だけでなく、フェライト結晶粒内に形成されるサブグレインに着目することで、脆性き裂伝播停止特性を向上させるという、TMCPの延長上にある技術が記載されている。具体的には、板厚:30〜40mmの鋼板において、鋼板表層の冷却および復熱などの複雑な温度制御を必要とせずに、
(a)微細なフェライト結晶粒を確保する圧延条件、
(b)鋼板板厚の5%以上の部分に微細フェライト組織を生成する圧延条件、
(c)微細フェライトに集合組織を発達させるとともに加工(圧延)により導入した転位を熱的エネルギーにより再配置しサブグレインを形成させる圧延条件、および
(d)形成した微細なフェライト結晶粒と微細なサブグレイン粒の粗大化を抑制する冷却条件、
によって脆性き裂伝播停止特性を向上させる技術が記載されている。
Patent Document 3 discloses a technique on the extension of TMCP that improves brittle crack propagation stopping characteristics by focusing on subgrains formed in ferrite crystal grains as well as refinement of ferrite crystal grains. Is described. Specifically, in a steel sheet having a thickness of 30 to 40 mm, without requiring complicated temperature control such as cooling and recuperation of the steel sheet surface layer,
(A) rolling conditions to ensure fine ferrite crystal grains,
(B) rolling conditions for producing a fine ferrite structure in a portion of 5% or more of the steel plate thickness;
(C) Rolling conditions for developing a texture in fine ferrite and rearranging dislocations introduced by processing (rolling) by thermal energy to form subgrains; and (d) Fine ferrite grains formed and fine Cooling conditions to suppress coarsening of subgrain grains,
Describes a technique for improving the brittle crack propagation stopping characteristics.

また、制御圧延において、変態したフェライトに圧下を加えて集合組織を発達させることにより、脆性き裂伝播停止特性を向上させる方法も知られている。これは、鋼板の破壊面上にセパレーションを板面と平行な方向に生ぜしめ、脆性き裂先端の応力を緩和させることにより、脆性破壊に対する抵抗を高める方法である。   In addition, in controlled rolling, a method of improving the brittle crack propagation stopping property by developing a texture by reducing the transformed ferrite is also known. This is a method of increasing resistance to brittle fracture by causing separation on the fracture surface of the steel plate in a direction parallel to the plate surface and relaxing stress at the tip of the brittle crack.

例えば、特許文献4には、制御圧延により(110)面X線強度比を2以上とし、かつ円相当径20μm以上の粗大粒の面積率を10%以下とすることにより、耐脆性破壊特性を向上させることが記載されている。   For example, Patent Document 4 discloses that the (110) plane X-ray intensity ratio is 2 or more by controlled rolling, and the area ratio of coarse grains having a circle-equivalent diameter of 20 μm or more is 10% or less. It is described to improve.

特許文献5には、継手部の脆性き裂伝播停止特性の優れた溶接構造用鋼として、板厚内の圧延面における(100)面のX線面強度比が1.5以上を有することを特徴とする鋼板が開示されており、当該集合組織発達による応力負荷方向と、き裂伝播方向の角度のずれにより脆性き裂伝播停止特性に優れることが記載されている。   In Patent Document 5, as a steel for welded structure having excellent brittle crack propagation stopping characteristics of the joint portion, the X-ray plane strength ratio of the (100) plane in the rolled surface within the plate thickness is 1.5 or more. A characteristic steel sheet is disclosed, and it is described that it has excellent brittle crack propagation stopping characteristics due to a shift in the angle between the stress load direction due to the texture development and the crack propagation direction.

さらに、特許文献6、7には、制御圧延における平均圧下率を規定することで板厚方向の各部(板厚1/4位置、板厚中央部など)において集合組織を発達させる脆性き裂伝播停止特性の優れた溶接構造用鋼板の製造方法が記載されている。   Further, in Patent Documents 6 and 7, a brittle crack propagation that develops a texture in each part in the sheet thickness direction (sheet thickness 1/4 position, sheet thickness central part, etc.) by defining an average reduction ratio in controlled rolling. A method for manufacturing a welded steel sheet with excellent stopping properties is described.

また、最近の6,000TEUを超える大型コンテナ船では、板厚:70mm以上の厚鋼板が使用される。非特許文献1では、板厚:65mmの鋼板の脆性き裂伝播停止特性を評価し、母材の大型脆性き裂伝播停止試験で脆性き裂が停止しない結果が報告されている。   Further, in a large container ship exceeding the recent 6,000 TEU, a steel plate having a plate thickness of 70 mm or more is used. In Non-Patent Document 1, a brittle crack propagation stopping property of a steel sheet having a thickness of 65 mm is evaluated, and a result of a brittle crack not stopping in a large brittle crack propagation stopping test of a base material is reported.

特公平7−100814号公報Japanese Patent Publication No. 7-100814 特開2002−256375号公報JP 2002-256375 A 特許第3467767号公報Japanese Patent No. 3467767 特許第3548349号公報Japanese Patent No. 3548349 特許第2659661号公報Japanese Patent No. 2659661 特許第5733425号公報Japanese Patent No. 5733425

厚手造船用鋼における長大脆性き裂伝播挙動、日本船舶海洋工学会講演論文集 第3号、2006、pp359−362Propagation behavior of long brittle cracks in thick shipbuilding steel, Proceedings of the Japan Society of Marine Science and Technology No. 3, 2006, pp 359-362

特許文献1、2に記載の技術では、鋼板表層部のみを一旦冷却した後に復熱させ、かつ復熱中に加工を加えることによって、特定の組織を得る。このため、実生産規模での制御が容易でなく、特に板厚が70mm以上の厚肉材の製造では、圧延設備、冷却設備への負荷が大きいプロセスである。   In the techniques described in Patent Literatures 1 and 2, only the surface layer portion of the steel sheet is once cooled and then reheated, and a specific structure is obtained by applying processing during reheat. For this reason, control on an actual production scale is not easy, and particularly in the manufacture of thick materials having a plate thickness of 70 mm or more, this is a process with a heavy load on rolling equipment and cooling equipment.

また、特許文献1〜6に記載された鋼板は、いずれも、製造条件や開示されている実験データから、板厚:50mm〜70mm程度が主な対象であって、70mm以上の厚肉材への適用については、所定の特性が得られるかが不明であり、大型構造物において必要な、板厚方向のき裂伝播特性に対しては全く検証されていない。   Moreover, as for the steel plate described in patent documents 1-6, all are from the manufacturing conditions and the experimental data currently disclosed, and plate | board thickness: About 50 mm-70 mm is main object, Comprising: To the thick material of 70 mm or more As for the application, it is unclear whether a predetermined characteristic can be obtained, and the crack propagation characteristic in the plate thickness direction required for a large structure has not been verified at all.

さらに、非特許文献1において、供試材のESSO試験は、使用温度−10℃でのKcaの値が3000N/mm1.5に満たない結果を示しており、非特許文献1の技術では、50mmを超える板厚の鋼板を適用した大型構造物の場合、安全性確保が十分とまではいえないことを示唆している。 Furthermore, in Non-Patent Document 1, the ESSO test of the specimen shows a result that the Kca value at the use temperature of −10 ° C. is less than 3000 N / mm 1.5 . In the case of a large structure to which a steel plate having a thickness exceeding 50 mm is applied, it is suggested that safety cannot be sufficiently ensured.

また、造船等の分野で使用される構造用鋼材は、溶接接合により所望の形状の構造物に仕上げられる。すなわち、板厚70mm以上のような厚肉材に対して、溶接接合にはサブマージアーク溶接、エレクトロガス溶接およびエレクトロスラグ溶接などの高能率な大入熱溶接が適用されている。このため、板厚70mm以上のような厚肉材に対して大入熱溶接により溶接接合する場合、溶接熱影響部の靱性に優れることも必要となってくる。いずれの特許文献においても、厚肉材の溶接熱影響部の靭性については十分に検討されていない。   Further, structural steel materials used in the field of shipbuilding and the like are finished into a desired shape structure by welding. That is, high-efficiency large heat input welding such as submerged arc welding, electrogas welding, and electroslag welding is applied to a thick material having a thickness of 70 mm or more for welding joining. For this reason, when it joins by heavy heat input welding with respect to thick materials, such as plate | board thickness 70mm or more, it is also required to be excellent in the toughness of a welding heat affected zone. In any of the patent documents, the toughness of the weld heat-affected zone of the thick-walled material has not been sufficiently studied.

本発明は、かかる事情に鑑み、板厚が70mm以上で脆性き裂伝播停止特性および溶接熱影響部靭性に優れた高強度極厚鋼板およびその製造方法を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a high-strength extra-thick steel plate having a plate thickness of 70 mm or more and excellent in brittle crack propagation stopping characteristics and weld heat-affected zone toughness, and a method for producing the same.

発明者らは、上記課題を解決するために、板厚70mm以上でも優れた脆性き裂伝播停止特性および溶接熱影響部靭性を有する高強度極厚鋼板および当該鋼板を安定して得る製造方法について鋭意研究を重ねた。その結果、板厚中央における圧延面での(211)面集積度を1.2以上とし、かつ、鋼板表面(単に「表面」という場合がある)における圧延面での(200)面集積度を1.7以上とする集合組織を有し、靭性の指標である板厚1/4位置におけるシャルピー破面遷移温度vTrsが−40℃以下および鋼板表面におけるシャルピー破面遷移温度vTrsが−80℃以下であることにより、優れた脆性き裂伝播停止特性が得られることを知見した。さらに、溶接熱影響部において、TiN、CaSとMnSの複合硫化物を微細に分散させることにより、溶接時の高温に曝された際の粒成長を抑制し、かつ、その後の冷却過程で粒内変態を促進して室温での溶接熱影響部組織を微細化することにより、優れた溶接熱影響部靭性が得られることを知見した。   In order to solve the above-mentioned problems, the inventors have provided a high-strength extra-thick steel plate having excellent brittle crack propagation stopping characteristics and weld heat-affected zone toughness even at a thickness of 70 mm or more, and a production method for stably obtaining the steel plate. Researched earnestly. As a result, the (211) plane integration degree on the rolled surface at the center of the plate thickness is 1.2 or more, and the (200) plane integration degree on the rolled surface on the steel sheet surface (sometimes simply referred to as “surface”) is Charpy fracture surface transition temperature vTrs at a ¼ thickness position, which is a toughness index, having a texture of 1.7 or higher is −40 ° C. or lower, and the Charpy fracture surface transition temperature vTrs on the steel sheet surface is −80 ° C. or lower. Therefore, it was found that excellent brittle crack propagation stopping characteristics can be obtained. Furthermore, in the welding heat affected zone, TiN, CaS and MnS complex sulfides are finely dispersed to suppress grain growth when exposed to high temperatures during welding, and in the subsequent cooling process, It was discovered that excellent weld heat affected zone toughness can be obtained by promoting transformation and refining the weld heat affected zone structure at room temperature.

本発明は、上記した知見に、さらに検討を加えて完成されたものである。本発明の要旨構成は次のとおりである。
[1]質量%で、C:0.03〜0.15%、Si:0.50%以下、Mn:0.5〜2.2%、P:0.030%以下、S:0.0005〜0.0040%、Ti:0.005〜0.030%、Al:0.005〜0.080%、N:0.0035〜0.0075%、Ca:0.0005〜0.0030%、O:0.0040%以下を含有し、下記式(1)で定義されるCeqが0.36以上であり、かつ、Ca、O、Sの各含有量は、下記式(2)を満たし、残部がFeおよび不可避的不純物からなる成分組成と、板厚中央における圧延面での(211)面集積度が1.2以上であり、鋼板表面における圧延面での(200)面集積度が1.7以上である集合組織を有し、板厚1/4位置におけるシャルピー破面遷移温度vTrsが−40℃以下であり、鋼板表面におけるシャルピー破面遷移温度vTrsが−80℃以下である板厚70mm以上の脆性き裂伝播停止特性および溶接熱影響部靭性に優れた高強度極厚鋼板。
Ceq=C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5・・・(1)
ここで、式(1)におけるC、Mn、Cu、Ni、Cr、MoおよびVは各元素の含有量(質量%)を意味し、含有しない場合は0とする。
0<{(Ca−(0.18+130×Ca)×O)/1.25}/S≦0.8・・・(2)
ただし、Ca、O、Sは各成分の含有量を(質量%)を表す。
[2]前記成分組成は、さらに質量%で、B:0.0003〜0.0030%、V:0.2%以下の1種または2種を含有する[1]に記載の脆性亀裂伝播停止特性および溶接熱影響部靭性に優れた高強度極厚鋼板。
[3]前記成分組成は、さらに質量%で、Nb:0.003〜0.030%、Ni:1.0%以下、Cu:1.0%以下、Cr:0.7%以下、Mo:0.7%以下、Mg:0.0005〜0.0050%、Zr:0.001〜0.020%、REM:0.001〜0.020%の1種または2種以上を含有する[1]または[2]に記載の脆性き裂伝播停止特性および溶接熱影響部靭性に優れた高強度極厚鋼板。
[4][1]〜[3]のいずれかに記載の成分組成を有する鋼素材を、1000〜1200℃の温度に加熱した後、板厚中央の温度がオーステナイト再結晶温度域での累積圧下率が10%以上、板厚中央の温度がオーステナイト未再結晶温度域での累積圧下率が50%以上、板厚表面温度がAr変態点以下かつ板厚中央の温度がAr変態点以上の温度域のときの累積圧下率が20%超えの条件で熱間圧延を行った後、0.5℃/s以上の冷却速度にて500℃以下の冷却停止温度まで冷却する板厚70mm以上の脆性き裂伝播停止特性および溶接熱影響部靭性に優れた高強度極厚鋼板の製造方法。
[5]500℃以下の冷却停止温度まで冷却した後、板厚中央の温度がAc変態点未満の温度に焼戻す[4]に記載の脆性き裂伝播停止特性および溶接熱影響部靭性に優れた高強度極厚鋼板の製造方法。
The present invention has been completed by further studying the above knowledge. The gist of the present invention is as follows.
[1] By mass%, C: 0.03 to 0.15%, Si: 0.50% or less, Mn: 0.5 to 2.2%, P: 0.030% or less, S: 0.0005 -0.0040%, Ti: 0.005-0.030%, Al: 0.005-0.080%, N: 0.0035-0.0075%, Ca: 0.0005-0.0030%, O: 0.0040% or less, Ceq defined by the following formula (1) is 0.36 or more, and each content of Ca, O, S satisfies the following formula (2), The composition of the balance consisting of Fe and inevitable impurities, the (211) plane integration degree at the rolling surface at the center of the sheet thickness is 1.2 or more, and the (200) plane integration degree at the rolling surface on the steel sheet surface is 1 The texture has a texture which is 7 or more, and the Charpy fracture surface transition temperature vTrs at the thickness 1/4 position is −4. ° C. or less, high-strength ultra-thick steel sheet excellent in the Charpy fracture appearance transition temperature vTrs is stopped thickness 70mm or more brittle crack propagation is -80 ° C. or less characteristics and weld heat-affected zone toughness in the steel sheet surface.
Ceq = C + Mn / 6 + Cu / 15 + Ni / 15 + Cr / 5 + Mo / 5 + V / 5 (1)
Here, C, Mn, Cu, Ni, Cr, Mo and V in the formula (1) mean the content (% by mass) of each element, and 0 when not contained.
0 <{(Ca− (0.18 + 130 × Ca) × O) /1.25} /S≦0.8 (2)
However, Ca, O, and S represent the content of each component (mass%).
[2] The brittle crack propagation stop according to [1], wherein the component composition further includes one or two of B: 0.0003 to 0.0030% and V: 0.2% or less in mass%. High-strength ultra-thick steel plate with excellent properties and weld heat-affected zone toughness.
[3] The component composition is further mass%, Nb: 0.003 to 0.030%, Ni: 1.0% or less, Cu: 1.0% or less, Cr: 0.7% or less, Mo: 0.7% or less, Mg: 0.0005 to 0.0050%, Zr: 0.001 to 0.020%, REM: 0.001 to 0.020%, or one or more of them [1 ] Or a high-strength extra heavy steel plate excellent in brittle crack propagation stopping characteristics and weld heat-affected zone toughness according to [2].
[4] After heating the steel material having the component composition according to any one of [1] to [3] to a temperature of 1000 to 1200 ° C., the temperature at the center of the plate thickness is the cumulative reduction in the austenite recrystallization temperature range. The rate is 10% or more, the temperature at the center of the plate thickness is 50% or more at the austenite non-recrystallization temperature range, the surface temperature of the plate thickness is below the Ar 3 transformation point, and the temperature at the center of the plate thickness is above the Ar 3 transformation point. After carrying out hot rolling under the condition that the cumulative rolling reduction in the temperature range exceeds 20%, the sheet thickness is cooled to a cooling stop temperature of 500 ° C. or lower at a cooling rate of 0.5 ° C./s or higher. A method for producing a high-strength ultra-thick steel plate having excellent brittle crack propagation stopping characteristics and weld heat-affected zone toughness.
[5] After cooling to a cooling stop temperature of 500 ° C. or lower, tempering to a temperature at which the center of the plate thickness is less than the Ac 1 transformation point, the brittle crack propagation stop characteristic and weld heat affected zone toughness according to [4] An excellent method for producing high-strength ultra-thick steel plates.

本発明によれば、板厚方向の集合組織が適切に制御されるため、板厚70mm以上の極厚鋼板であっても、脆性き裂伝播停止特性に優れるとともに、溶接熱影響部靭性にも優れ、高強度である。また、本発明によれば、圧延条件を最適化することで工業的に極めて簡易なプロセスで、安定して高強度極厚鋼板を製造することができる。例えば、本発明の高強度極厚鋼板を、造船分野のコンテナ船、バルクキャリアーの強力甲板部構造においてハッチサイドコーミングに接合される甲板部材へ適用することにより、船舶の安全性向上に寄与し、産業上極めて有用である。   According to the present invention, since the texture in the plate thickness direction is appropriately controlled, even a very thick steel plate having a plate thickness of 70 mm or more is excellent in brittle crack propagation stopping characteristics and also in weld heat affected zone toughness. Excellent and high strength. Moreover, according to this invention, a high-strength extra heavy steel plate can be manufactured stably by an industrially very simple process by optimizing rolling conditions. For example, by applying the high-strength extra heavy steel plate of the present invention to a container ship in the shipbuilding field, a deck member joined to hatch side combing in a strong deck structure of a bulk carrier, it contributes to improving ship safety, It is extremely useful in industry.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.

<成分組成>
以下、各成分について説明する。なお、成分の含有量を表す「%」は、「質量%」を意味する。
<Ingredient composition>
Hereinafter, each component will be described. In addition, “%” representing the content of a component means “% by mass”.

C:0.03〜0.15%
C量は、構造用鋼として必要な強度を得るために下限を0.03%とする。また、島状マルテンサイトの生成量を抑えるため、上限を0.15%とする。
C: 0.03-0.15%
The lower limit of C content is 0.03% in order to obtain the strength required for structural steel. Moreover, in order to suppress the production amount of island martensite, the upper limit is made 0.15%.

Si:0.50%以下
Siは、0.50%を超えて含有すると、溶接熱影響部の靱性を劣化させる。このため、上限を0.50%とする。
Si: 0.50% or less When Si exceeds 0.50%, the toughness of the heat affected zone is deteriorated. For this reason, the upper limit is made 0.50%.

Mn:0.5〜2.2%
Mnは、母材の強度を確保するために、0.5%以上は必要である。2.2%を超えると溶接部の靭性を劣化させる。好ましくは、1.0%〜2.0%の範囲である。
Mn: 0.5 to 2.2%
Mn is required to be 0.5% or more in order to ensure the strength of the base material. If it exceeds 2.2%, the toughness of the welded portion is deteriorated. Preferably, it is in the range of 1.0% to 2.0%.

P:0.030%以下
Pは、不可避的に混入する不純物であり、0.030%を超えると、母材および溶接部の靭性を低下させる。このため、上限を0.030%とする。
P: 0.030% or less P is an impurity that is inevitably mixed. When P exceeds 0.030%, the toughness of the base material and the welded portion is lowered. For this reason, the upper limit is made 0.030%.

S:0.0005〜0.0040%
Sは、所要のCaSあるいはMnSを生成するために0.0005%以上必要であり、0.0040%を超えると母材の靱性を劣化させる。
S: 0.0005 to 0.0040%
S is required to be 0.0005% or more in order to produce required CaS or MnS, and if it exceeds 0.0040%, the toughness of the base material is deteriorated.

Ti:0.005〜0.030%
Tiは、凝固時にTiNとなって析出し、溶接熱影響部でのオーステナイトの粗大化抑制やフェライト変態核となって高靱性化に寄与する。0.005%に満たないとその効果が少なく、0.030%を超えるとTiN粒子の粗大化によって期待する効果が得られなくなる。したがって、Ti含有量は0.005〜0.030%の範囲とする。
Ti: 0.005-0.030%
Ti precipitates as TiN during solidification and contributes to high toughness by suppressing austenite coarsening in the weld heat affected zone and becoming a ferrite transformation nucleus. If less than 0.005%, the effect is small, and if it exceeds 0.030%, the expected effect cannot be obtained due to the coarsening of TiN particles. Therefore, the Ti content is in the range of 0.005 to 0.030%.

Al:0.005〜0.080%
Alは、鋼の脱酸上0.005%以上、好ましくは0.01%以上必要である。一方、0.080%を超えて含有すると母材の靱性を低下させると同時に溶接金属の靱性を劣化させる。
Al: 0.005-0.080%
Al is required to be 0.005% or more, preferably 0.01% or more in terms of deoxidation of steel. On the other hand, if the content exceeds 0.080%, the toughness of the base metal is lowered and at the same time the toughness of the weld metal is deteriorated.

N:0.0035〜0.0075%
Nは、TiNの必要量を確保するうえで必要な元素であり、0.0035%未満では十分なTiN量が得られない。一方、0.0075%を超えると溶接熱サイクルによってTiNが溶解する領域での固溶N量の増加によって靱性が著しく低下する。
N: 0.0035 to 0.0075%
N is an element necessary for securing the necessary amount of TiN, and if it is less than 0.0035%, a sufficient amount of TiN cannot be obtained. On the other hand, if it exceeds 0.0075%, the toughness is remarkably lowered due to an increase in the amount of dissolved N in the region where TiN is dissolved by the welding heat cycle.

Ca:0.0005〜0.0030%
Caは、Sの固定による靭性改善効果を有する元素である。このような効果を発揮させるには少なくとも0.0005%以上含有することが好ましい。しかしながら、0.0030%を超えて含有しても効果が飽和する。このため、本発明では、0.0005%〜0.0030%の範囲に限定する。
Ca: 0.0005 to 0.0030%
Ca is an element having an effect of improving toughness by fixing S. In order to exert such effects, it is preferable to contain at least 0.0005% or more. However, the effect is saturated even if the content exceeds 0.0030%. For this reason, in this invention, it limits to the range of 0.0005%-0.0030%.

O:0.0040%以下
Oは、凝固時に酸化物となって析出する。0.0040%を超えて含有すると、母材および溶接熱影響部の靭性が低下する。
O: 0.0040% or less O precipitates as an oxide during solidification. When it contains exceeding 0.0040%, the toughness of a base material and a welding heat affected zone will fall.

0<{(Ca−(0.18+130×Ca)×O)/1.25}/S≦0.8・・・(2)
ただし、Ca、O、Sは各成分の含有量を(質量%)を表す。
Ca、OおよびSは、0<{(Ca−(0.18+130×Ca)×O)/1.25}/S≦0.8の関係を満足するように含有させる必要がある。この場合には、CaS上にMnSが析出した複合硫化物の形態となる。{(Ca−(0.18+130×Ca)×O)/1.25}/Sの値が0.8を超えると、SがほとんどCaによって固定され、フェライト生成核として働くMnSがCaS上に析出しないため、溶接熱影響部の靭性を確保できない。
0 <{(Ca− (0.18 + 130 × Ca) × O) /1.25} /S≦0.8 (2)
However, Ca, O, and S represent the content of each component (mass%).
Ca, O, and S must be contained so as to satisfy the relationship of 0 <{(Ca− (0.18 + 130 × Ca) × O) /1.25} /S≦0.8. In this case, it becomes the form of the composite sulfide in which MnS is deposited on CaS. When the value of {(Ca− (0.18 + 130 × Ca) × O) /1.25} / S exceeds 0.8, S is almost fixed by Ca, and MnS acting as ferrite nuclei precipitates on CaS. Therefore, the toughness of the weld heat affected zone cannot be ensured.

以上が本発明の基本成分組成であり、残部はFe及び不可避的不純物である。   The above is the basic component composition of the present invention, and the balance is Fe and inevitable impurities.

本発明では、鋼板の強度靱性、溶接熱影響部靭性をさらに改善させるため、上記成分組成に加えて、B、Vの1種または2種を含有してもよい。   In the present invention, in order to further improve the strength toughness and weld heat affected zone toughness of the steel sheet, one or two of B and V may be contained in addition to the above component composition.

B:0.0003〜0.0030%
Bは、溶接熱影響部でBNを生成して、固溶Nを低減するとともにフェライト変態核として作用する元素である。このような効果を得るには0.0003%以上必要である。一方、0.0.0030%を超えて含有すると焼入れ性が増して靱性が劣化する。
B: 0.0003 to 0.0030%
B is an element that generates BN in the weld heat affected zone to reduce the solid solution N and to act as a ferrite transformation nucleus. In order to obtain such an effect, 0.0003% or more is necessary. On the other hand, if it exceeds 0.0.0030%, the hardenability increases and the toughness deteriorates.

V:0.2%以下
Vは、母材の強度・靱性の向上およびVNとしてのフェライト生成核として働く。しかしながら、0.2%を超えるとかえって靱性の低下を招く。
V: 0.2% or less V works as an improvement in the strength and toughness of the base material and as a ferrite formation nucleus as VN. However, if it exceeds 0.2%, the toughness is reduced.

さらに本発明では、特性を向上させるために、Nb、Ni、Cu、Cr、Mo、Mg、Zr、REMの1種または2種以上を含有してもよい。   Furthermore, in this invention, in order to improve a characteristic, you may contain 1 type, or 2 or more types of Nb, Ni, Cu, Cr, Mo, Mg, Zr, and REM.

Nb:0.003〜0.030%
Nbは、母材の強度・靱性および継手の強度を確保するのに有効な元素である。しかしながら、0.003%未満ではその効果が小さい。一方、0.030%を超えて含有すると、溶接熱影響部に島状マルテンサイトを形成することにより靱性が劣化する。
Nb: 0.003 to 0.030%
Nb is an element effective for ensuring the strength and toughness of the base material and the strength of the joint. However, if it is less than 0.003%, the effect is small. On the other hand, if the content exceeds 0.030%, the toughness deteriorates by forming island martensite in the weld heat affected zone.

Ni:1.0%以下
Niは、母材の高靭性を保ちつつ強度を上昇させる。しかしながら、1.0%を超えても効果が飽和するのでこの含有量を上限とする。
Ni: 1.0% or less Ni increases the strength while maintaining the high toughness of the base material. However, even if it exceeds 1.0%, the effect is saturated, so this content is made the upper limit.

Cu:1.0%以下
Cuは、Niと同様の働きを有している。しかしながら、1.0%を超えると熱間脆性を生じ、鋼板の表面性状を劣化させる。
Cu: 1.0% or less Cu has a function similar to that of Ni. However, if it exceeds 1.0%, hot brittleness is generated, and the surface properties of the steel sheet are deteriorated.

Cr:0.7%以下
Crは、母材の高強度化に有効な元素である。しかしながら、多量に添加すると靱性に悪影響を与えるために上限を0.7%とする。
Cr: 0.7% or less Cr is an element effective for increasing the strength of the base material. However, if added in a large amount, the toughness is adversely affected, so the upper limit is made 0.7%.

Mo:0.7%以下
Moは、母材の高強度化に有効な元素である。しかしながら、多量に添加すると靱性に悪影響を与えるために上限を0.7%とする。
Mo: 0.7% or less Mo is an element effective for increasing the strength of the base material. However, if added in a large amount, the toughness is adversely affected, so the upper limit is made 0.7%.

Mg:0.0005〜0.0050%
Mgは、酸化物の分散による靱性改善効果を有する元素である。このような効果を発揮させるには少なくとも0.0005%以上含有することが好ましい。しかしながら、0.0050%を超えて含有しても効果が飽和する。
Mg: 0.0005 to 0.0050%
Mg is an element having an effect of improving toughness due to dispersion of oxides. In order to exert such effects, it is preferable to contain at least 0.0005% or more. However, even if the content exceeds 0.0050%, the effect is saturated.

Zr:0.001〜0.020%
Zrは、酸化物の分散による靱性改善効果を有する元素である。このような効果を発揮させるには少なくとも0.001%以上含有することが好ましい。しかしながら、0.020%を超えて含有しても効果が飽和する。
Zr: 0.001 to 0.020%
Zr is an element having an effect of improving toughness due to dispersion of oxides. In order to exhibit such an effect, it is preferable to contain at least 0.001% or more. However, the effect is saturated even if the content exceeds 0.020%.

REM:0.001〜0.020%
REMは、酸化物の分散による靱性改善効果を有する元素である。このような効果を発揮させるには少なくとも0.001%以上含有することが好ましい。しかしながら、0.020%を超えて含有しても効果が飽和する。
REM: 0.001-0.020%
REM is an element having an effect of improving toughness due to dispersion of oxides. In order to exhibit such an effect, it is preferable to contain at least 0.001% or more. However, the effect is saturated even if the content exceeds 0.020%.

Ceq:0.36以上
本発明の高強度極厚鋼板は、各成分組成が上記含有量の範囲にあることに加えて、下記式(1)で表すCeqを0.36以上に調整する。Ceqが0.36未満では、板厚中央における圧延面での(211)面集積度を高くし難くなるとともに、極厚鋼板の強度を確保することが困難となる。なお、溶接部特性確保の点から、Ceqは0.40以下であることが好ましい。
Ceq=C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5・・・(1)
式(1)におけるC、Mn、Cu、Ni、Cr、MoおよびVは各元素の含有量(質量%)を意味し、含有しない場合は0とする。
Ceq: 0.36 or higher In addition to having each component composition in the above-mentioned range of content, the high-strength extra heavy steel sheet of the present invention adjusts Ceq represented by the following formula (1) to 0.36 or higher. If Ceq is less than 0.36, it is difficult to increase the degree of (211) plane integration at the rolling surface at the center of the plate thickness, and it is difficult to ensure the strength of the extra-thick steel plate. In addition, it is preferable that Ceq is 0.40 or less from the point of ensuring the welded portion characteristics.
Ceq = C + Mn / 6 + Cu / 15 + Ni / 15 + Cr / 5 + Mo / 5 + V / 5 (1)
C, Mn, Cu, Ni, Cr, Mo and V in the formula (1) mean the content (% by mass) of each element, and 0 when not contained.

<集合組織>
本発明の高強度極厚鋼板は、板厚中央における圧延面での(211)面集積度が1.2以上、表面(極表面から表面下1mmの範囲)における圧延面での(200)面集積度が1.7以上を満たす集合組織を有する。さらに好ましくは、表面(極表面から表面下1mmの範囲)における圧延面での(200)面集積度が2.0以上を満たすことが望ましい。上記の成分組成を採用するとともに、後述する製造条件で集合組織が上記範囲を満たすように制御することで、脆性き裂伝播停止特性に優れた高強度極厚鋼板が得られる。
<Group organization>
The high-strength ultra-thick steel sheet of the present invention has a (211) plane integration degree of 1.2 or more at the rolled surface at the center of the plate thickness, and the (200) plane at the rolled surface on the surface (range from the extreme surface to 1 mm below the surface). It has a texture with a degree of integration of 1.7 or more. More preferably, the (200) plane integration degree on the rolled surface on the surface (from the extreme surface to 1 mm below the surface) should satisfy 2.0 or more. By adopting the above component composition and controlling the texture to satisfy the above range under the manufacturing conditions described later, a high-strength heavy steel plate excellent in brittle crack propagation stopping characteristics can be obtained.

以上より、本発明では、成分組成および集合組織の制御により、板厚が70mm以上であっても、本発明の高強度極厚鋼板は、強度、溶接熱影響部靭性および脆性き裂伝播停止特性に優れるといった効果を有する。   As described above, in the present invention, even if the plate thickness is 70 mm or more by controlling the component composition and texture, the high-strength extra-thick steel plate according to the present invention has strength, weld heat affected zone toughness, and brittle crack propagation stopping characteristics. It has the effect of being excellent in.

<製造方法>
上記成分組成の溶鋼を、転炉等で溶製し、連続鋳造等で鋼素材(スラブ)とし、1000〜1200℃に加熱後、熱間圧延を行う。
<Manufacturing method>
Molten steel having the above component composition is melted in a converter or the like, made into a steel material (slab) by continuous casting or the like, heated to 1000 to 1200 ° C., and then hot-rolled.

加熱温度が1000℃未満では、オーステナイト再結晶温度域における圧延を行う時間が十分に確保できない。一方、加熱温度が1200℃超では、オーステナイト粒が粗大化し、靭性の低下を招くばかりか、酸化ロスが顕著となって、歩留が低下する。したがって、鋼素材の加熱温度は、1000〜1200℃の範囲とする。鋼板の靭性向上の観点から好ましい加熱温度の範囲は1000〜1150℃である。なお、鋼素材の温度は鋼板の板厚中央の温度を意味する。   If the heating temperature is less than 1000 ° C., sufficient time for rolling in the austenite recrystallization temperature region cannot be secured. On the other hand, when the heating temperature is higher than 1200 ° C., the austenite grains become coarse, leading to a decrease in toughness, and an oxidation loss becomes remarkable, resulting in a decrease in yield. Therefore, the heating temperature of the steel material is in the range of 1000 to 1200 ° C. A preferable heating temperature range is 1000 to 1150 ° C. from the viewpoint of improving the toughness of the steel sheet. The temperature of the steel material means the temperature at the center of the plate thickness of the steel plate.

熱間圧延においては、まず、板厚中央の温度がオーステナイト再結晶温度域での累積圧下率を10%以上とする圧延を行う。この温度域での累積圧下率を10%以上とすることにより、板厚1/4位置におけるシャルピー破面遷移温度(vTrs)が−40℃以下を達成できる。累積圧下率が10%未満であると、オーステナイトの細粒化が不十分で靭性が向上せず、板厚1/4位置におけるシャルピー破面遷移温度が−40℃以下を達成できない。上記累積圧下率の上限は特に限定されないが、上記累積圧下率は細粒化の向上効果が小さくなるため、45%以下であることが好ましい。なお、本発明の成分組成の場合、上記条件は、好ましくは、上記熱間圧延において1100〜950℃に含まれる温度域での累積圧下率が10%以上である。   In the hot rolling, first, rolling is performed so that the cumulative reduction ratio in the austenite recrystallization temperature range is 10% or more at the center of the plate thickness. By setting the cumulative rolling reduction in this temperature range to 10% or more, the Charpy fracture surface transition temperature (vTrs) at the ¼ thickness position can be −40 ° C. or less. When the cumulative rolling reduction is less than 10%, the austenite is not sufficiently refined and the toughness is not improved, and the Charpy fracture surface transition temperature at the ¼ thickness position cannot be −40 ° C. or less. The upper limit of the cumulative rolling reduction is not particularly limited, but the cumulative rolling reduction is preferably 45% or less because the effect of improving the fine particles becomes small. In the case of the component composition of the present invention, the above condition is preferably such that the cumulative rolling reduction in the temperature range included in 1100 to 950 ° C. in the hot rolling is 10% or more.

さらに、板厚中央の温度がオーステナイト未再結晶温度域での累積圧下率が50%以上の圧延を行う。この温度域での累積圧下率を50%以上とすることにより、板厚中央における圧延面での(211)面集積度が1.2以上となる集合組織が得られる。逆に、この温度域での累積圧下率が50%未満であると、板厚中央における圧延面での(211)面集積度が1.2以上となる集合組織が得られない。上記累積圧下率の上限は特に限定されないが、圧延能率を阻害しないように75%以下であることが好ましい。なお、本発明の成分組成の場合、上記条件は、好ましくは、未再結晶域圧延の板厚中央の温度は950〜700℃であり、集合組織形成の観点から、上限は850℃以下がより好ましく、上限はさらに好ましくは830℃以下であり、この温度域での累積圧下率が50%以上である。   Further, rolling is performed such that the cumulative reduction ratio is 50% or more when the temperature at the center of the plate thickness is in the austenite non-recrystallization temperature range. By setting the cumulative rolling reduction in this temperature range to 50% or more, a texture in which the (211) plane integration degree on the rolled surface at the center of the sheet thickness is 1.2 or more is obtained. On the other hand, when the cumulative rolling reduction in this temperature range is less than 50%, a texture in which the (211) plane integration degree on the rolled surface at the sheet thickness center is 1.2 or more cannot be obtained. The upper limit of the cumulative rolling reduction is not particularly limited, but is preferably 75% or less so as not to inhibit the rolling efficiency. In the case of the component composition of the present invention, the above conditions are preferably such that the temperature at the center of the thickness of the non-recrystallization zone rolling is 950 to 700 ° C., and from the viewpoint of texture formation, the upper limit is more than 850 ° C. Preferably, the upper limit is more preferably 830 ° C. or less, and the cumulative rolling reduction in this temperature range is 50% or more.

さらに、本発明では、熱間圧延において、板厚表面温度がAr変態点以下かつ板厚中央の温度がAr変態点以上の温度域にあるときの累積圧下率が20%超えとする。本発明では重要な要件であり、この条件で熱間圧延を行うことにより、鋼板表面における圧延面での(200)面集積度を発達させることができる。この熱間圧延時には鋼板表面は2相域であり、同時に、板厚中央はオーステナイト未再結晶域の温度域である。このような状態で累積圧下率が20%超えの圧延を行うことにより、表面近傍と板厚中央の集合組織を同時に別々の集合組織にすることが可能となる。すなわち、表面近傍は(200)面の集合組織が発達し、板厚中央は(211)面の集合組織が発達する。ここで、表面近傍の(200)面の集合組織も、板厚中央の(211)面の集合組織も鋼板長手方向への亀裂の進展が起こりにくい集合組織であり、さらにこれらの集合組織は亀裂が進展する方向が異なる。このため、これらの集合組織の境界では亀裂は進展方向が変わらざるを得ず、集合組織の境界がさらに亀裂の進展の障害となる。したがって、本発明では、単に亀裂の進展しにくい集合組織で揃えるだけでなく、亀裂が進展する方向が異なる別々の集合組織とすることにより、さらに亀裂進展の障害が生じ、その結果、亀裂伝播停止特性が向上する。 Furthermore, in the present invention, in hot rolling, the cumulative rolling reduction when the plate thickness surface temperature is below the Ar 3 transformation point and the temperature at the center of the plate thickness is in the temperature range above the Ar 3 transformation point is set to exceed 20%. In the present invention, which is an important requirement, by performing hot rolling under these conditions, the (200) plane integration degree on the rolled surface on the steel sheet surface can be developed. At the time of this hot rolling, the surface of the steel sheet is a two-phase region, and at the same time, the center of the plate thickness is the temperature region of the austenite non-recrystallized region. By rolling in such a state that the cumulative reduction ratio exceeds 20%, the textures near the surface and in the center of the plate thickness can be made into separate textures simultaneously. That is, the (200) plane texture develops in the vicinity of the surface, and the (211) plane texture develops in the center of the plate thickness. Here, both the texture of the (200) plane near the surface and the texture of the (211) plane in the center of the plate thickness are the textures in which cracks hardly propagate in the longitudinal direction of the steel sheet. The direction of progress is different. For this reason, the growth direction of cracks must be changed at the boundary between these textures, and the boundary between textures further hinders the progress of cracks. Therefore, in the present invention, not only the textures in which cracks do not easily progress are aligned, but also separate textures in which the cracks propagate in different directions cause further crack propagation failure, and as a result, crack propagation is stopped. Improved characteristics.

そしてこの条件で熱間圧延を行うことにより、鋼板表面における圧延面での(200)面集積度が1.7以上、鋼板表面におけるシャルピー破面遷移温度(vTrs)が−80℃以下を得られる。板厚表面がこの温度域のときに累積圧下率が20%以下であると、所望の集合組織およびvTrsが得られない。ここで、Ar変態点は以下の式で表す。
Ar=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo
上記式中の元素記号は各元素の含有量(質量%)を意味し、含まないものは0とする。
なお、表面の温度がAr変態点以下の中で圧延に好適な温度域はAr変態点〜(Ar変態点−80)℃である。また、板厚中央の温度がAr変態点以上の中で、圧延に好適な温度域は(Ar変態点+80)℃〜Ar変態点である。
And by performing hot rolling under these conditions, the (200) plane integration degree on the rolled surface on the steel sheet surface is 1.7 or more, and the Charpy fracture surface transition temperature (vTrs) on the steel sheet surface is −80 ° C. or less. . When the plate thickness surface is in this temperature range and the cumulative rolling reduction is 20% or less, the desired texture and vTrs cannot be obtained. Here, the Ar 3 transformation point is represented by the following formula.
Ar 3 = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo
The element symbol in the above formula means the content (% by mass) of each element, and 0 is not included.
Incidentally, a suitable temperature range to the rolling in the temperature below Ar 3 transformation point of the surface is Ar 3 transformation point ~ (Ar 3 transformation point -80) ° C.. Further, in the temperature of the mid-thickness is more than Ar 3 transformation point, a suitable temperature range in the rolling is (Ar 3 transformation point +80) ° C. to Ar 3 transformation point.

また、本発明における熱間圧延では、上記規定した温度域外での圧延を制限するものではなく、少なくとも、上記規定する温度域において規定の累積圧下率の圧下が行われていればよい。   Further, in the hot rolling in the present invention, rolling outside the specified temperature range is not limited, and it is sufficient that the specified cumulative reduction rate is reduced at least in the specified temperature range.

圧延が終了した鋼板は、0.5℃/s以上の冷却速度にて500℃以下の冷却停止温度まで冷却する。冷却速度が0.5℃/s未満の場合は、板厚中央位置における圧延面での(211)面集積度が1.2以上を確保することができない。また、冷却停止温度が500℃以下を満足しない場合、所望の強度および集合組織を得ることができない。   The rolled steel sheet is cooled to a cooling stop temperature of 500 ° C. or lower at a cooling rate of 0.5 ° C./s or higher. When the cooling rate is less than 0.5 ° C./s, the (211) plane integration degree on the rolled surface at the plate thickness center position cannot be ensured to be 1.2 or more. Further, when the cooling stop temperature does not satisfy 500 ° C. or less, the desired strength and texture cannot be obtained.

さらに、500℃以下の冷却停止温度まで冷却した後に焼戻処理を行う場合は、板厚中央の温度がAc変態点未満で行うことが必要である。焼戻処理がAc変態点以上の場合には、圧延時に発達させた集合組織を失うこととなるからである。ここで、Ac変態点は以下の式で表す。
Ac=751−26.6C+17.6Si−11.6Mn−169Al−23Cu−23Ni+24.1Cr+22.5Mo+233Nb−39.7V−5.7Ti−895B式中の元素記号は各元素の含有量(質量%)を意味し、含まないものは0とする。
Furthermore, when tempering is performed after cooling to a cooling stop temperature of 500 ° C. or lower, it is necessary that the temperature at the center of the plate thickness is less than the Ac 1 transformation point. This is because when the tempering treatment is at least the Ac 1 transformation point, the texture developed during rolling is lost. Here, the Ac 1 transformation point is represented by the following equation.
Ac 1 = 751-26.6C + 17.6Si-11.6Mn-169Al-23Cu-23Ni + 24.1Cr + 22.5Mo + 233Nb-39.7V-5.7Ti-895B The element symbol in the formula represents the content (mass%) of each element. Means and does not contain 0.

なお、以上の説明において、板厚中央の温度は、放射温度計で測定した鋼板表面温度から、伝熱計算により求める。また、圧延後の冷却条件における温度条件は、板厚中央の温度とし、冷却速度も板厚中央の温度に基づいて算出された平均冷却速度を意味する。   In the above description, the temperature at the center of the plate thickness is obtained by heat transfer calculation from the steel plate surface temperature measured with a radiation thermometer. Further, the temperature condition in the cooling condition after rolling is the temperature at the center of the plate thickness, and the cooling rate is also an average cooling rate calculated based on the temperature at the center of the plate thickness.

次に、本発明の実施例について説明する。   Next, examples of the present invention will be described.

表1に示す各成分組成の溶鋼を、転炉で溶製し、連続鋳造法で鋼素材とした。板厚を70〜100mmに熱間圧延後、冷却を行い表2に示す供試鋼を得た。表2に、加熱条件、熱間圧延条件、冷却条件を示す。また、冷却後に焼戻しを行ったものについては焼戻温度も示した。   Molten steel having each component composition shown in Table 1 was melted in a converter and made into a steel material by a continuous casting method. After hot rolling to a plate thickness of 70 to 100 mm, cooling was performed to obtain test steels shown in Table 2. Table 2 shows heating conditions, hot rolling conditions, and cooling conditions. Moreover, the tempering temperature was also shown about what tempered after cooling.

Figure 0006477743
Figure 0006477743

Figure 0006477743
Figure 0006477743

得られた鋼板について、板厚1/4位置より、Φ14mmのJIS 14A号試験片を採取し、引張試験を行い、降伏強度(YS)、引張強さ(TS)を測定した。YSが390MPa以上、TSが510MPa以上のものを良好と評価した。   About the obtained steel plate, Φ14 mm JIS No. 14A test piece was collected from the position of the thickness ¼, a tensile test was performed, and a yield strength (YS) and a tensile strength (TS) were measured. A sample having a YS of 390 MPa or more and a TS of 510 MPa or more was evaluated as good.

板厚の1/4位置及び鋼板表面よりJIS 4号衝撃試験片を試験片の長手軸の方向が圧延方向と平行となるように採取し、シャルピー衝撃試験を行って、シャルピー破面遷移温度(vTrs)を求めた。板厚1/4位置のvTrsが−40℃以下、鋼板表面のvTrsが−80℃以下のものを靭性が良好であると評価とした。   A JIS No. 4 impact test specimen was taken from the 1/4 position of the plate thickness and the steel sheet surface so that the longitudinal axis direction of the test specimen was parallel to the rolling direction, and subjected to a Charpy impact test. vTrs) was determined. When the vTrs at the ¼ position of the plate thickness was −40 ° C. or lower and the vTrs on the steel plate surface was −80 ° C. or lower, the toughness was evaluated as good.

また、鋼板の集合組織を評価するため、板厚中央における圧延面での(211)面集積度および鋼板表面(鋼板表面とは、極表面から表面下1mmの範囲をいう。)における圧延面での(200)面集積度をそれぞれ測定した。   Further, in order to evaluate the texture of the steel plate, the (211) plane integration degree at the rolling surface at the center of the plate thickness and the rolling surface on the steel plate surface (the steel plate surface means a range from the extreme surface to 1 mm below the surface). The (200) plane integration degree was measured.

面集積度は、X線回折装置(理学電機株式会社製)を使用し、Mo線源を用いて測定を行った。   The degree of surface integration was measured using an X-ray diffractometer (manufactured by Rigaku Corporation) and using a Mo ray source.

次に、脆性き裂伝播停止特性を評価するため、温度勾配型ESSO試験を行い、−10℃におけるKca値(以下、Kca(−10℃)N/mm1.5とも記す。)を求めた。Kca(−10℃)が6000N/mm1.5以上のものを良好とした。 Next, in order to evaluate the brittle crack propagation stopping property, a temperature gradient type ESSO test was performed to obtain a Kca value at -10 ° C. (hereinafter also referred to as Kca (−10 ° C.) N / mm 1.5 ). . A Kca (−10 ° C.) of 6000 N / mm 1.5 or more was considered good.

さらに、溶接熱影響部の靭性(HAZ靭性)を評価するため、大入熱溶接(450〜700kJ/cm)のエレクトロガス溶接(EGW)によって継手を作製した後、板厚方向の表面と裏面1mm位置についてボンド部にノッチを入れたシャルピー試験片を用いて、試験温度‐20℃での吸収エネルギーvE−20を求めた。試験温度−20℃での吸収エネルギーvE−20の6本の平均値が60J以上を良好と評価した。 Furthermore, in order to evaluate the toughness (HAZ toughness) of the weld heat affected zone, after producing a joint by electrogas welding (EGW) of high heat input welding (450 to 700 kJ / cm), the surface in the plate thickness direction and the back surface 1 mm Absorption energy vE- 20 at a test temperature of −20 ° C. was determined using a Charpy test piece with a notch in the bond portion at the position. Six average values of absorbed energy vE- 20 at a test temperature of −20 ° C. were evaluated as 60 J or more as good.

表3にこれらの試験結果を示す。   Table 3 shows the results of these tests.

Figure 0006477743
Figure 0006477743

表3に示された結果から、本発明例は、板厚中央における圧延面での(211)面集積度が1.2以上で、かつ鋼板表面における圧延面での(200)面集積度が1.7以上の集合組織を有し、板厚1/4位置におけるシャルピー破面遷移温度vTrsが−40℃以下および鋼板表面におけるシャルピー破面遷移温度vTrsが−80℃以下で靭性に優れるとともに、Kca(−10℃)が6000N/mm1.5以上と優れた脆性き裂伝播停止特性が得られた。また、本発明例は、溶接熱影響部の吸収エネルギーvE−20が60J以上であり、溶接熱影響部の靭性にも優れている。 From the results shown in Table 3, the example of the present invention has a (211) plane integration degree of 1.2 or more at the rolling surface at the center of the plate thickness and a (200) plane integration degree at the rolling surface of the steel sheet surface. It has a texture of 1.7 or more, and has excellent toughness at a Charpy fracture surface transition temperature vTrs of -40 ° C. or lower at the plate thickness 1/4 position and a Charpy fracture surface transition temperature vTrs of −80 ° C. or lower at the steel plate surface, An excellent brittle crack propagation stopping property was obtained with a Kca (−10 ° C.) of 6000 N / mm 1.5 or more. Moreover, the example of this invention is 60J or more of the absorbed energy vE- 20 of a welding heat affected zone, and is excellent also in the toughness of a weld heat affected zone.

一方、本発明を外れる比較例は、YS、TS、集合組織、vTrs、vE−20のいずれかを満足しない。また、Kca(−10℃)の値はすべて満足しない結果となった。 On the other hand, the comparative example outside the present invention does not satisfy any of YS, TS, texture, vTrs, and vE- 20 . Further, all the values of Kca (−10 ° C.) were not satisfied.

Claims (5)

質量%で、C:0.03〜0.15%、Si:0.50%以下、Mn:0.5〜2.2%、P:0.030%以下、S:0.0005〜0.0040%、Ti:0.005〜0.030%、Al:0.005〜0.080%、N:0.0035〜0.0075%、Ca:0.0005〜0.0030%、O:0.0040%以下を含有し、下記式(1)で定義されるCeqが0.36以上であり、かつ、Ca、O、Sの各含有量は、下記式(2)を満たし、残部がFeおよび不可避的不純物からなる成分組成と、
板厚中央における圧延面での(211)面集積度が1.2以上であり、鋼板表面における圧延面での(200)面集積度が1.7以上である集合組織を有し、
板厚1/4位置におけるシャルピー破面遷移温度vTrsが−40℃以下であり、
鋼板表面におけるシャルピー破面遷移温度vTrsが−80℃以下である板厚70mm以上の脆性き裂伝播停止特性および溶接熱影響部靭性に優れた高強度極厚鋼板。
Ceq=C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5・・・(1)
ここで、式(1)におけるC、Mn、Cu、Ni、Cr、MoおよびVは各元素の含有量(質量%)を意味し、含有しない場合は0とする。
0<{(Ca−(0.18+130×Ca)×O)/1.25}/S≦0.8・・・(2)
ただし、Ca、O、Sは各成分の含有量を(質量%)を表す。
In mass%, C: 0.03-0.15%, Si: 0.50% or less, Mn: 0.5-2.2%, P: 0.030% or less, S: 0.0005-0. 0040%, Ti: 0.005 to 0.030%, Al: 0.005 to 0.080%, N: 0.0035 to 0.0075%, Ca: 0.0005 to 0.0030%, O: 0 .0040% or less, Ceq defined by the following formula (1) is 0.36 or more, and each content of Ca, O, and S satisfies the following formula (2), and the balance is Fe And a component composition consisting of inevitable impurities,
The (211) plane integration degree at the rolling surface at the sheet thickness center is 1.2 or more, and the (200) plane integration degree at the rolling surface on the steel sheet surface has a texture of 1.7 or more,
Charpy fracture surface transition temperature vTrs at a thickness of 1/4 position is −40 ° C. or lower,
A high-strength extra-thick steel plate excellent in brittle crack propagation stopping characteristics and weld heat-affected zone toughness with a plate thickness of 70 mm or more with a Charpy fracture surface transition temperature vTrs of −80 ° C. or less on the steel plate surface.
Ceq = C + Mn / 6 + Cu / 15 + Ni / 15 + Cr / 5 + Mo / 5 + V / 5 (1)
Here, C, Mn, Cu, Ni, Cr, Mo and V in the formula (1) mean the content (% by mass) of each element, and 0 when not contained.
0 <{(Ca− (0.18 + 130 × Ca) × O) /1.25} /S≦0.8 (2)
However, Ca, O, and S represent the content of each component (mass%).
前記成分組成は、さらに質量%で、B:0.0003〜0.0030%、V:0.2%以下の1種または2種を含有する請求項1に記載の脆性亀裂伝播停止特性および溶接熱影響部靭性に優れた高強度極厚鋼板。   2. The brittle crack propagation stop property and welding according to claim 1, wherein the component composition further includes one or two of B: 0.0003 to 0.0030% and V: 0.2% or less in terms of mass%. High-strength ultra-thick steel plate with excellent heat-affected zone toughness. 前記成分組成は、さらに質量%で、Nb:0.003〜0.030%、Ni:1.0%以下、Cu:1.0%以下、Cr:0.7%以下、Mo:0.7%以下、Mg:0.0005〜0.0050%、Zr:0.001〜0.020%、REM:0.001〜0.020%の1種または2種以上を含有する請求項1または2に記載の脆性き裂伝播停止特性および溶接熱影響部靭性に優れた高強度極厚鋼板。   The component composition is further in mass%, Nb: 0.003 to 0.030%, Ni: 1.0% or less, Cu: 1.0% or less, Cr: 0.7% or less, Mo: 0.7 % Or less, Mg: 0.0005 to 0.0050%, Zr: 0.001 to 0.020%, REM: 0.001 to 0.020%, or one or more thereof. A high-strength ultra-thick steel plate with excellent brittle crack propagation stopping characteristics and weld heat-affected zone toughness as described in 1. 請求項1〜3のいずれかに記載の成分組成を有する鋼素材を、1000〜1200℃の温度に加熱した後、
板厚中央の温度がオーステナイト再結晶温度域での累積圧下率が10%以上、板厚中央の温度がオーステナイト未再結晶温度域での累積圧下率が50%以上、板厚表面温度がAr変態点以下かつ板厚中央の温度がAr変態点以上の温度域のときの累積圧下率が20%超えの条件で熱間圧延を行った後、
0.5℃/s以上の冷却速度にて500℃以下の冷却停止温度まで冷却する、板厚中央における圧延面での(211)面集積度が1.2以上であり、鋼板表面における圧延面での(200)面集積度が1.7以上である集合組織を有し、
板厚1/4位置におけるシャルピー破面遷移温度vTrsが−40℃以下であり、
鋼板表面におけるシャルピー破面遷移温度vTrsが−80℃以下である板厚70mm以上の脆性き裂伝播停止特性および溶接熱影響部靭性に優れた高強度極厚鋼板の製造方法。
After heating the steel raw material which has the component composition in any one of Claims 1-3 to the temperature of 1000-1200 degreeC,
The temperature at the center of the plate thickness is 10% or more at the austenite recrystallization temperature range, the temperature at the center of the plate thickness is 50% or more at the austenite non-recrystallization temperature region, and the surface thickness of the plate is Ar 3. after the temperature below and mid-thickness transformation was carried out hot rolling under the conditions of cumulative rolling reduction exceeds 20% at the temperature range of not lower than Ar 3 transformation point,
Cooling to a cooling stop temperature of 500 ° C. or less at a cooling rate of 0.5 ° C./s or more , the (211) plane integration degree at the rolled surface in the center of the sheet thickness is 1.2 or more, and the rolled surface on the steel sheet surface Having a texture with a (200) plane integration degree of 1.7 or more,
Charpy fracture surface transition temperature vTrs at a thickness of 1/4 position is −40 ° C. or lower,
A method for producing a high-strength extra-thick steel plate excellent in brittle crack propagation stopping characteristics and weld heat-affected zone toughness having a plate thickness of 70 mm or more with a Charpy fracture surface transition temperature vTrs of −80 ° C. or less on the steel plate surface .
500℃以下の冷却停止温度まで冷却した後、板厚中央の温度がAc変態点未満の温度に焼戻す請求項4に記載の脆性き裂伝播停止特性および溶接熱影響部靭性に優れた高強度極厚鋼板の製造方法。 The steel sheet is cooled to a cooling stop temperature of 500 ° C. or lower, and then tempered to a temperature below the Ac 1 transformation point at the center of the plate thickness. A manufacturing method of high strength heavy steel sheet.
JP2017031036A 2016-03-07 2017-02-22 High-strength ultra-thick steel plate excellent in brittle crack propagation stopping characteristics and weld heat-affected zone toughness and method for producing the same Active JP6477743B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016043258 2016-03-07
JP2016043258 2016-03-07

Publications (2)

Publication Number Publication Date
JP2017160537A JP2017160537A (en) 2017-09-14
JP6477743B2 true JP6477743B2 (en) 2019-03-06

Family

ID=59853078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017031036A Active JP6477743B2 (en) 2016-03-07 2017-02-22 High-strength ultra-thick steel plate excellent in brittle crack propagation stopping characteristics and weld heat-affected zone toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP6477743B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6969601B2 (en) * 2018-12-07 2021-11-24 Jfeスチール株式会社 Steel plate and its manufacturing method
CN114934234B (en) * 2022-06-20 2023-02-03 广东韶钢松山股份有限公司 Method for controlling fracture of ship plate steel tensile sample not to be layered

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5064150B2 (en) * 2006-12-14 2012-10-31 新日本製鐵株式会社 High strength steel plate with excellent brittle crack propagation stopping performance
JP4946512B2 (en) * 2007-02-28 2012-06-06 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5477578B2 (en) * 2010-04-01 2014-04-23 新日鐵住金株式会社 Thick high-strength steel sheet excellent in brittle crack propagation stopping characteristics and method for producing the same
JP5900312B2 (en) * 2011-12-27 2016-04-06 Jfeスチール株式会社 High-strength thick steel plate with excellent toughness and brittle crack propagation stopping characteristics for high heat input welds and its manufacturing method
CN105102650B (en) * 2013-03-26 2017-10-24 杰富意钢铁株式会社 The Large Heat Input Welding high-strength steel plate and its manufacture method of excellent in brittle-cracking propagation stopping characteristics

Also Published As

Publication number Publication date
JP2017160537A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP5304925B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5146198B2 (en) High-strength thick steel plate with excellent toughness and brittle crack propagation stopping characteristics for high heat input welds and its manufacturing method
JP5733425B2 (en) High-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5434145B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5598617B1 (en) High strength thick steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5900312B2 (en) High-strength thick steel plate with excellent toughness and brittle crack propagation stopping characteristics for high heat input welds and its manufacturing method
JP5304924B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP2018024905A (en) Structural high strength thick steel plate excellent in brittle crack arrest property and production method thereof
JP2008045174A (en) High-strength thick steel plate for structural purpose having excellent brittle crack propagation property and its production method
JP2008214652A (en) High strength thick steel plate for structural purpose having excellent brittle crack propagation arrest property, and method for producing the same
JP5181496B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JPWO2014175122A1 (en) H-section steel and its manufacturing method
JP5061649B2 (en) Thick steel plate with a thickness of 50 mm or more with excellent brittle crack propagation stopping characteristics
JP6112265B2 (en) High-strength extra heavy steel plate and method for producing the same
JP6477743B2 (en) High-strength ultra-thick steel plate excellent in brittle crack propagation stopping characteristics and weld heat-affected zone toughness and method for producing the same
JP5733424B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5812193B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5949113B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5146043B2 (en) High-strength thick steel plate with excellent toughness and brittle crack propagation stopping characteristics for high heat input welds and its manufacturing method
JP6338022B2 (en) High-strength extra-thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5838801B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP6504131B2 (en) High strength thick steel plate and method of manufacturing the same
JP5949114B2 (en) Manufacturing method of structural high strength thick steel plate with excellent brittle crack propagation stopping characteristics
WO2018030171A1 (en) High-strength thick steel plate and production method therefor
JP6274375B1 (en) High strength thick steel plate and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171024

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6477743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250