JPWO2014175122A1 - H-section steel and its manufacturing method - Google Patents
H-section steel and its manufacturing method Download PDFInfo
- Publication number
- JPWO2014175122A1 JPWO2014175122A1 JP2015513696A JP2015513696A JPWO2014175122A1 JP WO2014175122 A1 JPWO2014175122 A1 JP WO2014175122A1 JP 2015513696 A JP2015513696 A JP 2015513696A JP 2015513696 A JP2015513696 A JP 2015513696A JP WO2014175122 A1 JPWO2014175122 A1 JP WO2014175122A1
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- section steel
- content
- flange
- toughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 106
- 239000010959 steel Substances 0.000 title claims abstract description 106
- 238000004519 manufacturing process Methods 0.000 title claims description 41
- 238000005096 rolling process Methods 0.000 claims abstract description 95
- 229910001562 pearlite Inorganic materials 0.000 claims abstract description 28
- 239000000126 substance Substances 0.000 claims abstract description 15
- 238000009826 distribution Methods 0.000 claims abstract description 14
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 14
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 13
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 238000001816 cooling Methods 0.000 claims description 34
- 238000010438 heat treatment Methods 0.000 claims description 23
- 238000005098 hot rolling Methods 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 description 34
- 230000000694 effects Effects 0.000 description 17
- 238000003466 welding Methods 0.000 description 14
- 239000010953 base metal Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 229910000734 martensite Inorganic materials 0.000 description 10
- 229910052761 rare earth metal Inorganic materials 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 238000010276 construction Methods 0.000 description 6
- 150000001247 metal acetylides Chemical class 0.000 description 6
- 229910052735 hafnium Inorganic materials 0.000 description 5
- 229910052726 zirconium Inorganic materials 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000009749 continuous casting Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910001567 cementite Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000009863 impact test Methods 0.000 description 3
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000004881 precipitation hardening Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- -1 cementite Chemical class 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C3/06—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/02—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
- B21B1/026—Rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0068—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C2003/0404—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
- E04C2003/0408—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section
- E04C2003/0421—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section comprising one single unitary part
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C2003/0404—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
- E04C2003/0443—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
- E04C2003/0452—H- or I-shaped
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Architecture (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Heat Treatment Of Steel (AREA)
- Metal Rolling (AREA)
Abstract
このH形鋼は、所定の化学成分を有し、Nb及びBの含有量が、Nb+125×B≧0.075を満足し、フランジの板厚が12〜40mmであり、前記フランジの板厚中心部、かつ、前記フランジの幅の1/4部で、圧延方向に垂直な断面の金属組織が、分布密度が3.2×10−3個/μm2以下のパーライトを含み、残部がフェライト及びベイナイトからなる。This H-section steel has a predetermined chemical composition, the content of Nb and B satisfies Nb + 125 × B ≧ 0.075, the plate thickness of the flange is 12 to 40 mm, and the plate thickness center of the flange And the metal structure of the cross section perpendicular to the rolling direction includes pearlite having a distribution density of 3.2 × 10 −3 pieces / μm 2 or less, with the balance being ferrite and bainite. Consists of.
Description
本発明は、低温環境で使用される建造物の構造部材などに用いられるH形鋼及びその製造方法に関し、特に溶接熱影響部の靱性に優れた高強度低温用H形鋼及びその製造方法に関する。
本願は、2013年04月26日に、日本に出願された特願2013−094589号に基づき優先権を主張し、その内容をここに援用する。The present invention relates to an H-section steel used for a structural member of a building used in a low-temperature environment and a manufacturing method thereof, and more particularly to a high-strength low-temperature H-section steel excellent in toughness of a weld heat affected zone and a manufacturing method thereof. .
This application claims priority based on Japanese Patent Application No. 2013-094589 for which it applied to Japan on April 26, 2013, and uses the content here.
近年の世界的に旺盛なエネルギー需要を背景に、寒冷地におけるエネルギー関連設備の構造物等の建造需要が急速に増加している。それらの設備には、例えば、FPSO(Floating Production Storage and Offloading System: 浮体式海洋石油・ガス生産貯蔵積出設備)、即ち洋上で、石油・ガスを生産し、石油・ガスを設備内タンクに貯蔵し、直接輸送タンカへの積出しを行う設備等がある。これらの構造物の建造に使用されるH形鋼には、優れた低温靭性が要求される。 Due to the recent global demand for energy, there is a rapid increase in demand for construction of energy-related equipment structures in cold regions. These facilities include, for example, FPSO (Floating Production Storage and Offloading System), that is, offshore oil and gas production and storage facilities, that is, producing oil and gas on the ocean and storing oil and gas in tanks in the facility. However, there are facilities to ship directly to the transport tanker. The H-section steel used for the construction of these structures is required to have excellent low temperature toughness.
従来から、H形鋼は一般的な建築構造物に使用されており、例えば特許文献1〜3には、靭性や耐火性に優れたH形鋼が提案されている。一般的な建築構造物では、0℃程度でのシャルピー吸収エネルギーが求められるが、寒冷地においてエネルギー関連設備に使用されるH形鋼では、例えば、−40℃でのシャルピー吸収エネルギーが要求される。さらに、合理的に低温靭性を保証するためには、シャルピー衝撃試験特性(吸収エネルギー)だけではなく、−10℃でのCTOD値を規定することが必要である。 Conventionally, H-section steel has been used for general building structures. For example, Patent Documents 1 to 3 propose H-section steels having excellent toughness and fire resistance. In general building structures, Charpy absorbed energy at about 0 ° C. is required, but for H-section steel used for energy-related equipment in cold regions, for example, Charpy absorbed energy at −40 ° C. is required. . Furthermore, in order to guarantee low temperature toughness reasonably, it is necessary to specify not only Charpy impact test characteristics (absorbed energy) but also a CTOD value at -10 ° C.
CTOD(Crack Tip Opening Displacement:き裂先端開口変位)試験は欠陥が存在する構造物の破壊靭性を評価する試験の一つである。き裂を有する試験片を所定の温度に保持して曲げ応力を加えていくと、き裂が急速に進展する現象「不安定破壊」が起きる。CTOD試験により、このき裂が急速に進展する直前のき裂先端開口量(CTOD値)を測定する。CTOD値とシャルピー吸収エネルギーとは、必ずしも良い相関が得られない。 A CTOD (crack tip opening displacement) test is one of tests for evaluating the fracture toughness of a structure in which a defect exists. When a test piece having a crack is held at a predetermined temperature and bending stress is applied, a phenomenon "unstable fracture" in which the crack progresses rapidly occurs. By the CTOD test, the crack tip opening amount (CTOD value) immediately before the crack progresses rapidly is measured. A good correlation is not always obtained between the CTOD value and the Charpy absorbed energy.
連続鋳造によって得られた鋳片を熱間圧延し、H形鋼を製造する場合、結晶粒の微細化によって靭性を確保することが困難になる。これは、連続鋳造設備で製造可能な鋳片の最大厚みに限界があり、圧延の圧下比(製品厚と鋳片厚との比)が十分に確保できないためである。更に、製品の寸法精度を高めるためには、高温で圧延を施すことが有効であるが、高温で圧延を行うと、板厚の厚いフランジ部やフィレット部では特に圧延温度が高くなり、冷却速度は遅くなる。その結果、フランジ部やフィレット部では、結晶粒が粗大化し、靱性の低下が懸念される。圧延終了後に加速冷却を施せば、ある程度の細粒組織を得ることは可能ではあるが、圧延後の冷却設備を導入することは多大なコストが必要となる。これらの低温靭性要求に応えるために、本発明者らの一部は、特許文献4において、Nb及びBを添加した、低温靭性に優れたH形鋼及びその製造方法を先に提案した。 When a slab obtained by continuous casting is hot-rolled to produce an H-shaped steel, it becomes difficult to ensure toughness by refining crystal grains. This is because there is a limit to the maximum thickness of a slab that can be manufactured by a continuous casting facility, and a rolling reduction ratio (ratio of product thickness to slab thickness) cannot be secured sufficiently. Furthermore, in order to increase the dimensional accuracy of the product, it is effective to perform rolling at a high temperature. However, if the rolling is performed at a high temperature, the rolling temperature becomes particularly high in the flange portion and fillet portion where the plate thickness is thick, and the cooling rate is increased. Will be late. As a result, in the flange part and the fillet part, the crystal grains are coarsened and there is a concern that the toughness is lowered. If accelerated cooling is performed after the end of rolling, it is possible to obtain a certain degree of fine grain structure, but introducing a cooling facility after rolling requires a great deal of cost. In order to meet these low-temperature toughness requirements, some of the present inventors previously proposed an H-section steel with excellent low-temperature toughness added with Nb and B and a manufacturing method thereof in Patent Document 4.
従来の低温用H形鋼は、母材の特性には問題なかった。しかしながら、溶接熱影響部(HAZ)の低温靭性については、十分に検討されていなかった。本発明は、寒冷地の構造物で使用可能な、高強度及び優れた低温靭性を有し、更には溶接性及び溶接熱影響部の靭性(HAZ靱性)にも優れるH形鋼、及び多大な冷却設備を必要とせずに前記H形鋼を製造するH形鋼の製造方法を提供することを課題とする。なお、本発明のH形鋼は、鋼板を溶接して形成されるビルドアップH形鋼ではなく、熱間圧延、特にユニバーサル圧延によって成形され、焼入れや焼戻しなどの調質処理を必要としない、非調質の圧延H形鋼である。 Conventional low-temperature H-section steel has no problem in the characteristics of the base material. However, the low temperature toughness of the weld heat affected zone (HAZ) has not been sufficiently studied. The present invention is an H-section steel that has high strength and excellent low-temperature toughness that can be used in structures in cold regions, and also has excellent weldability and weld heat-affected zone toughness (HAZ toughness). It aims at providing the manufacturing method of the H-section steel which manufactures the said H-section steel, without requiring cooling equipment. The H-section steel of the present invention is not a build-up H-section steel formed by welding steel plates, but is formed by hot rolling, particularly universal rolling, and does not require tempering treatment such as quenching or tempering. Non-tempered rolled H-section steel.
本発明者らは、上記課題を解決すべく鋭意研究を行った。その結果、パーライトやセメンタイトのような炭化物から構成される組織を起点とする破壊機構による靭性低下が著しいことが分かった。そのため、炭化物を起点とする破壊に着目し、低温靭性を向上させるために、脆性破壊の起点となる炭化物の生成を抑制する方法について検討した。検討の結果、本発明者らは、炭化物の生成を抑制するために鋼中の炭素を低減し、かつ、強度確保に必要なベイナイトを生成させるために、Nb、B等の合金元素を適正量含有させることで、強度を低下させずにH形鋼の低温靭性を向上させることに成功した。さらに、溶接熱影響部の低温靭性を、溶接前の母材と同等の水準にするためには、母材に存在するパーライト組織の分率を抑制することが重要であることを知見した。本発明者らは、特に、Nb及びBの含有量を適正な範囲に制御することにより、C含有量を低減しても強度を確保することが可能であること、破壊の起点となる炭化物の生成が抑制されて、母材靭性及び溶接熱影響部靭性が向上することを見出した。
さらに、本発明者らは、靭性の良好な細粒組織を得るためには、フランジの表面温度を厳格に制御して圧延することが極めて有効であることを見出した。具体的には、仕上圧延で、フランジの表面温度が870℃以下770℃以上の温度範囲で圧延を1パス以上行うことが必要であることを知見した。
本発明は、これらの知見に基づいて完成した。本発明のH形鋼は、脆性破壊の起点となる炭化物の生成を極限まで抑えて、母材及び溶接熱影響部の低温靭性を改善した。本発明の要旨は以下のとおりである。The present inventors have intensively studied to solve the above problems. As a result, it was found that the toughness deterioration due to the fracture mechanism starting from the structure composed of carbides such as pearlite and cementite was remarkable. Therefore, paying attention to the fracture starting from carbide, in order to improve the low temperature toughness, a method for suppressing the formation of carbide which becomes the starting point of brittle fracture was examined. As a result of the study, the present inventors reduced the amount of carbon in steel in order to suppress the formation of carbides, and in order to generate bainite necessary for ensuring the strength, an appropriate amount of alloy elements such as Nb and B By making it contain, it succeeded in improving the low temperature toughness of H-section steel, without reducing intensity | strength. Furthermore, in order to make the low temperature toughness of the weld heat affected zone the same level as that of the base metal before welding, it has been found that it is important to suppress the fraction of the pearlite structure existing in the base metal. In particular, the inventors of the present invention can secure strength even when the C content is reduced by controlling the Nb and B contents within an appropriate range, and the carbides that are the starting point of fracture. It was found that the generation was suppressed and the base metal toughness and the weld heat affected zone toughness were improved.
Furthermore, the present inventors have found that it is extremely effective to perform rolling while strictly controlling the surface temperature of the flange in order to obtain a fine grain structure with good toughness. Specifically, it has been found that it is necessary to perform rolling one or more passes in a temperature range in which the surface temperature of the flange is 870 ° C. or lower and 770 ° C. or higher in finish rolling.
The present invention has been completed based on these findings. The H-section steel of the present invention has improved the low-temperature toughness of the base metal and the weld heat affected zone by minimizing the formation of carbide that becomes the starting point of brittle fracture. The gist of the present invention is as follows.
(1)すなわち、本発明の一態様に係るH形鋼は、化学成分が、質量%で、C:0.010〜0.014%、Si:0.05〜0.50%、Mn:0.8〜2.0%、Cu:0.01%以上、0.60%未満、Ni:0.01%以上、0.50%未満、Al:0.005%超、0.040%以下、Ti:0.001〜0.025%、Nb:0.010〜0.070%、N:0.001〜0.009%、O:0.0005〜0.0035%、B:0.0003%超、0.0015%以下、V:0〜0.10%、Mo:0〜0.10%、Cr:0%以上、0.20%未満、Zr:0〜0.030%、Hf:0〜0.010%、REM:0〜0.010%、Ca:0〜0.0050%、を含有し、残部がFe及び不純物であり、Nb及びBの含有量が、下記式1を満足し、フランジの板厚が12〜40mmであり、前記フランジの板厚中心部、かつ、前記フランジの幅の1/4部で、圧延方向に垂直な断面の金属組織が、分布密度が3.2×10−3個/μm2以下のパーライトを含み、残部がフェライト及びベイナイトからなる。
Nb+125×B≧0.075・・・式1
ここで、式1中のNb、Bは、各元素の質量%での含有量である。(1) That is, in the H-section steel according to one aspect of the present invention, the chemical composition is mass%, C: 0.010 to 0.014%, Si: 0.05 to 0.50%, Mn: 0 0.8 to 2.0%, Cu: 0.01% or more, less than 0.60%, Ni: 0.01% or more, less than 0.50%, Al: more than 0.005%, 0.040% or less, Ti: 0.001 to 0.025%, Nb: 0.010 to 0.070%, N: 0.001 to 0.009%, O: 0.0005 to 0.0035%, B: 0.0003% More than 0.0015%, V: 0 to 0.10%, Mo: 0 to 0.10%, Cr: 0% or more, less than 0.20%, Zr: 0 to 0.030%, Hf: 0 -0.010%, REM: 0-0.010%, Ca: 0-0.0050%, the balance is Fe and impurities, the content of Nb and B The thickness of the flange is 12 to 40 mm, the flange has a thickness of 12 to 40 mm, the center of the flange thickness, and 1/4 of the width of the flange. In addition, pearlite having a distribution density of 3.2 × 10 −3 pieces / μm 2 or less is included, and the balance is composed of ferrite and bainite.
Nb + 125 × B ≧ 0.075 Formula 1
Here, Nb and B in Formula 1 are the contents in mass% of each element.
(2)上記(1)に記載のH形鋼は、引張強度が460〜550MPaであってもよい。 (2) The H-section steel according to (1) may have a tensile strength of 460 to 550 MPa.
(3)上記(1)または(2)に記載のH形鋼は、前記化学成分が、質量%でV:0.01〜0.10%、Mo:0.01〜0.10%、Cr:0.01%以上、0.20%未満の1種又は2種以上を含有してもよい。 (3) In the H-section steel described in (1) or (2) above, the chemical component is V: 0.01 to 0.10% in mass%, Mo: 0.01 to 0.10%, Cr : You may contain 1 type (s) or 2 or more types of 0.01% or more and less than 0.20%.
(4)上記(1)〜(3)のいずれか一項に記載のH形鋼は、前記化学成分が、質量%で、Zr:0.001〜0.030%、Hf:0.001〜0.010%の1種または2種を含有してもよい。 (4) In the H-section steel according to any one of (1) to (3), the chemical component is mass%, Zr: 0.001 to 0.030%, and Hf: 0.001. You may contain 0.010% of 1 type or 2 types.
(5)上記(1)〜(4)のいずれか一項に記載のH形鋼は、前記化学成分が、質量%で、REM:0.0001〜0.010%、Ca:0.0001〜0.0050%の1種または2種を含有してもよい。 (5) In the H-section steel according to any one of (1) to (4), the chemical component is mass%, REM: 0.0001 to 0.010%, Ca: 0.0001 to You may contain 1 type or 2 types of 0.0050%.
(6)本発明の別の態様に係るH形鋼の製造方法は、(1)〜(5)のいずれか一項に記載の化学成分を有する鋼片を1100〜1350℃に加熱する加熱工程と;前記鋼片を熱間圧延してH形鋼とする熱間圧延工程と;前記H形鋼を空冷する空冷工程と;を有し、前記熱間圧延工程は、前記鋼片を、粗圧延機を用いて圧延する粗圧延工程と、中間圧延機を用いてリバース圧延を行う中間圧延工程と、仕上圧延機を用いて圧延する仕上圧延工程とからなり、前記中間圧延工程の前記リバース圧延では、前記中間圧延機の前後面に設けられた水冷装置を用いて前記H形鋼を冷却しながら圧延する制御圧延を行い、前記仕上圧延工程では、前記フランジの表面温度が770〜870℃の範囲で1パス以上の圧延を行い、前記フランジの板厚が12〜40mmである。 (6) The manufacturing method of the H-section steel which concerns on another aspect of this invention heats the steel piece which has the chemical component as described in any one of (1)-(5) to 1100-1350 degreeC. And a hot rolling step in which the steel slab is hot-rolled to form an H-shaped steel; and an air-cooling step in which the H-shaped steel is air-cooled. The reverse rolling of the intermediate rolling step includes a rough rolling step of rolling using a rolling mill, an intermediate rolling step of performing reverse rolling using an intermediate rolling mill, and a finishing rolling step of rolling using a finishing rolling mill. Then, controlled rolling is performed by rolling while cooling the H-shaped steel using water cooling devices provided on the front and rear surfaces of the intermediate rolling mill, and in the finish rolling step, the surface temperature of the flange is 770 to 870 ° C. Rolling over one pass in the range, the flange thickness is 12 It is a 40mm.
本発明の上記態様によれば、低温靭性に優れた高強度低温用H形鋼を、加速冷却を施すことなく、圧延ままで製造することが可能になる。その結果、施工コストの低減、工期の短縮による大幅なコスト削減を図ることができる。さらには、本発明のH形鋼は、溶接施工を施しても、溶接熱影響部の靭性の低下が少なく、優れた低温靭性を有する。そのため、経済性を損なうことなく、寒冷地で用いられる大型建造物の信頼性を向上させることができる。したがって、本発明は、産業上の貢献が極めて顕著である。 According to the said aspect of this invention, it becomes possible to manufacture the high intensity | strength low-temperature H-section steel excellent in low-temperature toughness as it is rolled, without performing accelerated cooling. As a result, it is possible to achieve a significant cost reduction by reducing the construction cost and shortening the construction period. Furthermore, the H-section steel of the present invention has excellent low-temperature toughness with little decrease in toughness of the weld heat-affected zone even when welding is performed. Therefore, the reliability of a large building used in a cold region can be improved without impairing economic efficiency. Therefore, the industrial contribution of the present invention is extremely remarkable.
以下、本発明の一実施形態に係るH形鋼(以下、本実施形態に係るH形鋼と言う場合がある。)について詳細に説明する。 Hereinafter, an H-section steel according to an embodiment of the present invention (hereinafter, sometimes referred to as an H-section steel according to the present embodiment) will be described in detail.
まず、本実施形態に係るH形鋼の化学成分(成分組成)について説明する。ここで、成分についての「%」は質量%を意味する。 First, the chemical components (component composition) of the H-section steel according to this embodiment will be described. Here, “%” for a component means mass%.
(C:0.010〜0.014%)
Cは、鋼の強化に有効な元素であり、C含有量の下限を0.010%とする。一方、C含有量が0.014%を超えるとHAZ靱性が低下し、低温でのHAZ靭性が十分に確保できない。特に、フランジの板厚が厚い場合(例えば26mm以上)には、パーライト組織が形成され、溶接後にそのパーライト組織が島状マルテンサイト組織に変化し、それが脆化相となって、HAZ靭性が劣化する。したがって、C含有量の上限を0.014%とする。母材及び溶接熱影響の靱性、耐溶接割れ性をさらに向上させる場合、C含有量を0.014%未満にすることが好ましい。(C: 0.010 to 0.014%)
C is an element effective for strengthening steel, and the lower limit of the C content is 0.010%. On the other hand, if the C content exceeds 0.014%, the HAZ toughness decreases, and the HAZ toughness at low temperatures cannot be sufficiently ensured. In particular, when the plate thickness of the flange is thick (for example, 26 mm or more), a pearlite structure is formed, and the pearlite structure changes to an island-like martensite structure after welding, which becomes an embrittled phase and has HAZ toughness. to degrade. Therefore, the upper limit of the C content is 0.014%. In order to further improve the toughness of the base metal, the influence of welding heat, and the resistance to weld cracking, the C content is preferably less than 0.014%.
(Si:0.05〜0.50%)
Siは、脱酸元素であり、強度の向上にも寄与する。これらの効果を得るため、Si含有量の下限を0.05%とする。一方、Siはセメンタイトの生成を促進する元素である。そのため、Si含有量の上限を0.50%とする。島状マルテンサイトの生成を抑制し、母材及び溶接熱影響部の靱性をさらに向上させるためには、Si含有量の上限を0.40%とすることが好ましい。(Si: 0.05-0.50%)
Si is a deoxidizing element and contributes to the improvement of strength. In order to obtain these effects, the lower limit of the Si content is set to 0.05%. On the other hand, Si is an element that promotes the formation of cementite. Therefore, the upper limit of Si content is 0.50%. In order to suppress the formation of island martensite and further improve the toughness of the base material and the weld heat affected zone, the upper limit of the Si content is preferably 0.40%.
(Mn:0.8〜2.0%)
Mnは、鋼の焼入れ性を高める元素であり、ベイナイトの生成を促進して母材の強度を確保するのに有効な元素である。この効果を得るため、Mn含有量の下限を0.8%とする。母材の強度をより高めるには、Mn含有量の下限を1.0%とすることが好ましく、1.3%とすることが更に好ましい。一方、Mn含有量が2.0%を超えると、母材及び溶接熱影響部の靱性、割れ性などが損なわれる。したがって、Mn含有量の上限を2.0%とする。(Mn: 0.8-2.0%)
Mn is an element that enhances the hardenability of steel, and is an element that is effective in promoting the formation of bainite and ensuring the strength of the base material. In order to obtain this effect, the lower limit of the Mn content is set to 0.8%. In order to further increase the strength of the base material, the lower limit of the Mn content is preferably 1.0%, more preferably 1.3%. On the other hand, if the Mn content exceeds 2.0%, the toughness and cracking properties of the base material and the weld heat affected zone are impaired. Therefore, the upper limit of the Mn content is set to 2.0%.
(Cu:0.01%以上、0.60%未満)
Cuは、鋼の焼入れ性を向上させ、析出硬化によって母材の強化(強度上昇)に寄与する元素である。Cu含有量が0.01%以上の場合、圧延時にフェライトが生成する温度域での保持及び緩冷却を行うことにより、フェライトの転位上にCu相が析出し、強度が上昇する。この効果を得るため、Cu含有量の下限を0.01%とする。Cu含有量の好ましい下限は0.30%である。一方、Cu含有量が0.60%以上であると、母材の強度が過剰となって、低温靭性が低下する。したがって、Cu含有量を0.60未満%とする。好ましくはCu含有量の上限を0.50%とする。(Cu: 0.01% or more and less than 0.60%)
Cu is an element that improves the hardenability of steel and contributes to strengthening (strength increase) of the base material by precipitation hardening. When the Cu content is 0.01% or more, the Cu phase is precipitated on the ferrite dislocations and the strength is increased by holding and slow cooling in the temperature range where ferrite is generated during rolling. In order to obtain this effect, the lower limit of the Cu content is set to 0.01%. The minimum with preferable Cu content is 0.30%. On the other hand, when the Cu content is 0.60% or more, the strength of the base material becomes excessive, and the low temperature toughness decreases. Therefore, the Cu content is less than 0.60%. Preferably, the upper limit of Cu content is 0.50%.
(Ni:0.01%以上、0.50%未満)
Niは、母材の強度及び靭性を高めるために、極めて有効な元素である。特に、靭性を高めるために、本実施形態に係るH形鋼では、Ni含有量の下限を0.01%とする。好ましいNi含有量の下限は0.20%である。一方、Ni含有量を0.50%以上にすることは、合金コストの上昇を招く。したがって、Ni含有量を0.50%未満とする。好ましくはNi含有量の上限を0.40%とする。(Ni: 0.01% or more and less than 0.50%)
Ni is an extremely effective element for increasing the strength and toughness of the base material. In particular, in order to increase toughness, the lower limit of the Ni content is set to 0.01% in the H-section steel according to the present embodiment. The lower limit of the preferred Ni content is 0.20%. On the other hand, when the Ni content is 0.50% or more, the alloy cost is increased. Therefore, the Ni content is less than 0.50%. Preferably, the upper limit of the Ni content is 0.40%.
(Ti:0.001〜0.025%)
Tiは、母材の靭性を向上させるために、重要な元素である。Tiは、微細な含Ti酸化物やTiNを形成して、結晶粒径の微細化に寄与する。この効果を得るため、Ti含有量の下限を0.001%とする。更に、TiでNを固定することによって固溶Bを確保して焼入れ性を高める場合、Ti含有量の下限を0.010%とすることが好ましい。一方、Ti含有量が0.025%を超えると、粗大なTiNが生成し、母材の靱性が低下する。したがって、Ti含有量の上限を0.025%とする。また、TiCの析出を抑制し、析出硬化による靭性の低下をより抑制するためには、Ti含有量の上限を0.020%とすることが好ましい。(Ti: 0.001 to 0.025%)
Ti is an important element in order to improve the toughness of the base material. Ti forms a fine Ti-containing oxide or TiN and contributes to the refinement of the crystal grain size. In order to obtain this effect, the lower limit of the Ti content is set to 0.001%. Furthermore, when solid solution B is secured by fixing N with Ti to enhance the hardenability, the lower limit of the Ti content is preferably 0.010%. On the other hand, if the Ti content exceeds 0.025%, coarse TiN is generated and the toughness of the base material is lowered. Therefore, the upper limit of the Ti content is 0.025%. Moreover, in order to suppress the precipitation of TiC and further suppress the decrease in toughness due to precipitation hardening, the upper limit of the Ti content is preferably set to 0.020%.
(Nb:0.010〜0.070%)
Nbは、鋼の焼入れ性を上昇させる元素である。この効果を得るため、Nb含有量の下限を0.010%とする。強度及び母材靭性をより向上させるためには、Nb含有量の下限を0.020%にすることが好ましい。一方、Nb含有量が0.070%を超えると、Nb炭窒化物が析出し、母材及びHAZの靭性が低下することがある。そのため、Nb含有量の上限を0.070%とする。より靭性を高めるためには、Nb含有量の上限を0.060%にすることが好ましく、0.040%にすることがさらに好ましい。(Nb: 0.010-0.070%)
Nb is an element that increases the hardenability of steel. In order to obtain this effect, the lower limit of the Nb content is 0.010%. In order to further improve the strength and the base material toughness, the lower limit of the Nb content is preferably 0.020%. On the other hand, if the Nb content exceeds 0.070%, Nb carbonitride may precipitate and the toughness of the base material and the HAZ may decrease. Therefore, the upper limit of Nb content is 0.070%. In order to further increase the toughness, the upper limit of the Nb content is preferably 0.060%, and more preferably 0.040%.
(N:0.001〜0.009%)
Nは、微細なTiと結合してTiNを形成し、結晶粒を微細化する効果を有する。この効果を得るため、N含有量の下限を0.001%とする。一方、N含有量が0.009%を超えると、粗大なTiNが生じて靭性が低下する。そのため、N含有量の上限を0.009%とする。また、N含有量が増加すると、島状マルテンサイトが生成し、靱性が劣化することがある。そのため、N含有量の上限を0.005%にすることが好ましい。(N: 0.001 to 0.009%)
N combines with fine Ti to form TiN and has the effect of refining crystal grains. In order to obtain this effect, the lower limit of the N content is set to 0.001%. On the other hand, if the N content exceeds 0.009%, coarse TiN is generated and the toughness is lowered. Therefore, the upper limit of N content is set to 0.009%. Moreover, when N content increases, island-like martensite may produce | generate and toughness may deteriorate. Therefore, it is preferable to make the upper limit of N content 0.005%.
(O:0.0005〜0.0035%)
Oは、不純物であり、酸化物の生成を抑制して靭性を確保するため、O含有量の上限を0.0035%とする。HAZ靭性を向上させるには、O含有量の上限を0.0015%にすることが好ましい。靭性の観点からは、O含有量は少ないほど好ましいが、O含有量を0.0005%未満にしようとすると、製造コストが高くなる。そのため、O含有量の下限を0.0005%としてもよい。また、酸化物によるピンニング効果を利用して、HAZの粒径の粗大化を抑制する場合、O含有量の下限を0.0008%としてもよい。(O: 0.0005-0.0035%)
O is an impurity, and the upper limit of the O content is set to 0.0035% in order to suppress the formation of oxides and ensure toughness. In order to improve the HAZ toughness, the upper limit of the O content is preferably set to 0.0015%. From the viewpoint of toughness, the smaller the O content, the better. However, if the O content is made less than 0.0005%, the manufacturing cost increases. Therefore, the lower limit of the O content may be 0.0005%. Moreover, when suppressing the coarsening of the particle size of HAZ using the pinning effect by an oxide, it is good also considering the minimum of O content as 0.0008%.
(Al:0.005%超、0.040%以下)
Alは、脱酸元素である。この効果を得るため、Al含有量を0.005%超とする。一方、粗大な酸化物の生成を防止するため、Al含有量の上限を0.040%とする。また、Al含有量の低減は、島状マルテンサイトの生成の抑制にも有効である。そのため、Al含有量の上限を0.020%にすることが好ましく、0.010%にすることがより好ましい。(Al: more than 0.005%, 0.040% or less)
Al is a deoxidizing element. In order to obtain this effect, the Al content is more than 0.005%. On the other hand, in order to prevent the formation of coarse oxides, the upper limit of the Al content is set to 0.040%. Moreover, the reduction of the Al content is also effective in suppressing the formation of island martensite. Therefore, the upper limit of the Al content is preferably 0.020%, and more preferably 0.010%.
(B:0.0003%超、0.0015%以下)
Bは、微量で鋼の焼入れ性を上昇させ、靭性向上に有効な細粒のベイナイト組織の形成を促進する元素である。この効果を得るため、B含有量を0.0003%超とする。ただし、B含有量が0.0015%を超えると、十分なベイナイト組織が得られても、島状マルテンサイトが生成されるとともに、強度が高くなりすぎて、靱性が著しく低下する。そのため、B含有量の上限を0.0015%とする。好ましいB含有量の上限は、0.0010%である。(B: more than 0.0003%, 0.0015% or less)
B is an element that increases the hardenability of the steel in a small amount and promotes the formation of a fine-grained bainite structure effective for improving toughness. In order to obtain this effect, the B content is more than 0.0003%. However, if the B content exceeds 0.0015%, even if a sufficient bainite structure is obtained, island-shaped martensite is generated, the strength becomes too high, and the toughness is significantly reduced. Therefore, the upper limit of the B content is set to 0.0015%. A preferable upper limit of the B content is 0.0010%.
(Nb及びBの含有量が、質量%で、Nb+125×B≧0.075%)
Nb、Bの含有量を適正範囲とすることで、C含有量を低減しても強度を確保することが可能になる。その結果、破壊の起点となるセメンタイト等の炭化物の生成が抑制され、靭性が向上する。Nb+125×Bが0.075%未満の場合、十分な焼入れ性が得られず、母材及び溶接熱影響部の靭性が低下する。C含有量を低減した本実施形態に係るH形鋼では、Nb+125×Bが高いほど好ましく、上限は規定しない。しかしながら、Nb及びBのそれぞれの含有量の上限から、Nb+125×Bの上限は、実質的に0.2575%となる。(The content of Nb and B is mass%, Nb + 125 × B ≧ 0.075%)
By setting the contents of Nb and B within an appropriate range, it is possible to ensure strength even if the C content is reduced. As a result, the formation of carbides such as cementite, which is the starting point of fracture, is suppressed, and the toughness is improved. When Nb + 125 × B is less than 0.075%, sufficient hardenability cannot be obtained, and the toughness of the base material and the weld heat affected zone is lowered. In the H-section steel according to the present embodiment in which the C content is reduced, Nb + 125 × B is preferably as high as possible, and the upper limit is not specified. However, from the upper limits of the respective contents of Nb and B, the upper limit of Nb + 125 × B is substantially 0.2575%.
不純物として含有するP、Sについては、含有量を特に限定しない。なお、P、Sは、凝固偏析による溶接割れ、靱性低下の原因となるので、極力低減すべきである。P含有量は0.02%以下に制限することが好ましく、0.002%以下に制限することがさらに好ましい。また、S含有量は、0.002%以下に制限することが好ましい。 The content of P and S contained as impurities is not particularly limited. In addition, since P and S cause weld cracking due to solidification segregation and a decrease in toughness, they should be reduced as much as possible. The P content is preferably limited to 0.02% or less, and more preferably 0.002% or less. Further, the S content is preferably limited to 0.002% or less.
本実施形態に係るH形鋼は、上記の化学成分を含有することを基本とするが、更に、強度及び靱性の向上や、介在物の形態の制御を目的として、V、Mo、Cr、Zr、Hf、REM及びCaのうちの1種又は2種以上を含有させてもよい。なお、これらの元素は、必ずしも含有させる必要はなく、含有量の下限は0%である。 Although the H-section steel according to the present embodiment is based on containing the above chemical components, V, Mo, Cr, and Zr are further used for the purpose of improving strength and toughness and controlling the form of inclusions. One or more of Hf, REM and Ca may be contained. These elements are not necessarily contained, and the lower limit of the content is 0%.
(V:0.10%以下)
Vは、組織の微細化及び炭窒化物による析出強化に寄与する。この効果を得る場合、V含有量の下限を0.01%とすることが望ましい。しかし、V含有量が過剰であると、母材及びHAZの靭性が低下することがある。したがって、V含有量の上限を0.10%とすることが好ましい。(V: 0.10% or less)
V contributes to refinement of the structure and precipitation strengthening by carbonitride. When obtaining this effect, it is desirable that the lower limit of the V content be 0.01%. However, if the V content is excessive, the toughness of the base material and the HAZ may be lowered. Therefore, the upper limit of the V content is preferably 0.10%.
(Mo:0.10%以下)
Moは、鋼中に固溶して鋼の焼入れ性を高め、強度の向上に寄与する元素である。この効果を得る場合、Mo含有量の下限を0.01%とすることが望ましい。しかしながら、Mo含有量が0.10%を超えると、Mo炭化物(Mo2C)が析出し、固溶Moによる焼入れ性の向上の効果が飽和するだけでなく、溶接熱影響部が硬化して、HAZ靱性が劣化する。そのため、Mo含有量の上限は、0.10%とする。より好ましいMo含有量の上限は、0.05%である。(Mo: 0.10% or less)
Mo is an element that contributes to the improvement of strength by forming a solid solution in steel and increasing the hardenability of the steel. When obtaining this effect, it is desirable that the lower limit of the Mo content be 0.01%. However, when the Mo content exceeds 0.10%, Mo carbide (Mo 2 C) precipitates, and not only the effect of improving the hardenability by solute Mo is saturated, but also the weld heat affected zone is cured. , HAZ toughness deteriorates. Therefore, the upper limit of the Mo content is 0.10%. A more preferable upper limit of the Mo content is 0.05%.
(Cr:0.20%未満)
Crは、鋼の焼入れ性を高め、強度の向上に寄与する元素である。この効果を得る場合、Cr含有量の下限を0.01%とすることが望ましい。しかし、Cr含有量が0.20%以上になると、炭化物が生成し、靭性が低下することがある。そのため、Cr含有量を0.20%未満にすることが好ましい。Cr含有量の好ましい上限は0.10%である。(Cr: less than 0.20%)
Cr is an element that improves the hardenability of steel and contributes to the improvement of strength. When obtaining this effect, it is desirable that the lower limit of the Cr content be 0.01%. However, if the Cr content is 0.20% or more, carbides may be generated and the toughness may be reduced. Therefore, the Cr content is preferably less than 0.20%. The upper limit with preferable Cr content is 0.10%.
(Zr:0.030%以下、Hf:0.010%以下)
Zr、Hfは共に、脱酸元素であるとともに、高温で窒化物を生成する元素であり、鋼中の固溶N量の低減に有効な元素である。これらの効果を得る場合、いずれの元素も含有量の下限を0.001%とすることが望ましい。しかし、Zr、Hfを過剰に含有すると、窒化物が粗大化し、靭性が低下することがある。そのため、Zr含有量の上限を0.030%、Hf含有量の上限を0.010%とすることが好ましい。(Zr: 0.030% or less, Hf: 0.010% or less)
Zr and Hf are both deoxidizing elements and elements that generate nitrides at high temperatures, and are effective elements for reducing the amount of solute N in steel. When obtaining these effects, it is desirable that the lower limit of the content of any element is 0.001%. However, when Zr and Hf are contained excessively, the nitride becomes coarse and the toughness may be lowered. Therefore, it is preferable that the upper limit of the Zr content is 0.030% and the upper limit of the Hf content is 0.010%.
(REM:0.010%以下、Ca:0.0050%以下)
REM、Caは、共に、脱酸元素であり、硫化物の形態の制御にも寄与する元素である。そのため、これらの効果を得る場合、含有量の下限を0.0001%とすることが好ましい。しかし、REM、Caの酸化物は溶鋼中で容易に浮上するため、実質的に、鋼中に含有されるREM含有量の上限は0.010%、Ca含有量の上限は0.0050%である。なお、REMとは、Rare Earth Metalの略であり、ランタノイド元素にSc及びYを加えた17種の元素を指す。(REM: 0.010% or less, Ca: 0.0050% or less)
REM and Ca are both deoxidizing elements and are elements that contribute to the control of the form of sulfide. Therefore, when obtaining these effects, the lower limit of the content is preferably 0.0001%. However, since the REM and Ca oxides float easily in the molten steel, the upper limit of the REM content contained in the steel is substantially 0.010%, and the upper limit of the Ca content is 0.0050%. is there. Note that REM is an abbreviation for Rare Earth Metal, and refers to 17 elements obtained by adding Sc and Y to lanthanoid elements.
次に、本実施形態に係るH形鋼の金属組織について説明する。
本実施形態に係るH形鋼の金属組織は、主に、強度及び靭性に優れる細粒のフェライト及びベイナイトからなり、パーライトの分率が制限された組織である。Next, the metal structure of the H-section steel according to this embodiment will be described.
The metal structure of the H-section steel according to the present embodiment is mainly composed of fine ferrite and bainite having excellent strength and toughness, and has a limited pearlite fraction.
(フランジの板厚中心部、かつ、フランジ幅の1/4部で、圧延方向に垂直な断面において、金属組織中の、パーライトの分布密度が3.2×10−3個/μm2以下、残部が実質的にフェライト及びベイナイトからなる)
本実施形態に係るH形鋼では、特に母材のパーライトが溶接後に、島状マルテンサイトに変化して溶接熱影響部の靭性を劣化させることが懸念される。そこで、本実施形態に係るH形鋼の金属組織は、パーライトの分布密度が3.2×10−3個/μm2以下であり、残部が実質的にフェライト及びベイナイトからなる組織としている。
パーライトの分布密度が3.2×10−3個/μm2を超えると、溶接時にの溶接の入熱によって、パーライトが分解してオーステナイトとなり、冷却後、島状マルテンサイトが生成する。この生成した島状マルテンサイトは、脆性破壊の起点となって靭性を劣化させることがある。
パーライトの分布密度は小さいほど好ましいが、強度の確保の観点で、パーライトの分布密度の下限を1.0×10−5個/μm2としてもよい。
パーライトの分布密度は、上記の部位で、JIS G 0551に準拠して、光学顕微鏡でパーライトコロニー(JIS規格ではパーライトの島)を観察して求める。具体的には、500倍で撮影した10視野の光学顕微鏡組織写真(1視野の大きさは、120μm×160μmが好ましい)に存在するパーライトコロニーの数を計数し、その分布密度を求める。(Distribution density of pearlite in the metal structure is 3.2 × 10 −3 pieces / μm 2 or less in the center of the flange thickness and ¼ part of the flange width and perpendicular to the rolling direction, (The remainder consists essentially of ferrite and bainite)
In the H-section steel according to the present embodiment, there is a concern that the pearlite of the base material changes into island martensite after welding and deteriorates the toughness of the weld heat affected zone. Therefore, the metal structure of the H-section steel according to the present embodiment has a pearlite distribution density of 3.2 × 10 −3 pieces / μm 2 or less, and the balance is substantially made of ferrite and bainite.
When the distribution density of pearlite exceeds 3.2 × 10 −3 pieces / μm 2 , pearlite is decomposed into austenite by heat input of welding during welding, and island martensite is generated after cooling. This generated island martensite may become a starting point of brittle fracture and deteriorate toughness.
The pearlite distribution density is preferably as small as possible, but the lower limit of the pearlite distribution density may be 1.0 × 10 −5 / μm 2 from the viewpoint of securing strength.
The pearlite distribution density is determined by observing a pearlite colony (perlite island in JIS standard) with an optical microscope in accordance with JIS G 0551 at the above-mentioned site. Specifically, the number of pearlite colonies present in 10 microscopic optical microscope photographs taken at 500 times (the size of one visual field is preferably 120 μm × 160 μm) is counted to determine the distribution density.
本実施形態に係るH形鋼の場合、フランジの特性が重要であり、金属組織の観察及びパーライト分布密度の測定は、H形鋼の圧延方向に垂直な断面内において全体の組織を良く代表すると考えられるフランジ板厚の中心部、かつ、フランジ幅の1/4部で行う。即ち、図1に示すH形鋼の断面の(1/4)Fの位置(圧延方向に垂直な断面のフランジの板厚t2の中心部:(1/2)t2、フランジ幅全長Bの1/4:(1/4)B)から試料を採取する。光学顕微鏡によって、フェライト、ベイナイト、パーライトを判別し、パーライトの数を測定し、分布密度を求める。In the case of the H-section steel according to the present embodiment, the characteristics of the flange are important, and the observation of the metal structure and the measurement of the pearlite distribution density represent the entire structure well in the cross section perpendicular to the rolling direction of the H-section steel. It is performed at the center part of the conceivable flange plate thickness and 1/4 part of the flange width. That is, the position of (1/4) F in the cross section of the H-section steel shown in FIG. 1 (the center part of the flange thickness t 2 of the flange of the cross section perpendicular to the rolling direction: (1/2) t 2 , the flange width overall length B 1/4: (1/4) B). Using an optical microscope, ferrite, bainite, and pearlite are distinguished, the number of pearlites is measured, and the distribution density is obtained.
(フランジの板厚が12〜40mm)
本実施形態に係るH形鋼のフランジの板厚は、12〜40mmとする。これは、寒冷地で使用される構造物(低温用構造物)に用いられるH形鋼には、板厚が12〜40mmのサイズのH形鋼が多用されるためである。また、フランジの板厚が40mmを超えると、冷却速度が遅くなり、パーライトの分布密度が高くなることがある。
ウェブの板厚は、フランジと同様に12〜40mmとすることが好ましい。(Flange thickness is 12-40mm)
The plate | board thickness of the flange of the H-section steel which concerns on this embodiment shall be 12-40 mm. This is because H-section steel having a thickness of 12 to 40 mm is often used for H-section steel used in structures (low-temperature structures) used in cold regions. Moreover, when the plate | board thickness of a flange exceeds 40 mm, a cooling rate will become slow and the distribution density of pearlite may become high.
The plate thickness of the web is preferably 12 to 40 mm as with the flange.
ウェブの板厚に対するフランジ板厚の比(フランジ/ウェブ)に関しては、H形鋼を熱間圧延で製造する場合を想定して、0.5〜2.0とすることが好ましい。フランジ/ウェブが2.0を超えると、ウェブが波打ち状の形状に変形することがある。一方、フランジ/ウェブが0.5未満の場合は、フランジが波打ち状の形状に変形することがある。 The ratio of the flange plate thickness to the web plate thickness (flange / web) is preferably set to 0.5 to 2.0, assuming that the H-section steel is manufactured by hot rolling. If the flange / web exceeds 2.0, the web may be deformed into a wavy shape. On the other hand, if the flange / web is less than 0.5, the flange may be deformed into a wavy shape.
本実施形態に係るH形鋼の強度は、常温の降伏点又は0.2%耐力が345MPa以上、引張強度が460〜550MPaであることが望ましい。また、−40℃でのシャルピー衝撃吸収エネルギーは、母材部で60J以上であることが望ましい。さらに、低温靭性を合理的に保証するために−10℃におけるCTOD値が0.25mm以上であることが望ましい。また、溶接熱影響部のシャルピー衝撃吸収エネルギー及びCTOD値は、母材部と同等以上であることが望ましい。 As for the intensity | strength of the H-section steel which concerns on this embodiment, it is desirable that the yield point of normal temperature or 0.2% yield strength is 345 MPa or more, and tensile strength is 460-550 MPa. Further, the Charpy impact absorption energy at −40 ° C. is desirably 60 J or more in the base material portion. Furthermore, in order to reasonably guarantee low temperature toughness, it is desirable that the CTOD value at −10 ° C. is 0.25 mm or more. Further, it is desirable that the Charpy impact absorption energy and the CTOD value of the weld heat affected zone are equal to or higher than those of the base material.
H形鋼は、鋼板を製造する場合に比べて、強度及び靭性を確保することが難しい。その理由としては、スラブ又はビームブランク形状の素材から極厚H形鋼を製造する際に、フランジやフィレット部(フランジとウェブとが結合している部位)の加工量を確保することが難しいためである。 It is difficult for H-shaped steel to ensure strength and toughness as compared with the case of manufacturing a steel plate. The reason is that it is difficult to secure the processing amount of the flange and fillet part (part where the flange and the web are joined) when manufacturing an extremely thick H-section steel from a slab or beam blank-shaped material. It is.
次に、本実施形態に係るH形鋼の好ましい製造方法について説明する。 Next, the preferable manufacturing method of the H-section steel which concerns on this embodiment is demonstrated.
製鋼工程では、任意の方法で上述した範囲に、溶鋼の化学成分を調整した後、鋳造し、鋼片を得る。鋳造は、生産性の観点から、連続鋳造が好ましい。また、鋼片の厚みは、生産性の観点から、200mm以上が好ましい。一方で、偏析の低減や、熱間圧延における加熱温度の均質性などを考慮すると、鋼片の厚みは350mm以下が好ましい。 In the steel making process, the chemical composition of the molten steel is adjusted to the above-described range by an arbitrary method, and then cast to obtain a steel piece. The casting is preferably continuous casting from the viewpoint of productivity. The thickness of the steel slab is preferably 200 mm or more from the viewpoint of productivity. On the other hand, considering the reduction of segregation and the uniformity of the heating temperature in hot rolling, the thickness of the steel slab is preferably 350 mm or less.
次に、鋼片を加熱し(加熱工程:S1)、加熱された鋼片に対し、熱間圧延を行う(熱間圧延工程)。鋼片の加熱温度は、1100〜1350℃が好ましい。加熱温度が1100℃未満であると、変形抵抗が高くなる。そのため、加熱温度の下限を1100℃とすることが好ましい。Nbなど、炭化物、窒化物を形成する元素を十分に固溶させるため、加熱温度の下限を1150℃とすることがより好ましい。特に、フランジの板厚が薄い場合は、累積圧下率が大きくなることで、圧延温度が低くなりすぎることが懸念されるため、1200℃以上に加熱することがさらに好ましい。一方、加熱温度が1350℃よりも高温になると、素材である鋼片の表面のスケールが液体化して加熱炉内が損傷することがある。そのため、加熱温度の上限を1350℃とすることが好ましい。組織の粗大化を抑制するためには、加熱温度の上限を1300℃にすることがより好ましい。 Next, the steel slab is heated (heating process: S1), and hot rolling is performed on the heated steel slab (hot rolling process). As for the heating temperature of a steel piece, 1100-1350 degreeC is preferable. When the heating temperature is less than 1100 ° C., deformation resistance increases. Therefore, the lower limit of the heating temperature is preferably 1100 ° C. In order to sufficiently dissolve elements that form carbides and nitrides such as Nb, the lower limit of the heating temperature is more preferably 1150 ° C. In particular, when the plate thickness of the flange is thin, it is more preferable to heat to 1200 ° C. or higher because there is a concern that the rolling temperature becomes too low due to an increase in the cumulative rolling reduction. On the other hand, when the heating temperature is higher than 1350 ° C., the scale on the surface of the steel slab, which is a raw material, may be liquefied and the inside of the heating furnace may be damaged. Therefore, the upper limit of the heating temperature is preferably 1350 ° C. In order to suppress the coarsening of the structure, the upper limit of the heating temperature is more preferably 1300 ° C.
加熱工程に引き続いて熱間圧延を行う(熱間圧延工程:S2)。熱間圧延工程では、鋼片を粗圧延機、中間圧延機及び仕上圧延機からなるユニバーサル圧延装置列により順次圧延していくことにより圧延を行う。粗圧延機では、加熱炉から抽出した鋼片を一定の大きさまで圧延する(粗圧延工程:S21)。その後、中間圧延機にて中間圧延を行う(中間圧延工程:S22)。中間圧延では圧延温度、圧下率を制御する制御圧延が行われる。制御圧延の方法としては、例えば、リバース圧延により2パス以上の圧延を行う際、リバース圧延前後に配置された冷却装置によりフランジ外側面を水冷し、フランジ外側面を復熱させて圧延する。水冷の際、フランジ外側面の温度が低くなりすぎると圧延するまでに復熱が間に合わないこともあるため、スプレイ冷却することが好ましい。 Subsequent to the heating step, hot rolling is performed (hot rolling step: S2). In the hot rolling process, the steel slab is rolled by sequentially rolling it with a universal rolling device array composed of a roughing mill, an intermediate rolling mill and a finish rolling mill. In the rough rolling mill, the steel piece extracted from the heating furnace is rolled to a certain size (rough rolling step: S21). Then, intermediate rolling is performed with an intermediate rolling mill (intermediate rolling process: S22). In the intermediate rolling, controlled rolling for controlling the rolling temperature and the rolling reduction is performed. As a method of controlled rolling, for example, when performing two or more passes by reverse rolling, the flange outer surface is water cooled by a cooling device disposed before and after reverse rolling, and the flange outer surface is reheated and rolled. In the case of water cooling, if the temperature of the flange outer surface becomes too low, recuperation may not be in time before rolling, so spray cooling is preferable.
中間圧延工程の後、仕上圧延を行う(仕上圧延工程:S23)。仕上圧延では、フランジの表面温度が770〜870℃で1パス以上の圧延を行う必要がある。このような圧延を行うのは、熱間圧延(仕上圧延)で、加工再結晶を促進させ、オーステナイトを細粒化し、靭性と強度とを向上させるためである。フランジの表面温度が770℃未満ではH形鋼の造形が困難になるため、下限を770℃とする。一方、フランジの表面温度が870℃を超えると歪みが回復し、再結晶粒が成長して、粗粒となるため、上限を870℃とする。圧延のパス数の上限は限定しないが、770〜870℃において、5パスを超える圧延を行うと、1パスあたりの歪量が小さくなり、細粒化の効果が小さくなる場合があるため、5パス以下が好ましい。 After the intermediate rolling process, finish rolling is performed (finish rolling process: S23). In finish rolling, it is necessary to perform rolling for one pass or more at a flange surface temperature of 770 to 870 ° C. Such rolling is performed in order to promote work recrystallization, refine austenite, and improve toughness and strength by hot rolling (finish rolling). If the surface temperature of the flange is less than 770 ° C., it becomes difficult to form the H-shaped steel, so the lower limit is set to 770 ° C. On the other hand, when the surface temperature of the flange exceeds 870 ° C., the strain is recovered and the recrystallized grains grow to become coarse particles, so the upper limit is set to 870 ° C. The upper limit of the number of passes of rolling is not limited, but if rolling exceeding 5 passes is performed at 770 to 870 ° C., the strain amount per pass may be reduced, and the effect of fine graining may be reduced. The path or less is preferable.
仕上圧延のうち、1パス以上をパス間水冷圧延とすることが好ましい。パス間水冷圧延とは、フランジ表面温度を700℃以下に冷却した後、復熱過程で圧延する方法である。パス間水冷圧延では、圧延パス間の水冷により、フランジの表層部と内部とに温度差が生じる。このため、パス間水冷圧延では、圧下率が小さい場合でも、板厚の内部まで加工歪みを導入することができる。また、水冷により圧延温度を短時間で低下させることができるので、生産性が向上する。 Among finish rolling, it is preferable that one or more passes be water-cooled rolling between passes. Interpass water-cooled rolling is a method in which the flange surface temperature is cooled to 700 ° C. or lower and then rolled in the reheating process. In the water-cooling rolling between passes, a temperature difference is generated between the surface layer portion and the inside of the flange due to water cooling between rolling passes. For this reason, in the inter-pass water-cooled rolling, even when the rolling reduction is small, it is possible to introduce processing strain to the inside of the plate thickness. Further, since the rolling temperature can be reduced in a short time by water cooling, productivity is improved.
仕上圧延後は、常法にしたがって空冷する(空冷工程:S3)。空冷によりH形鋼の組織は、一部にパーライトが生成された、実質的にフェライト及びベイナイトからなる組織となる。 After finish rolling, air cooling is performed according to a conventional method (air cooling step: S3). The structure of the H-shaped steel is substantially made of ferrite and bainite in which pearlite is partially generated by air cooling.
空冷する際、フランジの平均温度が400℃以下となるまで冷却した後、400〜500℃の温度域まで再び加熱してもよい。400〜500℃に再加熱すると、圧延ままの状態でミクロ組織中に存在する島状マルテンサイトを分解させることができる。島状マルテンサイト中のCをマトリクス中へ拡散させるためには、加熱温度を400℃以上、保持時間を15分以上にすることが好ましい。加熱温度の上限、保持時間の上限は特に規定しないが、製造コストの観点から、加熱温度を500℃以下、保持時間を5時間以下にすることが好ましい。冷却後の再加熱は、熱処理炉で実施することができる。 When air-cooling, after cooling until the average temperature of the flange becomes 400 ° C. or less, it may be heated again to a temperature range of 400 to 500 ° C. When reheated to 400 to 500 ° C., the island-like martensite present in the microstructure can be decomposed as it is rolled. In order to diffuse C in the island martensite into the matrix, the heating temperature is preferably 400 ° C. or higher and the holding time is preferably 15 minutes or longer. Although the upper limit of the heating temperature and the upper limit of the holding time are not particularly defined, it is preferable that the heating temperature is 500 ° C. or less and the holding time is 5 hours or less from the viewpoint of manufacturing cost. Reheating after cooling can be performed in a heat treatment furnace.
図2に、上記製造方法の一例を示すフローチャートを示す。 FIG. 2 is a flowchart showing an example of the manufacturing method.
なお、一次圧延して500℃以下に冷却した後、再度、1100〜1350℃に加熱し、二次圧延を行う製造するプロセス、いわゆる2ヒート圧延を採用してもよい。2ヒート圧延では、熱間圧延での塑性変形量が少なく、圧延工程での温度の低下も小さくなるため、加熱温度を低めにすることができる。 In addition, after performing primary rolling and cooling to 500 ° C. or lower, a process of heating to 1100 to 1350 ° C. and performing secondary rolling, so-called two-heat rolling may be employed. In the two-heat rolling, the amount of plastic deformation in the hot rolling is small, and the temperature drop in the rolling process is also small, so that the heating temperature can be lowered.
以下、実施例に基づいて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.
表1に示す成分組成を有する鋼を溶製し、連続鋳造により、厚みが240〜300mmの鋼片を製造した。鋼の溶製は転炉で行い、一次脱酸し、合金を添加して成分を調整し、必要に応じて、真空脱ガス処理を行った。得られた鋼片を加熱し、熱間圧延を行い、H形鋼を製造した。表1に示した成分は、製造後のH形鋼から採取した試料を化学分析して求めた。なお、表1の残部は、Fe及び不純物である。 Steel having the composition shown in Table 1 was melted, and steel pieces having a thickness of 240 to 300 mm were produced by continuous casting. The steel was melted in a converter, subjected to primary deoxidation, an alloy was added to adjust the components, and vacuum degassing was performed as necessary. The obtained steel slab was heated and subjected to hot rolling to produce an H-shaped steel. The components shown in Table 1 were obtained by chemical analysis of a sample collected from the H-shaped steel after production. The balance in Table 1 is Fe and impurities.
H形鋼の製造工程を図2に、加熱工程、熱間圧延工程で用いた製造装置を図3に示す。熱間圧延は、ユニバーサル圧延装置列で行った。熱間圧延をパス間水冷圧延とする場合、圧延パス間の水冷には、中間ユニバーサル圧延機2bの前後に設けた水冷装置3aを用い、フランジ外側面のスプレイ冷却を行いながらリバース圧延する制御冷却を行った。熱間圧延後は空冷した。製造条件を表2に示す。
FIG. 2 shows the manufacturing process of the H-section steel, and FIG. 3 shows the manufacturing apparatus used in the heating process and the hot rolling process. Hot rolling was carried out in a universal rolling device row. When hot rolling is water cooling between passes, water cooling between rolling passes is performed by using
図1に示すように、H形鋼4のフランジ5の板厚t2の中心部((1/2)t2)でかつ、フランジ幅全長(B)の1/4((1/4)B)である位置(図1の(1/4)F)から、試験片を採取し、機械特性を測定した。この箇所で評価を行ったのは、図1のフランジ(1/4)F部が、H形鋼の平均的な機械特性を示すと判断したためである。引張試験は、JIS Z 2241に準拠して行い、シャルピー衝撃試験は、JIS Z 2242に準拠して−40℃で行った。CTOD試験片は、フランジ部分全厚を切り出し、平滑試験片を作製して、元のウェブ表面の延長線上をノッチ位置とした。As shown in FIG. 1, it is a center part ((1/2) t 2 ) of the plate thickness t 2 of the flange 5 of the H-section steel 4 and 1/4 of the flange width overall length (B) ((1/4)). From the position (B) ((1/4) F in FIG. 1), a test piece was sampled and the mechanical properties were measured. The evaluation was performed at this point because it was determined that the flange (1/4) F portion in FIG. 1 exhibited the average mechanical properties of the H-section steel. The tensile test was conducted in accordance with JIS Z 2241, and the Charpy impact test was conducted at −40 ° C. in accordance with JIS Z 2242. The CTOD test piece was cut out of the flange part full thickness, a smooth test piece was prepared, and the extension line on the original web surface was set as the notch position.
得られた母材のフランジ部を切り出し、レ型開先を施して溶接を行うための供試材とした。この供試材に溶接入熱が12kJ/cmで、ガスメタルアーク溶接を行った。開先の垂直部側のボンド部(溶接金属と母材との境界部)から2mmの位置がシャルピー衝撃試験片またはCTOD試験片のノッチとなるようにそれぞれの試験片を採取し、溶接熱影響部の靭性を評価した。 The flange part of the obtained base material was cut out and used as a test material for performing welding by applying a lathe groove. The specimen was subjected to gas metal arc welding with a welding heat input of 12 kJ / cm. Each test piece was sampled so that the notch of the Charpy impact test piece or CTOD test piece was 2 mm from the bond part (boundary part between the weld metal and the base metal) on the vertical side of the groove, and the influence of welding heat The toughness of the part was evaluated.
また、機械特性の測定に用いた試験片を採取した位置から、試料を採取し、この試料について光学顕微鏡で金属組織の観察を行い、パーライトの分布密度を測定した。パーライト以外の残部は、フェライト及びベイナイトであることを確認した。 Further, a sample was collected from the position where the test piece used for measuring the mechanical properties was collected, and the metal structure was observed with an optical microscope, and the distribution density of pearlite was measured. The remainder other than pearlite was confirmed to be ferrite and bainite.
結果を表3に示す。機械特性の目標値は、常温の降伏点又は0.2%耐力が345MPa以上、引張強度が460〜550MPa、かつ、母材、溶接部ともに、−40℃でのシャルピー衝撃吸収エネルギーが、60J以上であり、−10℃におけるCTOD値が0.25mm以上である。表4に示すように、本発明の製造No.1〜30は、常温の0.2%耐力及び引張強度が、−40℃でのシャルピー衝撃吸収エネルギー、並びに、−10℃におけるCTOD値のいずれも、母材、溶接熱影響部ともに目標を十分に満たしている。 The results are shown in Table 3. The target values of mechanical properties are the yield point at room temperature or 0.2% proof stress of 345 MPa or more, the tensile strength of 460 to 550 MPa, and the Charpy impact absorption energy at −40 ° C. at 60 ° C. for both the base metal and the welded portion. And the CTOD value at −10 ° C. is 0.25 mm or more. As shown in Table 4, the production No. of the present invention. 1-30, 0.2% proof stress and tensile strength at normal temperature, Charpy impact absorption energy at -40 ° C, and CTOD value at -10 ° C are sufficient targets for both base material and welding heat affected zone Meet.
一方、製造No.31はC含有量が過剰であり、溶接熱影響部の靭性が低下した例である。製造No.32もC含有量が過剰で、パーライトの分率が過剰となり、溶接熱影響部靭性が低下した例である。製造No.33はB含有量及びNb+125×Bの値が過小で、適正な焼入れ性が得られず、母材及び溶接熱影響部の靭性が低下した例である。製造No.34はSi含有量が過剰で、パーライトの分率が過剰となり、溶接熱影響部靭性が低下した例である。製造No.35はMn含有量が過剰で、パーライトの分率が過剰となり、溶接熱影響部靭性が低下した例である。製造No.36はMn含有量が過小であり、十分な母材強度が得られなかった例である。製造No.37はCu含有量が過剰であり、母材強度が過大となっただけでなく、母材及び溶接熱影響部の靭性が低下した例である。製造No.38はCuが含有されず、十分な母材強度が得られなかった例である。製造No.39はNiが含有されず、母材及び溶接熱影響部の靭性が低下した例である。製造No.40はAl含有量が過剰であり、母材及び溶接熱影響部の靭性が低下した例である。製造No.41はB含有量が過剰であり、母材強度が過大となっただけでなく、母材及び溶接熱影響部の靭性が低下した例である。製造No.42はNb含有量が過剰であり、母材強度が過大となっただけでなく、母材及び溶接熱影響部の靭性が低下した例である。製造No.43はN含有量が過剰であり、母材及び溶接熱影響部の靭性が低下した例である。製造No.44はN含有量が過小であり、母材及び溶接熱影響部の靭性が低下した例である。製造No.45は式1を満足せず、母材及び溶接熱影響部の靭性が低下した例である。製造No.46はAl含有量が過小であり、母材及び溶接熱影響部の靭性が低下した例である。製造No.47はB含有量が少なく、母材及び溶接熱影響部の靭性が低下した例である。製造No.48は板厚が大きすぎてパーライトの分率が過剰となり、母材及び溶接熱影響部靭性が低下した例である。 On the other hand, production No. No. 31 is an example in which the C content is excessive and the toughness of the weld heat affected zone is lowered. Production No. No. 32 is an example in which the C content is excessive, the pearlite fraction is excessive, and the weld heat affected zone toughness is lowered. Production No. No. 33 is an example in which the B content and the value of Nb + 125 × B are too small to obtain appropriate hardenability, and the toughness of the base material and the weld heat affected zone is lowered. Production No. No. 34 is an example in which the Si content is excessive, the pearlite fraction is excessive, and the weld heat affected zone toughness is lowered. Production No. No. 35 is an example in which the Mn content is excessive, the pearlite fraction is excessive, and the weld heat affected zone toughness is lowered. Production No. No. 36 is an example in which the Mn content is too small to obtain a sufficient base material strength. Production No. No. 37 is an example in which the Cu content is excessive and not only the base material strength is excessive, but also the toughness of the base material and the weld heat affected zone is lowered. Production No. No. 38 is an example in which Cu was not contained and sufficient base material strength was not obtained. Production No. No. 39 is an example in which Ni is not contained, and the toughness of the base material and the weld heat affected zone is lowered. Production No. No. 40 is an example in which the Al content is excessive and the toughness of the base metal and the weld heat affected zone is lowered. Production No. No. 41 is an example in which the B content is excessive, the base material strength is not only excessive, but the toughness of the base material and the weld heat affected zone is lowered. Production No. No. 42 is an example in which the Nb content is excessive and not only the base material strength is excessive, but also the toughness of the base material and the weld heat affected zone is lowered. Production No. No. 43 is an example in which the N content is excessive and the toughness of the base metal and the weld heat affected zone is lowered. Production No. No. 44 is an example in which the N content is too small and the toughness of the base metal and the weld heat affected zone is lowered. Production No. No. 45 is an example in which the toughness of the base material and the weld heat affected zone is not satisfied because Formula 1 is not satisfied. Production No. No. 46 is an example in which the Al content is too small, and the toughness of the base metal and the weld heat affected zone is lowered. Production No. 47 is an example in which the B content is small and the toughness of the base metal and the weld heat affected zone is lowered. Production No. No. 48 is an example in which the plate thickness is too large and the pearlite fraction becomes excessive, and the base material and the weld heat affected zone toughness are lowered.
本発明によれば、低温靭性に優れた高強度低温用H形鋼を、加速冷却を施すことなく、圧延ままで製造することが可能になる。その結果、施工コストの低減、工期の短縮による大幅なコスト削減を図ることができる。さらには、本発明のH形鋼は、溶接施工を施しても、溶接熱影響部の靭性の低下が少ない。そのため、経済性を損なうことなく、寒冷地で用いられる大型建造物の信頼性を向上させることができる。したがって、本発明は、産業上の貢献が極めて顕著である。 According to the present invention, a high-strength, low-temperature H-section steel excellent in low-temperature toughness can be produced as it is rolled without performing accelerated cooling. As a result, it is possible to achieve a significant cost reduction by reducing the construction cost and shortening the construction period. Furthermore, even if the H-section steel of the present invention is subjected to welding, there is little decrease in the toughness of the weld heat affected zone. Therefore, the reliability of a large building used in a cold region can be improved without impairing economic efficiency. Therefore, the industrial contribution of the present invention is extremely remarkable.
1 加熱炉
2a 粗圧延機
2b 中間圧延機
2c 仕上圧延機
3a 中間圧延機前後面の水冷装置
4 H形鋼
5 フランジ
6 ウェブ
7 母材のCTODノッチ位置
t1 ウェブの板厚
t2 フランジの板厚
B フランジ幅の全長
H 高さDESCRIPTION OF SYMBOLS 1
Claims (6)
C:0.010〜0.014%、
Si:0.05〜0.50%、
Mn:0.8〜2.0%、
Cu:0.01%以上、0.60%未満、
Ni:0.01%以上、0.50%未満、
Al:0.005%超、0.040%以下、
Ti:0.001〜0.025%、
Nb:0.010〜0.070%、
N:0.001〜0.009%、
O:0.0005〜0.0035%、
B:0.0003%超、0.0015%以下、
V:0〜0.10%、
Mo:0〜0.10%、
Cr:0%以上、0.20%未満、
Zr:0〜0.030%、
Hf:0〜0.010%、
REM:0〜0.010%、
Ca:0〜0.0050%、
を含有し、残部がFe及び不純物であり;
Nb及びBの含有量が、下記式1を満足し;
フランジの板厚が12〜40mmであり;
前記フランジの板厚中心部、かつ、前記フランジの幅の1/4部で、圧延方向に垂直な断面の金属組織が、分布密度が3.2×10−3個/μm2以下のパーライトを含み、残部がフェライト及びベイナイトからなる;
ことを特徴とするH形鋼。
Nb+125×B≧0.075・・・式1
ここで、式1中のNb、Bは、各元素の質量%での含有量である。Chemical composition is mass%,
C: 0.010 to 0.014%,
Si: 0.05 to 0.50%,
Mn: 0.8 to 2.0%,
Cu: 0.01% or more, less than 0.60%,
Ni: 0.01% or more, less than 0.50%,
Al: more than 0.005%, 0.040% or less,
Ti: 0.001 to 0.025%,
Nb: 0.010 to 0.070%,
N: 0.001 to 0.009%,
O: 0.0005 to 0.0035%,
B: more than 0.0003%, 0.0015% or less,
V: 0 to 0.10%,
Mo: 0 to 0.10%,
Cr: 0% or more, less than 0.20%,
Zr: 0 to 0.030%,
Hf: 0 to 0.010%,
REM: 0 to 0.010%,
Ca: 0 to 0.0050%,
And the balance is Fe and impurities;
The contents of Nb and B satisfy the following formula 1;
The flange thickness is 12-40 mm;
A pearlite having a metal thickness of a central portion of the flange and a quarter of the width of the flange and having a distribution density of 3.2 × 10 −3 pieces / μm 2 or less perpendicular to the rolling direction. Containing, the balance consisting of ferrite and bainite;
H-section steel characterized by this.
Nb + 125 × B ≧ 0.075 Formula 1
Here, Nb and B in Formula 1 are the contents in mass% of each element.
V:0.01〜0.10%、
Mo:0.01〜0.10%、
Cr:0.01%以上、0.20%未満
の1種又は2種以上を含有することを特徴とする請求項1または2に記載のH形鋼。The chemical component is, in mass%, V: 0.01 to 0.10%,
Mo: 0.01-0.10%,
The H-section steel according to claim 1 or 2, characterized by containing one or more of Cr: 0.01% or more and less than 0.20%.
Zr:0.001〜0.030%、
Hf:0.001〜0.010%
の1種または2種を含有することを特徴とする請求項1〜3のいずれか一項に記載のH形鋼。The chemical component is mass%,
Zr: 0.001 to 0.030%,
Hf: 0.001 to 0.010%
1 type or 2 types of these are contained, The H-section steel as described in any one of Claims 1-3 characterized by the above-mentioned.
REM:0.0001〜0.010%、
Ca:0.0001〜0.0050%
の1種または2種を含有することを特徴とする請求項1〜4のいずれか一項に記載のH形鋼。The chemical component is mass%,
REM: 0.0001 to 0.010%,
Ca: 0.0001 to 0.0050%
1 type or 2 types of these are contained, The H-section steel as described in any one of Claims 1-4 characterized by the above-mentioned.
前記鋼片を熱間圧延してH形鋼とする熱間圧延工程と;
前記H形鋼を空冷する空冷工程と;
を有し、
前記熱間圧延工程は、前記鋼片を、粗圧延機を用いて圧延する粗圧延工程と、中間圧延機を用いてリバース圧延を行う中間圧延工程と、仕上圧延機を用いて圧延する仕上圧延工程とからなり、
前記中間圧延工程の前記リバース圧延では、前記中間圧延機の前後面に設けられた水冷装置を用いて前記H形鋼を冷却しながら圧延する制御圧延を行い、
前記仕上圧延工程では、前記フランジの表面温度が770〜870℃の範囲で1パス以上の圧延を行い、
前記フランジの板厚が12〜40mmである
ことを特徴とするH形鋼の製造方法。A heating step of heating the steel slab having the chemical component according to any one of claims 1 to 5 to 1100 to 1350 ° C;
A hot rolling step in which the steel slab is hot-rolled into an H-shaped steel;
An air cooling step of air-cooling the H-shaped steel;
Have
The hot rolling process includes a rough rolling process for rolling the steel slab using a roughing mill, an intermediate rolling process for performing reverse rolling using an intermediate rolling mill, and a finish rolling for rolling using a finishing mill. Process,
In the reverse rolling of the intermediate rolling step, controlled rolling is performed by rolling while cooling the H-section steel using a water cooling device provided on the front and rear surfaces of the intermediate rolling mill,
In the finish rolling step, the flange has a surface temperature of 770 to 870 ° C. and performs one or more passes of rolling,
A method for producing an H-section steel, wherein the flange has a thickness of 12 to 40 mm.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013094589 | 2013-04-26 | ||
JP2013094589 | 2013-04-26 | ||
PCT/JP2014/060745 WO2014175122A1 (en) | 2013-04-26 | 2014-04-15 | H-shaped steel and method for producing same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2014175122A1 true JPWO2014175122A1 (en) | 2017-02-23 |
Family
ID=51791701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015513696A Pending JPWO2014175122A1 (en) | 2013-04-26 | 2014-04-15 | H-section steel and its manufacturing method |
Country Status (4)
Country | Link |
---|---|
US (1) | US20150361664A1 (en) |
EP (1) | EP2990498A1 (en) |
JP (1) | JPWO2014175122A1 (en) |
WO (1) | WO2014175122A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101923340B1 (en) * | 2013-09-27 | 2018-11-28 | 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 | Method for bonding stainless steel members and stainless steel |
CN105499268B (en) * | 2016-01-16 | 2017-12-15 | 舞阳钢铁有限责任公司 | A kind of milling method of high alloy super-thick steel plate |
JP6468408B2 (en) * | 2016-12-21 | 2019-02-13 | 新日鐵住金株式会社 | H-section steel and its manufacturing method |
KR101928207B1 (en) * | 2017-07-24 | 2018-12-11 | 현대제철 주식회사 | Shape steel and method of manufacturing the same |
CN107790493A (en) * | 2017-10-23 | 2018-03-13 | 陕西海恩得工贸有限公司 | A kind of milling method of stud |
CN108893675B (en) * | 2018-06-19 | 2020-02-18 | 山东钢铁股份有限公司 | Thick-specification hot-rolled H-shaped steel with yield strength of 500MPa and preparation method thereof |
CN115369328B (en) * | 2022-09-22 | 2024-01-23 | 马鞍山钢铁股份有限公司 | Low-temperature-resistant rolled steel and production method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3733727B2 (en) | 1997-12-26 | 2006-01-11 | Jfeスチール株式会社 | Method for producing ultra-thick H-section steel for building structures having a tensile strength of 590 MPa that is excellent in toughness in the flange thickness direction as it is rolled |
JP2001009503A (en) * | 1999-06-30 | 2001-01-16 | Kawasaki Steel Corp | Manufacture of rolled wide-flange shape steel |
JP3873540B2 (en) * | 1999-09-07 | 2007-01-24 | Jfeスチール株式会社 | Manufacturing method of high productivity and high strength rolled H-section steel |
CN101379209A (en) | 2006-02-08 | 2009-03-04 | 新日本制铁株式会社 | Fire-resistant high-strength rolled steel material and method for production thereof |
JP4757858B2 (en) * | 2006-09-04 | 2011-08-24 | 新日本製鐵株式会社 | Refractory steel material excellent in high temperature strength, toughness and reheat embrittlement resistance, and production method thereof |
WO2008126910A1 (en) | 2007-04-06 | 2008-10-23 | Nippon Steel Corporation | Steel material having excellent high temperature properties and excellent toughness, and method for production thereof |
JP4855553B2 (en) * | 2009-11-27 | 2012-01-18 | 新日本製鐵株式会社 | High-strength ultra-thick H-section steel and its manufacturing method |
CN102676919B (en) * | 2012-04-17 | 2014-12-31 | 马钢(集团)控股有限公司 | Method for cooling low-alloy hot-rolled H-shaped steel with yield strength of 550MPa after rolling |
-
2014
- 2014-04-15 JP JP2015513696A patent/JPWO2014175122A1/en active Pending
- 2014-04-15 WO PCT/JP2014/060745 patent/WO2014175122A1/en active Application Filing
- 2014-04-15 US US14/763,344 patent/US20150361664A1/en not_active Abandoned
- 2014-04-15 EP EP14787733.6A patent/EP2990498A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
WO2014175122A1 (en) | 2014-10-30 |
US20150361664A1 (en) | 2015-12-17 |
EP2990498A1 (en) | 2016-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5574059B2 (en) | High-strength H-section steel with excellent low-temperature toughness and method for producing the same | |
EP3042976B1 (en) | Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe | |
JP5445720B1 (en) | High strength steel plate with excellent arrestability | |
JP5522084B2 (en) | Thick steel plate manufacturing method | |
JP4547044B2 (en) | High-strength thick steel material excellent in toughness and weldability, high-strength extra-thick H-shaped steel, and methods for producing them | |
JP6354572B2 (en) | Low-temperature H-section steel and its manufacturing method | |
JP4848966B2 (en) | Thick-wall high-tensile steel plate and manufacturing method thereof | |
WO2014175122A1 (en) | H-shaped steel and method for producing same | |
WO2014103629A1 (en) | STEEL SHEET HAVING YIELD STRENGTH OF 670-870 N/mm2 AND TENSILE STRENGTH OF 780-940 N/mm2 | |
JP2017115200A (en) | H-shaped steel for low temperature and production method therefor | |
WO2013089089A1 (en) | High-strength extra-thick steel h-beam | |
WO2015115086A1 (en) | Wear-resistant steel plate and process for producing same | |
JP2012207237A (en) | 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF | |
WO2016157862A1 (en) | High strength/high toughness steel sheet and method for producing same | |
WO2016157863A1 (en) | High strength/high toughness steel sheet and method for producing same | |
JP2010196161A (en) | Method for manufacturing heavy gauge high tensile strength hot rolled steel sheet with excellent hic resistance | |
JP2008045174A (en) | High-strength thick steel plate for structural purpose having excellent brittle crack propagation property and its production method | |
JP2017071827A (en) | H shaped steel and manufacturing method therefor | |
JP2011202214A (en) | Thick high tensile strength steel plate having excellent low temperature toughness in multilayer weld zone and method for producing the same | |
JP2005256037A (en) | Method for producing high strength-high toughness-thick steel plate | |
JP2022510933A (en) | Steel materials with excellent hydrogen-induced crack resistance and their manufacturing methods | |
JP6354571B2 (en) | Rolled H-section steel and its manufacturing method | |
JP6390813B2 (en) | Low-temperature H-section steel and its manufacturing method | |
JP7348948B2 (en) | High-strength structural steel material with excellent cold bendability and method for producing the same | |
JP6421638B2 (en) | Low-temperature H-section steel and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160315 |