JP5522084B2 - Thick steel plate manufacturing method - Google Patents

Thick steel plate manufacturing method Download PDF

Info

Publication number
JP5522084B2
JP5522084B2 JP2011038958A JP2011038958A JP5522084B2 JP 5522084 B2 JP5522084 B2 JP 5522084B2 JP 2011038958 A JP2011038958 A JP 2011038958A JP 2011038958 A JP2011038958 A JP 2011038958A JP 5522084 B2 JP5522084 B2 JP 5522084B2
Authority
JP
Japan
Prior art keywords
rolling
thickness
temperature
steel plate
thick steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011038958A
Other languages
Japanese (ja)
Other versions
JP2012172258A (en
Inventor
清孝 中島
明 獅々堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011038958A priority Critical patent/JP5522084B2/en
Publication of JP2012172258A publication Critical patent/JP2012172258A/en
Application granted granted Critical
Publication of JP5522084B2 publication Critical patent/JP5522084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、厚鋼板の製造方法に関し、特に、圧延生産性の高い、低温靭性に優れた溶接構造用極厚鋼板の製造方法に関する。   The present invention relates to a method for producing a thick steel plate, and more particularly, to a method for producing a very thick steel plate for a welded structure having high rolling productivity and excellent low temperature toughness.

船舶、建築、タンク、海洋構造物、ラインパイプ、風力発電用鉄塔などの溶接構造物に用いられる厚鋼板には、構造物の脆性破壊を抑制するために低温靭性が求められる。特に、大型構造物には、降伏応力が315〜460MPa、板厚が60〜100mmの極厚鋼板を使用するケースが多くなっている。   Steel plates used for welded structures such as ships, buildings, tanks, offshore structures, line pipes, wind power towers, etc. are required to have low temperature toughness in order to suppress brittle fracture of the structures. In particular, large structures often use extra-thick steel plates having a yield stress of 315 to 460 MPa and a plate thickness of 60 to 100 mm.

一般に、靭性を向上させるためには、圧延工程において、γ未再結晶温度域と呼ばれる750〜850℃程度の低温で、累積圧下率が大きな圧延を施す。これにより、転位密度が増大し、この転位を変態核とし、多数のフェライトを生成させることで、結晶粒を細かくすることができる。そして、この結晶粒微細化によって、靭性を向上させることが出来る。   In general, in order to improve toughness, in the rolling process, rolling with a large cumulative rolling reduction is performed at a low temperature of about 750 to 850 ° C. called a γ non-recrystallization temperature range. As a result, the dislocation density is increased, and the crystal grains can be made fine by generating a large number of ferrites using the dislocations as transformation nuclei. And toughness can be improved by this crystal grain refinement | miniaturization.

従来から、厚鋼板の靭性を向上させる方法について、種々の提案がなされており、例えば、特許文献1〜5に開示された技術がある。   Conventionally, various proposals have been made on methods for improving the toughness of a thick steel plate. For example, there are techniques disclosed in Patent Documents 1 to 5.

特許文献1には、板厚40mm以上の脆性き裂のアレスト性に優れた鋼板が記載されている。特許文献2には、板厚50mm以上の靭性に優れた厚手高強度鋼板を製造する方法が記載されている。特許文献3には、仕上圧延における最終5パスの完了から最終4パス前の開始までのパス間時間を30秒以上、最終4パス前から最終パスまでの各パス間時間を15秒以下とする材質ばらつきの少ない鋼材を製造する方法が記載されている。   Patent Document 1 describes a steel plate excellent in the arrestability of a brittle crack having a thickness of 40 mm or more. Patent Document 2 describes a method for producing a thick high-strength steel plate having excellent toughness with a thickness of 50 mm or more. In Patent Document 3, the time between passes from the completion of the final five passes in finish rolling to the start before the final four passes is 30 seconds or more, and the time between each pass from the last four passes to the final pass is 15 seconds or less. A method of manufacturing a steel material with little material variation is described.

特許文献4には、各圧延パスで所定の圧延温度と圧下率の関係を満たすように圧延条件を設定し、再結晶γ粒の微細化と未再結晶圧延の効果を最大限に享受して、最終組織を微細化し、優れた強度・靭性を有する鋼板を製造する方法が記載されている。特許文献5には、2台の圧延機を用いて、パス間5秒以内でタンデム圧延し、再結晶を促進させ、未再結晶域での累積圧下率を70%以上とすることにより、強度、靭性に優れた鋼板を製造する方法が記載されている。   In Patent Document 4, rolling conditions are set so as to satisfy a predetermined relationship between rolling temperature and rolling reduction in each rolling pass, and the effect of refinement of recrystallized γ grains and non-recrystallized rolling can be fully enjoyed. A method for producing a steel sheet having a finer final structure and having excellent strength and toughness is described. In Patent Document 5, tandem rolling is performed within 5 seconds between passes by using two rolling mills, the recrystallization is promoted, and the cumulative reduction ratio in the non-recrystallized region is set to 70% or more. A method for producing a steel sheet having excellent toughness is described.

特開2007−302993号公報JP 2007-302993 A 特開2007−46096号公報JP 2007-46096 A 特開2002−249822号公報JP 2002-249822 A 特開2004−269924号公報JP 2004-269924 A 特開平11−181519号公報JP-A-11-181519

しかし、前記特許文献1〜5には下記のような問題点があった。   However, Patent Documents 1 to 5 have the following problems.

特許文献1に記載された製造方法は、板厚が厚い、すなわち累積圧下率が大きい所での低温圧延(CR)が必要である。低温圧延を施すと、結晶粒を細かくすることができ、靭性が向上する。しかし、板厚が厚い所での低温圧延は、温度の低下を待つ時間が長く、圧延生産性が著しく低下する。   The manufacturing method described in Patent Document 1 requires low-temperature rolling (CR) where the plate thickness is large, that is, where the cumulative rolling reduction is large. When low temperature rolling is performed, the crystal grains can be made finer and the toughness is improved. However, low temperature rolling in a place where the plate thickness is thick requires a long time to wait for the temperature to drop, and the rolling productivity is significantly reduced.

特許文献2に記載された製造方法は、800〜900℃で、製品板厚の2.5倍以上の板厚が厚い所での熱間圧延が必要である。この方法により、靭性の向上は期待できるが、温度の低下を待つ時間が長く、圧延生産性が著しく低下する。   The manufacturing method described in Patent Document 2 requires hot rolling at a place where the plate thickness is 800 to 900 ° C. and is 2.5 times thicker than the product plate thickness. Although this method can be expected to improve toughness, it takes a long time to wait for the temperature to drop, and the rolling productivity is significantly reduced.

特許文献3に記載された製造方法は、製品板厚が薄い鋼板を対象としており、また、再結晶圧延や未再結晶圧延に必要な圧下率などを考慮していないので、極厚鋼板での、圧延生産性や靭性を向上させる製造方法に適用はできない。   The manufacturing method described in Patent Document 3 is intended for a steel plate having a thin product plate thickness, and does not consider the reduction ratio required for recrystallization rolling or non-recrystallization rolling. It cannot be applied to a manufacturing method for improving rolling productivity and toughness.

特許文献4に記載された製造方法は、圧延温度を表面温度で管理するため、材質ばらつきが大きく、更に、加熱抽出後の板厚が厚い所で再結晶圧延の温度待ちをする必要があるので、極厚鋼板の圧延生産性は低下する。   Since the manufacturing method described in Patent Document 4 manages the rolling temperature by the surface temperature, the material variation is large, and furthermore, it is necessary to wait for the temperature of recrystallization rolling in a place where the plate thickness after heat extraction is thick. In addition, the rolling productivity of extra-thick steel plates is reduced.

特許文献5に記載された製造方法のように、2台の圧延機を用いてのタンデム圧延は、設備上の制約が大きく、実用的ではない。   Like the manufacturing method described in Patent Document 5, tandem rolling using two rolling mills is not practical because of great restrictions on facilities.

そこで、本発明は、従来技術の、板厚が厚い所での低温圧延を必要とすることによる生産性の低さを改善し、さらに、降伏応力が315〜460MPa、板厚が60〜100mmの極厚鋼板に適用が可能で、特別な設備を必要とせず、材質ばらつきの小さい、低温靭性に優れた溶接構造用極厚鋼板の製造方法の提供を課題とする。具体的には、高温での再結晶圧延でγ粒を微細化し、未再結晶域圧延でγ中に転位を導入することにより、さらに適切な温度、圧下率、時間を規定することにより、生産性が高く、組織を微細化でき、靭性が向上できる極厚鋼板の製造方法の提供を課題とする。   Therefore, the present invention improves the low productivity due to the need for low temperature rolling in the prior art where the plate thickness is thick, and the yield stress is 315 to 460 MPa, and the plate thickness is 60 to 100 mm. It is an object of the present invention to provide a method for producing an extremely thick steel sheet for welded structures that can be applied to an extremely thick steel sheet, does not require special equipment, has small material variations, and has excellent low-temperature toughness. Specifically, by refining γ grains by recrystallization rolling at high temperature and introducing dislocations in γ by non-recrystallization zone rolling, further specifying the appropriate temperature, reduction rate, and time, production It is an object of the present invention to provide a method for producing a very thick steel plate that has high properties, can refine the structure, and can improve toughness.

本発明者らは、厚鋼板の製造方法について鋭意検討した。その結果、粗圧延後の仕上圧延において、γ再結晶温度域と呼ばれる900超〜1020℃の高温での圧延で、再結晶によりγを微細化し、さらに板厚が薄い所において、γ未再結晶温度域と呼ばれる780〜900℃の低温での圧延で、最終組織を微細化することができる製造条件を見出し、圧延生産性と低温靭性とを両立できる厚鋼板の製造方法を実現した。   The present inventors diligently studied a method for producing a thick steel plate. As a result, in finish rolling after rough rolling, γ is refined by recrystallization by rolling at a high temperature exceeding 900 to 1020 ° C., which is called a γ recrystallization temperature range, and γ unrecrystallized in a place where the plate thickness is thin. We have found manufacturing conditions that can refine the final structure by rolling at a low temperature of 780 to 900 ° C., which is called a temperature range, and have realized a method for manufacturing a thick steel plate that can achieve both rolling productivity and low temperature toughness.

具体的には、熱間仕上圧延の前段(以下「1次仕上圧延」ともいう。)のγ再結晶温度域で、製品板厚の1.8〜2.2倍の板厚から圧延を施す。これにより効率良く再結晶γ粒を微細化できる。さらに、熱間仕上圧延の後段(以下「2次仕上圧延」ともいう。)のγ未再結晶温度域で、製品板厚の1.2〜1.6倍の板厚から圧延を施す。これにより、転位の回復や再結晶を抑制し、効率良く転位密度を大きくすることができ、最終組織を微細化できる。それぞれの仕上圧延では、組織微細化効果の発現が可能な範囲で、圧延開始時の板厚を薄く限定しているので、温度待ち時間が短く、生産性も高めることができる。   Specifically, rolling is performed from a thickness of 1.8 to 2.2 times the product thickness in the γ recrystallization temperature range of the first stage of hot finish rolling (hereinafter also referred to as “primary finish rolling”). . As a result, the recrystallized γ grains can be refined efficiently. Further, rolling is performed from a plate thickness 1.2 to 1.6 times the product plate thickness in the γ non-recrystallization temperature range after the hot finish rolling (hereinafter also referred to as “secondary finish rolling”). As a result, dislocation recovery and recrystallization can be suppressed, the dislocation density can be increased efficiently, and the final structure can be refined. In each finish rolling, the sheet thickness at the start of rolling is limited to be thin as long as the effect of refining the structure is possible, so that the temperature waiting time is short and the productivity can be improved.

従来は、粗圧延で再結晶γ粒の微細化が行われ、製品板厚の約2倍以上の板厚で温度の低下を長時間待って、低温での仕上圧延が行われていたが、極厚鋼板では、温度待ち時間が長いと、著しくγ粒が粗大化したり、板表面が低温でも板内部は高温となっており、仕上圧延で導入した転位が回復、または再結晶するなどしたりして、最終組織を微細化できない上に生産性が著しく低くなる問題があった。   Conventionally, recrystallized γ grains have been refined by rough rolling, and finish rolling at low temperatures has been performed for a long time, waiting for a temperature drop at a sheet thickness of about twice or more the product sheet thickness. For extra-thick steel sheets, if the temperature waiting time is long, the γ grains become extremely coarse, or even if the plate surface is cold, the inside of the plate is hot, and the dislocations introduced in finish rolling are recovered or recrystallized. As a result, there is a problem that the final structure cannot be refined and the productivity is remarkably lowered.

しかし、本発明者らの検討によれば、1次仕上圧延、2次仕上圧延ともに、適正な温度範囲と板厚にすることにより、生産性を損なわず最終組織の微細化が可能であることを知見した。   However, according to the study by the present inventors, it is possible to refine the final structure without impairing the productivity by setting the appropriate temperature range and thickness for both the primary finish rolling and the secondary finish rolling. I found out.

本発明は、上述した知見に基づき、さらに、生産性、及び、低温靭性に優れた鋼の成分組成を考慮してなされたものであり、その要旨は以下のとおりである。   The present invention has been made on the basis of the above-described findings and further takes into consideration the component composition of steel excellent in productivity and low temperature toughness, and the gist thereof is as follows.

(1) 質量%で、
C :0.04〜0.16%、
Si:0.01〜0.5%、
Mn:0.2〜2.5%、
P :0.03%以下、
S :0.02%以下、
Al:0.001〜0.10%、
Nb:0.003〜0.02%、
Ti:0.003〜0.05%、
N :0.001〜0.008%
を含有し、下記(A)式の炭素当量Ceq.が0.3〜0.5%で、残部がFe、及び不可避的不純物からなる鋼片を、1000〜1200℃に加熱し、次いで、板厚中心温度950〜1200℃で、製品板厚の1.8〜2.2倍の板厚まで、粗圧延を施し、その後、板厚中心温度900超〜1020℃のオーステナイト再結晶領域で、製品板厚の1.2〜1.6倍の板厚まで1次仕上圧延を施し、その後、板厚中心温度780〜900℃のオーステナイト未再結晶領域で、製品板厚まで2次仕上圧延を施し、続いて、板厚中心温度720℃以上から、1〜10℃/sの板厚中心冷却速度で、550℃以下の温度まで加速冷却を施し、板厚が60〜100mm、降伏応力が315〜460MPaであり、ミクロ組織がフェライト、及びベイナイト、またはフェライト、パーライト、及びベイナイトの混合組織であり、かつ、板厚中心部における平均結晶粒径が5〜20μmの厚鋼板とすることを特徴とする厚鋼板の製造方法。
炭素当量Ceq.=C+Mn/6 ・・・(A)
(1) In mass%,
C: 0.04 to 0.16%,
Si: 0.01 to 0.5%,
Mn: 0.2 to 2.5%
P: 0.03% or less,
S: 0.02% or less,
Al: 0.001 to 0.10%,
Nb: 0.003 to 0.02%,
Ti: 0.003 to 0.05%,
N: 0.001 to 0.008%
And a steel slab consisting of the following formula (A) having a carbon equivalent Ceq. Of 0.3 to 0.5%, the balance being Fe and unavoidable impurities is heated to 1000 to 1200 ° C., Rough rolling is performed at a thickness center temperature of 950 to 1200 ° C. to a thickness of 1.8 to 2.2 times the product plate thickness, and then in the austenite recrystallization region at a thickness center temperature of over 900 to 1020 ° C. The primary finish rolling is performed to a thickness of 1.2 to 1.6 times the plate thickness, and then the secondary finish rolling is performed to the product thickness in the austenite non-recrystallized region at a thickness center temperature of 780 to 900 ° C. Subsequently, accelerated cooling is performed from a sheet thickness center temperature of 720 ° C. or more to a temperature of 550 ° C. or less at a sheet thickness center cooling rate of 1 to 10 ° C./s, a sheet thickness of 60 to 100 mm, and a yield stress of 315 to 315 ° C. 460 MPa, microstructure is ferrite and bainnai Or a thick steel plate having a mixed structure of ferrite, pearlite, and bainite and having an average crystal grain size of 5 to 20 μm at the center of the plate thickness.
Carbon equivalent Ceq. = C + Mn / 6 (A)

(2) 前記鋼片が、さらに、質量%で、Cu:0.03〜1.5%、Ni:0.03〜2.0%、Cr:0.03〜1.5%、Mo:0.01〜1.0%、V:0.003〜0.2%、B:0.0002〜0.005%、Ca:0.0005〜0.01%、Mg:0.0005〜0.01%、REM:0.0005〜0.01%の1種または2種以上を含有し、下記(B)式の炭素当量Ceq.が0.3〜0.5%であることを特徴とする前記(1)に記載の厚鋼板の製造方法。
炭素当量Ceq.=C+Mn/6+(Cu+Ni)/15
+(Cr+Mo+V)/5 ・・・(B)
(2) The steel slab is further mass%, Cu: 0.03-1.5%, Ni: 0.03-2.0%, Cr: 0.03-1.5%, Mo: 0 0.01-1.0%, V: 0.003-0.2%, B: 0.0002-0.005%, Ca: 0.0005-0.01%, Mg: 0.0005-0.01 %, REM: 0.0005 to 0.01% of one type or two or more types, and a carbon equivalent Ceq. Is 0.3-0.5%, The manufacturing method of the thick steel plate as described in said (1) characterized by the above-mentioned.
Carbon equivalent Ceq. = C + Mn / 6 + (Cu + Ni) / 15
+ (Cr + Mo + V) / 5 (B)

(3) 前記粗圧延の累積圧下率が30〜80%であることを特徴とする前記(1)、または(2)に記載の厚鋼板の製造方法。   (3) The method for producing a thick steel plate according to (1) or (2) above, wherein a cumulative rolling reduction of the rough rolling is 30 to 80%.

(4) 前記仕上1次圧延の各パスでの圧下率が5〜25%であり、仕上2次圧延の各パスでの圧下率が5〜25%、パス間時間が1〜60秒であることを特徴とする前記(1)〜(3)のいずれかに記載の厚鋼板の製造方法。   (4) The rolling reduction in each pass of the finishing primary rolling is 5 to 25%, the rolling reduction in each pass of the finishing secondary rolling is 5 to 25%, and the time between passes is 1 to 60 seconds. The manufacturing method of the thick steel plate in any one of said (1)-(3) characterized by the above-mentioned.

(5) 前記加速冷却が終了した後、300〜650℃で焼戻しすることを特徴とする前記(1)〜(4)のいずれかに記載の厚鋼板の製造方法。   (5) The method for producing a thick steel plate according to any one of (1) to (4), wherein tempering is performed at 300 to 650 ° C. after the accelerated cooling is completed.

本発明の溶接構造用厚鋼板の製造方法は、仕上圧延時の板厚が小さいので温度待ち時間が短く、圧延生産性が高い。さらに、本発明の製造方法によれば、γの再結晶による微細化とγ中の転位密度の増加を活用して、最終組織を微細化することにより、低温靭性に優れた溶接構造用極厚鋼板を製造できる。   The method for manufacturing a steel plate for welded structure according to the present invention has a short temperature waiting time and a high rolling productivity because the plate thickness during finish rolling is small. Furthermore, according to the manufacturing method of the present invention, by utilizing the refinement by recrystallization of γ and the increase of dislocation density in γ, the final structure is refined, thereby achieving an extremely thick welded structure with excellent low-temperature toughness. Steel sheets can be manufactured.

以下本発明の好ましい実施の形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

はじめに、本発明の厚鋼板の好ましい製造方法について説明する。   First, the preferable manufacturing method of the thick steel plate of this invention is demonstrated.

まず、所望の成分組成に調整した溶鋼を、転炉等を用いた公知の溶製方法で溶製し、連続鋳造等の公知の鋳造方法で鋼片とする。   First, molten steel adjusted to a desired component composition is melted by a known melting method using a converter or the like, and is made into a steel slab by a known casting method such as continuous casting.

鋳造時の冷却途中、または冷却後に、鋼片を1000〜1200℃の温度に加熱する。鋼片の加熱温度が1000℃未満では、溶体化が不十分となる。加熱温度が1200℃を超えると、加熱γ粒が粗大化し、その後の圧延過程で微細化することが困難となり、さらに、高温圧延の開始までの間に、温度の低下を待つ時間が生じるので、生産性が低くなる。好ましい加熱温度の範囲は、1050〜1150℃である。   During or after cooling during casting, the steel slab is heated to a temperature of 1000 to 1200 ° C. When the heating temperature of the steel slab is less than 1000 ° C., solutionization becomes insufficient. When the heating temperature exceeds 1200 ° C., the heated γ grains become coarse, and it becomes difficult to refine in the subsequent rolling process, and furthermore, there is a time to wait for the temperature to drop before the start of high temperature rolling, Productivity is reduced. A preferable heating temperature range is 1050 to 1150 ° C.

次いで、板厚中心温度950〜1200℃で、製品板厚の1.8〜2.2倍の板厚まで、粗圧延を施す。   Next, rough rolling is performed at a plate thickness center temperature of 950 to 1200 ° C. to a plate thickness of 1.8 to 2.2 times the product plate thickness.

板厚中心温度が1200℃を超えると、その後の仕上圧延でも再結晶γ粒を微細にすることができない。板厚中心温度が950℃未満となると、生産性が低下する。好ましい板厚中心温度は1000〜1150℃である。   When the sheet thickness center temperature exceeds 1200 ° C., the recrystallized γ grains cannot be made fine even in the subsequent finish rolling. When the plate thickness center temperature is less than 950 ° C., the productivity is lowered. A preferable plate thickness center temperature is 1000 to 1150 ° C.

製品板厚の1.8倍未満の板厚までの粗圧延では、その後の仕上圧延での圧下率が不足するので、組織を微細化することができない。製品板厚の2.2倍超の板厚までの粗圧延では、その後の仕上圧延での温度待ち時間が長くなるため、生産性が低下する。好ましい板厚は、製品板厚の1.9〜2.1倍である。   In rough rolling up to a sheet thickness of less than 1.8 times the product sheet thickness, the reduction ratio in the subsequent finish rolling is insufficient, so that the structure cannot be refined. In the rough rolling up to a sheet thickness of more than 2.2 times the product sheet thickness, the temperature waiting time in the subsequent finish rolling becomes longer, so the productivity is lowered. A preferable plate thickness is 1.9 to 2.1 times the product plate thickness.

粗圧延の累積圧下率は、特に30〜80%とすることが好ましい。累積圧下率が30%未満になると、ポロシティが残存し、内部割れや延性、及び靭性の劣化が発生する可能性がある。累積圧下率が80%を超えると、パス数が増加して生産性が低下する傾向にある。好ましい累積圧下率は、35〜75%である。   The cumulative rolling reduction of rough rolling is particularly preferably 30 to 80%. When the cumulative rolling reduction is less than 30%, porosity remains, and internal cracks, ductility, and toughness may be deteriorated. When the cumulative rolling reduction exceeds 80%, the number of passes increases and the productivity tends to decrease. A preferred cumulative rolling reduction is 35 to 75%.

次いで、板厚中心温度900超〜1020℃のオーステナイト(γ)再結晶領域で、製品板厚の1.2〜1.6倍の板厚まで、1次仕上圧延を施す。   Next, primary finish rolling is performed to a thickness of 1.2 to 1.6 times the product thickness in an austenite (γ) recrystallization region having a thickness center temperature exceeding 900 to 1020 ° C.

板厚中心温度が1020℃を超えると、再結晶γ粒を微細にすることができない。板厚中心温度が900℃以下となると、生産性が低下する。好ましい板厚中心温度は920〜1000℃である。   When the plate thickness center temperature exceeds 1020 ° C., the recrystallized γ grains cannot be made fine. When the plate thickness center temperature is 900 ° C. or less, the productivity decreases. A preferable thickness center temperature is 920 to 1000 ° C.

製品板厚の1.2倍未満の板厚までの1次仕上圧延では、その後の2次仕上圧延での圧下率が不足するので、組織を微細化することができない。製品板厚の1.6倍超の板厚までの1次仕上圧延では、その後の2次仕上圧延での温度待ち時間が長くなるため、生産性が低下する。好ましい板厚は、製品板厚の1.25〜1.55倍である。   In the primary finish rolling up to a thickness less than 1.2 times the product plate thickness, the reduction ratio in the subsequent secondary finish rolling is insufficient, so the structure cannot be refined. In the primary finish rolling up to a thickness of 1.6 times the product plate thickness, the temperature waiting time in the subsequent secondary finish rolling becomes longer, so the productivity is lowered. The preferred plate thickness is 1.25 to 1.55 times the product plate thickness.

1次仕上圧延の1パス当たりの圧下率は、5〜25%とすることが好ましい。1パス当たりの圧下率が5%未満になると、再結晶γ粒を微細化することが困難となり、また、パス数が多くなるため、生産性が低下する傾向となる。1パス当たりの圧下率が25%を超えると、圧延機の負担が極めて大きくなるため、実現が困難である。好ましい1次仕上圧延の1パス当たりの圧下率は、7〜23%である。   The rolling reduction per pass of the primary finish rolling is preferably 5 to 25%. If the rolling reduction per pass is less than 5%, it is difficult to refine the recrystallized γ grains, and the number of passes increases, so the productivity tends to decrease. If the rolling reduction per pass exceeds 25%, the burden on the rolling mill becomes very large, which is difficult to realize. The rolling reduction per pass of preferable primary finish rolling is 7 to 23%.

次いで、板厚中心温度780〜900℃で、2次仕上圧延を施す。   Next, secondary finish rolling is performed at a plate thickness center temperature of 780 to 900 ° C.

板厚中心温度が900℃を超えると、未再結晶領域に十分入らず、転位の増加が抑制され、組織を微細にすることができない。板厚中心温度が780℃未満となると、生産性が低下する。好ましい板厚中心温度は800〜880℃である。   When the plate thickness center temperature exceeds 900 ° C., it does not sufficiently enter the non-recrystallized region, the increase in dislocation is suppressed, and the structure cannot be made fine. When the plate thickness center temperature is less than 780 ° C., the productivity is lowered. A preferable thickness center temperature is 800 to 880 ° C.

2次仕上圧延の1パス当たりの圧下率は、5〜25%とすることが好ましい。1パス当たりの圧下率が5%未満になると、転位の回復が生じる傾向があり、組織の微細化が難しく、また、パス数が増加するので、生産性が低下する傾向となる。
1パス当たりの圧下率が25%を超えると、圧延機の負担が大きくなるために好ましくない。また、この2次仕上圧延の1パス当たりの圧下率は、好ましくは、7〜23%である。
The rolling reduction per pass of the secondary finish rolling is preferably 5 to 25%. When the rolling reduction per pass is less than 5%, dislocation recovery tends to occur, and it is difficult to refine the structure, and the number of passes increases, so the productivity tends to decrease.
If the rolling reduction per pass exceeds 25%, the burden on the rolling mill increases, which is not preferable. Moreover, the rolling reduction per pass of this secondary finish rolling is preferably 7 to 23%.

更に、パス間時間は、1〜60秒とすることが好ましい。このパス間時間が60秒を超えると、転位の回復や再結晶が起り易くなるので、組織の微細化が難しくなり、また、生産性も低下する傾向になる。パス間時間は短いほど良いが、短すぎると復熱による温度変化が大きくなり、温度制御が困難となるので、下限は1秒とする。好ましいパス間時間は、2〜28秒である。さらに好ましくは、4〜20秒である。   Furthermore, the time between passes is preferably 1 to 60 seconds. If the time between passes exceeds 60 seconds, dislocation recovery and recrystallization are likely to occur, so that it becomes difficult to refine the structure and the productivity tends to decrease. The shorter the time between passes, the better. However, if the time is too short, the temperature change due to recuperation increases, making temperature control difficult, so the lower limit is set to 1 second. A preferred time between passes is 2 to 28 seconds. More preferably, it is 4 to 20 seconds.

上記の熱間圧延に続いて、板厚中心温度720℃以上から、1〜10℃/sの板厚中心冷却速度で、550℃以下の温度まで加速冷却を施す。   Subsequent to the above hot rolling, accelerated cooling is performed from a sheet thickness center temperature of 720 ° C. to a temperature of 550 ° C. or less at a sheet thickness center cooling rate of 1 to 10 ° C./s.

冷却開始時の板厚中心温度が720℃未満になると、フェライト変態が進行するので、フェライト細粒組織が得られにくい。板厚中心冷却速度が1℃/s未満になると、微細組織を得るのが困難になる。板厚中心冷却速度が10℃/sを超えることは、板厚60mm以上の鋼板では実現できないので、これを上限とする。   When the plate thickness center temperature at the start of cooling is less than 720 ° C., the ferrite transformation proceeds, so that it is difficult to obtain a ferrite fine grain structure. When the sheet thickness center cooling rate is less than 1 ° C./s, it becomes difficult to obtain a fine structure. The plate thickness center cooling rate exceeding 10 ° C./s cannot be realized with a steel plate having a plate thickness of 60 mm or more.

加速冷却の冷却停止温度が550℃を超えると、微細組織を得ることと強度を確保することが困難になる。   When the cooling stop temperature of accelerated cooling exceeds 550 ° C., it becomes difficult to obtain a fine structure and secure strength.

好ましい加速冷却の条件は、冷却開始時の板厚中心温度740℃以上、冷却速度2〜8℃/s、冷却停止温度500℃以下である。   Preferred accelerated cooling conditions are a plate thickness center temperature at the start of cooling of 740 ° C. or higher, a cooling rate of 2 to 8 ° C./s, and a cooling stop temperature of 500 ° C. or lower.

なお、鋼板の板厚中心温度を用いて製造を制御するのも、本発明の鋼板の製造方法の特徴である。板厚中心温度を用いることにより、鋼板の表面温度を用いる場合と比べ、板厚が変化した場合などにも、適切に製造条件を制御することができ、材質のばらつきが小さい、品質のよい鋼板を効率よく製造することができる。   In addition, it is the characteristics of the manufacturing method of the steel plate of this invention to control manufacture using the plate | board thickness center temperature of a steel plate. By using the plate thickness center temperature, it is possible to properly control the manufacturing conditions even when the plate thickness changes compared to the case where the surface temperature of the steel plate is used. Can be manufactured efficiently.

圧延工程では、通常、加熱から圧延までの間、鋼板の表面温度等を測定しながら鋼板内部の温度分布を計算し、その温度分布の計算結果から圧延反力などを予測しながら、圧延の制御を行っている。このように、圧延中に鋼板中心温度を容易に求めることができる。加速冷却を行う場合も、同様に板厚内部の温度分布を予測しながら、加速冷却の制御を行っている。   In the rolling process, usually the temperature distribution inside the steel sheet is calculated while measuring the surface temperature of the steel sheet from heating to rolling, and the rolling control is performed while predicting the rolling reaction force from the calculation result of the temperature distribution. It is carried out. Thus, the steel plate center temperature can be easily obtained during rolling. In the case of performing accelerated cooling, the accelerated cooling is controlled while predicting the temperature distribution inside the plate thickness.

加速冷却を施した後、必要に応じて300〜650℃で焼戻しを行ってもよい。   After performing accelerated cooling, you may temper at 300-650 degreeC as needed.

300℃未満での焼戻しでは、焼戻しの効果が得られにくい。焼戻し温度が650℃を超えると、軟化量が大きくなり、強度の確保が困難になる。好ましい焼戻し温度は、400〜600℃である。   When tempering at less than 300 ° C., the effect of tempering is difficult to obtain. When the tempering temperature exceeds 650 ° C., the amount of softening increases and it becomes difficult to ensure the strength. A preferable tempering temperature is 400-600 degreeC.

本発明の製造方法は、板厚が60〜100mm、降伏応力が315〜460MPaの鋼板の製造に適用可能である。特に、船体、及び海洋構造物用の降伏応力315MPa級、355MPa級または390MPa級鋼板の製造に適用可能である。   The production method of the present invention can be applied to the production of a steel plate having a plate thickness of 60 to 100 mm and a yield stress of 315 to 460 MPa. In particular, the present invention is applicable to the production of yield stress 315 MPa class, 355 MPa class or 390 MPa class steel sheets for hulls and offshore structures.

板厚が60mm未満の鋼板、及び降伏応力が315MPa未満の鋼板に対しては、通常公知の製造方法での製造が容易であり、本発明を適用する必要がない。板厚が100mmを超える鋼板、及び降伏応力が550MPaを超える鋼板に対しては、生産性と靭性を両立することができない。   For a steel plate having a thickness of less than 60 mm and a steel plate having a yield stress of less than 315 MPa, it is easy to produce by a generally known production method, and it is not necessary to apply the present invention. Productivity and toughness cannot be achieved for steel plates with a plate thickness exceeding 100 mm and steel plates with a yield stress exceeding 550 MPa.

上記の製造条件によれば、1次仕上圧延で、再結晶によりγを微細化し、さらに2次仕上圧延で、γ中の転位密度を増加することで、最終組織を微細化することができる。さらに、本発明の製造方法は、各仕上圧延時の板厚を薄くすることで、温度待ち時間が短く、圧延生産性に優れた製造方法である。   According to the above production conditions, the final structure can be refined by refining γ by recrystallization in the primary finish rolling and further increasing the dislocation density in γ by the secondary finish rolling. Furthermore, the manufacturing method of the present invention is a manufacturing method in which the temperature waiting time is short and the rolling productivity is excellent by reducing the plate thickness during each finish rolling.

本発明の製造方法を適用する厚鋼板の成分組成は、強度、靭性、溶接熱影響部(HAZ)靭性、及び溶接性等を考慮して、以下のとおりとする。   The component composition of the thick steel plate to which the production method of the present invention is applied is as follows in consideration of strength, toughness, weld heat affected zone (HAZ) toughness, weldability, and the like.

Cは、母材の強度と靭性を確保するために0.04%以上添加する。Cの含有量が0.16%を超えると、良好なHAZ靭性を確保することが困難になるので、Cの含有量は、0.16%以下とする。好ましくは、0.05〜0.15%、さらに好ましくは、0.06〜0.14%である。   C is added by 0.04% or more in order to ensure the strength and toughness of the base material. If the C content exceeds 0.16%, it becomes difficult to ensure good HAZ toughness, so the C content is set to 0.16% or less. Preferably, it is 0.05 to 0.15%, more preferably 0.06 to 0.14%.

Siは、脱酸元素、及び強化元素として有効であるので、0.01%以上添加する。Siの含有量が0.5%を超えると、HAZ靭性が大きく劣化するので、Siの含有量は0.5%以下とする。好ましくは、0.05〜0.4%、さらに好ましくは、0.1〜0.35%である。   Since Si is effective as a deoxidizing element and a strengthening element, 0.01% or more is added. If the Si content exceeds 0.5%, the HAZ toughness is greatly deteriorated, so the Si content is 0.5% or less. Preferably, it is 0.05 to 0.4%, more preferably 0.1 to 0.35%.

Mnは、母材の強度と靭性を確保するために0.2%以上添加する。Mnの含有量が2.5%を超えると、中心偏析が顕著となり、中心偏析が生じた部分の母材とHAZの靭性が劣化するので、Mnの含有量は、2.5%以下とする。好ましくは、0.6〜1.8%、さらに好ましくは、0.8〜1.6%である。   Mn is added in an amount of 0.2% or more in order to ensure the strength and toughness of the base material. If the Mn content exceeds 2.5%, the center segregation becomes prominent, and the toughness of the base material and the HAZ where the center segregation has occurred deteriorates, so the Mn content is 2.5% or less. . Preferably, it is 0.6 to 1.8%, more preferably 0.8 to 1.6%.

Pは、不純物元素である。HAZ靭性を安定的に確保するためには、Pの含有量を0.03%以下に低減する必要がある。好ましくは、0.02%以下、さらに好ましくは、0.015%以下である。   P is an impurity element. In order to ensure the HAZ toughness stably, it is necessary to reduce the P content to 0.03% or less. Preferably, it is 0.02% or less, more preferably 0.015% or less.

Sは、不純物元素である。母材の特性、及びHAZ靭性を安定的に確保するためには、Sの含有量を0.02%以下に低減する必要がある。好ましくは、0.01%以下、さらに好ましくは、0.008%以下である。   S is an impurity element. In order to stably ensure the characteristics of the base material and the HAZ toughness, the S content needs to be reduced to 0.02% or less. Preferably, it is 0.01% or less, More preferably, it is 0.008% or less.

Alは、脱酸を担い、不純物元素であるOを低減するために必要な元素である。Al以外に、MnやSiも脱酸に寄与する。しかし、MnやSiが添加される場合でも、Alの含有量が0.001%未満では、安定的にOを低減することはできない。ただし、Alの含有量が0.10%を超えると、アルミナ系の粗大酸化物やそのクラスターが生成し、母材とHAZ靭性が損なわれるので、Alの含有量は0.10%以下とする。好ましくは、0.01〜0.08%、さらに好ましくは、0.015〜0.06%である。   Al is an element necessary for deoxidation and reducing O which is an impurity element. In addition to Al, Mn and Si also contribute to deoxidation. However, even when Mn or Si is added, if the Al content is less than 0.001%, O cannot be stably reduced. However, if the Al content exceeds 0.10%, alumina-based coarse oxides and clusters thereof are generated, and the base material and the HAZ toughness are impaired. Therefore, the Al content is 0.10% or less. . Preferably, it is 0.01 to 0.08%, and more preferably 0.015 to 0.06%.

Nbは、0.003%以上添加することにより、母材の強度、及び靭性の向上に寄与する。ただし、Nbの含有量が0.02%を超えるとHAZ靭性や溶接性が低下するので、Nbの含有量は、0.02%以下とする。好ましくは、0.005〜0.025%、さらに好ましくは、0.008〜0.018%である。   Nb contributes to the improvement of the strength and toughness of the base material by adding 0.003% or more. However, if the Nb content exceeds 0.02%, the HAZ toughness and weldability deteriorate, so the Nb content is set to 0.02% or less. Preferably, it is 0.005-0.025%, More preferably, it is 0.008-0.018%.

Tiは、添加することによりTiNが形成され、鋼片加熱時にオーステナイト粒径が大きくなることを抑制する。オーステナイト粒径が大きくなると、変態後の結晶粒径も大きくなり、靭性が低下する。靭性を低下させないために必要な大きさの結晶粒径を得るためには、Tiを0.003%以上添加する必要がある。しかし、Tiの含有量が0.05%を超えると、TiCが形成されHAZ靭性が低下するので、Tiの含有量は0.05%以下とする。好ましくは、0.005〜0.02%、さらに好ましくは、0.007〜0.016%である。   When Ti is added, TiN is formed and suppresses an increase in the austenite grain size when the steel slab is heated. As the austenite grain size increases, the crystal grain size after transformation also increases and the toughness decreases. In order to obtain a crystal grain size of a size necessary for preventing the toughness from being lowered, it is necessary to add 0.003% or more of Ti. However, if the Ti content exceeds 0.05%, TiC is formed and the HAZ toughness decreases, so the Ti content is set to 0.05% or less. Preferably, it is 0.005 to 0.02%, and more preferably 0.007 to 0.016%.

Nは、TiNを形成し、鋼片加熱時にオーステナイト粒径が大きくなることを抑制するので、0.001%を以上添加する。Nの含有量が0.008%を超えると、鋼材が脆化するので、Nの含有量は、0.008%以下とする。好ましくは、0.0015〜0.065%、さらに好ましくは、0.002〜0.006%である。   N forms TiN and suppresses an increase in the austenite grain size when the steel slab is heated, so 0.001% or more is added. If the N content exceeds 0.008%, the steel material becomes brittle, so the N content is set to 0.008% or less. Preferably, it is 0.0015 to 0.065%, more preferably 0.002 to 0.006%.

上述した添加元素のほかに、必要に応じて添加することができる選択元素として、質量%で、Cu:0.03〜1.5%、Ni:0.03〜2.0%、Cr:0.03〜1.5%、Mo:0.01〜1.0%、V:0.03〜0.2%、B:0.0002〜0.005%の1種または2種以上を含有してもよい。これらの元素を添加することにより、母材の強度、及び靭性を向上することができる。ただし、これらの元素の含有量が多すぎると、HAZ靭性や溶接性が悪化するため、含有量の上限を上記のとおりに規定する。また、これらの元素の含有量が少なすぎると、十分なHAZ靭性や溶接性が得られなくなるので、下限を上記のとおりに規定することが好ましい。   In addition to the above-described additive elements, as optional elements that can be added as necessary, in mass%, Cu: 0.03-1.5%, Ni: 0.03-2.0%, Cr: 0 0.03 to 1.5%, Mo: 0.01 to 1.0%, V: 0.03 to 0.2%, and B: 0.0002 to 0.005%. May be. By adding these elements, the strength and toughness of the base material can be improved. However, if the content of these elements is too large, the HAZ toughness and weldability deteriorate, so the upper limit of the content is specified as described above. Further, if the content of these elements is too small, sufficient HAZ toughness and weldability cannot be obtained, so it is preferable to define the lower limit as described above.

なお、必要に応じて、Cuの含有量の上限を1.0%、0.5%または0.3%に、Niの含有量の上限を1.0%、0.5%または0.3%に、Crの含有量の上限を1.0%、0.5%または0.3%に、Moの含有量の上限を0.3%、0.2%または0.1%に、Vの含有量の上限を0.1%、0.07%または0.05%に、Bの含有量の上限を0.003%、0.002または0.001%に制限してもよい。   If necessary, the upper limit of the Cu content is 1.0%, 0.5% or 0.3%, and the upper limit of the Ni content is 1.0%, 0.5% or 0.3%. %, The upper limit of Cr content is 1.0%, 0.5% or 0.3%, the upper limit of Mo content is 0.3%, 0.2% or 0.1%, V The upper limit of the B content may be limited to 0.1%, 0.07% or 0.05%, and the upper limit of the B content may be limited to 0.003%, 0.002 or 0.001%.

さらに、その他の選択元素として、質量%で、Ca:0.0005〜0.01%、Mg:0.0005〜0.01%、REM:0.0005〜0.01%の1種または2種以上を含有してもよい。これらの元素の下限値以上を添加することにより、HAZ靭性が向上する。しかし、上限値を超えて添加しても効果が飽和し、かえってHAZ靭性や溶接性を悪化させる。   Furthermore, as other selective elements, one or two of Ca: 0.0005 to 0.01%, Mg: 0.0005 to 0.01%, and REM: 0.0005 to 0.01% by mass%. You may contain the above. By adding more than the lower limit of these elements, the HAZ toughness is improved. However, even if added exceeding the upper limit, the effect is saturated, and HAZ toughness and weldability are deteriorated.

母材の強度、及び靭性向上などのために、これらの選択元素を意図的に添加することができる。しかし、合金コスト低減などのために、これらの選択元素を何ら添加しなくても差し支えない。これらの元素は、意図的に添加しない場合であっても、不可避的不純物として、Cu:0.05%以下、Ni:0.05%以下、Cr:0.05%以下、Mo:0.03%以下、V:0.01%以下、B:0.0004%以下、Ca:0.0008%以下、Mg:0.0008%以下:REM:0.0008%以下を、鋼中に含有し得る。これらの元素が、鋼中に不可避的不純物として、含有された場合であっても、本発明の厚鋼板の製造方法には、なんら影響しない。   These selective elements can be intentionally added to improve the strength and toughness of the base material. However, it is not necessary to add any of these selective elements in order to reduce alloy costs. Even if these elements are not intentionally added, Cu: 0.05% or less, Ni: 0.05% or less, Cr: 0.05% or less, Mo: 0.03 as inevitable impurities % Or less, V: 0.01% or less, B: 0.0004% or less, Ca: 0.0008% or less, Mg: 0.0008% or less: REM: 0.0008% or less can be contained in the steel. . Even when these elements are contained as inevitable impurities in the steel, they do not affect the method for producing a thick steel plate of the present invention.

本発明の溶接構造用厚鋼板の製造方法で製造する鋼板は、下記(A)、及び(B)式により求められる炭素当量を、0.3〜0.5%とする。選択元素が不可避的不純物として含有された場合は、その含有量を代入して、炭素当量を求める。
炭素当量Ceq.=C+Mn/6 ・・・(A)
炭素当量Ceq.=C+Mn/6+(Cu+Ni)/15
+(Cr+Mo+V)/5 ・・・(B)
炭素当量Ceq.が0.3%未満になると、本発明の製造方法により製造する鋼板に要求される強度を満足できない。炭素当量が0.5%を超えると、本発明の製造方法により製造する鋼板に要求される靭性、及び溶接性を満足できない。好ましくは、炭素当量Ceq.が0.31〜0.44%、さらに好ましくは、0.32〜0.42%、0.33〜0.40%である。
The steel plate manufactured with the manufacturing method of the thick steel plate for welded structures of this invention makes the carbon equivalent calculated | required by the following (A) and (B) formula to 0.3 to 0.5%. When the selected element is contained as an unavoidable impurity, the carbon equivalent is obtained by substituting its content.
Carbon equivalent Ceq. = C + Mn / 6 (A)
Carbon equivalent Ceq. = C + Mn / 6 + (Cu + Ni) / 15
+ (Cr + Mo + V) / 5 (B)
Carbon equivalent Ceq. If it is less than 0.3%, the strength required for the steel sheet produced by the production method of the present invention cannot be satisfied. If the carbon equivalent exceeds 0.5%, the toughness and weldability required for the steel sheet produced by the production method of the present invention cannot be satisfied. Preferably, the carbon equivalent Ceq. Is 0.31 to 0.44%, more preferably 0.32 to 0.42%, and 0.33 to 0.40%.

本発明の厚鋼板の製造方法により製造される鋼板のミクロ組織は、フェライト、及びベイナイト、またはフェライト、パーライト、及びベイナイトの混合組織である。このような組織となることにより、本発明の製造方法により製造する鋼板に要求される強度、及び靭性が確保される。   The microstructure of the steel sheet produced by the method for producing a thick steel sheet of the present invention is ferrite and bainite, or a mixed structure of ferrite, pearlite, and bainite. By having such a structure, the strength and toughness required for the steel sheet produced by the production method of the present invention are ensured.

本発明の厚鋼板の製造方法により製造される鋼板の板厚中心部における平均結晶粒径は、5〜20μmである。その結果、本発明の厚鋼板の製造方法により製造される鋼板に要求される強度、及び靭性を満足するものとなる。   The average crystal grain size in the central part of the thickness of the steel sheet produced by the method for producing a thick steel sheet of the present invention is 5 to 20 μm. As a result, the strength and toughness required for the steel sheet produced by the method for producing a thick steel sheet of the present invention are satisfied.

以下、実施例に基づいて更に詳細に説明する。   Hereinafter, it demonstrates still in detail based on an Example.

製鋼工程において溶鋼の成分組成を調整し、その後、連続鋳造によって鋼片を製造した。   The component composition of the molten steel was adjusted in the steel making process, and then a steel slab was produced by continuous casting.

次いで、この鋼片を再加熱し、さらに、厚板圧延を施して厚さが60〜100mmの厚鋼板とし、続いて、厚鋼板を水冷した。試験No.31の鋼板では、水冷の代わりに空冷を行った(比較例)。その後、必要に応じて熱処理を行った。   Subsequently, this steel slab was reheated and further subjected to thick plate rolling to obtain a thick steel plate having a thickness of 60 to 100 mm, and then the thick steel plate was water-cooled. Test No. In the steel plate 31, air cooling was performed instead of water cooling (comparative example). Thereafter, heat treatment was performed as necessary.

表1に各厚鋼板の成分組成を示す。表1の下線は、含有量が本発明の範囲外であり、括弧書きは、不可避的不純物として含まれた量の分析値を示す。   Table 1 shows the component composition of each thick steel plate. The underline in Table 1 indicates that the content is outside the scope of the present invention, and the parentheses indicate the analytical value of the amount contained as an unavoidable impurity.

Figure 0005522084
Figure 0005522084

製造した各厚鋼板について、ミクロ組織相分率、平均結晶粒径、及び機械的性質を測定した。   About each manufactured steel plate, the microstructure phase fraction, the average crystal grain size, and the mechanical property were measured.

ミクロ組織相分率は、光学顕微鏡により板厚中心位置を500倍の倍率でミクロ組織を撮影し、画像解析により求めた全視野領域に対する各相の面積率の平均値とした。   The microstructure phase fraction was defined as the average value of the area ratios of the respective phases with respect to the entire visual field region obtained by imaging the microstructure at a plate thickness center position at a magnification of 500 times with an optical microscope.

平均結晶粒径は、EBSP(Electron Back Scattering Pattern)法により、500μm×500μmの領域を1μmピッチで測定し、隣接粒との結晶方位差が15°以上の境界を結晶粒界と定義し、そのときの結晶粒径の平均値とした。   The average crystal grain size is determined by measuring an area of 500 μm × 500 μm at a pitch of 1 μm by an EBSP (Electron Back Scattering Pattern) method, and defining a boundary where the crystal orientation difference from adjacent grains is 15 ° or more as a grain boundary. It was set as the average value of the crystal grain size.

機械的性質のうち、降伏応力、シャルピー破面遷移温度(vTrs)は板厚中心部から採取した試験片を用いて試験を行い、その結果を各鋼板の代表値とした。   Among the mechanical properties, the yield stress and Charpy fracture surface transition temperature (vTrs) were tested using test pieces taken from the center of the plate thickness, and the results were used as representative values for each steel plate.

引張試験は、JIS Z 2241(1998年)の「金属材料引張試験方法」に準拠し、各2本を試験測定し、その平均値を求めた。引張試験片は、JIS Z 2201(1998年)の4号試験片とした。   The tensile test was carried out in accordance with “Metal Material Tensile Test Method” of JIS Z 2241 (1998), and two of them were tested and measured, and the average value was obtained. The tensile test piece was a No. 4 test piece of JIS Z 2201 (1998).

シャルピー破面遷移温度(vTrs)は、2mmVノッチシャルピー衝撃試験片を用いて、JIS Z 2242(2005年)の「金属材料のシャルピー衝撃試験方法」に準拠し、1温度につき各3本を5温度で試験し、50%脆性破面率のときの温度を測定した。   The Charpy fracture surface transition temperature (vTrs) is based on JIS Z 2242 (2005) “Charpy impact test method for metal materials” using 2 mm V notch Charpy impact test specimens. The temperature at the time of 50% brittle fracture surface ratio was measured.

各厚鋼板のこれらの測定結果を、製造方法と合わせて、表2〜4に示す。なお、製造方法における温度や冷却速度は、板厚中心位置の値であり、実測の表面温度から、公知の差分法による熱伝導解析により求めた。   These measurement results of each thick steel plate are shown in Tables 2 to 4 together with the manufacturing method. The temperature and cooling rate in the manufacturing method are values at the center position of the plate thickness, and were obtained from the measured surface temperature by heat conduction analysis using a known differential method.

本実施例では、破面遷移温度−40℃以下、圧延時間1000s未満を良好と規定した。表2〜4の下線は、条件が本発明の範囲外であること、または、鋼板の特性、生産性が、上記の良好と規定した値を外れていることを示す。   In this example, a fracture surface transition temperature of −40 ° C. or lower and a rolling time of less than 1000 s were defined as good. Underlines in Tables 2 to 4 indicate that the conditions are outside the scope of the present invention, or that the characteristics and productivity of the steel sheet are outside the values defined as good.

Figure 0005522084
Figure 0005522084

Figure 0005522084
Figure 0005522084

Figure 0005522084
Figure 0005522084

試験No.1〜No.20は、本発明の条件を全て満足する本発明例であり、強度、靭性、生産性とも良好である。   Test No. 1-No. No. 20 is an example of the present invention that satisfies all the conditions of the present invention, and is good in strength, toughness, and productivity.

この内、試験No.16〜No.20は、本発明例であるが、粗圧延の累積圧下率、1次仕上圧延の1パス当たりの圧下率、2次仕上圧延の1パス当たりの圧下率、及びパス間時間、焼戻し温度が、本発明の好ましい条件を外れているので、強度、靭性、及び生産性が、試験No.1〜No.15に比べ、若干劣っていた。   Of these, test no. 16-No. 20 is an example of the present invention. Since it deviates from the preferable conditions of the present invention, the strength, toughness, and productivity are as shown in Test No. 1-No. Compared to 15, it was slightly inferior.

試験No.21〜No.40は、下線部の条件が本発明の範囲から外れる比較例である。それら比較例の試験の内、試験No.21〜25は、成分範囲が本発明の範囲から外れるので、靭性が低かった。試験No.26は、スラブ加熱温度が高すぎたので、平均結晶粒径が大きく、靭性が低いうえ、圧延時間が長く生産性が低かった。試験No.27は、1次仕上圧延開始時の板厚が大きすぎたので、圧延時間が長く、生産性が低かった。試験No.28は、1次仕上圧延開始時の板厚が小さすぎたので、平均結晶粒径が大きく、靭性が低かった。試験No.29は、1次仕上圧延温度が高すぎたので、平均結晶粒径が大きく、靭性が低かった。試験No.30は、1次仕上圧延温度が低すぎたので、圧延時間が長く、生産性が低かった。   Test No. 21-No. 40 is a comparative example in which the underlined condition deviates from the scope of the present invention. Among the tests of these comparative examples, the test No. Nos. 21 to 25 had low toughness because the component range was out of the range of the present invention. Test No. In No. 26, since the slab heating temperature was too high, the average crystal grain size was large, the toughness was low, and the rolling time was long and the productivity was low. Test No. In No. 27, since the plate thickness at the start of the primary finish rolling was too large, the rolling time was long and the productivity was low. Test No. In No. 28, since the plate thickness at the start of primary finish rolling was too small, the average crystal grain size was large and the toughness was low. Test No. In No. 29, the primary finish rolling temperature was too high, so the average crystal grain size was large and the toughness was low. Test No. In No. 30, the primary finish rolling temperature was too low, so the rolling time was long and the productivity was low.

試験No.31は、空冷による冷却なので、平均結晶粒径が大きく、強度、及び靭性が低かった。試験No.32は、2次仕上圧延開始時の板厚が大きすぎたので、圧延時間が長く、生産性が低かった。試験No.33は、2次仕上圧延開始時の板厚が小さすぎたので、平均結晶粒径が大きく、靭性が低かった。   Test No. Since 31 was cooled by air cooling, the average crystal grain size was large, and the strength and toughness were low. Test No. No. 32 was too thick at the start of secondary finish rolling, so the rolling time was long and the productivity was low. Test No. In No. 33, since the plate thickness at the start of secondary finish rolling was too small, the average crystal grain size was large and the toughness was low.

試験No.34は、2次仕上圧延温度が高すぎたので、平均結晶粒径が大きく、靭性が低かった。試験No.35は、2次仕上圧延温度が低すぎたので、圧延時間が長く、生産性が低かった。試験No.36は、冷却開始温度が低すぎたので、平均結晶粒径が大きく、強度、及び靭性が低かった。試験No.37は、冷却速度が小さすぎたので、平均結晶粒径が大きく、強度、及び靭性が低かった。   Test No. Since the secondary finish rolling temperature was too high, No. 34 had a large average crystal grain size and low toughness. Test No. No. 35, because the secondary finish rolling temperature was too low, the rolling time was long and the productivity was low. Test No. In No. 36, since the cooling start temperature was too low, the average crystal grain size was large, and the strength and toughness were low. Test No. Since the cooling rate of No. 37 was too small, the average crystal grain size was large, and the strength and toughness were low.

試験No.38は、冷却終了温度が高すぎたので、平均結晶粒径が大きく、強度、及び靭性が低かった。試験No.39は、1次仕上圧延、及び2次仕上圧延開始時の板厚が大きすぎたので、圧延時間が長く、生産性が低かった。試験No.40は、1次仕上圧延、及び2次仕上圧延開始時の板厚が小さすぎたので、圧延時間が長く、平均結晶粒径が大きく、靭性が低かった。   Test No. In No. 38, the cooling end temperature was too high, so the average crystal grain size was large, and the strength and toughness were low. Test No. In No. 39, since the plate thickness at the start of the primary finish rolling and the secondary finish rolling was too large, the rolling time was long and the productivity was low. Test No. In No. 40, since the plate thickness at the start of the primary finish rolling and the secondary finish rolling was too small, the rolling time was long, the average crystal grain size was large, and the toughness was low.

以上の実施例の試験結果から、本発明の製造方法によれば、1次仕上圧延で、再結晶によりγを微細化し、さらに2次仕上圧延で、γ中の転位密度を増加することで、最終組織を微細化することにより、低温靭性に優れた厚鋼板が得られることが確認された。   From the test results of the above examples, according to the production method of the present invention, γ is refined by recrystallization in the primary finish rolling, and further, the dislocation density in γ is increased by secondary finish rolling. It was confirmed that by refining the final structure, a thick steel plate having excellent low-temperature toughness can be obtained.

なお、本発明は上述した実施形態に限定されるものではない。本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。   In addition, this invention is not limited to embodiment mentioned above. Various modifications can be made without departing from the spirit of the present invention.

本発明の厚鋼板の製造方法は、1次仕上圧延で、再結晶によりγを微細化し、さらに2次仕上圧延で、γ中の転位密度を増加することで、最終組織を微細化することができ、低温靭性に優れた溶接構造用極厚鋼板の製造方法を提供することができるので、造船、建築、タンク、海洋構造物、ラインパイプ、風力発電用鉄塔などの溶接構造物に用いられる厚鋼板の製造に適用でき、産業上の利用可能性は大きい。   The method for producing a thick steel plate according to the present invention can refine the final structure by refining γ by recrystallization in the primary finish rolling, and further increasing the dislocation density in γ by secondary finish rolling. The thickness can be used for welded structures such as shipbuilding, construction, tanks, offshore structures, line pipes, wind power towers, etc. It can be applied to the production of steel sheets and has great industrial applicability.

Claims (5)

質量%で、
C :0.04〜0.16%、
Si:0.01〜0.5%、
Mn:0.2〜2.5%、
P :0.03%以下、
S :0.02%以下、
Al:0.001〜0.10%、
Nb:0.003〜0.02%、
Ti:0.003〜0.05%、
N :0.001〜0.008%
を含有し、下記(A)式の炭素当量Ceq.が0.3〜0.5%で、残部がFe、及び不可避的不純物からなる鋼片を、1000〜1200℃に加熱し、次いで、板厚中心温度950〜1200℃で、製品板厚の1.8〜2.2倍の板厚まで、粗圧延を施し、その後、板厚中心温度900超〜1020℃のオーステナイト再結晶領域で、製品板厚の1.2〜1.6倍の板厚まで1次仕上圧延を施し、その後、板厚中心温度780〜900℃のオーステナイト未再結晶領域で、製品板厚まで2次仕上圧延を施し、続いて、板厚中心温度720℃以上から、1〜10℃/sの板厚中心冷却速度で、550℃以下の温度まで加速冷却を施し、板厚が60〜100mm、降伏応力が315〜460MPaであり、ミクロ組織がフェライト、及びベイナイト、またはフェライト、パーライト、及びベイナイトの混合組織であり、かつ、板厚中心部における平均結晶粒径が5〜20μmの厚鋼板とすることを特徴とする厚鋼板の製造方法。
炭素当量Ceq.=C+Mn/6 ・・・(A)
% By mass
C: 0.04 to 0.16%,
Si: 0.01 to 0.5%,
Mn: 0.2 to 2.5%
P: 0.03% or less,
S: 0.02% or less,
Al: 0.001 to 0.10%,
Nb: 0.003 to 0.02%,
Ti: 0.003 to 0.05%,
N: 0.001 to 0.008%
And a steel slab consisting of the following formula (A) having a carbon equivalent Ceq. Of 0.3 to 0.5%, the balance being Fe and unavoidable impurities is heated to 1000 to 1200 ° C., Rough rolling is performed at a thickness center temperature of 950 to 1200 ° C. to a thickness of 1.8 to 2.2 times the product plate thickness, and then in the austenite recrystallization region at a thickness center temperature of over 900 to 1020 ° C. The primary finish rolling is performed to a thickness of 1.2 to 1.6 times the plate thickness, and then the secondary finish rolling is performed to the product thickness in the austenite non-recrystallized region at a thickness center temperature of 780 to 900 ° C. Subsequently, accelerated cooling is performed from a sheet thickness center temperature of 720 ° C. or more to a temperature of 550 ° C. or less at a sheet thickness center cooling rate of 1 to 10 ° C./s, a sheet thickness of 60 to 100 mm, and a yield stress of 315 to 315 ° C. 460 MPa, microstructure is ferrite and bainnai Or a thick steel plate having a mixed structure of ferrite, pearlite, and bainite and having an average crystal grain size of 5 to 20 μm at the center of the plate thickness.
Carbon equivalent Ceq. = C + Mn / 6 (A)
前記鋼片が、さらに、質量%で、Cu:0.03〜1.5%、Ni:0.03〜2.0%、Cr:0.03〜1.5%、Mo:0.01〜1.0%、V:0.003〜0.2%、B:0.0002〜0.005%、Ca:0.0005〜0.01%、Mg:0.0005〜0.01%、REM:0.0005〜0.01%の1種または2種以上を含有し、下記(B)式の炭素当量Ceq.が0.3〜0.5%であることを特徴とする請求項1に記載の厚鋼板の製造方法。
炭素当量Ceq.=C+Mn/6+(Cu+Ni)/15
+(Cr+Mo+V)/5 ・・・(B)
The steel slab is further mass%, Cu: 0.03-1.5%, Ni: 0.03-2.0%, Cr: 0.03-1.5%, Mo: 0.01- 1.0%, V: 0.003-0.2%, B: 0.0002-0.005%, Ca: 0.0005-0.01%, Mg: 0.0005-0.01%, REM : 0.0005 to 0.01% of one or more of carbon equivalents of the following formula (B) Ceq. The method for producing a thick steel plate according to claim 1, wherein the ratio is 0.3 to 0.5%.
Carbon equivalent Ceq. = C + Mn / 6 + (Cu + Ni) / 15
+ (Cr + Mo + V) / 5 (B)
前記粗圧延の累積圧下率が30〜80%であることを特徴とする請求項1、または請求項2に記載の厚鋼板の製造方法。   The method for producing a thick steel plate according to claim 1 or 2, wherein a cumulative rolling reduction of the rough rolling is 30 to 80%. 前記仕上1次圧延の各パスでの圧下率が5〜25%であり、前記仕上2次圧延の各パスでの圧下率が5〜25%、パス間時間が1〜60秒であることを特徴とする請求項1〜3のいずれかに記載の厚鋼板の製造方法。   The rolling reduction in each pass of the finishing primary rolling is 5 to 25%, the rolling reduction in each pass of the finishing secondary rolling is 5 to 25%, and the time between passes is 1 to 60 seconds. The manufacturing method of the thick steel plate in any one of Claims 1-3 characterized by the above-mentioned. 前記加速冷却が終了した後、300〜650℃で焼戻しすることを特徴とする請求項1〜4のいずれかに記載の厚鋼板の製造方法。   The method for producing a thick steel plate according to any one of claims 1 to 4, wherein after the accelerated cooling is completed, tempering is performed at 300 to 650 ° C.
JP2011038958A 2011-02-24 2011-02-24 Thick steel plate manufacturing method Active JP5522084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011038958A JP5522084B2 (en) 2011-02-24 2011-02-24 Thick steel plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011038958A JP5522084B2 (en) 2011-02-24 2011-02-24 Thick steel plate manufacturing method

Publications (2)

Publication Number Publication Date
JP2012172258A JP2012172258A (en) 2012-09-10
JP5522084B2 true JP5522084B2 (en) 2014-06-18

Family

ID=46975448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011038958A Active JP5522084B2 (en) 2011-02-24 2011-02-24 Thick steel plate manufacturing method

Country Status (1)

Country Link
JP (1) JP5522084B2 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045936A (en) * 2012-12-21 2013-04-17 鞍钢股份有限公司 Method for producing Q345-level medium steel plate in alloy reduction manner
JP5910792B2 (en) * 2013-02-28 2016-04-27 Jfeスチール株式会社 Thick steel plate and method for manufacturing thick steel plate
JP6533648B2 (en) * 2014-07-08 2019-06-19 Jfeスチール株式会社 Heat treatment method of heat treated high tensile steel sheet
JP6398575B2 (en) * 2014-10-10 2018-10-03 新日鐵住金株式会社 Steel sheet with excellent toughness and method for producing the same
JP6763141B2 (en) * 2015-02-10 2020-09-30 日本製鉄株式会社 Manufacturing method of steel plate for LPG tank
CN105200316B (en) * 2015-09-11 2017-05-03 首钢总公司 Slurry conveying pipeline steel and manufacturing process of slurry conveying pipeline steel
KR101726082B1 (en) * 2015-12-04 2017-04-12 주식회사 포스코 Steel having superior brittle crack arrestability and resistance brittle crack initiation of welding point and method for manufacturing the steel
KR101736611B1 (en) * 2015-12-04 2017-05-17 주식회사 포스코 Steel having superior brittle crack arrestability and resistance brittle crack initiation of welding point and method for manufacturing the steel
JP6766642B2 (en) * 2016-02-25 2020-10-14 日本製鉄株式会社 Steel sheet with excellent brittle crack propagation stop characteristics and its manufacturing method
CN105839018A (en) * 2016-05-30 2016-08-10 苏州双金实业有限公司 Steel with low maintenance cost
CN105803336A (en) * 2016-05-30 2016-07-27 苏州双金实业有限公司 Steel with low maintenance cost
WO2018043067A1 (en) * 2016-08-29 2018-03-08 株式会社神戸製鋼所 Thick steel sheet and production method therefor
JP6771429B2 (en) * 2016-08-29 2020-10-21 株式会社神戸製鋼所 Thick steel plate and its manufacturing method
JP6776826B2 (en) * 2016-11-11 2020-10-28 日本製鉄株式会社 Steel sheet with excellent brittle crack propagation stop characteristics and its manufacturing method
CN106435369B (en) * 2016-11-29 2018-08-07 武汉钢铁有限公司 A kind of normalizing state of the excellent in low temperature toughness containing Cr is anti-corrosion wind-powered electricity generation steel and production method
CN109182916B (en) * 2018-11-06 2020-02-18 鞍钢股份有限公司 High-performance super-thick steel plate for wind power and production method thereof
CN109338219B (en) * 2018-11-06 2020-01-07 鞍钢股份有限公司 Super-thick steel plate for wind power flange and production method thereof
WO2020138450A1 (en) * 2018-12-27 2020-07-02 日本製鉄株式会社 Steel material capable of being used as raw material for carbonitrided bearing component
KR102255828B1 (en) * 2019-12-16 2021-05-25 주식회사 포스코 Structural steel material and manufacturing method for the same
CN112746158A (en) * 2019-12-30 2021-05-04 宝钢湛江钢铁有限公司 YP460MPa thick steel plate with low cost, high crack resistance and high weldability and manufacturing method thereof
JP7184210B2 (en) * 2020-03-13 2022-12-06 日本製鉄株式会社 Steel plate for wind power generation facilities and method for manufacturing the same
CN111809117B (en) * 2020-07-08 2021-11-19 首钢集团有限公司 Steel with high fracture toughness and low aging sensitivity for offshore wind power and production method thereof
CN111676424B (en) * 2020-07-08 2022-01-18 首钢集团有限公司 Large-piece-weight super-thick steel for offshore wind power and production method thereof
KR102485117B1 (en) * 2020-08-25 2023-01-04 주식회사 포스코 Ultra thick steel plate having excellent surface part nrl-dwt property and manufacturing method thereof
KR102485116B1 (en) * 2020-08-26 2023-01-04 주식회사 포스코 UlTRA THICK STEEL PLATE HAVING EXCELLENT SURFACE PART NRL-DWT PROPERTY AND MANUFACTURING METHOD THEREOF
KR102512885B1 (en) * 2020-12-21 2023-03-23 주식회사 포스코 Ultra-thick steel sheet with excellent strength and low-temperature impact toughness, and manufacturing method thereof
CN113957336B (en) * 2021-09-14 2022-06-21 包头钢铁(集团)有限责任公司 Production method of low-cost high-toughness Q460qNHD steel plate
CN114381660B (en) * 2021-12-07 2023-04-18 唐山中厚板材有限公司 Galvanizing-free high-strength angle steel and production method thereof
KR20230094381A (en) * 2021-12-21 2023-06-28 주식회사 포스코 Steel plate having high strength and excellent impact toughness after deformation and method for manufacturing the same
CN115418460A (en) * 2022-08-30 2022-12-02 南京钢铁股份有限公司 FH32-HD50 high-ductility ship plate steel and preparation method thereof
CN115404407A (en) * 2022-08-30 2022-11-29 江苏沙钢集团有限公司 Large-piece-weight thick TMCP wind power steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012172258A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP5522084B2 (en) Thick steel plate manufacturing method
JP4874435B2 (en) Thick steel plate manufacturing method
JP4874434B1 (en) Thick steel plate manufacturing method
JP5445720B1 (en) High strength steel plate with excellent arrestability
JP4844687B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5532800B2 (en) Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
JP6252291B2 (en) Steel sheet and manufacturing method thereof
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
WO2014175122A1 (en) H-shaped steel and method for producing same
JP2017160510A (en) Nickel steel sheet for low temperature and manufacturing method therefor
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP2011214053A (en) Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP2010248621A (en) Method for manufacturing high-strength high-toughness steel
JP4538095B2 (en) Steel plate with excellent low temperature toughness and low strength anisotropy of base metal and weld heat affected zone, and method for producing the same
CN111542621B (en) High-strength high-toughness hot-rolled steel sheet and method for producing same
JP2015190008A (en) Non-heat treated low yield ratio high tensile thick steel sheet excellent in weld heat-affected zone toughness and production method therefor
JP2011052244A (en) METHOD FOR MANUFACTURING THICK HIGH-STRENGTH STEEL SHEET HAVING SUPERIOR CHARACTERISTICS OF STOPPING PROPAGATION OF BRITTLE CRACK SHEET AND SHEET THICKNESS OF 50-125 mm
JP2014177687A (en) High tensile steel plate excellent in drop-weight characteristic and its manufacturing method
JP6610352B2 (en) Low temperature nickel-containing steel sheet with excellent tensile strength and toughness and method for producing the same
JP6354571B2 (en) Rolled H-section steel and its manufacturing method
JP6146429B2 (en) Tempered high tensile steel plate and method for producing the same
JP2013129885A (en) Method of producing high-strength thick steel plate excellent in brittle crack propagation arrest property
JP5842577B2 (en) High toughness, low yield ratio, high strength steel with excellent strain aging resistance
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
JP6693186B2 (en) Method for producing low-temperature nickel-containing steel sheet excellent in tensile strength and toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R151 Written notification of patent or utility model registration

Ref document number: 5522084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350