JP6771429B2 - Thick steel plate and its manufacturing method - Google Patents
Thick steel plate and its manufacturing method Download PDFInfo
- Publication number
- JP6771429B2 JP6771429B2 JP2017122479A JP2017122479A JP6771429B2 JP 6771429 B2 JP6771429 B2 JP 6771429B2 JP 2017122479 A JP2017122479 A JP 2017122479A JP 2017122479 A JP2017122479 A JP 2017122479A JP 6771429 B2 JP6771429 B2 JP 6771429B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- phase
- less
- content
- thick steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、厚鋼板およびその製造方法に関する。 The present invention relates to a thick steel sheet and a method for producing the same.
船舶、建築物、橋梁および建設機械等の大型構造物では、構造物の大型化が進む一方で、破損が生じた場合の損害の大きさから、その構造部材にはより一層の信頼性が求められている。これに伴い構造物を構成する鋼板には高強度が求められてきている。一方で鋼板は高強度になるに従って一様伸びに代表される加工性が低下する傾向にあり、双方を兼備した鋼板が求められている。 For large structures such as ships, buildings, bridges and construction machinery, the size of the structures is increasing, but due to the magnitude of damage in the event of damage, the structural members are required to be even more reliable. Has been done. Along with this, high strength is required for the steel plates constituting the structure. On the other hand, as the strength of a steel sheet increases, the workability represented by uniform elongation tends to decrease, and a steel sheet having both of them is required.
例えば特許文献1には、α相を主体とした微細な金属組織を得て、さらに析出強化を図ることにより、一様伸びおよび強度が良好な鋼を製造する技術が検討されている。
上記金属組織を得る方法として、鋼片をAc3変態点〜1050℃に加熱後、開始温度が850℃以下、終了温度が750℃以上で、累積圧下率が50〜95%の熱間圧延を行った後、冷却速度が5〜100℃/sの加速冷却を750℃以下から開始し、600℃以上で停止することが開示されている。
For example, Patent Document 1 examines a technique for producing a steel having good uniform elongation and strength by obtaining a fine metallographic structure mainly composed of α phase and further strengthening by precipitation.
As a method for obtaining the above metal structure, after heating the steel piece to the Ac3 transformation point to 1050 ° C., hot rolling is performed at a start temperature of 850 ° C. or lower, an end temperature of 750 ° C. or higher, and a cumulative reduction rate of 50 to 95%. After that, it is disclosed that accelerated cooling with a cooling rate of 5 to 100 ° C./s starts at 750 ° C. or lower and stops at 600 ° C. or higher.
特許文献2には、微細な硬質相および残留オーステナイトを有する金属組織を得ることにより、靱性の劣化を伴わずに一様伸びを高める技術が検討されている。
上記金属組織を得る方法として、Ac3変態点以上、1300℃以下の温度に加熱し、少なくとも、950℃〜Ar3変態点以上の範囲で累積圧下率が30%以上のオーステナイトの未再結晶域圧延を含む熱間圧延を行った後、3〜100℃/sの加速冷却をAr3変態点以上の温度からオーステナイト分率が20〜70%となる温度まで行い、加速冷却停止後、昇温、保持、冷速0.5℃/s以下の冷却の1種または2種以上の組み合わせを行って、加速冷却停止後から10s〜100sの間、鋼の温度を加速冷却停止温度±100℃以内に維持した後、冷却することが開示されている。
In Patent Document 2, a technique for enhancing uniform elongation without deterioration of toughness by obtaining a metal structure having a fine hard phase and retained austenite is studied.
As a method for obtaining the above metal structure, heating is performed at a temperature of Ac3 transformation point or higher and 1300 ° C. or lower, and unrecrystallized rolling of austenite having a cumulative reduction rate of 30% or higher in a range of at least 950 ° C. to Ar3 transformation point or higher is performed. After performing hot rolling including, accelerated cooling at 3 to 100 ° C./s is performed from a temperature above the Ar3 transformation point to a temperature at which the austenite fraction becomes 20 to 70%, and after the accelerated cooling is stopped, the temperature is raised and maintained. One or a combination of two or more types of cooling at a cooling rate of 0.5 ° C./s or less was performed to maintain the steel temperature within ± 100 ° C. of the accelerated cooling stop temperature for 10s to 100s after the acceleration cooling stop. Later, cooling is disclosed.
特許文献3には、全組織に占めるフェライトの占積率:90%超、平均フェライト粒径:3〜12μm、最大フェライト粒径:40μm以下、及び第2相の平均円相当径:0.8μm以下を満たし、引張強度が490MPa以上とすることにより、衝突吸収性(すなわち一様伸び)および母材靱性に優れた鋼を製造する技術が検討されている。
上記金属組織を得る方法として、仕上げ圧延温度を700〜850℃とし、700〜500℃の温度域を3℃/s以上で冷却し、所定の温度で再加熱し、再加熱後、600〜500℃の温度域を2℃/sでさらに冷却することが開示されている。
Patent Document 3 states that the space factor of ferrite in the entire structure is more than 90%, the average ferrite grain size is 3 to 12 μm, the maximum ferrite grain size is 40 μm or less, and the average circle equivalent diameter of the second phase is 0.8 μm. A technique for producing a steel having excellent impact absorption (that is, uniform elongation) and base metal toughness by satisfying the following conditions and having a tensile strength of 490 MPa or more is being studied.
As a method for obtaining the above metal structure, the finish rolling temperature is set to 700 to 850 ° C., the temperature range of 700 to 500 ° C. is cooled at 3 ° C./s or higher, reheated at a predetermined temperature, and after reheating, 600 to 500 ° C. It is disclosed that the temperature range of ° C. is further cooled at 2 ° C./s.
特許文献1および2共に、圧延後に加速冷却を利用して冷却速度を精緻に制御することにより微細な組織を実現しているが、実際の製造工程では長大な厚鋼板の先端から尾端までを厳密に管理することは難しく、鋼板の位置によって特性がばらつき、生産性を低下させる恐れがある。 In both Patent Documents 1 and 2, a fine structure is realized by precisely controlling the cooling rate by using accelerated cooling after rolling, but in the actual manufacturing process, from the tip to the tail of a long thick steel sheet. Strict control is difficult, and the characteristics vary depending on the position of the steel sheet, which may reduce productivity.
また、特許文献3の製造方法では、一様伸びに寄与する残留オーステナイトを室温で残存させるために上記の再加熱工程が必要であり、製造工程数が多く、生産性が低下するという問題がある。 Further, in the production method of Patent Document 3, the above-mentioned reheating step is required in order to leave the retained austenite contributing to uniform elongation at room temperature, and there is a problem that the number of production steps is large and the productivity is lowered. ..
特許文献1ないし3では上記の通り、一様伸び、強度、靭性等の観点で種々の検討がなされてはいるが、特に一様伸びに着目した場合、生産性の観点からなおも問題が残されていると言わざるを得ないのが現状である。 As described above, in Patent Documents 1 to 3, various studies have been made from the viewpoints of uniform elongation, strength, toughness, etc., but especially when focusing on uniform elongation, problems still remain from the viewpoint of productivity. The current situation is that it has to be said that it has been done.
本発明は、上記のような事情に鑑みてなされたものであり、その主な目的は、一様伸びに優れた厚鋼板およびその製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and a main object thereof is to provide a thick steel sheet having excellent uniform elongation and a method for producing the same.
本発明に係る厚鋼板は、C:0.04〜0.06質量%、Si:0.35〜0.45質量%、Mn:1.49〜1.59質量%、P:0質量%超、0.01質量%以下、S:0質量%超、0.002質量%以下、Cu:0.23〜0.33質量%、Al:0.02〜0.06質量%、Ni:0.24〜0.34質量%、Nb:0.015〜0.021質量%、Ti:0.012〜0.018質量%、B:0.0007〜0.0013質量%、Ca:0.0010〜0.0030質量%、およびN:0.0040〜0.0060質量%を含有し、残部が鉄および不可避的不純物からなり、金属組織が第一相と第一相より硬い硬質相である第二相とを含み、当該硬質相は、パーライトからなる相であり、前記第二相の硬さが260HV(ビッカース硬さ)以下である。 The thick steel plate according to the present invention has C: 0.04 to 0.06% by mass, Si: 0.35 to 0.45% by mass, Mn: 1.49 to 1.59% by mass, P: more than 0% by mass. , 0.01% by mass or less, S: more than 0% by mass, 0.002% by mass or less, Cu: 0.23 to 0.33% by mass, Al: 0.02 to 0.06% by mass, Ni: 0. 24-0.34% by mass, Nb: 0.015-0.021% by mass, Ti: 0.012-0.018% by mass, B: 0.0007-0.0013% by mass, Ca: 0.0010- The second phase contains 0.0030% by mass and N: 0.0040 to 0.0060% by mass, the balance is composed of iron and unavoidable impurities, and the metal structure is the first phase and the hard phase harder than the first phase. The hard phase includes a phase, and the hard phase is a phase made of pearlite, and the hardness of the second phase is 260 HV (Vickers hardness) or less.
本発明に係る厚鋼板の製造方法は、(a)前記化学成分組成を有する鋼片を、900〜1250℃に加熱する加熱工程と、(b)前記工程(a)後、680〜800℃の仕上げ圧延温度で仕上げ圧延する工程と、(c)前記工程(b)後、下記(1)式を満足する冷却速度Aで常温まで冷却する工程とを含む。
736.02×[C]+8.5×A+208.53≦260 (1)
ここで、[C]はCの含有量(質量%)であり、Aは仕上げ圧延後の冷却速度(℃/s)である。
The method for producing a thick steel sheet according to the present invention includes (a) a heating step of heating a steel piece having the chemical composition to 900 to 1250 ° C., and (b) after the step (a) of 680 to 800 ° C. It includes a step of finish rolling at a finish rolling temperature and a step of (c) after the step (b) of cooling to room temperature at a cooling rate A satisfying the following formula (1).
736.02 × [C] +8.5 × A + 208.53 ≦ 260 (1)
Here, [C] is the content of C (mass%), and A is the cooling rate (° C./s) after finish rolling.
本発明により、一様伸びに優れた厚鋼板およびその製造方法が提供される。 INDUSTRIAL APPLICABILITY The present invention provides a thick steel sheet having excellent uniform elongation and a method for producing the same.
本発明者らは、上記課題を解決するために鋭意検討を行った結果、厚鋼板の化学成分組成を適切に制御し、金属組織が第一相と第一相より硬い硬質相である第二相とを含み、当該硬質相が、パーライトからなる相であるように制御し、さらに、第二相の硬さを260HV以下に制御することにより、一様伸びに優れた厚鋼板が得られることを見出した。
また、Cの含有量(質量%)および仕上げ圧延後の冷却速度と、圧延後に形成される第二相の硬さとの相関性を見出し、下記(1)式を満たすように、Cの含有量と仕上げ圧延後の冷却速度を制御して常温まで冷却することにより、第二相の硬さを260HV以下にすることができ、優れた一様伸びを得ることができることを見出した。
736.02×[C]+8.5×A+208.53≦260 (1)
ここで、[C]はCの含有量(質量%)であり、Aは仕上げ圧延後の冷却速度(℃/s)である。
As a result of diligent studies to solve the above problems, the present inventors have appropriately controlled the chemical composition of the thick steel sheet, and the metal structure is a hard phase harder than the first phase and the first phase. By controlling the hard phase to be a phase composed of pearlite, including the phase, and further controlling the hardness of the second phase to 260 HV or less, a thick steel sheet having excellent uniform elongation can be obtained. I found.
Further, the correlation between the C content (% by mass) and the cooling rate after finish rolling and the hardness of the second phase formed after rolling was found, and the C content was satisfied so as to satisfy the following equation (1). It was found that the hardness of the second phase can be reduced to 260 HV or less and excellent uniform elongation can be obtained by controlling the cooling rate after finish rolling and cooling to room temperature.
736.02 × [C] +8.5 × A + 208.53 ≦ 260 (1)
Here, [C] is the content of C (mass%), and A is the cooling rate (° C./s) after finish rolling.
以下、本発明の厚鋼板およびその製造方法について詳しく説明する。 Hereinafter, the thick steel plate of the present invention and a method for producing the same will be described in detail.
<1.厚鋼板>
[1−1.金属組織]
本発明に係る厚鋼板(以下、「鋼」と呼ぶことがある)は、金属組織として、第一相と第一相より硬い硬質相である第二相(以下、「第二相」、「硬質第二相」と呼ぶことがある)を含む。硬質第二相の硬さを260HV以下に制御することによって、所望の一様伸びを得ることができる。
板厚がtである厚鋼板において、例えば、鋼板表面からt/4の部位における第二相の硬さを、上記のように制御してよい。
以下、各構成について詳述する。
<1. Thick steel plate >
[1-1. Metallic structure]
The thick steel sheet according to the present invention (hereinafter, may be referred to as “steel”) has a metal structure of the first phase and the second phase (hereinafter, “second phase”, which is harder than the first phase). Includes (sometimes referred to as "hard second phase"). By controlling the hardness of the hard second phase to 260 HV or less, a desired uniform elongation can be obtained.
In a thick steel plate having a plate thickness of t, for example, the hardness of the second phase at a portion t / 4 from the surface of the steel plate may be controlled as described above.
Hereinafter, each configuration will be described in detail.
(硬質第二相)
本発明に係る厚鋼板において、硬質第二相となる硬質相はパーライトからなる。なお、本発明に係る厚鋼板は、第一相および第二相以外の第三相としてマルテンサイトを含む場合があるが、ベイナイトは含まない。高い一様伸びを得る観点から、硬質第二相の面積率は、10%以下であることが好ましく、より好ましくは5%以下である。
(Hard second phase)
In the thick steel sheet according to the present invention, the hard phase to be the hard second phase is made of pearlite. The thick steel sheet according to the present invention may contain martensite as a third phase other than the first phase and the second phase, but does not contain bainite. From the viewpoint of obtaining high uniform elongation, the area ratio of the hard second phase is preferably 10% or less, more preferably 5% or less.
(第二相の硬さ:260HV以下)
第二相が硬すぎると、非常に脆い相となり靭性が低下し、また、一様伸びが不十分となるため、第二相の硬さを260HV以下とすることが必要であり、好ましくは255HV以下、より好ましくは250HV以下である。
(Hardness of second phase: 260 HV or less)
If the second phase is too hard, it becomes a very brittle phase and the toughness is lowered, and the uniform elongation is insufficient. Therefore, it is necessary to make the hardness of the second phase 260 HV or less, preferably 255 HV. Below, it is more preferably 250 HV or less.
本発明に係る厚鋼板の第一相は特に限定されないが、例えばフェライトからなる軟質相が挙げられる。第一相がフェライトからなる場合において、フェライトの平均粒径が大きすぎると、靭性が劣化すると共に、一様伸びが不十分となるため、フェライトの平均粒径を30μm以下とすることが好ましい。一方、フェライトの平均粒径が小さすぎると製造条件の制約が大きくなるため、フェライトの平均粒径を5μm以上とすることが好ましい。フェライトの平均粒径は、例えば、走査電子顕微鏡(Scanning Electron Microscope:SEM)を用いて金属組織を撮影し、線分法により測定してよい。 The first phase of the thick steel sheet according to the present invention is not particularly limited, and examples thereof include a soft phase made of ferrite. When the first phase is made of ferrite, if the average particle size of ferrite is too large, the toughness deteriorates and the uniform elongation becomes insufficient. Therefore, it is preferable that the average particle size of ferrite is 30 μm or less. On the other hand, if the average particle size of ferrite is too small, the restrictions on production conditions become large. Therefore, it is preferable that the average particle size of ferrite is 5 μm or more. The average particle size of ferrite may be measured by a line segment method, for example, by photographing a metal structure using a scanning electron microscope (SEM).
本発明に係る厚鋼板の板厚は特に限定されないが、10mm以上、50mm以下であることが好ましい。 The thickness of the thick steel plate according to the present invention is not particularly limited, but is preferably 10 mm or more and 50 mm or less.
[1−2.化学成分組成]
本発明に係る厚鋼板は、C:0.04〜0.06質量%、Si:0.35〜0.45質量%、Mn:1.49〜1.59質量%、P:0質量%超、0.01質量%以下、S:0質量%超、0.002質量%以下、Cu:0.23〜0.33質量%、Al:0.02〜0.06質量%、Ni:0.24〜0.34質量%、Nb:0.015〜0.021質量%、Ti:0.012〜0.018質量%、B:0.0007〜0.0013質量%、Ca:0.0010〜0.0030質量%、およびN:0.0040〜0.0060質量%を含有し、残部が鉄および不可避的不純物からなる。
上記のように化学成分組成を制御することにより、一様伸びに優れた厚鋼板を得ることができる。
以下、各元素について詳述する。
[1-2. Chemical composition]
The thick steel plate according to the present invention has C: 0.04 to 0.06% by mass, Si: 0.35 to 0.45% by mass, Mn: 1.49 to 1.59% by mass, P: more than 0% by mass. , 0.01% by mass or less, S: more than 0% by mass, 0.002% by mass or less, Cu: 0.23 to 0.33% by mass, Al: 0.02 to 0.06% by mass, Ni: 0. 24-0.34% by mass, Nb: 0.015-0.021% by mass, Ti: 0.012-0.018% by mass, B: 0.0007-0.0013% by mass, Ca: 0.0010- It contains 0.0030% by weight and N: 0.0040 to 0.0060% by weight, with the balance consisting of iron and unavoidable impurities.
By controlling the chemical composition as described above, a thick steel sheet having excellent uniform elongation can be obtained.
Hereinafter, each element will be described in detail.
(C:0.04〜0.06質量%)
Cは、鋼板の強度を高める効果があるが、硬質相を増加させ延性を劣化させる元素でもある。C含有量が0.04質量%未満であると必要な強度を確保することが困難になる。
よってC含有量は0.04質量%以上とする。C含有量は、好ましくは0.042質量%以上、より好ましくは0.045質量%以上である。一方、C含有量が0.06質量%を超えると、強度は確保しやすくなるが、硬質相を増加させ延性の劣化につながる。よってC含有量は0.06質量%以下とする。C含有量は、好ましくは0.058質量%以下、より好ましくは0.055質量%以下である。
(C: 0.04 to 0.06% by mass)
C has the effect of increasing the strength of the steel sheet, but is also an element that increases the hard phase and deteriorates ductility. If the C content is less than 0.04% by mass, it becomes difficult to secure the required strength.
Therefore, the C content is set to 0.04% by mass or more. The C content is preferably 0.042% by mass or more, more preferably 0.045% by mass or more. On the other hand, when the C content exceeds 0.06% by mass, the strength can be easily secured, but the hard phase is increased, leading to deterioration of ductility. Therefore, the C content is set to 0.06% by mass or less. The C content is preferably 0.058% by mass or less, more preferably 0.055% by mass or less.
(Si:0.35〜0.45質量%)
Siは、析出の抑制により、固溶強化を活用して伸びに阻害を与えない第一相を得ることができ、高強度確保のために必要な元素である。この作用を有効に発揮させるためには、Si量は0.35質量%以上とする必要がある。Si量は、好ましくは0.36質量%以上、より好ましくは0.37質量%以上である。しかし、Si量が過剰になるとマルテンサイト−オーステナイト混合相が生成しやすくなるため、靱性等他の特性を低下させる恐れがある。そのため、Si量は0.45質量%以下とする必要がある。Si量は、好ましくは0.44質量%以下、より好ましくは0.43質量%以下である。
(Si: 0.35 to 0.45% by mass)
Si is an element necessary for ensuring high strength because it is possible to obtain a first phase that does not hinder elongation by utilizing solid solution strengthening by suppressing precipitation. In order to effectively exert this action, the amount of Si needs to be 0.35% by mass or more. The amount of Si is preferably 0.36% by mass or more, more preferably 0.37% by mass or more. However, if the amount of Si is excessive, a martensite-austenite mixed phase is likely to be formed, which may reduce other properties such as toughness. Therefore, the amount of Si needs to be 0.45% by mass or less. The amount of Si is preferably 0.44% by mass or less, more preferably 0.43% by mass or less.
(Cu:0.23〜0.33質量%)
Cuは、固溶強化による強度確保のために必要な元素であり、この作用を有効に発揮させるためにはCu量は0.23質量%以上とする必要がある。Cu量は、好ましくは0.24質量%以上、より好ましくは0.25質量%以上である。しかし、Cu量が過剰となると析出により延性を低下させるだけでなく、焼入れ性が過剰となり熱間加工時に割れなどが生じやすくなるため、Cu量は0.33質量%以下とする必要がある。Cu量は、好ましくは0.32質量%以下、より好ましくは0.31質量%以下である。
(Cu: 0.23 to 0.33% by mass)
Cu is an element necessary for ensuring the strength by strengthening the solid solution, and the amount of Cu needs to be 0.23% by mass or more in order to effectively exert this action. The amount of Cu is preferably 0.24% by mass or more, more preferably 0.25% by mass or more. However, if the amount of Cu is excessive, not only the ductility is lowered by precipitation, but also the hardenability is excessive and cracks are likely to occur during hot working, so the amount of Cu needs to be 0.33% by mass or less. The amount of Cu is preferably 0.32% by mass or less, more preferably 0.31% by mass or less.
(Mn:1.49〜1.59質量%)
Mnは、焼入れ性を向上させ、強度と靭性を確保する上で有効な元素である。こうした効果を発揮させるためには、Mnを1.49質量%以上含有させる必要がある。Mn含有量は、好ましくは1.50質量%以上、より好ましくは1.51質量%以上である。しかしながらMnを過剰に含有させると、溶接性などが劣化するため、上限を1.59質量%とする。Mn含有量は、好ましくは1.58質量%以下、より好ましくは1.57質量%以下である。
(Mn: 1.49 to 1.59% by mass)
Mn is an effective element for improving hardenability and ensuring strength and toughness. In order to exert such an effect, it is necessary to contain Mn in an amount of 1.49% by mass or more. The Mn content is preferably 1.50% by mass or more, more preferably 1.51% by mass or more. However, if Mn is excessively contained, the weldability and the like deteriorate, so the upper limit is set to 1.59% by mass. The Mn content is preferably 1.58% by mass or less, more preferably 1.57% by mass or less.
(Al:0.02〜0.06質量%以下)
Alは、脱酸に必要な元素であるとともに、鋼中のNを固定して、固溶Nによる母材靭性劣化を防ぐ効果もある。このような効果を発揮させるためには、Alを0.02質量%以上含有させる必要がある。Al含有量は、好ましくは0.025質量%以上、より好ましくは0.030質量%以上である。一方、Alが過剰に含まれると、アルミナ系の粗大な介在物が形成され母材靭性が低下するので、Al含有量は0.06質量%以下とする必要がある。Al含有量は、好ましくは0.055質量%以下、より好ましくは0.050質量%以下である。
(Al: 0.02 to 0.06% by mass or less)
Al is an element necessary for deoxidation, and also has an effect of fixing N in steel and preventing deterioration of base metal toughness due to solid solution N. In order to exert such an effect, it is necessary to contain Al in an amount of 0.02% by mass or more. The Al content is preferably 0.025% by mass or more, more preferably 0.030% by mass or more. On the other hand, if Al is excessively contained, coarse alumina-based inclusions are formed and the toughness of the base metal is lowered. Therefore, the Al content needs to be 0.06% by mass or less. The Al content is preferably 0.055% by mass or less, more preferably 0.050% by mass or less.
(Ni:0.24〜0.34質量%)
Niは、焼入れ性を向上させ、組織を微細にする効果があると同時に、Cu添加により生じやすくなる熱間加工時の割れを抑制する効果がある。このような効果を発揮させるため、Ni量を0.24質量%以上含有させる必要がある。Ni含有量は、好ましくは0.25質量%以上、より好ましくは0.26質量%以上である。しかし、Niを過剰に含有させると焼入れ性が過剰となり、所望とする一様伸びが得られない。そのため、Ni量は0.34質量%以下とする必要がある。Ni含有量は、好ましくは0.33質量%以下、より好ましくは0.32質量%以下である。
(Ni: 0.24 to 0.34% by mass)
Ni has the effect of improving hardenability and making the structure finer, and at the same time, has the effect of suppressing cracking during hot working, which tends to occur due to the addition of Cu. In order to exert such an effect, it is necessary to contain 0.24% by mass or more of Ni. The Ni content is preferably 0.25% by mass or more, more preferably 0.26% by mass or more. However, if Ni is excessively contained, the hardenability becomes excessive, and the desired uniform elongation cannot be obtained. Therefore, the amount of Ni needs to be 0.34% by mass or less. The Ni content is preferably 0.33% by mass or less, more preferably 0.32% by mass or less.
(Nb:0.015〜0.021質量%)
Nbは、炭化物、炭窒化物を形成して強度を向上させるのに有効な元素である。このような効果を得るには、Nbを0.015質量%以上含有させる必要がある。Nb含有量は、好ましくは0.016質量%以上、より好ましくは0.017質量%以上である。一方、Nbが過剰に含まれると、析出する炭化物や炭窒化物が過多となり、析出強化能が過剰となり、降伏比増大につながる。よってNb含有量は0.021質量%以下とする必要がある。Nb含有量は、好ましくは0.020質量%以下、より好ましくは0.019質量%以下である。
(Nb: 0.015-0.021% by mass)
Nb is an element effective for forming carbides and carbonitrides to improve the strength. In order to obtain such an effect, it is necessary to contain Nb in an amount of 0.015% by mass or more. The Nb content is preferably 0.016% by mass or more, more preferably 0.017% by mass or more. On the other hand, if Nb is excessively contained, the amount of precipitated carbides and carbonitrides becomes excessive, the precipitation strengthening ability becomes excessive, and the yield ratio increases. Therefore, the Nb content needs to be 0.021% by mass or less. The Nb content is preferably 0.020% by mass or less, more preferably 0.019% by mass or less.
(Ti:0.012〜0.018質量%)
Tiは、Nと結合してTiNを形成し、熱間圧延前の加熱時におけるオーステナイト粒、即ちγ粒の粗大化を防止し、母材靭性の向上に寄与する元素である。また、鋼中のNを固定して、固溶Nによる母材靭性の劣化を防ぐ効果もある。これらの効果を発揮させるには、Tiを0.012質量%以上含有させる必要がある。Ti含有量は、好ましくは0.013質量%以上、より好ましくは0.014質量%以上である。一方、Ti含有量が過剰になると、TiNが粗大化して母材靭性が劣化するので、0.018質量%以下とする必要がある。Ti含有量は、好ましくは0.017質量%以下、より好ましくは0.016質量%以下である。
(Ti: 0.012 to 0.018% by mass)
Ti is an element that combines with N to form TiN, prevents coarsening of austenite grains, that is, γ grains, during heating before hot rolling, and contributes to improvement of base metal toughness. It also has the effect of fixing N in the steel to prevent deterioration of the toughness of the base metal due to the solid solution N. In order to exert these effects, it is necessary to contain Ti in 0.012% by mass or more. The Ti content is preferably 0.013% by mass or more, more preferably 0.014% by mass or more. On the other hand, if the Ti content becomes excessive, TiN becomes coarse and the toughness of the base metal deteriorates, so that the content needs to be 0.018% by mass or less. The Ti content is preferably 0.017% by mass or less, more preferably 0.016% by mass or less.
(B:0.0007〜0.0013質量%)
Bは、粗大なフェライト組織の生成を抑制しやすくする。こうした効果を発揮させるためには、Bを0.0007質量%以上含有させる必要がある。B含有量は、好ましくは0.0008質量%以上、より好ましくは0.0009質量%以上である。しかし、B量が過剰になると焼入れ性が過剰となり、所望とする一様伸びが得られないため、0.0013質量%以下とする必要がある。B含有量は、好ましくは0.0012質量%以下、より好ましくは0.0011質量%以下である。
(B: 0.0007 to 0.0013% by mass)
B makes it easy to suppress the formation of a coarse ferrite structure. In order to exert such an effect, it is necessary to contain B in an amount of 0.0007% by mass or more. The B content is preferably 0.0008% by mass or more, more preferably 0.0009% by mass or more. However, if the amount of B is excessive, the hardenability becomes excessive and the desired uniform elongation cannot be obtained. Therefore, the amount must be 0.0013% by mass or less. The B content is preferably 0.0012% by mass or less, more preferably 0.0011% by mass or less.
(Ca:0.0010%〜0.0030質量%)
Caは、MnSの球状化に寄与し、母材靭性や板厚方向の延性の改善に有効な元素である。このような効果を発揮させるには、Ca含有量を0.0010質量%以上とすることが好ましい。Ca含有量は、好ましくは0.0012質量%以上、より好ましくは0.0015質量%以上である。しかしながら、Ca含有量が0.0030質量%を超えて過剰になると、介在物が粗大化し、母材靭性が劣化する。よってCa含有量は0.0030質量%以下とする。Ca含有量は、好ましくは0.0028質量%以下、より好ましくは0.0025質量%以下である。
(Ca: 0.0010% to 0.0030% by mass)
Ca is an element that contributes to the spheroidization of MnS and is effective in improving the toughness of the base metal and the ductility in the plate thickness direction. In order to exert such an effect, the Ca content is preferably 0.0010% by mass or more. The Ca content is preferably 0.0012% by mass or more, more preferably 0.0015% by mass or more. However, when the Ca content exceeds 0.0030% by mass and becomes excessive, inclusions become coarse and the toughness of the base metal deteriorates. Therefore, the Ca content is set to 0.0030% by mass or less. The Ca content is preferably 0.0028% by mass or less, more preferably 0.0025% by mass or less.
(N:0.0040〜0.0060質量%)
Nは、TiN、AlNを生成し、熱間圧延前の加熱時、および溶接時におけるγ粒の粗大化を防止し、母材靭性やHAZ靭性を向上させるのに有効な元素である。Nの含有量が0.0040質量%未満であると、上記TiN等が不足し、上記γ粒が粗大になり、母材靭性が劣化する。よってN含有量は0.0040質量%以上とする必要がある。N含有量は、好ましくは0.0042質量%以上であり、より好ましくは0.0044質量%以上である。一方、N含有量が0.0060質量%を超えて過剰になると、固溶Nの増大により、母材靭性・HAZ靭性に悪影響を及ぼす。よって、N含有量は0.0060質量%以下とする。N含有量は、好ましくは0.0058質量%以下、より好ましくは0.0056質量%以下である。
(N: 0.0040 to 0.0060% by mass)
N is an element that produces TiN and AlN, prevents coarsening of γ grains during heating before hot rolling and during welding, and is effective in improving base metal toughness and HAZ toughness. If the content of N is less than 0.0040% by mass, the TiN and the like are insufficient, the γ grains become coarse, and the toughness of the base metal deteriorates. Therefore, the N content needs to be 0.0040% by mass or more. The N content is preferably 0.0042% by mass or more, and more preferably 0.0044% by mass or more. On the other hand, if the N content exceeds 0.0060% by mass and becomes excessive, the solid solution N increases, which adversely affects the base metal toughness and HAZ toughness. Therefore, the N content is set to 0.0060% by mass or less. The N content is preferably 0.0058% by mass or less, more preferably 0.0056% by mass or less.
(P:0質量%超、0.010質量%以下)
Pは、母材と溶接部の靭性に悪影響を及ぼす不可避的不純物である。こうした不都合を招かないように、その含有量を0.010質量%以下に抑制する必要がある。P含有量は、好ましくは0.009質量%以下、より好ましくは0.008質量%以下である。尚、工業上0%にすることは困難であり、下限は0.002質量%程度である。
(P: More than 0% by mass, 0.010% by mass or less)
P is an unavoidable impurity that adversely affects the toughness of the base metal and the weld. In order not to cause such inconvenience, it is necessary to suppress the content to 0.010% by mass or less. The P content is preferably 0.009% by mass or less, more preferably 0.008% by mass or less. It is industrially difficult to set it to 0%, and the lower limit is about 0.002% by mass.
(S:0質量%超、0.002質量%以下)
Sは、靭性や鋼板の板厚方向の延性に悪影響を及ぼす不可避的不純物であり、少ない方が好ましい。こうした観点から、S含有量は0.002質量%以下に抑制する必要がある。S含有量は、より好ましくは0.001質量%以下、さらに好ましくは0.0005質量%以下である。
(S: More than 0% by mass, 0.002% by mass or less)
S is an unavoidable impurity that adversely affects the toughness and ductility of the steel sheet in the plate thickness direction, and is preferably small. From this point of view, the S content needs to be suppressed to 0.002% by mass or less. The S content is more preferably 0.001% by mass or less, still more preferably 0.0005% by mass or less.
本発明に係る厚鋼板における基本成分は上述の通りであり、残部は実質的に鉄である。
但し、原料、資材または製造設備等の状況によって持ち込まれるPおよびS以外の不可避的不純物が鋼中に含まれることは当然に許容される。
また、不可避的不純物は、スクラップ等の使用または他の要因により混入されるその他の不純物として、Cr、Moおよび/またはVを含み得る。
The basic components of the thick steel sheet according to the present invention are as described above, and the balance is substantially iron.
However, it is naturally permissible for steel to contain unavoidable impurities other than P and S brought in depending on the conditions of raw materials, materials, manufacturing equipment, and the like.
In addition, the unavoidable impurities may include Cr, Mo and / or V as other impurities mixed by the use of scrap or the like or other factors.
Crを過剰に含有させると焼入れ性が過剰となり、所望とする一様伸びが得られない。そこで、不純物としてCrを含有する場合、Cr含有量は0.1質量%以下とすることが好ましい。Cr含有量は、より好ましくは0.09質量以下、さらに好ましくは0.08質量%以下である。 If Cr is excessively contained, the hardenability becomes excessive and the desired uniform elongation cannot be obtained. Therefore, when Cr is contained as an impurity, the Cr content is preferably 0.1% by mass or less. The Cr content is more preferably 0.09% by mass or less, still more preferably 0.08% by mass or less.
Moが過剰に含まれると焼入れ性が過剰となり、結果として耐溶接割れ性が劣化するので、不純物としてMoを含有する場合、Mo含有量は0.05質量%以下とすることが好ましい。Mo含有量は、より好ましくは0.04質量以下、さらに好ましくは0.03質量%以下である。 If Mo is contained in excess, the hardenability becomes excessive, and as a result, the weld cracking resistance deteriorates. Therefore, when Mo is contained as an impurity, the Mo content is preferably 0.05% by mass or less. The Mo content is more preferably 0.04% by mass or less, still more preferably 0.03% by mass or less.
Vが過剰に含まれると、析出する炭化物または炭窒化物が過多となり、析出強化能が過剰となり、降伏比増大につながる。よって、不純物としてVを含有する場合、V含有量は0.005質量%以下とすることが好ましい。V含有量は、より好ましくは0.003質量%以下、さらに好ましくは0.001質量%以下である。 If V is excessively contained, the amount of precipitated carbide or carbonitride becomes excessive, the precipitation strengthening ability becomes excessive, and the yield ratio increases. Therefore, when V is contained as an impurity, the V content is preferably 0.005% by mass or less. The V content is more preferably 0.003% by mass or less, still more preferably 0.001% by mass or less.
このような構成を有する本発明に係る厚鋼板は一様伸びに優れており、船舶、建築物、橋梁、建設機械等の構造用材料として好ましく用いられてよい。 The thick steel sheet according to the present invention having such a structure is excellent in uniform elongation and may be preferably used as a structural material for ships, buildings, bridges, construction machinery and the like.
<2.厚鋼板の製造方法>
本発明に係る厚鋼板を製造するためには、上述の化学成分組成を含有する鋼片、例えばスラブを用い、鋼片の加熱温度、仕上げ圧延温度、およびその後の冷却速度を適切に調整する。
具体的には、(a)前記化学成分組成を有する鋼片を、900〜1250℃に加熱する加熱工程と、(b)前記工程(a)後、680〜800℃の仕上げ圧延温度で仕上げ圧延する工程と、(c)前記工程(b)後、下記(1)式を満足する冷却速度Aで常温まで冷却する工程とを含む。
736.02×[C]+8.5×A+208.53≦260 (1)
ここで、[C]はCの含有量(質量%)であり、Aは仕上げ圧延後の冷却速度(℃/s)である。
<2. Manufacturing method of thick steel plate >
In order to produce the thick steel sheet according to the present invention, a steel piece containing the above-mentioned chemical composition, for example, a slab, is used, and the heating temperature, finish rolling temperature, and subsequent cooling rate of the steel piece are appropriately adjusted.
Specifically, (a) a heating step of heating the steel piece having the chemical composition to 900 to 1250 ° C., and (b) after the step (a), finish rolling at a finish rolling temperature of 680 to 800 ° C. This step includes (c) and after the step (b), a step of cooling to room temperature at a cooling rate A satisfying the following formula (1).
736.02 × [C] +8.5 × A + 208.53 ≦ 260 (1)
Here, [C] is the content of C (mass%), and A is the cooling rate (° C./s) after finish rolling.
以下、各工程について詳述する。なお、本明細書で規定した「温度」は、材料の温度のことである。 Hereinafter, each step will be described in detail. The "temperature" specified in this specification is the temperature of the material.
[(a)前記化学成分組成を有する鋼片を、900〜1250℃に加熱する加熱工程]
上述の化学成分組成を含有する鋼片、例えばスラブを、熱間圧延が可能な900〜1250℃に加熱する。加熱温度は、好ましくは1000℃以上、より好ましくは1050℃以上であり、好ましくは1200℃以下、より好ましくは1150℃以下である。
[(A) Heating step of heating a steel piece having the chemical composition to 900 to 1250 ° C.]
Steel pieces containing the above-mentioned chemical composition, for example, slabs, are heated to 900 to 1250 ° C. where hot rolling is possible. The heating temperature is preferably 1000 ° C. or higher, more preferably 1050 ° C. or higher, preferably 1200 ° C. or lower, and more preferably 1150 ° C. or lower.
[(b)前記工程(a)後、680〜800℃の仕上げ圧延温度で仕上げ圧延する工程] 前記工程(a)後、強度及び伸びを確保するため、仕上げ圧延温度を680〜800℃に制御して仕上げ圧延する。仕上げ圧延温度は、好ましくは690℃以上、より好ましくは700℃以上であり、好ましくは790℃以下、より好ましくは780℃以下である。 [(B) Step of finish rolling at a finish rolling temperature of 680 to 800 ° C. after the step (a)] After the step (a), the finish rolling temperature is controlled to 680 to 800 ° C. in order to secure strength and elongation. And finish rolling. The finish rolling temperature is preferably 690 ° C. or higher, more preferably 700 ° C. or higher, preferably 790 ° C. or lower, and more preferably 780 ° C. or lower.
[(c)前記工程(b)後、(1)式を満足する冷却速度Aで常温まで冷却する工程]
前記工程(b)後、下記(1)式を満足する冷却速度Aで常温まで冷却する。
736.02×[C]+8.5×A+208.53≦260 (1)
ここで、[C]はCの含有量(質量%)であり、Aは仕上げ圧延後の冷却速度(℃/s)である。
以下に、上記(1)式の技術的意義を説明する。
[(C) After the step (b), a step of cooling to room temperature at a cooling rate A satisfying the formula (1)]
After the step (b), the mixture is cooled to room temperature at a cooling rate A satisfying the following equation (1).
736.02 × [C] +8.5 × A + 208.53 ≦ 260 (1)
Here, [C] is the content of C (mass%), and A is the cooling rate (° C./s) after finish rolling.
The technical significance of the above equation (1) will be described below.
図1は、第二相の硬さと上記(1)式の左辺の値との関係を示すグラフである。また、図2は、第二相の硬さと一様伸びとの関係を示すグラフである。
図1および2中、「□」で表されるプロットは、上記(1)式を満足する冷却速度で冷却して製造した本発明例の厚鋼板を示す。一方、「○」で表されるプロットは、上記(1)式を満足しない冷却速度で製造した比較例の厚鋼板を示す。
FIG. 1 is a graph showing the relationship between the hardness of the second phase and the value on the left side of the above equation (1). Further, FIG. 2 is a graph showing the relationship between the hardness of the second phase and the uniform elongation.
In FIGS. 1 and 2, the plot represented by “□” shows the thick steel plate of the example of the present invention manufactured by cooling at a cooling rate satisfying the above equation (1). On the other hand, the plot represented by "○" shows a thick steel plate of a comparative example manufactured at a cooling rate that does not satisfy the above equation (1).
図1に示されるように、上記(1)式の左辺の値が大きくなると、第二相の硬さが大きくなる。また、図2に示されるように、第二相の硬さが大きくなると、一様伸びが小さくなる。図1および2の結果から、上記(1)式の左辺の値を制御する、すなわち、厚鋼板中のCの含有量および仕上げ圧延後の冷却速度を制御することにより、一様伸びおよび硬質第二相の硬さの両方を制御することができることが分かる。 As shown in FIG. 1, as the value on the left side of the above equation (1) increases, the hardness of the second phase increases. Further, as shown in FIG. 2, as the hardness of the second phase increases, the uniform elongation decreases. From the results of FIGS. 1 and 2, by controlling the value on the left side of the above equation (1), that is, by controlling the content of C in the thick steel sheet and the cooling rate after finish rolling, uniform elongation and hardness are obtained. It can be seen that both the hardness of the two phases can be controlled.
本発明者らは、本願に規定の化学成分組成を有する鋼片に前記工程(a)および(b)を施し、鋼片中のCの含有量[C]に応じて、仕上げ圧延後の冷却速度Aを、上記(1)式を満足するように制御することにより、第二相の硬さを260HV以下にすることができ、17.5%以上の優れた一様伸びを達成することができることを見出し、上記(1)式を本願に規定した。
一様伸びに優れた厚鋼板を得る観点から、上記(1)式の左辺の値は、200以上であることが好ましく、より好ましくは210以上であり、255以下であることが好ましく、より好ましくは250以下である。
The present inventors perform the above steps (a) and (b) on a steel piece having the chemical composition specified in the present application, and cool the steel piece after finish rolling according to the C content [C] in the steel piece. By controlling the velocity A so as to satisfy the above equation (1), the hardness of the second phase can be reduced to 260 HV or less, and excellent uniform elongation of 17.5% or more can be achieved. We found that we could do it, and defined the above equation (1) in the present application.
From the viewpoint of obtaining a thick steel sheet having excellent uniform elongation, the value on the left side of the above equation (1) is preferably 200 or more, more preferably 210 or more, and more preferably 255 or less. Is 250 or less.
全熱間圧延工程での累積圧下率は60%以上とすることが好ましい。より好ましくは65%以上である。α粒を作り込むためには、未再結晶温度域で十分な圧下を加える必要がある。未再結晶温度域の圧下量は20%以上が好ましく、より好ましくは25%以上、さらに好ましくは30%以上である。 The cumulative reduction rate in the total hot rolling step is preferably 60% or more. More preferably, it is 65% or more. In order to produce α grains, it is necessary to apply sufficient reduction in the unrecrystallized temperature range. The amount of reduction in the unrecrystallized temperature range is preferably 20% or more, more preferably 25% or more, still more preferably 30% or more.
以上のように本発明に係る厚鋼板の製造方法を説明したが、本発明に係る厚鋼板の所望の特性を理解した当業者が試行錯誤を行い、本発明に係る所望の特性を有する厚鋼板を製造する方法であって、上記の製造方法以外の方法を見出す可能性がある。 Although the method for manufacturing a thick steel sheet according to the present invention has been described above, a person skilled in the art who understands the desired characteristics of the thick steel sheet according to the present invention will carry out trial and error to carry out trial and error, and the thick steel sheet having the desired characteristics according to the present invention. There is a possibility of finding a method other than the above-mentioned manufacturing method.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前記または後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples as well as the present invention, and appropriate modifications are made to the extent that it can be adapted to the above or the purpose described below. Of course, it is possible to carry out, and all of them are included in the technical scope of the present invention.
表1に示す鋼種A〜Xの化学成分組成の鋼片を、通常の溶製法に従って溶製し鋳造した後、表2に示す製造条件で鋼片の加熱、仕上げ圧延および冷却を行ない、厚さ12〜50mmである試験No.1〜24の厚鋼板を製造した。
表1および2中、下線が付されたものは本発明の規定から外れていることを意味する。
Steel pieces having the chemical composition of steel types A to X shown in Table 1 are melted and cast according to a normal melting method, and then the steel pieces are heated, finished rolled and cooled under the manufacturing conditions shown in Table 2 to obtain a thickness. Test No. 12 to 50 mm. 1 to 24 thick steel plates were manufactured.
Underlined items in Tables 1 and 2 mean that they are outside the scope of the present invention.
各厚鋼板について、以下の要領に従って、金属組織の観察を行い、フェライトの平均粒径、第二相の硬さ、および引張特性(一様伸び:U.El、引張強度:TS)の測定を行った。 For each thick steel sheet, observe the metallographic structure according to the following procedure, and measure the average grain size of ferrite, the hardness of the second phase, and the tensile properties (uniform elongation: U.El, tensile strength: TS). went.
[1.金属組織の観察]
金属組織の観察を以下の手順で行った。
(1)圧延方向に平行でかつ鋼板表面に対して垂直な、鋼板表裏面を含む板厚断面を観察できるよう上記鋼板からサンプルを採取した。
(2)湿式エメリー研磨紙(#150〜#1000)での研磨、またはそれと同等の機能を有する研磨として、例えばダイヤモンドスラリー等の研磨剤を用いた研磨等により、観察面の鏡面仕上を行った。
(3)研磨されたサンプルを、3%ナイタール溶液を用いて腐食し、結晶粒界を現出させた。
(4)板厚t/4部位において、光学顕微鏡を用いて、現出させた組織を400倍の倍率で観察し、組織がフェライトを有する場合には、フェライト以外を硬質第二相とし、フェライトを第一相とした。すなわち、硬質第二相は第一相より硬い。組織がフェライトを有さず、ベイナイトおよびマルテンサイトを有する場合には、ベイナイトを第一相とし、ベイナイトより硬いマルテンサイトを第二相とした。
[1. Observation of metallographic structure]
The metallographic structure was observed according to the following procedure.
(1) A sample was taken from the above steel sheet so that the thickness cross section including the front and back surfaces of the steel sheet, which was parallel to the rolling direction and perpendicular to the surface of the steel sheet, could be observed.
(2) The observation surface was mirror-finished by polishing with wet emery abrasive paper (# 150 to # 1000) or by polishing with a polishing agent such as diamond slurry as polishing having an equivalent function. ..
(3) The polished sample was corroded with a 3% nital solution to reveal grain boundaries.
(4) At the plate thickness t / 4 site, observe the exposed structure at a magnification of 400 times using an optical microscope, and if the structure has ferrite, use a hard second phase other than ferrite and ferrite. Was the first phase. That is, the hard second phase is harder than the first phase. When the structure did not have ferrite and had bainite and martensite, bainite was used as the first phase and martensite, which was harder than bainite, was used as the second phase.
[2.フェライトの平均粒径]
3%ナイタール溶液で腐食した上記サンプルについて、板厚t/4部位において、光学顕微鏡を用いて、第一相を100倍の倍率で観察し、10視野の写真を撮影した。当該顕微鏡写真から比較法(JIS G0551)でフェライトの粒径を求め、その平均値をフェライトの平均粒径とした。
[2. Average grain size of ferrite]
For the above sample corroded with a 3% nital solution, the first phase was observed at a magnification of 100 times at a plate thickness of t / 4 site using an optical microscope, and a photograph of 10 fields of view was taken. The particle size of ferrite was determined from the micrograph by a comparative method (JIS G0551), and the average value was taken as the average particle size of ferrite.
[3.第二相の硬さの測定方法]
3%ナイタール溶液で腐食した上記サンプルについて、板厚t/4の部位において、マイクロビッカース硬度計を用いて、0.05Nの測定荷重で第二相の硬さを測定した。第二相において10箇所以上で硬さを測定し、その平均値を第二相の硬さとした。なお、組織がマルテンサイトのみ、すなわちマルテンサイト単相の場合には、当該相の硬さを第二相の硬さとして測定した。
[3. Method of measuring the hardness of the second phase]
For the above sample corroded with a 3% nital solution, the hardness of the second phase was measured at a site having a plate thickness of t / 4 using a Micro Vickers hardness tester at a measurement load of 0.05 N. The hardness was measured at 10 or more points in the second phase, and the average value was taken as the hardness of the second phase. When the structure was martensite only, that is, martensite single phase, the hardness of the phase was measured as the hardness of the second phase.
[4.引張試験]
試験片の長手方向が圧延方向と直角となるよう全厚板状試験片(5号)を採取して、JIS Z2241:2015の要領で引張試験を行い、引張強度(TS)、および一様伸び(U.El)を測定した。
U.Elが17.5%以上の厚鋼板を実用可能な水準であると判定した。
[4. Tensile test]
A full-thick plate-shaped test piece (No. 5) is collected so that the longitudinal direction of the test piece is perpendicular to the rolling direction, and a tensile test is performed in the manner of JIS Z2241: 2015. Tensile strength (TS) and uniform elongation (U. El) was measured.
U.S. A thick steel sheet having an El of 17.5% or more was judged to be at a practical level.
金属組織、フェライトの平均粒径、第二相の硬さ、および引張特性(一様伸び:U.El、引張強度:TS)を表3に示す。表3中、下線が付されたものは本発明の規定から外れていることを意味する。 Table 3 shows the metallographic structure, the average particle size of ferrite, the hardness of the second phase, and the tensile properties (uniform elongation: U.El, tensile strength: TS). Those underlined in Table 3 mean that they are out of the provisions of the present invention.
表3の結果より、次のように考察できる。試験No.1〜4および19〜24はいずれも、本発明で規定する要件の全てを満足する例であり、一様伸びに優れている。 From the results in Table 3, it can be considered as follows. Test No. 1 to 4 and 19 to 24 are examples that satisfy all of the requirements specified in the present invention, and are excellent in uniform elongation.
一方、試験No.5〜18は、本発明で規定する要件のいずれかを満たしていない例である。 On the other hand, Test No. 5 to 18 are examples that do not meet any of the requirements specified in the present invention.
試験No.5は、Si、CuおよびNiが過剰な鋼種Eを用い、(1)式を満足しない速い冷却速度で冷却して製造した厚鋼板の例であり、Cu過剰により延性が低下し、また、第二相の硬さが260HVを超えており、所望の一様伸びが達成されなかった。
Test No.
試験No.6および7はそれぞれ、Cが過剰な鋼種FおよびGを用い、本願に規定の仕上げ圧延温度より高い温度で仕上げ圧延を行い、さらに(1)式を満足しない速い冷却速度で冷却して製造した厚鋼板の例であり、第二相の硬さが260HVを超えており、所望の一様伸びが達成されなかった。 Test No. 6 and 7 were produced by using steel grades F and G having an excess of C, performing finish rolling at a temperature higher than the finish rolling temperature specified in the present application, and further cooling at a high cooling rate that does not satisfy the formula (1). In this example of a thick steel sheet, the hardness of the second phase exceeded 260 HV, and the desired uniform elongation was not achieved.
試験No.8〜11はそれぞれ、(1)式を満足しない速い冷却速度で冷却して製造した厚鋼板の例であり、所望の一様伸びが達成されなかった。 Test No. 8 to 11 are examples of thick steel sheets manufactured by cooling at a high cooling rate that does not satisfy the equation (1), and the desired uniform elongation was not achieved.
試験No.12および13は、本願に規定の仕上げ圧延温度より高い温度で仕上げ圧延を行い、さらに(1)式を満足しない速い冷却速度で冷却して製造した厚鋼板の例であり、第二相の硬さが本願に規定の260HVを超えており、所望の一様伸びが達成されなかった。 Test No. Reference numerals 12 and 13 are examples of thick steel sheets produced by performing finish rolling at a temperature higher than the finish rolling temperature specified in the present application and further cooling at a fast cooling rate that does not satisfy the equation (1), and are examples of the second phase hard steel sheet. The temperature exceeded 260 HV specified in the present application, and the desired uniform elongation was not achieved.
試験No.14は、Si、CuおよびNiが過剰な鋼種Nを用い、さらに(1)式を満足しない速い冷却速度で冷却して製造した厚鋼板の例であり、第二相の硬さが本願に規定の260HVを超えており、所望の一様伸びが達成されなかった。 Test No. Reference numeral 14 denotes an example of a thick steel sheet manufactured by using a steel type N having an excess of Si, Cu and Ni and further cooling at a high cooling rate that does not satisfy the equation (1), and the hardness of the second phase is defined in the present application. It was above 260 HV and the desired uniform elongation was not achieved.
試験No.15〜18はそれぞれ、Cが過剰な鋼種O〜Rを用い、本願に規定の仕上げ圧延温度より高い温度で仕上げ圧延を行い、さらに(1)式を満足しない速い冷却速度で冷却して製造した厚鋼板の例であり、第二相の硬さが260HVを超えており、所望の一様伸びが達成されなかった。 Test No. Each of 15 to 18 was produced by using steel grades O to R having an excess of C, performing finish rolling at a temperature higher than the finish rolling temperature specified in the present application, and further cooling at a high cooling rate that does not satisfy equation (1). In this example of a thick steel sheet, the hardness of the second phase exceeded 260 HV, and the desired uniform elongation was not achieved.
Claims (2)
Si:0.35〜0.45質量%、
Mn:1.49〜1.59質量%、
P :0質量%超、0.01質量%以下、
S :0質量%超、0.002質量%以下、
Cu:0.23〜0.33質量%、
Al:0.02〜0.06質量%、
Ni:0.24〜0.34質量%、
Nb:0.015〜0.021質量%、
Ti:0.012〜0.018質量%、
B :0.0007〜0.0013質量%、
Ca:0.0010〜0.0030質量%、および
N :0.0040〜0.0060質量%を含有し、
残部が鉄および不可避的不純物からなり、
金属組織が第一相と第一相より硬い硬質相である第二相とを含み、当該硬質相は、パーライトからなる相であり、
前記第一相がフェライトからなる相であり、前記フェライトの平均粒径が30μm以下であり、
前記第二相の硬さが260HV以下である厚鋼板。 C: 0.04 to 0.06% by mass,
Si: 0.35 to 0.45% by mass,
Mn: 1.49 to 1.59% by mass,
P: More than 0% by mass, 0.01% by mass or less,
S: More than 0% by mass, 0.002% by mass or less,
Cu: 0.23 to 0.33% by mass,
Al: 0.02 to 0.06% by mass,
Ni: 0.24 to 0.34% by mass,
Nb: 0.015-0.021% by mass,
Ti: 0.012 to 0.018% by mass,
B: 0.0007 to 0.0013% by mass,
It contains Ca: 0.0010 to 0.0030% by mass and N: 0.0040 to 0.0060% by mass.
The rest consists of iron and unavoidable impurities,
The metal structure includes a first phase and a second phase, which is a hard phase harder than the first phase, and the hard phase is a phase composed of pearlite.
The first phase is a phase made of ferrite, and the average particle size of the ferrite is 30 μm or less.
A thick steel plate having a hardness of 260 HV or less in the second phase.
(a)前記化学成分組成を有する鋼片を、900〜1250℃に加熱する加熱工程と、 (b)前記工程(a)後、680〜800℃の仕上げ圧延温度で仕上げ圧延する工程と、
(c)前記工程(b)後、下記(1)式を満足する冷却速度Aで常温まで冷却する工程と
を含む厚鋼板の製造方法。
736.02×[C]+8.5×A+208.53≦260 (1)
ここで、[C]はCの含有量(質量%)であり、Aは仕上げ圧延後の冷却速度(℃/s)である。 The method for manufacturing a thick steel sheet according to claim 1.
(A) A heating step of heating a steel piece having the chemical composition to 900 to 1250 ° C., and (b) a step of finish rolling at a finish rolling temperature of 680 to 800 ° C. after the step (a).
(C) A method for producing a thick steel sheet, which comprises, after the step (b), a step of cooling to room temperature at a cooling rate A satisfying the following formula (1).
736.02 × [C] +8.5 × A + 208.53 ≦ 260 (1)
Here, [C] is the content of C (mass%), and A is the cooling rate (° C./s) after finish rolling.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780051084.3A CN109642285B (en) | 2016-08-29 | 2017-08-08 | Thick steel plate and method for producing same |
PCT/JP2017/028790 WO2018043067A1 (en) | 2016-08-29 | 2017-08-08 | Thick steel sheet and production method therefor |
KR1020197005678A KR20190034279A (en) | 2016-08-29 | 2017-08-08 | After-treatment steel sheet and its manufacturing method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016166817 | 2016-08-29 | ||
JP2016166817 | 2016-08-29 | ||
JP2017106674 | 2017-05-30 | ||
JP2017106674 | 2017-05-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018193605A JP2018193605A (en) | 2018-12-06 |
JP6771429B2 true JP6771429B2 (en) | 2020-10-21 |
Family
ID=64568894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017122479A Active JP6771429B2 (en) | 2016-08-29 | 2017-06-22 | Thick steel plate and its manufacturing method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6771429B2 (en) |
KR (1) | KR20190034279A (en) |
CN (1) | CN109642285B (en) |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5381422A (en) * | 1976-12-27 | 1978-07-18 | Kubota Ltd | Casting die material |
JPS57207160A (en) * | 1981-06-17 | 1982-12-18 | Kawasaki Steel Corp | Low thermal expansion invar type fe-ni alloy with superior rust resistance |
JPH108188A (en) * | 1996-06-26 | 1998-01-13 | Kobe Steel Ltd | Steel sheet for working excellent in high speed destruction resistance in heated zone |
JP2002105534A (en) | 2000-09-27 | 2002-04-10 | Nippon Steel Corp | Method for manufacturing high-tensile steel having excellent fracture resistance |
JP2003253331A (en) | 2002-03-05 | 2003-09-10 | Nippon Steel Corp | Method for manufacturing high-tensile-strength steel with high toughness and high ductility |
JP4476923B2 (en) | 2005-12-15 | 2010-06-09 | 株式会社神戸製鋼所 | Steel sheet with excellent impact absorption and base metal toughness |
JP4653038B2 (en) * | 2006-08-21 | 2011-03-16 | 株式会社神戸製鋼所 | High tensile steel plate and method for manufacturing the same |
CN101153370B (en) * | 2006-09-27 | 2012-06-13 | 鞍钢股份有限公司 | Low-alloy high-strength steel plate capable of being welded at high heat input and manufacturing method thereof |
JP5276871B2 (en) * | 2008-03-27 | 2013-08-28 | 株式会社神戸製鋼所 | Low yield specific thickness steel plate with excellent toughness of weld heat affected zone |
JP5522084B2 (en) * | 2011-02-24 | 2014-06-18 | 新日鐵住金株式会社 | Thick steel plate manufacturing method |
EP2738274B1 (en) * | 2011-07-27 | 2018-12-19 | Nippon Steel & Sumitomo Metal Corporation | High-strength cold-rolled steel sheet with excellent stretch flangeability and precision punchability, and process for producing same |
CN102277529A (en) * | 2011-07-28 | 2011-12-14 | 莱芜钢铁集团有限公司 | High-strength high-tenacity ship plate steel and TMCP (Thermal Mechanical Control Process) production technology method thereof |
JP5981813B2 (en) * | 2012-09-11 | 2016-08-31 | 株式会社神戸製鋼所 | High strength steel sheet with excellent low temperature toughness and method for producing the same |
JP6064897B2 (en) * | 2013-12-27 | 2017-01-25 | Jfeスチール株式会社 | High-strength steel material with excellent fatigue crack propagation resistance and its determination method |
CN108060349A (en) * | 2017-11-23 | 2018-05-22 | 南阳汉冶特钢有限公司 | A kind of high-strength tenacity structural steel for bridge Q550qFNH cut deals and its production method |
-
2017
- 2017-06-22 JP JP2017122479A patent/JP6771429B2/en active Active
- 2017-08-08 KR KR1020197005678A patent/KR20190034279A/en not_active Application Discontinuation
- 2017-08-08 CN CN201780051084.3A patent/CN109642285B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109642285B (en) | 2020-10-30 |
JP2018193605A (en) | 2018-12-06 |
CN109642285A (en) | 2019-04-16 |
KR20190034279A (en) | 2019-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6075517B1 (en) | Hot-rolled steel sheet and manufacturing method thereof | |
KR101892839B1 (en) | Steel plate and method of producing same | |
JP5034308B2 (en) | High strength thick steel plate with excellent delayed fracture resistance and method for producing the same | |
JP5145803B2 (en) | Wear-resistant steel plate with excellent low-temperature toughness and low-temperature tempering embrittlement cracking properties | |
JP5804229B1 (en) | Abrasion-resistant steel plate and method for producing the same | |
JP6772378B2 (en) | High-strength rebar and its manufacturing method | |
JP5037744B2 (en) | High strength steel plate and manufacturing method thereof | |
JP6682785B2 (en) | Steel plate having excellent sour resistance and method of manufacturing the same | |
JP5590254B2 (en) | High carbon hot rolled steel sheet and manufacturing method thereof | |
KR20190032625A (en) | H-beam and its manufacturing method | |
JP6771047B2 (en) | High-strength steel sheet with low yield ratio characteristics and excellent low-temperature toughness and its manufacturing method | |
JP5521444B2 (en) | High-strength cold-rolled steel sheet with excellent workability and method for producing the same | |
JP6645107B2 (en) | H-section steel and manufacturing method thereof | |
JP6501042B2 (en) | High strength steel plate | |
JP2008169443A (en) | Wear-resistant steel sheet superior in workability and manufacturing method therefor | |
KR20190028488A (en) | High strength steel sheet and manufacturing method thereof | |
JP6847225B2 (en) | Low yield ratio steel sheet with excellent low temperature toughness and its manufacturing method | |
JP6610520B2 (en) | Steel sheet pile and manufacturing method thereof | |
JP2018503740A (en) | Hot-rolled steel sheet for high-strength galvanized steel sheet with excellent surface quality and manufacturing method thereof | |
JP7048378B2 (en) | High strength and high ductility steel sheet | |
JP6354571B2 (en) | Rolled H-section steel and its manufacturing method | |
JP5297692B2 (en) | High-tensile steel plate excellent in toughness of weld heat-affected zone and suppression of fatigue crack growth and manufacturing method thereof | |
JP4506985B2 (en) | Extra heavy steel material and method for manufacturing the same | |
CN113692456A (en) | Ultrahigh-strength steel sheet having excellent shear workability and method for producing same | |
JP2008214736A (en) | Wear resistant steel sheet having excellent workability, and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190930 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20200406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200707 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200904 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200923 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200929 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6771429 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |