JP4506985B2 - Extra heavy steel material and method for manufacturing the same - Google Patents

Extra heavy steel material and method for manufacturing the same Download PDF

Info

Publication number
JP4506985B2
JP4506985B2 JP2006104822A JP2006104822A JP4506985B2 JP 4506985 B2 JP4506985 B2 JP 4506985B2 JP 2006104822 A JP2006104822 A JP 2006104822A JP 2006104822 A JP2006104822 A JP 2006104822A JP 4506985 B2 JP4506985 B2 JP 4506985B2
Authority
JP
Japan
Prior art keywords
steel
less
temperature
content
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006104822A
Other languages
Japanese (ja)
Other versions
JP2007277629A (en
Inventor
浩史 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006104822A priority Critical patent/JP4506985B2/en
Publication of JP2007277629A publication Critical patent/JP2007277629A/en
Application granted granted Critical
Publication of JP4506985B2 publication Critical patent/JP4506985B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、極厚鋼材及びその製造方法に関する。詳しくは、建築、土木及び海洋構造物等の分野で使用される形鋼又は平鋼として好適な極厚鋼材及びその製造方法、なかでも、フランジ又はウエブの厚さが80mmを超える超極厚H形鋼として好適な極厚鋼材及びその製造方法に関する。   The present invention relates to an extra heavy steel material and a method for manufacturing the same. Specifically, an ultra-thick steel material suitable as a shape steel or flat steel used in the fields of architecture, civil engineering and offshore structures, and its manufacturing method, in particular, a super extra-thickness H with a flange or web thickness exceeding 80 mm The present invention relates to a very thick steel material suitable as a shape steel and a method for producing the same.

近年、建築物の高層化や大型化に伴って、従来よりも厚さが大きく、性能にも優れた形鋼や平鋼、なかでもH形鋼が要望されている。   In recent years, with the increase in the height and size of buildings, there has been a demand for shape steels and flat steels, which are thicker than before and excellent in performance, especially H-section steels.

具体的には、厚さが40〜125mmで、415MPa以上の降伏点と550MPa以上の引張強さという引張強度特性及びVノッチ試験片を用いた0℃でのシャルピー吸収エネルギーが47J以上という衝撃特性(以下、「靱性」ともいう。)を有するH形鋼が要望されている。なお、上記の吸収エネルギーが100J以上や200J以上という極めて良好な衝撃特性を有するH形鋼に対する要望もある。   Specifically, the thickness is 40 to 125 mm, the yield strength is 415 MPa or more, the tensile strength is 550 MPa or more, and the Charpy absorbed energy at 0 ° C. using a V-notch test piece is 47 J or more. There is a demand for an H-section steel (hereinafter also referred to as “toughness”). There is also a demand for an H-section steel having extremely good impact characteristics such that the absorbed energy is 100 J or more or 200 J or more.

こうした要望に対して、特許文献1に、フランジ板厚方向での強度・靱性のばらつきが小さく、残留応力・歪みを発生させることなく高強度、高靱性、高溶接性を確保できる強度・靱性・溶接性に優れた極厚H形鋼の製造方法として、特定の化学組成からなる鋼素材に対して特定の条件での加熱、圧延及び冷却を施す「極厚H形鋼の製造方法」が開示されている。   In response to such demands, Patent Document 1 discloses that strength and toughness that can ensure high strength, high toughness, and high weldability without generating residual stress and strain are small in the variation of strength and toughness in the flange plate thickness direction. As a method for producing an extremely thick H-section steel with excellent weldability, a “method for producing an ultra-thick H-section steel” is disclosed in which a steel material having a specific chemical composition is heated, rolled and cooled under specific conditions. Has been.

また、特許文献2に、フランジ各部位の材質差の小さいフランジ厚さが40mmを超える極厚H形鋼の製造方法として、特定の化学組成からなる鋼に対して特定の条件での加熱、圧延及び冷却を施す「極厚H形鋼の製造方法」が開示されている。   In addition, in Patent Document 2, as a method for producing an extremely thick H-section steel having a flange thickness with a small material difference at each flange portion exceeding 40 mm, heating and rolling under a specific condition for steel having a specific chemical composition And “a method for producing an ultra-thick H-section steel” for cooling.

更に、特許文献3に、フランジ各部位の材質差が小さく、断面形状に優れた極厚H形鋼の製造方法として、特定の化学組成からなる鋼に対して特定の条件での圧延及び冷却を施す「圧延形鋼の製造方法」が開示されている。   Furthermore, in Patent Document 3, as a method for producing an extremely thick H-section steel having a small material difference in each part of the flange and an excellent cross-sectional shape, rolling and cooling under specific conditions are performed on steel having a specific chemical composition. A “rolled shape steel manufacturing method” to be applied is disclosed.

特許文献4には、塑性変形能力が大きく、かつショートビード溶接が行われたときやパス間温度が高くなったときにおいても高い継ぎ手性能が得られるH形鋼に代表される建築構造用鋼及びその製造方法として、特定の化学組成からなる鋼素材に対して特定の条件での加熱、圧延及び冷却を施す「建築構造用鋼及びその製造方法」が開示されている。   Patent Document 4 discloses a steel for building structures represented by H-section steel, which has a large plastic deformation capability and can obtain high joint performance even when short bead welding is performed or when the temperature between passes is high, and As a manufacturing method thereof, “steel for building structure and manufacturing method thereof” is disclosed in which a steel material having a specific chemical composition is heated, rolled and cooled under specific conditions.

特開平10−68016号公報Japanese Patent Laid-Open No. 10-68016 特開2001−262225号公報JP 2001-262225 A 特開2001−286901号公報JP 2001-286901 A 特開2002−294391号公報JP 2002-294391 A

前述の特許文献1で提案された技術は、その鋼素材にAr3点が740〜775℃と比較的高いものを用いる必要がある。このため、圧延終了後の冷却速度が遅い極厚鋼材、なかでも板厚が80mmを超える極厚鋼材の場合には、粗大なフェライト組織が生じやすく、必ずしも良好な機械的性質が得られるというものではなかった。 The technique proposed in the above-mentioned Patent Document 1 needs to use a relatively high Ar 3 point of 740 to 775 ° C. for the steel material. For this reason, in the case of a very thick steel material having a slow cooling rate after the end of rolling, especially a very thick steel material having a plate thickness exceeding 80 mm, a coarse ferrite structure is likely to occur, and good mechanical properties are always obtained. It wasn't.

特許文献2で提案された技術は、TiNによって溶接熱影響部(以下、「HAZ」という。)の粗大化を抑制し、HAZ靱性を向上させることを目的にTiが添加され、また、組織をベイナイト化して強度を上昇させるとともにHAZ靱性を向上させることを目的にBが添加される場合があるが、Nの含有量に対するTi及びBの含有量を適正化することについての考慮がなされていない。このため、極厚の母材、なかでも厚さが80mmを超える極厚の母材に必ずしも良好な機械的性質を確保させることができるというものではなかった。   In the technique proposed in Patent Document 2, Ti is added for the purpose of suppressing the coarsening of the weld heat affected zone (hereinafter referred to as “HAZ”) by TiN and improving the HAZ toughness. B may be added for the purpose of increasing the strength and improving HAZ toughness by bainite, but no consideration has been given to optimizing the Ti and B contents relative to the N content. . For this reason, an extremely thick base material, in particular, an extremely thick base material having a thickness exceeding 80 mm, cannot always ensure good mechanical properties.

特許文献3で提案された技術も、Nの含有量に対してTiとBの含有量を適正化することについての考慮がなされていない。このため、極厚鋼材、なかでも板厚が80mmを超えるような極厚鋼材の場合には、母材と溶接部に必ずしも良好な機械的性質を確保させることができるというものではなかった。   In the technique proposed in Patent Document 3, no consideration is given to optimizing the Ti and B contents with respect to the N content. For this reason, in the case of an extremely thick steel material, especially an extremely thick steel material having a plate thickness exceeding 80 mm, it is not always possible to ensure good mechanical properties in the base material and the welded portion.

特許文献4で提案された技術の場合、鋼素材には、フリーNの固定のために、また、フリーB(固溶B)による焼入れ性向上の機能を活用するために、Bが含有されている。しかしながら、フリーBの量に対しては、Ti、N及びBの含有量と鋼素材の熱履歴が大きな影響を及ぼす。このため、極厚鋼材、なかでも板厚が80mmを超えるような極厚鋼材の場合には、必ずしも良好な焼入れ性を確保できず、機械的性質にばらつきが生じることがあった。   In the case of the technique proposed in Patent Document 4, the steel material contains B in order to fix the free N and to utilize the function of improving the hardenability by free B (solid solution B). Yes. However, the content of Ti, N and B and the thermal history of the steel material have a great influence on the amount of free B. For this reason, in the case of an extra-thick steel material, especially an extra-thick steel material having a plate thickness exceeding 80 mm, good hardenability cannot always be ensured, and mechanical properties may vary.

そこで、本発明の目的は、415MPa以上の降伏点と550MPa以上の引張強さという引張強度特性及びVノッチ試験片を用いた0℃でのシャルピー吸収エネルギーが47J以上という衝撃特性を有し、形鋼又は平鋼として好適な極厚鋼材とその製造方法、なかでも厚さが80mmを超える超極厚H形鋼とその製造方法を提供することである。   Therefore, an object of the present invention is to have a tensile strength characteristic of a yield point of 415 MPa or more and a tensile strength of 550 MPa or more and an impact characteristic that Charpy absorbed energy at 0 ° C. using a V-notch test piece is 47 J or more. It is to provide an extra-thick steel material suitable for steel or flat steel and a method for producing the same, particularly an ultra-thick H-shaped steel having a thickness exceeding 80 mm and a method for producing the same.

本発明者は、前記した機械的性質を備える極厚鋼材を得るために、種々の検討を行った。その結果、下記(a)〜(d)の知見を得た。   The present inventor has made various studies in order to obtain an ultra-thick steel material having the above-described mechanical properties. As a result, the following findings (a) to (d) were obtained.

(a)極厚鋼材、なかでも板厚が80mmを超える極厚鋼材に所望の機械的性質、つまり、415MPa以上の降伏点、550MPa以上の引張強さという引張強度特性、更には、Vノッチ試験片を用いた0℃でのシャルピー吸収エネルギーが47J以上という衝撃特性を安定して具備させるためには、C、Si、Mn、Cr、V、Nb、Ti、B、Al、及びNの含有量を厳密に制御するとともに、不純物としてのP、S、Cu、Ni、Mo及びO(酸素)の含有量を厳密に規制することが必要である。   (A) Ultra-thick steel materials, and especially desired mechanical properties for ultra-thick steel materials with a plate thickness exceeding 80 mm, that is, tensile strength characteristics such as a yield point of 415 MPa or more and a tensile strength of 550 MPa or more, and a V-notch test Content of C, Si, Mn, Cr, V, Nb, Ti, B, Al, and N in order to stably provide an impact property with a Charpy absorption energy at 47 ° C. using a piece of 47 J or more It is necessary to strictly control the contents of P, S, Cu, Ni, Mo, and O (oxygen) as impurities.

(b)上記所望の引張強度特性を具備させるためには、既に述べた元素の含有量の制御に加えて、元素記号をその元素の質量%での鋼中含有量として、下記(1)式で表されるAr3の値と、下記(2)式又は(3)式で表されるf(B)の値を満足するように制御することも必要である。
Ar3=910−273C+25Si−74Mn−56Ni−16Cr−9Mo−5Cu−1620Nb・・・・(1)、
「Ti/N≦3.4の場合」:f(B)=B−0.785{N−(Ti/3.4)}・・・・(2)、
「Ti/N>3.4の場合」:f(B)=B・・・・(3)。
(B) In order to provide the desired tensile strength characteristics, in addition to the control of the content of the element described above, the element symbol is the content in steel in mass% of the element, and the following formula (1) It is also necessary to control so as to satisfy the value of Ar3 represented by the following formula and the value of f (B) represented by the following formula (2) or (3).
Ar3 = 910-273C + 25Si-74Mn-56Ni-16Cr-9Mo-5Cu-1620Nb (1),
“When Ti / N ≦ 3.4”: f (B) = B−0.785 {N− (Ti / 3.4)} (2),
“When Ti / N> 3.4”: f (B) = B (3).

(c)上記所望の引張強度特性を具備させるためには、既に述べた元素の含有量、Ar3及びf(B)の値の制御に加えて、組織に占めるベイナイトの割合を60〜100%とすることも必要である。   (C) In order to provide the desired tensile strength characteristics, in addition to the control of the element content and the values of Ar3 and f (B) already described, the proportion of bainite in the structure is 60 to 100%. It is also necessary to do.

(d)上記(a)で述べた元素の含有量並びに(b)で述べたAr3及びf(B)の値を制御した鋼塊又は鋼片に対して、加熱温度、圧延終了温度、冷却開始温度、冷却停止温度及び冷却速度を特定の条件としたTMCP技術(熱加工制御技術)を適用することによって、極厚鋼板、なかでも板厚が80mmを超える極厚鋼材に所望の機械的性質である引張強度特性と衝撃特性を安定して具備させることができる。   (D) For the steel ingot or steel slab in which the content of the element described in (a) and the values of Ar3 and f (B) described in (b) are controlled, the heating temperature, the rolling end temperature, and the cooling start By applying TMCP technology (thermal processing control technology) with specific conditions of temperature, cooling stop temperature and cooling rate, it is possible to achieve the desired mechanical properties for extra-thick steel plates, especially extra-thick steel materials with a thickness exceeding 80 mm. Certain tensile strength characteristics and impact characteristics can be provided stably.

なお、「TMCP技術」とは、低温域での圧下やオンラインでの冷却を活用する技術であり、通常よりも少ない合金元素量で所定の機械的性質だけではなく、溶接性にも優れた鋼材が得られる技術である。   The “TMCP technology” is a technology that utilizes reduction in a low temperature range or online cooling, and not only the prescribed mechanical properties but also excellent weldability with a smaller amount of alloy elements than usual. Is a technology that can be obtained.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記(1)に示す極厚鋼材及び(2)に示す極厚鋼材の製造方法にある。   The present invention has been completed on the basis of the above findings, and the gist of the present invention resides in the ultra-thick steel material shown in the following (1) and the manufacturing method of the ultra-thick steel material shown in (2).

(1)質量%で、C:0.041〜0.09%、Si:0.11〜0.6%、Mn:1〜1.6%、P:0.02%以下、S:0.015%以下、Cu:0.19%以下、Ni:0.04%以下、Cr:0.06〜0.9%、Mo:0.04%以下、V:0.01〜0.1%、Nb:0.031〜0.07%、Ti:0.003〜0.03%、B:0.0003〜0.0029%、Al:0.003〜0.06%、N:0.0035〜0.009%及びO(酸素):0.006%以下を含有し、残部はFe及び不純物からなり、下記(1)式で表されるAr3の値が739以下で、かつ、下記(2)式又は(3)式で表されるf(B)の値が0.0004以下を満足する化学組成を有し、しかも、組織に占めるベイナイトの割合が60〜100%であることを特徴とする極厚鋼材。
Ar3=910−273C+25Si−74Mn−56Ni−16Cr−9Mo−5Cu−1620Nb・・・・(1)、
「Ti/N≦3.4の場合」:f(B)=B−0.785{N−(Ti/3.4)}・・・・(2)、
「Ti/N>3.4の場合」:f(B)=B・・・・(3)。
なお、(1)〜(3)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
(1) By mass%, C: 0.041 to 0.09%, Si: 0.11 to 0.6%, Mn: 1 to 1.6%, P: 0.02% or less, S: 0.00. 015% or less, Cu: 0.19% or less, Ni: 0.04% or less, Cr: 0.06-0.9%, Mo: 0.04% or less, V: 0.01-0.1%, Nb: 0.031-0.07%, Ti: 0.003-0.03%, B: 0.0003-0.0029%, Al: 0.003-0.06%, N: 0.0035 0.009% and O (oxygen): 0.006% or less, with the balance being Fe and impurities, the value of Ar3 represented by the following formula (1) is 739 or less, and the following (2) The value of f (B) represented by the formula or the formula (3) has a chemical composition satisfying 0.0004 or less, and the proportion of bainite in the structure is 60 to 10 Thick steel which is a%.
Ar3 = 910-273C + 25Si-74Mn-56Ni-16Cr-9Mo-5Cu-1620Nb (1),
“When Ti / N ≦ 3.4”: f (B) = B−0.785 {N− (Ti / 3.4)} (2),
“When Ti / N> 3.4”: f (B) = B (3).
In addition, the element symbol in (1)-(3) Formula represents content in steel in the mass% of the element.

(2)質量%で、C:0.041〜0.09%、Si:0.11〜0.6%、Mn:1〜1.6%、P:0.02%以下、S:0.015%以下、Cu:0.19%以下、Ni:0.04%以下、Cr:0.06〜0.9%、Mo:0.04%以下、V:0.01〜0.1%、Nb:0.031〜0.07%、Ti:0.003〜0.03%、B:0.0003〜0.0029%、Al:0.003〜0.06%、N:0.0035〜0.009%及びO(酸素):0.006%以下を含有し、残部はFe及び不純物からなり、下記(1)式で表されるAr3の値が739以下で、かつ、下記(2)式又は(3)式で表されるf(B)の値が0.0004以下を満足する化学組成を有する鋼塊又は鋼片を1000〜1350℃の温度域の温度に加熱して、圧延終了温度が980〜700℃の温度域の温度となるように熱間圧延した後、冷却開始温度を980〜700℃として、1〜10℃/秒の冷却速度で、650〜200℃の温度域の温度まで冷却することを特徴とする極厚鋼材の製造方法。
Ar3=910−273C+25Si−74Mn−56Ni−16Cr−9Mo−5Cu−1620Nb・・・・(1)、
「Ti/N≦3.4の場合」:f(B)=B−0.785{N−(Ti/3.4)}・・・・(2)、
「Ti/N>3.4の場合」:f(B)=B・・・・(3)。
なお、(1)〜(3)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
(2) By mass%, C: 0.041 to 0.09%, Si: 0.11 to 0.6%, Mn: 1 to 1.6%, P: 0.02% or less, S: 0.0. 015% or less, Cu: 0.19% or less, Ni: 0.04% or less, Cr: 0.06-0.9%, Mo: 0.04% or less, V: 0.01-0.1%, Nb: 0.031-0.07%, Ti: 0.003-0.03%, B: 0.0003-0.0029%, Al: 0.003-0.06%, N: 0.0035 0.009% and O (oxygen): 0.006% or less, with the balance being Fe and impurities, the value of Ar3 represented by the following formula (1) is 739 or less, and the following (2) A steel ingot or steel slab having a chemical composition satisfying a value of f (B) represented by the formula or formula (3) of 0.0004 or less is a temperature in a temperature range of 1000 to 1350 ° C After heating and hot rolling so that the rolling end temperature is in the temperature range of 980 to 700 ° C., the cooling start temperature is set to 980 to 700 ° C., and the cooling rate is 1 to 10 ° C./sec. A method for producing an extra heavy steel material, characterized by cooling to a temperature in a temperature range of 200 ° C.
Ar3 = 910-273C + 25Si-74Mn-56Ni-16Cr-9Mo-5Cu-1620Nb (1),
“When Ti / N ≦ 3.4”: f (B) = B−0.785 {N− (Ti / 3.4)} (2),
“When Ti / N> 3.4”: f (B) = B (3).
In addition, the element symbol in (1)-(3) Formula represents content in steel in the mass% of the element.

上記(2)の極厚鋼材の製造方法に係る発明における温度及び冷却速度は、次の部位で測定した値を指す。   The temperature and the cooling rate in the invention relating to the method for producing an ultra-thick steel material of (2) above indicate values measured at the following sites.

・鋼塊又は鋼片の加熱温度:鋼塊又は鋼片の表面、
・圧延終了温度:極厚鋼材の表面、
・冷却開始温度:極厚鋼材の表面から厚さ1/4の部位、
・冷却速度:極厚鋼材の表面から厚さ1/4の部位、
・冷却停止温度:極厚鋼材の表面から厚さ1/4の部位。
・ Heating temperature of steel ingot or billet: surface of steel ingot or billet
-Rolling end temperature: surface of extra heavy steel,
・ Cooling start temperature: 1/4 thickness from the surface of extra heavy steel
・ Cooling rate: part of thickness 1/4 from the surface of extra heavy steel,
-Cooling stop temperature: A portion of 1/4 thickness from the surface of extra heavy steel.

以下、上記 (1)の極厚鋼材に係る発明及び(2)の極厚鋼材の製造方法に係る発明を、それぞれ、「本発明(1)」及び「本発明(2)」という。また、総称して「本発明」ということがある。   Hereinafter, the invention related to the ultra-thick steel material of (1) and the invention related to the manufacturing method of the ultra-thick steel material of (2) are referred to as “present invention (1)” and “present invention (2)”, respectively. Also, it may be collectively referred to as “the present invention”.

本発明の極厚鋼材は、415MPa以上の降伏点と550MPa以上の引張強さという引張強度特性及びVノッチ試験片を用いた0℃でのシャルピー吸収エネルギーが47J以上という衝撃特性を安定して具備するので、高層建築物や海洋構造物を始めとする各種の大型構造物に使用される形鋼や平鋼、なかでもフランジ又はウエブの厚さが80mmを超える超極厚H形鋼として用いることができる。この極厚鋼材は、本発明の製造方法によって、比較的容易に得ることができる。   The ultra-thick steel material of the present invention stably has a tensile strength characteristic of a yield point of 415 MPa or more and a tensile strength of 550 MPa or more and an impact characteristic of Charpy absorbed energy at 0 ° C. using a V-notch test piece of 47 J or more. Therefore, it should be used as a shape steel and flat steel used for various large structures such as high-rise buildings and offshore structures, especially ultra-thick H-shaped steel with a flange or web thickness exceeding 80 mm. Can do. This extra-thick steel material can be obtained relatively easily by the production method of the present invention.

また、本発明の製造方法は、比較的高温での圧延と比較的遅い冷却速度を使用するため、H形鋼、T形鋼及び山形鋼など各種の極厚形鋼や極厚平鋼の製造に適している。   In addition, since the manufacturing method of the present invention uses rolling at a relatively high temperature and a relatively slow cooling rate, the manufacturing of various heavy thick steels such as H-shaped steel, T-shaped steel and angle steel, and heavy thick flat steel. Suitable for

以下、本発明の各要件について詳しく説明する。なお、化学成分の含有量の「%」は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the content of the chemical component means “mass%”.

(A)化学組成
C:0.041〜0.09%
Cは、母材及び溶接部の強度を高める作用を有する。しかし、その含有量が0.041%未満では添加効果に乏しいばかりか、溶接時に母材の希釈によって溶接金属の特性を確保することが難しくなる。一方、Cの含有量が多くなり、特に、Cの含有量が0.09%を超えると、母材及び溶接部の靱性が低下し、また、溶接割れが発生しやすくなる。したがって、Cの含有量を0.041〜0.09%とした。なお、Cの含有量は0.05〜0.07%とすることが好ましい。
(A) Chemical composition C: 0.041 to 0.09%
C has the effect | action which raises the intensity | strength of a base material and a welding part. However, if the content is less than 0.041%, not only the effect of addition is poor, but it is difficult to ensure the characteristics of the weld metal due to dilution of the base material during welding. On the other hand, if the C content increases, and particularly if the C content exceeds 0.09%, the toughness of the base material and the welded portion is lowered, and weld cracks are likely to occur. Therefore, the content of C is set to 0.041 to 0.09%. The C content is preferably 0.05 to 0.07%.

Si:0.11〜0.6%
Siは、母材及び溶接部の強度を確保する作用を有する。しかしながら、その含有量が0.11%未満では添加効果に乏しい。一方、Siの含有量が多くなり、特に、Siの含有量が0.6%を超えると、溶接割れの発生が多くなり、また、溶接部靱性の低下、なかでもHAZ靱性の低下をきたす。したがって、Siの含有量を0.11〜0.6%とした。なお、Siの含有量は0.15〜0.4%とすることが好ましい。
Si: 0.11 to 0.6%
Si has the effect | action which ensures the intensity | strength of a base material and a welding part. However, if the content is less than 0.11%, the effect of addition is poor. On the other hand, when the Si content increases, particularly when the Si content exceeds 0.6%, the occurrence of weld cracking increases, and the weld zone toughness decreases, particularly the HAZ toughness decreases. Therefore, the Si content is set to 0.11 to 0.6%. The Si content is preferably 0.15 to 0.4%.

Mn:1〜1.6%、
Mnは、母材及び溶接部の強度と靱性を確保する上で不可欠な元素である。しかしながら、Mnの含有量が1%未満では十分な添加効果が得られない。一方、Mnの含有量が多くなり、特に、Mnの含有量が1.6%を超えると、焼入れ性が高くなり過ぎて溶接性が低下し、また、溶接部靱性の低下、なかでもHAZ靱性の低下をきたす。したがって、Mnの含有量を1〜1.6%とした。なお、Mnの含有量は1.3〜1.5%とすることが好ましい。
Mn: 1 to 1.6%
Mn is an indispensable element for ensuring the strength and toughness of the base material and the weld. However, if the Mn content is less than 1%, a sufficient addition effect cannot be obtained. On the other hand, if the Mn content increases, especially if the Mn content exceeds 1.6%, the hardenability becomes too high and the weldability decreases, and also the weld zone toughness decreases, especially the HAZ toughness. Will cause a decline. Therefore, the Mn content is set to 1 to 1.6%. In addition, it is preferable that content of Mn shall be 1.3 to 1.5%.

P:0.02%以下
Pは、不純物として鋼中に不可避的に存在する元素で、粒界に偏析して靱性の低下をきたし、更に、溶接時に高温割れを生じさせる。特に、その含有量が0.02%を超えると、靱性の低下と溶接時の高温割れ発生が著しくなる。したがって、Pの含有量を0.02%以下とした。なお、Pは少ないほど好ましい不純物であるため、その下限は特に規定するものではない。
P: 0.02% or less P is an element that is unavoidably present in steel as an impurity, segregates at the grain boundary to reduce toughness, and further causes hot cracking during welding. In particular, if its content exceeds 0.02%, the toughness is lowered and the occurrence of hot cracks during welding becomes significant. Therefore, the content of P is set to 0.02% or less. In addition, since P is a more preferable impurity as there are few P, the minimum is not prescribed | regulated in particular.

S:0.015%以下
Sは、多すぎると中心偏析を助長し、また、延伸したMnSの多量生成の原因となるので、母材の機械的性質及び溶接部、なかでもHAZの機械的性質の劣化を招く。特に、その含有量が0.015%を超えると、母材及び溶接部の機械的性質の劣化が著しくなる。したがって、Sの含有量を0.015%以下とした。なお、Sは少ないほど好ましい不純物であるため、その下限は特に規定するものではない。
S: not more than 0.015% S too much promotes center segregation and causes a large amount of stretched MnS, so the mechanical properties of the base material and the welded part, especially the mechanical properties of HAZ Cause deterioration. In particular, when the content exceeds 0.015%, the mechanical properties of the base material and the welded portion are significantly deteriorated. Therefore, the content of S is set to 0.015% or less. In addition, since it is a preferable impurity, so that there is little S, the minimum is not prescribed | regulated in particular.

Cu:0.19%以下
Cuは、その含有量が0.19%以下であるならば、熱間加工時の表面割れの発生に殆ど影響しないため、不純物として許容できる。したがって、Cuの含有量を0.19%以下とした。なお、Cuの含有量は0.1%以下とすることがより好ましい。
Cu: 0.19% or less If the content of Cu is 0.19% or less, since it hardly affects the occurrence of surface cracks during hot working, it is acceptable as an impurity. Therefore, the Cu content is set to 0.19% or less. The Cu content is more preferably 0.1% or less.

Ni:0.04%以下
Niは、その含有量が0.04%以下であるならば、鋼塊を鋳込む際の表面疵、なかでも、連続鋳造を行う際の表面疵の発生にほとんど影響しないため、不純物として許容できる。したがって、Niの含有量を0.04%以下とした。なお、Niの含有量は少ないほど好ましい。
Ni: 0.04% or less If the content of Ni is 0.04% or less, Ni has almost no effect on the generation of surface flaws during casting of steel ingots, especially surface flaws during continuous casting. Not acceptable as an impurity. Therefore, the Ni content is set to 0.04% or less. The smaller the Ni content, the better.

Cr:0.06〜0.9%
Crは、焼入れ性を高める作用を有する。この効果を確実に得るためには、Crの含有量を0.06%以上とする必要がある。しかしながら、その含有量が0.9%を超えると、母材と溶接部の靱性、なかでもHAZ靱性の低下が生じる。したがって、Crの含有量を0.06〜0.9%とした。なお、Crの含有量は0.2〜0.5%とすることが好ましい。
Cr: 0.06-0.9%
Cr has the effect | action which improves hardenability. In order to obtain this effect with certainty, the Cr content needs to be 0.06% or more. However, when its content exceeds 0.9%, the toughness of the base metal and the welded portion, particularly the HAZ toughness, is reduced. Therefore, the Cr content is set to 0.06 to 0.9%. In addition, it is preferable that content of Cr shall be 0.2 to 0.5%.

Mo:0.04%以下
Moは、その含有量が0.04%以下であるならば、溶接性を低下させることがほとんどないため、不純物として許容できる。したがって、Moの含有量を0.04%以下とした。なお、Moの含有量は少ないほど好ましい。
Mo: 0.04% or less If Mo content is 0.04% or less, Mo is acceptable as an impurity because it hardly degrades weldability. Therefore, the Mo content is set to 0.04% or less. In addition, it is so preferable that there is little content of Mo.

V:0.01〜0.1%
Vは、強度を高める作用を有する。しかしながら、その含有量が0.01%未満では十分な強化作用が得られない。一方、Vの含有量が多くなり、特に、Vの含有量が0.1%を超えると、靱性及び溶接性の低下をきたす場合がある。したがって、Vの含有量を0.01〜0.1%とした。なお、Vの含有量は0.05〜0.09%とすることが好ましい。
V: 0.01 to 0.1%
V has an effect of increasing strength. However, if the content is less than 0.01%, sufficient reinforcing action cannot be obtained. On the other hand, if the V content increases, especially when the V content exceeds 0.1%, the toughness and weldability may be lowered. Therefore, the content of V is set to 0.01 to 0.1%. Note that the V content is preferably 0.05 to 0.09%.

Nb:0.031〜0.07%
Nbは、強度及び靱性を向上させる作用を有する。しかしながら、その含有量が0.031%未満では前記の効果が得られない。一方、Nbの含有量が0.07%を超えると、母材における強度と靱性の向上効果が飽和するばかりか、溶接部靱性、なかでもHAZ靱性の著しい低下を招く。したがって、Nbの含有量を0.031〜0.07%%とした。なお、Nbの含有量は0.04〜0.05%とすることが好ましい。
Nb: 0.031 to 0.07%
Nb has an effect of improving strength and toughness. However, if the content is less than 0.031%, the above effect cannot be obtained. On the other hand, if the Nb content exceeds 0.07%, not only the effect of improving the strength and toughness of the base metal is saturated, but also the toughness of the welded portion, particularly the HAZ toughness, is significantly reduced. Therefore, the Nb content is set to 0.031 to 0.07%. The Nb content is preferably 0.04 to 0.05%.

Ti:0.003〜0.03%
Tiは、鋼塊、なかでも鋳片の表面性状を改善する作用を有する。また、Tiには、母材及び溶接部の靱性を高める作用もある。これらの効果を得るためには、その含有量を0.003%以上とする必要がある。しかしながら、Tiの含有量が0.03%を超えると、母材の靱性低下が生じるし、溶接部靱性、なかでもHAZ靱性が却って低下する場合もある。したがって、Tiの含有量を0.003〜0.03%とした。なお、Tiの含有量は0.007〜0.02%とすることが好ましい。
Ti: 0.003 to 0.03%
Ti has the effect of improving the surface properties of steel ingots, especially slabs. Ti also has the effect of increasing the toughness of the base material and the weld. In order to obtain these effects, the content needs to be 0.003% or more. However, if the Ti content exceeds 0.03%, the toughness of the base metal is lowered, and the weld toughness, particularly the HAZ toughness, may be lowered. Therefore, the content of Ti is set to 0.003 to 0.03%. The Ti content is preferably 0.007 to 0.02%.

B:0.0003〜0.0029%
Bは、母材及び溶接部の靱性を高める作用を有する。この効果を得るためには、その含有量を0.0003%以上とする必要がある。しかしながら、Bの含有量が0.0029%を超えると、母材の靱性低下が生じたり、溶接部靱性が低下したりすることがある。したがって、Bの含有量を0.0003〜0.0029%とした。なお、Bの含有量は0.0005〜0.002%とすることが好ましい。
B: 0.0003 to 0.0029%
B has the effect | action which improves the toughness of a base material and a welding part. In order to acquire this effect, the content needs to be 0.0003% or more. However, if the B content exceeds 0.0029%, the toughness of the base material may be reduced, or the welded portion toughness may be reduced. Therefore, the content of B is set to 0.0003 to 0.0029%. The B content is preferably 0.0005 to 0.002%.

Al:0.003〜0.06%
Alは、製鋼時の脱酸に有効な元素である。Alには結晶粒の微細化作用もある。前記の効果はAlの含有量が0.003%以上で得られる。しかしながら、Alの含有量が多くなり、特に、Alの含有量が0.06%を超えると、介在物の生成量が多くなって靱性の低下をきたす。したがって、Alの含有量を0.003〜0.06%とした。なお、Alの含有量は0.006〜0.04%とすることが好ましい。
Al: 0.003 to 0.06%
Al is an element effective for deoxidation during steelmaking. Al also has the effect of refining crystal grains. The above effect is obtained when the Al content is 0.003% or more. However, when the Al content increases, particularly when the Al content exceeds 0.06%, the amount of inclusions increases and the toughness decreases. Therefore, the content of Al is set to 0.003 to 0.06%. The Al content is preferably 0.006 to 0.04%.

N:0.0035〜0.009%
Nは、TiNやBNを形成し、これらの窒化物が微細な場合には、高温加熱時のオーステナイト粒の粗大化を抑制し、また、相変態を促進することによって、靱性を高めることに寄与する。この効果を得るためには、その含有量を0.0035%以上とする必要がある。しかしながら、Nの含有量が0.009%を超えると、母材の靱性低下が生じたり、溶接部靱性が低下したりすることがある。したがって、Nの含有量を0.0035〜0.009%とした。なお、Nの含有量は0.004〜0.007%とすることが好ましい。
N: 0.0035 to 0.009%
N forms TiN and BN, and when these nitrides are fine, it suppresses the coarsening of austenite grains during high-temperature heating and contributes to increasing toughness by promoting phase transformation. To do. In order to obtain this effect, the content needs to be 0.0035% or more. However, if the N content exceeds 0.009%, the toughness of the base metal may be reduced, or the weld toughness may be reduced. Therefore, the N content is set to 0.0035 to 0.009%. The N content is preferably 0.004 to 0.007%.

O:0.006%以下
O(酸素)は、鋼中に不可避的に含まれる不純物である。Oの含有量が多くなり、特に、Oの含有量が0.006%を超えると、母材及び溶接部の靱性や延性の低下を招く。したがって、Oの含有量を0.006%以下とした。なお、Oは少ないほど好ましい不純物であるため、その下限は特に規定するものではない。
O: 0.006% or less O (oxygen) is an impurity inevitably contained in steel. When the content of O increases, particularly when the content of O exceeds 0.006%, the toughness and ductility of the base material and the welded portion are reduced. Therefore, the content of O is set to 0.006% or less. In addition, since O is a more preferable impurity as there are few, the minimum is not prescribed | regulated.

Ar3:739以下
前記(1)式、つまり、「Ar3=910−273C+25Si−74Mn−56Ni−16Cr−9Mo−5Cu−1620Nb」の式で表されるAr3の値は、冷却時にオーステナイトからフェライトへの相変態が開始する温度であるAr3点(℃)の目安を示し、Ar3の値が739を超えると、フェライトが生成しやすくなり、所望の引張強度特性が得られない場合がある。したがって、Ar3の値を739以下とした。なお、Ar3の値が600未満になると靱性が劣化する場合があるので、Ar3の値の下限は600とすることが好ましい。また、Ar3の値は650〜730とすることがより好ましい。
Ar3: 739 or less The value of Ar3 represented by the above formula (1), that is, the formula of “Ar3 = 910-273C + 25Si-74Mn-56Ni-16Cr-9Mo-5Cu-1620Nb” is the phase from austenite to ferrite during cooling. A guideline for the Ar 3 point (° C.), which is the temperature at which transformation starts, is shown. If the value of Ar3 exceeds 739, ferrite tends to be formed, and the desired tensile strength characteristics may not be obtained. Therefore, the value of Ar3 is set to 739 or less. In addition, since the toughness may deteriorate when the value of Ar3 is less than 600, the lower limit of the value of Ar3 is preferably 600. The value of Ar3 is more preferably 650 to 730.

f(B):0.0004以下
「Ti/N≦3.4」の場合に、前記の(2)式、つまり、「f(B)=B−0.785{N−(Ti/3.4)}」で表されるf(B)の値は、鋼中でN(窒素)によって固定されないフリーBの量に関する。熱間圧延のための加熱前に存在するBN析出物は加熱時に固溶し、圧延中あるいは圧延後に再析出する。再析出量には温度履歴が影響するためフリーBの量は元素の含有量だけでは決まらないが、f(B)の値を十分小さくすれば(負の値でもよい)、フリーBの量を抑制することができる。また、「Ti/N>3.4」の場合には、BNよりも安定な析出物であるTiNによって、ほとんどのNが固定されるため、f(B)の値は、前記の(3)式、つまり、「f(B)=B」で表される。そして、f(B)の値が0.0004を超えると、靱性が劣化する場合がある。したがって、f(B)の値を0.0004以下とした。なお、「Ti/N≦3.4」の場合、つまり、f(B)の値が前記の(2)式で表される場合には、f(B)の値が小さくなりすぎても靱性が劣化するため、この場合のf(B)の下限は−0.003とすることが好ましく、−0.001〜0.004とすることがより好ましい。
f (B): 0.0004 or less In the case of “Ti / N ≦ 3.4”, the above equation (2), that is, “f (B) = B−0.785 {N− (Ti / 3. The value of f (B) represented by “4)}” relates to the amount of free B that is not fixed by N (nitrogen) in the steel. BN precipitates present before heating for hot rolling are dissolved during heating and re-deposited during or after rolling. The amount of free B is not determined only by the element content because the temperature history affects the amount of reprecipitation, but if the value of f (B) is sufficiently small (a negative value may be used), the amount of free B can be reduced. Can be suppressed. In the case of “Ti / N> 3.4”, most of N is fixed by TiN, which is a precipitate more stable than BN. Therefore, the value of f (B) is the above (3). It is expressed by an equation, that is, “f (B) = B”. And when the value of f (B) exceeds 0.0004, toughness may deteriorate. Therefore, the value of f (B) is set to 0.0004 or less. In addition, in the case of “Ti / N ≦ 3.4”, that is, when the value of f (B) is expressed by the above formula (2), the toughness even if the value of f (B) becomes too small. In this case, the lower limit of f (B) is preferably −0.003, and more preferably −0.001 to 0.004.

上記の理由から、本発明(1)に係る極厚鋼材は、上述した範囲のCからOまでの元素を含有し、残部はFe及び不純物からなり、前記(1)式で表されるAr3の値が739以下で、かつ、前記(2)式又は(3)式で表されるf(B)の値が0.0004以下を満足する化学組成を有することと規定した。   For the reasons described above, the ultra-thick steel material according to the present invention (1) contains elements from C to O in the above-mentioned range, the balance is made of Fe and impurities, and Ar3 represented by the above formula (1) It was defined that the chemical composition had a value satisfying a value of 739 or less and f (B) represented by the formula (2) or (3) satisfying 0.0004 or less.

なお、母材及び溶接部のHAZにおいて、先にNの項で述べたB及びTiの微細な窒化物の効果を確保するためには、Ti含有量とN含有量との比である「Ti/N」を3以下とすることが望ましい。   In addition, in the HAZ of the base material and the welded portion, in order to ensure the effect of the fine nitrides of B and Ti described in the section of N above, “Ti” is the ratio of the Ti content and the N content. / N "is preferably 3 or less.

本発明に係る極厚鋼材に適した具体的な化学成分の例として、表1及び表2に記載した鋼a1〜a35を挙げることができる。なお、鋼a9におけるCu及び鋼a10におけるNi並びに、鋼a12、鋼a16、鋼a19、鋼a20、鋼a24及び鋼a32におけるMoの含有量の「0.00」は、いずれも「0.01未満」であることを意味する。   Examples of specific chemical components suitable for the ultra-thick steel material according to the present invention include steels a1 to a35 described in Tables 1 and 2. In addition, “0.00” of the Mo content in Cu in steel a9, Ni in steel a10, and steel a12, steel a16, steel a19, steel a20, steel a24, and steel a32 are all less than 0.01. "Means.

Figure 0004506985
Figure 0004506985

Figure 0004506985
Figure 0004506985

(B)ミクロ組織
主たる組織をベイナイトとすることによって、本発明に係る極厚鋼材に所望の機械的性質、つまり、415MPa以上の降伏点、550MPa以上の引張強さという引張強度特性、更には、Vノッチ試験片を用いた0℃でのシャルピー吸収エネルギーが47J以上という衝撃特性を安定して具備させることができる。組織に占めるベイナイトの割合は100%、換言すれば、ベイナイトの単相組織であってもよい。しかしながら、組織に占めるベイナイトの割合が少ない場合、特に、60%未満の場合には、極厚鋼材に所望の引張強度特性と衝撃特性の双方を確保させることが困難になる。
(B) Microstructure By making bainite the main structure, the desired mechanical properties of the extra-thick steel material according to the present invention, that is, the tensile strength characteristic of yield point of 415 MPa or more, tensile strength of 550 MPa or more, The impact characteristic that Charpy absorbed energy at 0 ° C. using a V-notch test piece is 47 J or more can be stably provided. The proportion of bainite in the structure may be 100%, in other words, it may be a bainite single-phase structure. However, when the proportion of bainite in the structure is small, particularly when it is less than 60%, it is difficult to ensure the extra-thick steel material with both desired tensile strength characteristics and impact characteristics.

上記の理由から、本発明(1)に係る極厚鋼材は、組織に占めるベイナイトの割合が60〜100%であることと規定した。   For the above reasons, the extra-thick steel material according to the present invention (1) is defined such that the proportion of bainite in the structure is 60 to 100%.

なお、組織に占めるベイナイト以外の組織は、マルテンサイト、フェライトやパーライト等どんな組織(相)であってもよい。しかしながら、極厚鋼材により良好な衝撃特性を具備させるためには、組織に占めるマルテンサイトの割合は10%未満であることが望ましい。   The structure other than bainite in the structure may be any structure (phase) such as martensite, ferrite, or pearlite. However, in order to make the extra heavy steel material have good impact characteristics, it is desirable that the ratio of martensite in the structure is less than 10%.

或る相が組織に占める体積割合は面積割合に等しいことが知られている。このため、上記の組織に占めるベイナイトの割合には、光学顕微鏡など通常のミクロ組織観察手段によって測定した面積割合を用いればよい。   It is known that the volume proportion of a phase in the tissue is equal to the area proportion. For this reason, what is necessary is just to use the area ratio measured by normal microstructure observation means, such as an optical microscope, for the ratio of the bainite to said structure | tissue.

なお、本発明(1)に係る極厚鋼材は、例えば、本発明(2)に係る製造方法によって製造することができる。   The extra heavy steel material according to the present invention (1) can be manufactured, for example, by the manufacturing method according to the present invention (2).

(C)製造条件
前述の(A)項で述べた化学組成を有する鋼塊又は鋼片に対して、加熱温度、圧延終了温度、冷却開始温度、冷却停止温度及び冷却速度を特定の条件としたTMCP技術を適用することによって、極厚鋼材、なかでも板厚が80mmを超える極厚鋼材に所望の機械的性質を安定して具備させることができる。すなわち、415MPa以上の降伏点、550MPa以上の引張強さという引張強度特性、更には、Vノッチ試験片を用いた0℃でのシャルピー吸収エネルギーが47J以上という衝撃特性を安定して備える極厚鋼材を得ることができる。
(C) Manufacturing conditions For the steel ingot or steel slab having the chemical composition described in the above section (A), the heating temperature, the rolling end temperature, the cooling start temperature, the cooling stop temperature, and the cooling rate were specified conditions. By applying the TMCP technology, it is possible to stably provide desired mechanical properties to an extra-thick steel material, in particular, an extra-thick steel material having a plate thickness exceeding 80 mm. That is, an extra-thick steel having a tensile strength characteristic of a yield point of 415 MPa or more and a tensile strength of 550 MPa or more, and further an impact characteristic of Charpy absorbed energy at 0 ° C. of 47 J or more using a V-notch test piece. Can be obtained.

以下、このことについて説明する。なお、既に述べたように、上記の温度及び冷却速度は、それぞれ、次の部位で測定した値を指す。   This will be described below. In addition, as already stated, said temperature and cooling rate point out the value measured in the following site | part, respectively.

・鋼塊又は鋼片の加熱温度:鋼塊又は鋼片の表面、
・圧延終了温度:極厚鋼材の表面、
・冷却開始温度:極厚鋼材の表面から厚さ1/4の部位、
・冷却速度:極厚鋼材の表面から厚さ1/4の部位、
・冷却停止温度:極厚鋼材の表面から厚さ1/4の部位。
・ Heating temperature of steel ingot or billet: surface of steel ingot or billet
-Rolling end temperature: surface of extra heavy steel,
・ Cooling start temperature: 1/4 thickness from the surface of extra heavy steel
・ Cooling rate: part of thickness 1/4 from the surface of extra heavy steel,
-Cooling stop temperature: A portion of 1/4 thickness from the surface of extra heavy steel.

(C−1)加熱温度
前記(A)項で述べた化学組成を有する鋼塊又は鋼片は、熱間圧延に際して、1000〜1350℃の温度域に加熱するのがよい。加熱温度を1000℃以上とすることでNbやVなどが基地に固溶するので、最終製品(目的物)である極厚鋼材の強度増大が図れる。また、加熱温度を1350℃以下とすることによって、結晶粒の粗大化が防止されるので、良好な衝撃特性が確保される。
(C-1) Heating temperature The steel ingot or steel slab having the chemical composition described in the above section (A) is preferably heated to a temperature range of 1000 to 1350 ° C. during hot rolling. By setting the heating temperature to 1000 ° C. or higher, Nb, V, and the like are dissolved in the base, so that the strength of the extra-thick steel material that is the final product (target product) can be increased. Moreover, since the coarsening of a crystal grain is prevented by making heating temperature 1350 degreeC or less, a favorable impact characteristic is ensured.

(C−2)熱間圧延終了温度
上記(C−1)項で述べたようにして加熱した後は、熱間圧延機にかけて所定の形状及び寸法に圧延し、次いで制御冷却するのがよい。なお、熱間圧延は、圧延終了温度が980〜700℃の温度域の温度となるように行うのがよい。圧延終了温度が980℃よりも高い場合には、所望の衝撃特性を確保することが困難になることがある。一方、圧延終了温度が700℃よりも低い場合には、所望の引張強度特性を確保することが困難になることがある。
(C-2) Hot rolling end temperature After heating as described in the above section (C-1), it is preferable to perform hot rolling to a predetermined shape and size, and then control cooling. In addition, it is good to perform hot rolling so that rolling completion temperature may become the temperature of a temperature range of 980-700 degreeC. When the rolling end temperature is higher than 980 ° C., it may be difficult to ensure desired impact characteristics. On the other hand, when the rolling end temperature is lower than 700 ° C., it may be difficult to ensure desired tensile strength characteristics.

(C−3)冷却開始温度
上記(C−1)項及び(C−2)項で述べた条件での熱間圧延を終了した後は、冷却開始温度を980〜700℃として制御冷却するのがよい。冷却開始温度が980℃よりも高い場合には、所望の衝撃特性を確保することが困難になることがある。一方、冷却開始温度が700℃よりも低い場合には、所望の引張強度特性を確保することが困難になることがある。
(C-3) Cooling start temperature After finishing the hot rolling under the conditions described in the items (C-1) and (C-2), the cooling is controlled at a cooling start temperature of 980 to 700 ° C. Is good. When the cooling start temperature is higher than 980 ° C., it may be difficult to ensure desired impact characteristics. On the other hand, when the cooling start temperature is lower than 700 ° C., it may be difficult to ensure desired tensile strength characteristics.

(C−4)冷却速度
制御冷却する際の冷却速度は1〜10℃/秒とするのがよい。たとえ上記(C−3)項で述べた温度から冷却を開始しても、冷却速度が10℃/秒を超える場合には、部位による機械的性質のばらつきが大きくなることがあり、、一方、冷却速度が1℃/秒を下回る場合には、所望の衝撃特性を確保することが困難になることがある。
(C-4) Cooling rate The cooling rate for controlled cooling is preferably 1 to 10 ° C / second. Even if the cooling is started from the temperature described in the above section (C-3), if the cooling rate exceeds 10 ° C./second, the variation in mechanical properties depending on the part may increase, When the cooling rate is lower than 1 ° C./second, it may be difficult to ensure desired impact characteristics.

なお、制御冷却する際の冷却速度は、1〜5℃/秒とすることが一層好ましい。   The cooling rate at the time of controlled cooling is more preferably 1 to 5 ° C./second.

(C−5)制御冷却の停止温度
上記の制御冷却は、650〜200℃の温度域の温度まで行うのがよい。たとえ上記(C−1)項及び(C−2)項で述べた条件で熱間圧延した後に、上記(C−3)項及び(C−4)項で述べた条件で制御冷却しても、前記冷却速度での冷却停止温度が650℃よりも高い場合には、所望の引張強度特性を確保することが困難になることがある。また、冷却停止温度が200℃よりも低い場合には、所望の衝撃特性を確保することが困難になったり、水素割れが生じやすくなったりすることがある。なお、前記冷却速度での制御冷却は、600〜400℃の温度域の温度まで行うことが一層好ましい。
(C-5) Control cooling stop temperature The above control cooling is preferably performed up to a temperature in the temperature range of 650 to 200 ° C. Even if hot-rolling is performed under the conditions described in the items (C-1) and (C-2), and then controlled cooling is performed under the conditions described in the items (C-3) and (C-4). When the cooling stop temperature at the cooling rate is higher than 650 ° C., it may be difficult to ensure desired tensile strength characteristics. In addition, when the cooling stop temperature is lower than 200 ° C., it may be difficult to ensure desired impact characteristics, or hydrogen cracking may easily occur. Note that the controlled cooling at the cooling rate is more preferably performed to a temperature in the temperature range of 600 to 400 ° C.

上記の(C−1)〜(C−5)項で述べた条件で、圧延及び制御冷却することによって、目的物である極厚鋼材に所望の機械的性質、つまり、415MPa以上の降伏点、550MPa以上の引張強さという引張強度特性、更には、Vノッチ試験片を用いた0℃でのシャルピー吸収エネルギーが47J以上という衝撃特性が安定して確保される。   By rolling and controlled cooling under the conditions described in the above sections (C-1) to (C-5), the desired mechanical properties of the extra heavy steel material, that is, a yield point of 415 MPa or more, A tensile strength characteristic of a tensile strength of 550 MPa or more and an impact characteristic of a Charpy absorbed energy at 0 ° C. using a V-notch test piece of 47 J or more are stably secured.

このため、本発明(2)に係る極厚鋼材の製造方法は、前記(A)項で述べた化学組成を有する鋼塊又は鋼片を1000〜1350℃の温度域の温度に加熱して、圧延終了温度が980〜700℃の温度域の温度となるように熱間圧延した後、冷却開始温度を980〜700℃として、1〜10℃/秒の冷却速度で、650〜200℃の温度域の温度まで冷却することとした。   For this reason, the manufacturing method of the ultra-thick steel material according to the present invention (2) heats the steel ingot or steel slab having the chemical composition described in the section (A) to a temperature in the temperature range of 1000 to 1350 ° C. After hot rolling so that the rolling end temperature is in the temperature range of 980 to 700 ° C., the cooling start temperature is 980 to 700 ° C., and the cooling rate is 1 to 10 ° C./second, and the temperature is 650 to 200 ° C. It was decided to cool to the temperature of the zone.

なお、上記(C−5)項で述べた温度で制御冷却を停止した後の冷却条件は、特に規定するものではないので、大気中での放冷など適宜の手段によって、常温(室温)まで冷却すればよい。   The cooling conditions after the controlled cooling is stopped at the temperature described in the above section (C-5) are not particularly stipulated. Therefore, the temperature is lowered to room temperature (room temperature) by appropriate means such as cooling in the air. It only has to be cooled.

既に述べたように、この本発明(2)の方法によって本発明(1)に係る極厚鋼材を比較的容易に得ることができる。   As already described, the extra heavy steel material according to the present invention (1) can be obtained relatively easily by the method of the present invention (2).

すなわち、前記(A)項で述べた化学組成を有する鋼、つまり、本発明で規定する化学組成を有する鋼を、例えば、転炉で溶製し、連続鋳造法によってスラブに鋳造し、そのスラブを用いて、上記(C−1)〜(C−5)項で述べた条件、つまり、本発明(2)に規定する条件で、スラブの加熱、孔型圧延を用いた粗圧延、エッジャー圧延機及び粗ユニバーサル圧延機を用いた中間圧延並びに仕上ユニバーサル圧延機を用いた仕上圧延からなる熱間圧延を行い、熱間圧延後に制御冷却を実施することによって、目標とする機械的性質、つまり、415MPa以上の降伏点と550MPa以上の引張強さという引張強度特性及びVノッチ試験片を用いた0℃でのシャルピー吸収エネルギーが47J以上という衝撃特性を満たす、フランジ又はウエブの厚さが80mmを超える超極厚H形鋼を製造することが可能である。   That is, the steel having the chemical composition described in the above section (A), that is, the steel having the chemical composition defined in the present invention, for example, is melted in a converter and cast into a slab by a continuous casting method. Slab heating, rough rolling using perforated rolling, edger rolling under the conditions described in the above items (C-1) to (C-5), that is, the conditions specified in the present invention (2) By performing hot rolling consisting of intermediate rolling using a rolling mill and a rough universal rolling mill and finishing rolling using a finishing universal rolling mill, and performing controlled cooling after hot rolling, the target mechanical properties, that is, Flanges or wedges satisfying the tensile strength characteristics of yield point of 415 MPa or more and tensile strength of 550 MPa or more and the impact characteristics of Charpy absorbed energy at 0 ° C. using a V-notch test piece of 47 J or more. The thickness of the probe it is possible to produce ChokyokuAtsu H-beams exceeding 80 mm.

以下、実施例により本発明を更に詳しく説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施すること、例えば、板厚の薄い鋼材を製造することも可能であり、それらはいずれも本発明の技術範囲に含まれる。   Hereinafter, the present invention will be described in more detail by way of examples.However, the present invention is not limited by the following examples, but may be implemented with appropriate modifications within a range that can meet the gist of the preceding and following descriptions. For example, it is also possible to manufacture a steel material with a thin plate thickness, and they are all included in the technical scope of the present invention.

表3に示す化学組成を有する鋼1及び鋼2を180kg真空溶解炉を用いて溶製し、鋳型に鋳込んで鋼塊とした。鋼1は化学組成が本発明(1)で規定する範囲内にある本発明例の鋼、鋼2は成分が本発明(1)で規定する含有量の範囲から外れた比較例の鋼である。なお、表3におけるCu、Ni及びMoの含有量の「0.00」は、いずれも「0.01未満」であることを意味する。   Steel 1 and steel 2 having the chemical composition shown in Table 3 were melted using a 180 kg vacuum melting furnace and cast into a mold to form a steel ingot. Steel 1 is a steel according to the present invention whose chemical composition is within the range specified in the present invention (1), and Steel 2 is a steel according to a comparative example whose components are out of the content range defined in the present invention (1). . In Table 3, “0.00” in the contents of Cu, Ni, and Mo all mean “less than 0.01”.

Figure 0004506985
Figure 0004506985

上記の各鋼塊を1250℃に加熱した後、熱間鍛造して、厚さ200mm、幅160mm、長さ180mmの鋼片を各3個ずつ作製した。なお、熱間鍛造後の冷却は大気中での放冷とした。   Each steel ingot was heated to 1250 ° C. and then hot forged to produce three steel pieces each having a thickness of 200 mm, a width of 160 mm, and a length of 180 mm. The cooling after hot forging was allowed to cool in the atmosphere.

このようにして得た厚さ200mm、幅160mm、長さ180mmの鋼片の厚さ方向1/4、幅方向1/2、長さ方向1/2の部位に熱電対を埋め込み、1250℃に加熱した後、表4に示すパススケジュールで熱間圧延して、板厚が89mm(圧延条件1)、106mm(圧延条件2)及び125mm(圧延条件3)の3種類の鋼板とした。   A thermocouple was embedded in the thickness direction 1/4, width direction 1/2, and length direction 1/2 of the steel piece having a thickness of 200 mm, a width of 160 mm, and a length of 180 mm obtained in this manner at 1250 ° C. After heating, the steel sheet was hot-rolled according to the pass schedule shown in Table 4 to obtain three types of steel sheets having sheet thicknesses of 89 mm (rolling condition 1), 106 mm (rolling condition 2), and 125 mm (rolling condition 3).

表4における厚さ200mmから185mmへの1パス目の圧延は、圧延条件1〜3のいずれの場合も、鋼片を加熱炉から取り出して直ぐに実施した。   The rolling in the first pass from the thickness of 200 mm to 185 mm in Table 4 was carried out immediately after taking out the steel piece from the heating furnace in any case of rolling conditions 1 to 3.

表4の各圧延条件中の「温度(℃)」欄の数字は、そのパスにおける圧延終了時の温度を指す。各圧延条件での最終板厚への圧延終了温度、つまり、圧延条件1では89mmへの15パス目での圧延終了温度、圧延条件2では106mmへの11パス目での圧延終了温度、また、圧延条件3では125mmへの7パス目での圧延終了温度が、いずれも850℃となるように、温度調整しながら各パスNo.における圧延を実施した。   The numbers in the “temperature (° C.)” column in each rolling condition in Table 4 indicate the temperature at the end of rolling in the pass. Rolling end temperature to the final plate thickness under each rolling condition, that is, rolling end temperature at the 15th pass to 89 mm under rolling condition 1, rolling end temperature at the 11th pass to 106 mm under rolling condition 2, In rolling condition 3, each pass No. was adjusted while adjusting the temperature so that the rolling end temperature in the seventh pass to 125 mm was 850 ° C. Rolling in was carried out.

なお、上述した各パスにおける圧延終了時の温度は、いずれも鋼板表面における温度を指す。   In addition, all the temperature at the time of completion | finish of rolling in each pass points out the temperature in the steel plate surface.

Figure 0004506985
Figure 0004506985

表4に示す条件での熱間圧延を終了した後、鋼1については、H形鋼製造時のフランジ冷却を模擬した制御冷却を実施した。なお、制御冷却は油冷で行い、制御冷却を停止した後は、大気中に取り出して常温(室温)まで放冷した。   After the hot rolling under the conditions shown in Table 4 was finished, the steel 1 was subjected to controlled cooling simulating flange cooling at the time of manufacturing the H-section steel. Control cooling was performed by oil cooling, and after stopping the control cooling, it was taken out into the atmosphere and allowed to cool to room temperature (room temperature).

一方、鋼2については、上記の熱間圧延を終了した後、そのまま大気中で常温(室温)まで放冷した。   On the other hand, after finishing the above hot rolling, the steel 2 was allowed to cool to room temperature (room temperature) as it was in the atmosphere.

なお、熱間圧延を終了した後は、前述の鋼片の厚さ1/4の部位に埋め込んだ熱電対で温度測定を実施するとともに、制御冷却中の平均冷却速度を調査した。   In addition, after finishing hot rolling, while measuring temperature with the thermocouple embedded in the site | part of the thickness of the above-mentioned steel slab, the average cooling rate during control cooling was investigated.

表5に、熱電対での温度測定結果及びそれを用いて求めた平均冷却速度を示す。   Table 5 shows the result of temperature measurement with a thermocouple and the average cooling rate determined using the result.

Figure 0004506985
Figure 0004506985

このようにして得た各鋼板について、ミクロ組織並びに機械的性質として引張強度特性及び衝撃特性を調査した。   Each steel plate thus obtained was examined for tensile strength characteristics and impact characteristics as microstructures and mechanical properties.

ミクロ組織は、鋼板の幅方向中央部において、表面から厚さ1/4及び1/2となる位置から試験片を採取し、圧延方向と板厚方向を含む面で鏡面研磨した後、ナイタルで腐食し、倍率を100及び500倍として光学顕微鏡観察を行い、組織に占めるベイナイトの割合を調査した。   The microstructure is obtained by taking a test piece from a position where the thickness is 1/4 and 1/2 from the surface in the center in the width direction of the steel plate, mirror-polishing the surface including the rolling direction and the plate thickness direction, Corrosion was observed, and optical microscope observation was performed at magnifications of 100 and 500, and the proportion of bainite in the structure was investigated.

引張試験は、平行部の直径が8.5mmで平行部の長さが50mmの丸棒引張試験片を用いて室温で行い、降伏点(YP。但し、0.2%耐力を用いた。)と引張強さ(TS)を測定し、降伏比(YR)を求めた。なお、上記の引張試験片は、鋼板の幅方向中央部において、厚さ1/4及び1/2となる部位から圧延方向(すなわち、鋼板の長さ方向)と平行に採取した。なお、415MPa以上の降伏点と550MPa以上の引張強さを有することを引張強度特性の目標とした。   The tensile test was performed at room temperature using a round bar tensile test piece having a parallel part diameter of 8.5 mm and a parallel part length of 50 mm, and yield point (YP, where 0.2% proof stress was used). The tensile strength (TS) was measured and the yield ratio (YR) was determined. In addition, said tensile test piece was extract | collected in parallel with the rolling direction (namely, the length direction of a steel plate) from the site | part used as thickness 1/4 and 1/2 in the center part of the width direction of a steel plate. The target of the tensile strength characteristic was to have a yield point of 415 MPa or more and a tensile strength of 550 MPa or more.

衝撃特性は、鋼板の表面から厚さ1/4及び1/2となる部位から圧延方向と平行にJIS Z 2242(2005)に記載のVノッチ試験片を採取してシャルピー衝撃試験を行い、0℃での吸収エネルギー(「vE0」)と延性−脆性破面遷移温度(「vTs」)を測定した。なお、0℃で47J以上のシャルピー吸収エネルギーを有することを衝撃特性の目標とした。   The impact characteristics were obtained by collecting a V-notch test piece described in JIS Z 2242 (2005) from a part having a thickness of 1/4 and 1/2 from the surface of the steel plate in parallel with the rolling direction, and performing a Charpy impact test. Absorbed energy (“vE0”) and ductile-brittle fracture surface transition temperature (“vTs”) at 0 ° C. were measured. The target of impact characteristics was to have a Charpy absorbed energy of 47 J or more at 0 ° C.

表6に、上記の各試験結果を示す。   Table 6 shows the results of the above tests.

Figure 0004506985
Figure 0004506985

表6から、化学組成と組織に占めるベイナイトの割合が本発明で規定する条件を満たす「本発明例」の試験番号1〜3の鋼板は、厚さ80mmを超える極厚鋼材であるにも拘わらず、前記した目標とする機械的性質、つまり、415MPa以上の降伏点と550MPa以上の引張強さという引張強度特性及びVノッチ試験片を用いた0℃でのシャルピー吸収エネルギーが47J以上という衝撃特性を満たすことが明らかである。   From Table 6, although the steel composition of Test Nos. 1 to 3 of “Invention Example” satisfying the conditions defined by the present invention in terms of the chemical composition and the ratio of bainite in the structure is an extremely thick steel material having a thickness exceeding 80 mm. First, the above-mentioned target mechanical properties, that is, a tensile strength characteristic of a yield point of 415 MPa or more and a tensile strength of 550 MPa or more, and an impact characteristic that Charpy absorbed energy at 0 ° C. using a V-notch test piece is 47 J or more. It is clear that

これに対して、「比較例」の試験番号4〜6の鋼板は、降伏点、引張強さ及び0℃でのシャルピー吸収エネルギーの少なくとも1つの特性に劣っている。   On the other hand, the steel sheets of test numbers 4 to 6 of “Comparative Example” are inferior to at least one characteristic of yield point, tensile strength, and Charpy absorbed energy at 0 ° C.

本発明の極厚鋼材は、415MPa以上の降伏点と550MPa以上の引張強さという引張強度特性及びVノッチ試験片を用いた0℃でのシャルピー吸収エネルギーが47J以上という衝撃特性を安定して具備するので、高層建築物や海洋構造物を始めとする各種の大型構造物に使用される形鋼や平鋼、なかでもフランジ又はウエブの厚さが80mmを超える超極厚H形鋼として用いることができる。この極厚鋼材は、本発明の製造方法によって、比較的容易に得ることができる。
The ultra-thick steel material of the present invention stably has a tensile strength characteristic of a yield point of 415 MPa or more and a tensile strength of 550 MPa or more and an impact characteristic of Charpy absorbed energy at 0 ° C. using a V-notch test piece of 47 J or more. Therefore, it should be used as a shape steel and flat steel used for various large structures such as high-rise buildings and offshore structures, especially ultra-thick H-shaped steel with a flange or web thickness exceeding 80 mm. Can do. This extra-thick steel material can be obtained relatively easily by the production method of the present invention.

Claims (2)

質量%で、C:0.041〜0.09%、Si:0.11〜0.6%、Mn:1〜1.6%、P:0.02%以下、S:0.015%以下、Cu:0.19%以下、Ni:0.04%以下、Cr:0.06〜0.9%、Mo:0.04%以下、V:0.01〜0.1%、Nb:0.031〜0.07%、Ti:0.003〜0.03%、B:0.0003〜0.0029%、Al:0.003〜0.06%、N:0.0035〜0.009%及びO(酸素):0.006%以下を含有し、残部はFe及び不純物からなり、下記(1)式で表されるAr3の値が739以下で、かつ、下記(2)式又は(3)式で表されるf(B)の値が0.0004以下を満足する化学組成を有し、しかも、組織に占めるベイナイトの割合が60〜100%であることを特徴とする極厚鋼材。
Ar3=910−273C+25Si−74Mn−56Ni−16Cr−9Mo−5Cu−1620Nb・・・・(1)
「Ti/N≦3.4の場合」:f(B)=B−0.785{N−(Ti/3.4)}・・・・(2)
「Ti/N>3.4の場合」:f(B)=B・・・・(3)
なお、(1)〜(3)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
In mass%, C: 0.041 to 0.09%, Si: 0.11 to 0.6%, Mn: 1 to 1.6%, P: 0.02% or less, S: 0.015% or less Cu: 0.19% or less, Ni: 0.04% or less, Cr: 0.06 to 0.9%, Mo: 0.04% or less, V: 0.01 to 0.1%, Nb: 0 0.03 to 0.07%, Ti: 0.003 to 0.03%, B: 0.0003 to 0.0029%, Al: 0.003 to 0.06%, N: 0.0035 to 0.009 % And O (oxygen): 0.006% or less, the balance is Fe and impurities, the value of Ar3 represented by the following formula (1) is 739 or less, and the following formula (2) or ( 3) It has a chemical composition satisfying a value of f (B) represented by the formula of 0.0004 or less, and the proportion of bainite in the structure is 60 to 100%. Extra-thick steel characterized by Rukoto.
Ar3 = 910-273C + 25Si-74Mn-56Ni-16Cr-9Mo-5Cu-1620Nb (1)
“When Ti / N ≦ 3.4”: f (B) = B−0.785 {N− (Ti / 3.4)} (2)
“When Ti / N> 3.4”: f (B) = B (3)
In addition, the element symbol in (1)-(3) Formula represents content in steel in the mass% of the element.
質量%で、C:0.041〜0.09%、Si:0.11〜0.6%、Mn:1〜1.6%、P:0.02%以下、S:0.015%以下、Cu:0.19%以下、Ni:0.04%以下、Cr:0.06〜0.9%、Mo:0.04%以下、V:0.01〜0.1%、Nb:0.031〜0.07%、Ti:0.003〜0.03%、B:0.0003〜0.0029%、Al:0.003〜0.06%、N:0.0035〜0.009%及びO(酸素):0.006%以下を含有し、残部はFe及び不純物からなり、下記(1)式で表されるAr3の値が739以下で、かつ、下記(2)式又は(3)式で表されるf(B)の値が0.0004以下を満足する化学組成を有する鋼塊又は鋼片を1000〜1350℃の温度域の温度に加熱して、圧延終了温度が980〜700℃の温度域の温度となるように熱間圧延した後、冷却開始温度を980〜700℃として、1〜10℃/秒の冷却速度で、650〜200℃の温度域の温度まで冷却することを特徴とする極厚鋼材の製造方法。
Ar3=910−273C+25Si−74Mn−56Ni−16Cr−9Mo−5Cu−1620Nb・・・・(1)
「Ti/N≦3.4の場合」:f(B)=B−0.785{N−(Ti/3.4)}・・・・(2)
「Ti/N>3.4の場合」:f(B)=B・・・・(3)
なお、(1)〜(3)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
In mass%, C: 0.041 to 0.09%, Si: 0.11 to 0.6%, Mn: 1 to 1.6%, P: 0.02% or less, S: 0.015% or less Cu: 0.19% or less, Ni: 0.04% or less, Cr: 0.06 to 0.9%, Mo: 0.04% or less, V: 0.01 to 0.1%, Nb: 0 0.03 to 0.07%, Ti: 0.003 to 0.03%, B: 0.0003 to 0.0029%, Al: 0.003 to 0.06%, N: 0.0035 to 0.009 % And O (oxygen): 0.006% or less, the balance is Fe and impurities, the value of Ar3 represented by the following formula (1) is 739 or less, and the following formula (2) or ( 3) A steel ingot or steel slab having a chemical composition satisfying a value of f (B) represented by the formula of 0.0004 or less is heated to a temperature in the temperature range of 1000 to 1350 ° C. Then, after hot rolling so that the rolling end temperature becomes a temperature in the temperature range of 980 to 700 ° C., the cooling start temperature is set to 980 to 700 ° C., and the cooling rate is 1 to 10 ° C./second, and 650 to 200 ° C. A method for producing an extra-thick steel material, characterized by cooling to a temperature in the temperature range.
Ar3 = 910-273C + 25Si-74Mn-56Ni-16Cr-9Mo-5Cu-1620Nb (1)
“When Ti / N ≦ 3.4”: f (B) = B−0.785 {N− (Ti / 3.4)} (2)
“When Ti / N> 3.4”: f (B) = B (3)
In addition, the element symbol in (1)-(3) Formula represents content in steel in the mass% of the element.
JP2006104822A 2006-04-06 2006-04-06 Extra heavy steel material and method for manufacturing the same Expired - Fee Related JP4506985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006104822A JP4506985B2 (en) 2006-04-06 2006-04-06 Extra heavy steel material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006104822A JP4506985B2 (en) 2006-04-06 2006-04-06 Extra heavy steel material and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2007277629A JP2007277629A (en) 2007-10-25
JP4506985B2 true JP4506985B2 (en) 2010-07-21

Family

ID=38679372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006104822A Expired - Fee Related JP4506985B2 (en) 2006-04-06 2006-04-06 Extra heavy steel material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4506985B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4089199A4 (en) * 2020-07-31 2023-08-09 Shandong Iron and Steel Company Ltd. Low temperature-resistant hot-rolled h-type steel for 355mpa marine engineering and preparation method therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5471524B2 (en) * 2010-01-29 2014-04-16 新日鐵住金株式会社 High-strength ultrathick H-section steel with excellent toughness and method for producing the same
WO2013089089A1 (en) * 2011-12-15 2013-06-20 新日鐵住金株式会社 High-strength extra-thick steel h-beam
EP2865779B1 (en) 2012-11-26 2018-03-21 Nippon Steel & Sumitomo Metal Corporation H-Section steel and process for producing same
EP2975149B1 (en) * 2013-03-14 2019-05-01 Nippon Steel & Sumitomo Metal Corporation H-shaped steel and process for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147834A (en) * 1996-11-15 1998-06-02 Nippon Steel Corp 590mpa class rolled shape steel and its production
JP2003160833A (en) * 2001-11-22 2003-06-06 Kobe Steel Ltd Non-heat-treated thick steel plate with high toughness and high tension, and manufacturing method therefor
JP2005330513A (en) * 2004-05-18 2005-12-02 Sumitomo Metal Ind Ltd Steel for member with steel-frame structure, method for using the same and steel-frame structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147834A (en) * 1996-11-15 1998-06-02 Nippon Steel Corp 590mpa class rolled shape steel and its production
JP2003160833A (en) * 2001-11-22 2003-06-06 Kobe Steel Ltd Non-heat-treated thick steel plate with high toughness and high tension, and manufacturing method therefor
JP2005330513A (en) * 2004-05-18 2005-12-02 Sumitomo Metal Ind Ltd Steel for member with steel-frame structure, method for using the same and steel-frame structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4089199A4 (en) * 2020-07-31 2023-08-09 Shandong Iron and Steel Company Ltd. Low temperature-resistant hot-rolled h-type steel for 355mpa marine engineering and preparation method therefor

Also Published As

Publication number Publication date
JP2007277629A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP6468408B2 (en) H-section steel and its manufacturing method
JP5176885B2 (en) Steel material and manufacturing method thereof
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
JP2008261046A (en) High-tensile steel excellent in weldability and plastic deformability, and cold-formed steel pipe formed therefrom
JP2017115200A (en) H-shaped steel for low temperature and production method therefor
JP5402560B2 (en) Manufacturing method of steel and rolled steel
WO2013089089A1 (en) High-strength extra-thick steel h-beam
JP6645107B2 (en) H-section steel and manufacturing method thereof
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
WO2008126944A1 (en) Steel material having excellent high-temperature strength and toughness, and method for production thereof
WO2014175122A1 (en) H-shaped steel and method for producing same
JP2017137576A (en) Angle steel and production method of angle steel
JP4506985B2 (en) Extra heavy steel material and method for manufacturing the same
JP5447292B2 (en) Rolled material steel and method of manufacturing rolled steel using the same
CN111356779A (en) H-shaped steel and manufacturing method thereof
JP6390813B2 (en) Low-temperature H-section steel and its manufacturing method
JP4581645B2 (en) Manufacturing method of thin web high strength H-section steel
JP6589503B2 (en) H-section steel and its manufacturing method
JP6354571B2 (en) Rolled H-section steel and its manufacturing method
JP5326827B2 (en) Low yield ratio steel and its manufacturing method
JP2008169440A (en) Thin-walled low-yield ratio high-tensile-strength steel sheet and manufacturing method therefor
JP3635208B2 (en) Low yield ratio fireproof steel plate and steel pipe excellent in toughness and method for producing the same
JP2006063442A (en) H-shaped steel excellent in fire resistance and production method therefor
JP6662156B2 (en) H-shaped steel for low temperature and method for producing the same
JP6295632B2 (en) High strength H-section steel with excellent toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4506985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees