JP2006063442A - H-shaped steel excellent in fire resistance and production method therefor - Google Patents

H-shaped steel excellent in fire resistance and production method therefor Download PDF

Info

Publication number
JP2006063442A
JP2006063442A JP2005207097A JP2005207097A JP2006063442A JP 2006063442 A JP2006063442 A JP 2006063442A JP 2005207097 A JP2005207097 A JP 2005207097A JP 2005207097 A JP2005207097 A JP 2005207097A JP 2006063442 A JP2006063442 A JP 2006063442A
Authority
JP
Japan
Prior art keywords
alloy
fire resistance
carbonitride
shaped steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005207097A
Other languages
Japanese (ja)
Other versions
JP4954507B2 (en
Inventor
Taku Yoshida
卓 吉田
Kazuhiko Eda
和彦 江田
Yasushi Kita
裕史 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005207097A priority Critical patent/JP4954507B2/en
Priority to TW094125099A priority patent/TW200609362A/en
Priority to PCT/JP2005/013998 priority patent/WO2006011617A1/en
Publication of JP2006063442A publication Critical patent/JP2006063442A/en
Application granted granted Critical
Publication of JP4954507B2 publication Critical patent/JP4954507B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an H-shaped steel excellent in fire resistance in which a flange portion has a tensile strength of 400 Mpa or more at room temperature, a 0.2% proof stress of 157 MPa or more at 600°C, and a Charpy impact absorbed energy of 100 J or more at 0°C, and to provide a production method therefor. <P>SOLUTION: The steel substantially contains, in mass, 0.03 to 0.15% C, 0.1 to 0.6% Mo, ≤0.06% Nb and 0.002 to 0.012% N, wherein a total mol fraction of precipitate of alloy carbides and alloy carbonitrides at 600°C is 0.2% or more, and the ratio of total mol fraction of precipitate of alloy carbonitrides etc.=(the total mol fraction of precipitate of alloy carbonitrides etc. at 300°C/the total mol fraction of precipitate of alloy carbonitrides etc. at 600°C) is 4.0 or less. The production method therefor comprises the steps of: reheating a cast steel having the above components, to 1,100 to 1,300°C; hot rolling the cast steel to form the shaped steel at 860°C or more as measured on a surface of a flange portion of the shaped steel; and after terminating the hot rolling, naturally cooling or rapidly cooling then naturally cooling the shaped steel. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、建築構造用部材として用いられる、低降伏点比でかつ靭性と耐火性に優れたH形鋼(以降、耐火H形鋼と略記する。)およびその製造方法に関するものである。   The present invention relates to an H-section steel having a low yield point ratio and excellent toughness and fire resistance (hereinafter abbreviated as refractory H-section steel) and a method for producing the same.

従来、昭和62年3月制定の建設省(現 国土交通省)告示第332号に基づいて、高温設計強度を確保し、建築構造物に使用される鋼材の耐火被覆の不要化または低減を可能とする「新耐火設計法」に供される耐火鋼材が提供されている。   Previously, based on the Ministry of Construction (now Ministry of Land, Infrastructure, Transport and Tourism) Notification No. 332 established in March 1987, high temperature design strength can be secured, and fireproof coating of steel used for building structures can be made unnecessary or reduced. Refractory steel materials for use in the “New Fireproof Design Method” are provided.

このような動向に対応し、H形鋼についても、Mo系の炭化物の析出により600℃での強度を確保する技術、すなわち析出強化技術をベースとして高温域での強度および降伏比の確保、即ち、耐火性を確保した多くの先行技術が開示されている。   Corresponding to such trends, for H-section steel, a technique for securing strength at 600 ° C. by precipitation of Mo-based carbides, that is, securing strength and yield ratio in a high temperature range based on precipitation strengthening technology, Many prior arts that ensure fire resistance have been disclosed.

本発明者は、例えば特許文献1に示す通り、こうした、(1)析出強化技術に加えて、(2)溶鋼の溶存酸素をTi、B、Mgなどによって脱酸して得る酸化物の個数を制御する技術、すなわち、オキサイドメタラジー技術を付与した耐火H形鋼を開発してきた。オキサイドメタラジー技術には、次のような効果がある。   The present inventor, for example, as shown in Patent Document 1, in addition to (1) precipitation strengthening technology, (2) the number of oxides obtained by deoxidizing dissolved oxygen in molten steel with Ti, B, Mg, etc. We have developed a refractory H-section steel with a control technology, that is, an oxide metallurgy technology. The oxide metallurgy technology has the following effects.

H形鋼の製造工程においては、鋼材断面内の形状不均一に伴って、圧延仕上げ温度および冷却速度が部位により異なることが主因となって、断面内ミクロ組織の不均一、すなわち、結晶粒径の不均一が発現し、機械的特性の断面内ばらつきが生じる。   In the manufacturing process of H-section steel, the rolling finish temperature and the cooling rate are different depending on the part due to the non-uniform shape in the cross section of the steel material. Non-uniformity occurs, and variations in cross-sectional mechanical properties occur.

特に、フランジ部のなかで、フランジとウェブが結合するフィレット部(図1、参照)は、他のフランジ部と比較して、圧延加工による歪量が小さいうえに、高温域での加工を強いられる。   In particular, among the flange portions, the fillet portion (see FIG. 1) where the flange and the web are coupled has a smaller amount of strain due to rolling compared to other flange portions, and the processing in the high temperature region is strong. It is done.

H断面部位(図1、参照。)において、フィレット、1/4フランジ、および、ウェブの3点の間で、仕上げ温度差にして150℃程度の差異が発生する場合がある。この圧延温度履歴差に起因する断面部位間の機械的特性の差違を解消しなければならない。   In the H section (see FIG. 1), a difference of about 150 ° C. may occur as a finishing temperature difference between the three points of the fillet, the quarter flange, and the web. The difference in mechanical properties between the cross-sectional parts due to this difference in rolling temperature history must be eliminated.

ここで、Tiオキサイド等のフェライト粒内変態核を分散させ、粒内変態を促進させることにより、熱間圧延におけるミクロ組織形成の仕上げ温度依存性を低減し、ミクロ組織の微細均一化および機械的特性の均質化を実現する。さらに、結晶粒の均質化効果のみならず、細粒化効果をも発揮するので、母材靭性を改善できる。   Here, by dispersing the intragranular transformation nuclei such as Ti oxide and promoting the intragranular transformation, the temperature dependence of the microstructure formation in hot rolling is reduced, and the microstructure is made fine and uniform. Achieve homogenous characteristics. Furthermore, since not only the effect of homogenizing the crystal grains but also the effect of refining is exhibited, the toughness of the base material can be improved.

特開平9−104944号公報JP-A-9-104944

本発明者は、例えば、特許文献1に開示されているなどの耐火性に優れたH形鋼を製造していたが、以下の問題点を明らかにし、該問題点を解消すべく改善を重ねた。   The present inventor has produced H-shaped steel having excellent fire resistance such as that disclosed in Patent Document 1, for example. The following problems are clarified and improvements are made to solve the problems. It was.

特許文献1のように、オキサイドメタラジー技術を適用してH形鋼に耐火性を付与する技術には、鋼片製造段階において、Ti添加前の酸素濃度制御およびその後のTi添加など、汎用プロセスと比較して、複雑な工程を必要とするので、生産能力減および製造原価高などの問題が生じていた。   As in Patent Document 1, the technology for imparting fire resistance to the H-shaped steel by applying the oxide metallurgy technology is a general-purpose process such as oxygen concentration control before Ti addition and subsequent Ti addition in the steel slab manufacturing stage. Compared to the above, since complicated processes are required, problems such as a reduction in production capacity and an increase in manufacturing costs have occurred.

さらに、析出強化は、高温域での強度および降伏比の確保、つまり、耐火性の確保には有効であるが、特許文献1で開示されているMo系炭化物は、主として、Mo2Cで、特許文献1開示の成分範囲においては、600〜650℃の温度範囲で、鋼中へ完全に固溶することが予測される。 Furthermore, precipitation strengthening is effective in ensuring strength and yield ratio in a high temperature range, that is, ensuring fire resistance, but the Mo-based carbide disclosed in Patent Document 1 is mainly Mo 2 C. In the component range disclosed in Patent Document 1, it is predicted that the solid solution is completely dissolved in the steel in the temperature range of 600 to 650 ° C.

このような場合、鋼材強度に対する合金炭化物および合金炭窒化物の析出強化による効果は消失してしまう。   In such a case, the effect of precipitation strengthening of the alloy carbide and the alloy carbonitride on the steel strength is lost.

また、析出強化の主たる制御要素は、合金炭化物および合金炭窒化物の析出量(以下「析出モル分率」で示す。)であり、これには温度依存性がある。温度依存性は、鋼中の炭素濃度や、合金炭化物および合金炭窒化物の種類などに起因する熱力学特性の影響を受ける。   The main control element for precipitation strengthening is the precipitation amount of alloy carbide and alloy carbonitride (hereinafter referred to as “precipitation molar fraction”), which has temperature dependency. The temperature dependence is affected by the thermodynamic characteristics resulting from the carbon concentration in the steel, the type of alloy carbide and alloy carbonitride, and the like.

炭素濃度の影響とは、炭窒化物を生成するMo、Ti、V、Nb、Cr等(合金元素)の濃度と比較して十分に多い場合には、温度低下に伴うフェライト中の固溶炭素濃度の低下に伴って、析出に寄与する炭素量が多くなるため、合金炭化物および合金炭窒化物の合計析出モル分率も多くなる。   The effect of the carbon concentration is that the solid solution carbon in the ferrite accompanying the temperature drop when the concentration is sufficiently higher than the concentration of Mo, Ti, V, Nb, Cr, etc. (alloy elements) that produce carbonitrides. As the concentration decreases, the amount of carbon contributing to precipitation increases, so the total precipitation mole fraction of alloy carbide and alloy carbonitride also increases.

この結果、温度低下幅が同一でも炭素濃度が多くて合金炭化物および合金炭窒化物の合計析出モル分率の増加幅が大きい場合、常温での強度および降伏比までも大きくなり過ぎていた。   As a result, even when the temperature drop width was the same, when the carbon concentration was high and the increase in the total precipitation mole fraction of the alloy carbide and alloy carbonitride was large, the strength and yield ratio at room temperature were too large.

本発明者は、合金炭化物および合金炭窒化物は、材料製造時の再加熱工程で一旦溶体化されて、後続の熱間圧延工程での冷却過程で析出する合金炭化物および合金炭窒化物でなければ、析出強化に効果的に寄与しないから、合金炭化物および合金炭窒化物にとっては、熱力学特性が安定していることだけが望ましいことではなく、加熱温度において固溶する程度とする必要があるという考えに至った。   The present inventor believes that alloy carbide and alloy carbonitride should be alloy carbide and alloy carbonitride that are once solutionized in the reheating process during material production and precipitated in the cooling process in the subsequent hot rolling process. For example, since it does not contribute effectively to precipitation strengthening, it is not only desirable that the thermodynamic properties be stable for alloy carbides and alloy carbonitrides, but it is necessary to make the solution solid at heating temperature. I came up with the idea.

そして、以上の課題について精査した結果、高温域および常温域での合金炭化物および合金炭窒化物の析出モル分率の変動幅を、適切に制御する必要があるが、そのためには、具体的には、以下の項目を考慮して、鋼の成分設計を行う必要があることを知見した。   And as a result of examining the above problems, it is necessary to appropriately control the fluctuation range of the precipitation molar fraction of alloy carbide and alloy carbonitride in the high temperature range and the normal temperature range. Found that it was necessary to design the steel components in consideration of the following items.

(i)常温域に至った時の、強度および降伏比の過剰な増大を抑制するため、常温域での合金炭化物および合金炭窒化物の合計析出モル分率を抑制する。   (I) In order to suppress an excessive increase in strength and yield ratio when reaching the normal temperature range, the total precipitation mole fraction of alloy carbide and alloy carbonitride in the normal temperature range is suppressed.

(ii)高温域での強度を確保するため、所定の高温域での所定量以上の合金炭化物および合金炭窒化物の合計析出モル分率を確保する。   (Ii) In order to ensure strength in the high temperature range, a total precipitation mole fraction of a predetermined amount or more of the alloy carbide and alloy carbonitride in the predetermined high temperature range is ensured.

こうした観点を踏まえて、本発明者は、合金炭化物および合金炭窒化物の設計を種々行った。析出量については、Mo、Ti、V、Nb、Cr等の合金炭化物および合金炭窒化物を構成する合金元素群と、CおよびNとの量的バランスで制御し、熱力学特性については、合金元素群の中で相互の量的バランスで制御するH形鋼を発明した。   Based on this viewpoint, the present inventor has made various designs of alloy carbides and alloy carbonitrides. The amount of precipitation is controlled by the quantitative balance between the alloy elements of Mo, Ti, V, Nb, Cr, etc., and the alloy element group constituting the alloy carbonitride, and C and N. Invented H-section steel which is controlled by mutual quantitative balance among elements.

なお、本発明で対象とする「合金炭窒化物・析出物」とは、セメンタイトを除く合金炭化物および合金炭窒化物の合計を意味する。   In addition, the “alloy carbonitride / precipitate” targeted in the present invention means the total of alloy carbide and alloy carbonitride excluding cementite.

具体的には、特に600〜650℃の温度範囲で、鋼中へ完全に固溶してしまう可能性の高いMo系炭化物(主としてMo2C)が析出物の主体の場合では、鋼材強度に対する合金炭化物の析出強化による寄与は消失してしまう可能性がある。 Specifically, particularly in a temperature range of 600 to 650 ° C., in the case where Mo-based carbide (mainly Mo 2 C), which is highly likely to be completely dissolved in steel, is mainly composed of precipitates, the strength of the steel material is reduced. The contribution due to precipitation strengthening of alloy carbide may be lost.

そこで、これらMo系炭化物の一部代替として、M2C型よりも高温域での安定性の高いMCN型炭窒化物に着目し、M2C型炭化物と比較して、MCN型炭窒化物の析出量を増加させて、上記の課題を解決することが有効であることを見出した。 Therefore, as part of Mo carbides alternative focuses on highly stable MCN type carbonitride in a high temperature range than the M 2 C type, compared to the M 2 C-type carbide, MCN type carbonitride It has been found that it is effective to increase the amount of precipitation of the above to solve the above problems.

Mo系炭化物(M2C系)以外の合金炭窒化物を形成させるべく、Mo代替として、主にNbを増やすのが好ましく、NbおよびMoの添加量には、適正な添加量バランスがあり、NbおよびMoを主体とした好ましい種類の合金炭化物および合金炭窒化物の生成を制御できることを知見した。 In order to form alloy carbonitrides other than Mo-based carbides (M 2 C-based), it is preferable to mainly increase Nb as an alternative to Mo, and there is an appropriate balance of addition amounts of Nb and Mo. It has been found that the production of preferred types of alloy carbides and alloy carbonitrides mainly composed of Nb and Mo can be controlled.

なお、常温とは、0〜30℃程度の温度範囲を指すのが一般的であるが、実際の析出挙動は、一般的な常温近傍では、鋼中の合金元素および炭素、窒素等の固溶元素の拡散が著しく低下することが知られている。   Note that the normal temperature generally refers to a temperature range of about 0 to 30 ° C., but the actual precipitation behavior is a solid solution of alloy elements, carbon, nitrogen, etc. in steel near the normal normal temperature. It is known that the diffusion of elements is significantly reduced.

つまり、300℃未満から一般的な常温の温度範囲では、300℃の平衡状態がほぼ維持されるが故に、本発明の説明では、便宜上、300℃の析出状態を常温の析出状態に代わって代表させた。   That is, in the temperature range from less than 300 ° C. to a general room temperature, an equilibrium state of 300 ° C. is almost maintained. Therefore, in the description of the present invention, for convenience, the 300 ° C. precipitation state is substituted for the room temperature precipitation state. I let you.

本発明は、上記知見に基づいてなされたもので、その要旨は、以下のとおりである。   This invention was made | formed based on the said knowledge, The summary is as follows.

(1) 質量%で、本質的に、C:0.03〜0.15%、Mo:0.1〜0.6%、Nb≦0.06%、N:0.002〜0.012%を含む耐火性に優れたH形鋼であって、(x)600℃での合金炭化物および合金炭窒化物の合計析出モル分率が0.2%以上、かつ、(y)合金炭化物および合金炭窒化物の合計析出モル分率比=(300℃での合金炭化物および合金炭窒化物の合計析出モル分率)/(600℃での合金炭化物および合金炭窒化物の合計析出モル分率)が4.0以下であることを特徴とする耐火性に優れたH形鋼。   (1) By mass%, essentially C: 0.03-0.15%, Mo: 0.1-0.6%, Nb ≦ 0.06%, N: 0.002-0.012% (X) alloy carbide and alloy carbonitride at 600 ° C. having a total precipitation molar fraction of 0.2% or more, and (y) alloy carbide and alloy Total precipitation mole fraction ratio of carbonitride = (total precipitation mole fraction of alloy carbide and alloy carbonitride at 300 ° C.) / (Total precipitation mole fraction of alloy carbide and alloy carbonitride at 600 ° C.) Is an H-section steel excellent in fire resistance, characterized by being 4.0 or less.

(2) さらに、質量%で、Si:0.05〜0.50%、Mn:0.4〜1.6%、Nb:0.02〜0.06%、Al≦0.01%を含む耐火性に優れたH形鋼であって、(z1)フランジ部の常温引張強度が400MPa以上、(z2)600℃での0.2%耐力が157MPa以上、かつ、(z3)0℃でのシャルピー衝撃吸収エネルギーが100J以上であることを特徴とする上記(1)に記載の耐火性に優れたH形鋼。   (2) Further, by mass, Si: 0.05 to 0.50%, Mn: 0.4 to 1.6%, Nb: 0.02 to 0.06%, Al ≦ 0.01% H-shaped steel with excellent fire resistance, (z1) normal temperature tensile strength of flange part is 400 MPa or more, (z2) 0.2% proof stress at 600 ° C is 157 MPa or more, and (z3) at 0 ° C The H-section steel having excellent fire resistance according to the above (1), wherein Charpy impact absorption energy is 100 J or more.

(3) さらに、質量%で、V≦0.20%、Ti≦0.02%、Cr≦0.7%、Ni≦1.0%、Cu≦1.0%、のうちの1種または2種以上を含むことを特徴とする上記(1)または(2)に記載の耐火性に優れたH形鋼。   (3) Further, in mass%, one of V ≦ 0.20%, Ti ≦ 0.02%, Cr ≦ 0.7%, Ni ≦ 1.0%, Cu ≦ 1.0%, or The H-section steel excellent in fire resistance as described in (1) or (2) above, comprising two or more types.

(4) 上記(1)〜(3)のいずれかに記載の成分組成を有する鋼片を、1100〜1300℃に再加熱した後、熱間圧延を開始し、フランジ部の表面温度を860℃以上として仕上げ、次いで、放冷するか、または、加速冷却後、放冷することを特徴とする耐火性に優れたH形鋼の製造方法。   (4) After reheating the steel slab having the composition described in any one of (1) to (3) above to 1100 to 1300 ° C, hot rolling is started and the surface temperature of the flange portion is set to 860 ° C. A method for producing an H-section steel excellent in fire resistance, characterized by finishing as described above and then allowing to cool, or cooling after accelerated cooling.

(5) 前記熱間圧延工程において、H形鋼のフランジ部の表面を700℃以下にまで水冷し、復熱過程で圧延する水冷・圧延サイクルを1回以上行うことを特徴とする上記(4)に記載の耐火性に優れたH形鋼の製造方法。   (5) In the hot rolling step, the surface of the flange portion of the H-shaped steel is water-cooled to 700 ° C. or less, and the water-cooling / rolling cycle of rolling in the reheating process is performed once or more (4 The manufacturing method of H-section steel excellent in fire resistance as described in 1).

(6) 前記加速冷却において、600℃までの平均冷却速度を0.5〜5.0℃/sとなるように加速冷却を行うことを特徴とする上記(5)に記載の耐火性に優れたH形鋼の製造方法。   (6) In the accelerated cooling, accelerated cooling is performed such that an average cooling rate up to 600 ° C. is 0.5 to 5.0 ° C./s, and the fire resistance as described in (5) above is excellent. A manufacturing method of H-shaped steel.

本発明によれば、所定の成分組成とした鋼片を、圧延仕上げ温度860℃以上で熱間圧延する等の所定の製造工程を経ることにより、適正なNbとMoの添加量バランスの下で、NbおよびMoを主体とした合金炭化物および合金炭窒化物を形成し、所要の高温強度および常温での機械的特性を有する耐火性に優れたH形鋼およびその製造方法を提供することができる。   According to the present invention, a steel slab having a predetermined component composition is subjected to a predetermined manufacturing process such as hot rolling at a rolling finishing temperature of 860 ° C. or higher, thereby achieving an appropriate balance of Nb and Mo addition amounts. An alloy carbide and alloy carbonitride mainly composed of Nb and Mo are formed, and a fire-resistant H-section steel having required high-temperature strength and mechanical properties at room temperature and a method for producing the same can be provided. .

まず、本発明において、圧延に供する鋼片の化学成分を限定した理由について説明する。なお、%は、質量%を意味する。   First, the reason why the chemical composition of the steel slab used for rolling is limited in the present invention will be described. In addition,% means the mass%.

Cは、鋼の強度を向上させる有効な成分として添加するが、0.03%未満では、構造用鋼として必要な強度が得られず、一方、0.15%を超える過剰の添加は、母材靭性、耐溶接割れ性、溶接熱影響部(HAZ)靭性等を著しく低下させる。したがって、Cは0.03〜0.15%が好ましい。   C is added as an effective component for improving the strength of the steel. However, if it is less than 0.03%, the strength required for structural steel cannot be obtained. On the other hand, excessive addition exceeding 0.15% Material toughness, weld crack resistance, weld heat affected zone (HAZ) toughness, etc. are significantly reduced. Therefore, C is preferably 0.03 to 0.15%.

Siは、脱酸元素として機能することに加えて、母材の強度確保に必要な成分であるが、0.05%未満では、殆ど強度向上に寄与せず、一方、0.50%超では、HAZにおいて硬化組織である高炭素島状マルテンサイトを生成し、靭性を著しく損なう。したがって、Siは0.05〜0.50%が好ましい。   In addition to functioning as a deoxidizing element, Si is a component necessary for ensuring the strength of the base material, but if it is less than 0.05%, it hardly contributes to strength improvement, while if it exceeds 0.50% , HAZ produces high carbon island martensite, which is a hardened structure, and significantly deteriorates toughness. Therefore, Si is preferably 0.05 to 0.50%.

Mnは、母材の強度、靭性の確保のために、0.4%以上添加する必要があるが、1.6%を超える添加は、HAZ靭性、耐割れ性を損なう。したがって、Mnは0.4〜1.6%が好ましい。   Mn needs to be added in an amount of 0.4% or more in order to ensure the strength and toughness of the base material, but if it exceeds 1.6%, the HAZ toughness and crack resistance are impaired. Therefore, Mn is preferably 0.4 to 1.6%.

Moは、炭化物を生成する合金元素である。本発明は、この炭化物の析出により、常温および高温強度を確保するので、これら強度の確保に有効な成分である。0.1%未満では、充分な高温強度が確保できず、一方、0.6%超では、焼入れ性が上昇しすぎて、母材靭性およびHAZ靭性を損なう。したがって、Moは0.1〜0.6%が好ましい。   Mo is an alloy element that generates carbides. Since the present invention secures the normal temperature and high temperature strength by precipitation of the carbide, it is an effective component for securing these strengths. If it is less than 0.1%, sufficient high-temperature strength cannot be ensured. On the other hand, if it exceeds 0.6%, the hardenability is excessively increased and the base metal toughness and the HAZ toughness are impaired. Therefore, Mo is preferably 0.1 to 0.6%.

さらに、限定すれば0.25〜0.4%がより好ましく、最も好ましいのは0.25〜0.3%である。   Furthermore, if it limits, 0.25 to 0.4% is more preferable, and the most preferable is 0.25 to 0.3%.

Nbは、VやTiと同様に、M(C、N)型炭窒化物を構成し、析出強化に寄与する合金元素である。ただし、Nbが0.06%を超える場合、熱間圧延前の加熱温度1100〜1300℃でも溶体化されない炭窒化物量が増加し、析出強化には寄与しない。さらに、Nbは0.03〜0.04%がより好ましい。   Nb, like V and Ti, is an alloy element that constitutes an M (C, N) type carbonitride and contributes to precipitation strengthening. However, when Nb exceeds 0.06%, the amount of carbonitride that is not solutionized increases even at a heating temperature of 1100 to 1300 ° C. before hot rolling, and does not contribute to precipitation strengthening. Further, Nb is more preferably 0.03 to 0.04%.

また、Nbが0.02%に満たない場合、析出強化による強度向上が不十分である。したがって、Nbは0.02〜0.06%が好ましい。   Moreover, when Nb is less than 0.02%, the strength improvement by precipitation strengthening is insufficient. Therefore, Nb is preferably 0.02 to 0.06%.

Nは、炭窒化物を構成する重要な成分であり、0.002%未満では、析出量が不充分で、一方、0.012%超では、母材靭性を著しく低下させる。したがって、Nは0.002〜0.012%が好ましい。   N is an important component constituting carbonitride, and if it is less than 0.002%, the amount of precipitation is insufficient, while if it exceeds 0.012%, the base metal toughness is remarkably lowered. Therefore, N is preferably 0.002 to 0.012%.

Alは、強力な脱酸元素であるが、0.01%を超えて含有すると、Nと化合してAlNを析出させ、本発明の特徴である炭窒化物の析出量を低減させる。したがって、Alは0.01%以下が好ましい。   Al is a strong deoxidizing element, but if it is contained in an amount exceeding 0.01%, it combines with N to precipitate AlN, thereby reducing the amount of precipitation of carbonitride that is a feature of the present invention. Therefore, Al is preferably 0.01% or less.

次に、本発明において選択的に添加する合金元素の濃度範囲に係る限定理由について、説明する。   Next, the reason for limitation related to the concentration range of the alloy element selectively added in the present invention will be described.

Vは、NbやTiと同様に、M(C、N)型炭窒化物を構成し、析出強化に寄与する合金元素である。また、Vは、本発明におけるNb添加、または、NbとTiの複合添加により生成するM(C、N)型炭窒化物に固溶し、(Nb、V)(C、N)または(Nb、V、Ti)(C、N)を構成し、炭窒化物の熱安定性を変化させる。   V, like Nb and Ti, constitutes an M (C, N) type carbonitride and is an alloy element that contributes to precipitation strengthening. V is solid-solved in M (C, N) type carbonitride produced by Nb addition or Nb and Ti combined addition in the present invention, and (Nb, V) (C, N) or (Nb , V, Ti) (C, N) to change the thermal stability of the carbonitride.

具体的には、V添加により、M(C、N)型炭窒化物の熱力学特性を低温域側にシフトさせ、溶体化温度を低下させることができる。このことに加え、Vは、Moを主体とするM2C型炭化物に固溶して(Mo、V)2Cを形成し、M2C型炭化物の熱力学特性を高温側にシフトさせる。 Specifically, the addition of V can shift the thermodynamic characteristics of the M (C, N) type carbonitride to the low temperature region side and lower the solution temperature. In addition to this, V forms a solid solution (Mo, V) 2 C in an M 2 C type carbide mainly composed of Mo, and shifts the thermodynamic characteristics of the M 2 C type carbide to a high temperature side.

ただし、Vが0.20%を超えると、Nbとの複合効果により、熱間圧延前の加熱温度1100〜1300℃でも溶体化されない炭窒化物量が増加し、析出強化には寄与しない。したがって、Vは0.20%以下が好ましい。   However, if V exceeds 0.20%, the amount of carbonitride that is not solutionized increases even at a heating temperature of 1100 to 1300 ° C. before hot rolling due to the combined effect with Nb, and does not contribute to precipitation strengthening. Therefore, V is preferably 0.20% or less.

Tiは、NbやVと同様に、M(C、N)炭窒化物を構成し、析出強化に寄与する合金元素である。本発明におけるV添加、または、VとNbの複合添加により生成するM(C、N)型炭窒化物に固溶し、(V、Ti)(C、N)または(V、Ti、Nb)(C、N)を構成して、炭窒化物の熱安定性を変化させる。   Ti, like Nb and V, is an alloy element that constitutes M (C, N) carbonitride and contributes to precipitation strengthening. In the present invention, it is dissolved in M (C, N) type carbonitride produced by V addition or combined addition of V and Nb, and (V, Ti) (C, N) or (V, Ti, Nb) (C, N) is configured to change the thermal stability of the carbonitride.

具体的には、Ti添加により、M(C、N)型炭窒化物の熱安定性を、高温域まで拡大する。ただし、Tiが0.02%を超えると、熱間圧延前の加熱温度1100〜1300℃でも溶体化されない炭窒化物量が増加し、析出強化には寄与しない。したがって、Tiは0.02%以下が好ましい。   Specifically, the thermal stability of the M (C, N) type carbonitride is expanded to a high temperature range by adding Ti. However, if Ti exceeds 0.02%, the amount of carbonitride that is not solutionized increases even at a heating temperature of 1100 to 1300 ° C. before hot rolling, and does not contribute to precipitation strengthening. Therefore, Ti is preferably 0.02% or less.

Crは、焼入れ性の向上と析出硬化により、母材の常温強度および高温強度上昇に有効な成分であるのみならず、鋼表面の粒界酸化を抑制して表面性状(平滑性)の改善にも機能する合金元素である。ただし、0.7%超の添加は、母材靭性およびHAZ靭性に悪影響を及ぼす。したがって、Crは0.7%以下が好ましい。   Cr is not only an effective component for increasing the normal temperature strength and high temperature strength of the base metal by improving hardenability and precipitation hardening, but it also suppresses grain boundary oxidation on the steel surface and improves surface properties (smoothness). Is also a functional alloying element. However, addition of over 0.7% adversely affects the base metal toughness and the HAZ toughness. Therefore, Cr is preferably 0.7% or less.

Niは、母材の靭性を高めるのに有効な合金元素である。ただし、1.0%超の添加は、成分コストを著しく上昇させるので、Niは1.0%以下が好ましい。   Ni is an alloy element effective for increasing the toughness of the base material. However, addition of over 1.0% significantly increases the component cost, so Ni is preferably 1.0% or less.

Cuは、母材の強化に有効な合金元素であるが、同時に焼入れ性を上昇させ、母材靭性およびHAZ靭性を損なう合金元素でもある。したがって、Cuは1.0%以下が好ましい。   Cu is an alloy element effective for strengthening the base material, but is also an alloy element that simultaneously increases the hardenability and impairs the base material toughness and the HAZ toughness. Therefore, Cu is preferably 1.0% or less.

合金炭化物および合金炭窒化物の組成や、析出モル分率は、実際に、電子顕微鏡レベルのミクロ組織観察および分析により実測することが可能であるが、比較的簡便な判定方法として、熱力学平衡計算プログラムを用いる計算を採用してもよい。   The composition of alloy carbides and alloy carbonitrides and the molar fraction of precipitation can actually be measured by microscopic observation and analysis at the electron microscope level, but as a relatively simple determination method, thermodynamic equilibrium You may employ | adopt the calculation using a calculation program.

なお、本発明で採用した熱力学平衡計算プログラムは、市販ソフトウェア「Thermo-Calc」で、データベースは「SSOL」であるが、ソフトウェアおよびデータベースの採用に関しては、信頼性の高いものであれば、この限りではない。   The thermodynamic equilibrium calculation program employed in the present invention is the commercially available software “Thermo-Calc”, and the database is “SSOL”. Not as long.

本発明においては、合金炭化物および合金炭窒化物の析出モル分率として、MCN型の面心立方晶(Face Centered Cubic)型およびM2C型の稠密六方晶(Hexagonal Close-Packed)型の2種類の合金炭化物および合金炭窒化物の析出モル分率を合計した値を用いた。この計算条件で、成分、温度を変化させ、析出モル分率の評価を実施した。 In the present invention, the precipitation molar fraction of alloy carbide and alloy carbonitride is MCN type Face Centered Cubic type and M 2 C type Hexagonal Close-Packed type 2 The total value of the precipitation mole fractions of various types of alloy carbides and alloy carbonitrides was used. Under these calculation conditions, the components and temperature were changed, and the precipitation mole fraction was evaluated.

600〜650℃の温度範囲で鋼中に完全に固溶してしまって析出強化に寄与しなくなる可能性の高いMo系炭化物の一部代替としてNbを増やすのが好ましい。   It is preferable to increase Nb as a partial replacement for the Mo-based carbide that is highly likely to be completely dissolved in steel in the temperature range of 600 to 650 ° C. and not contribute to precipitation strengthening.

Nbを0.06%以下の範囲で含有する本発明の成分範囲において、合金炭化物および合金炭窒化物を構成する合金元素群の中のMoおよびNbに注目し、CおよびNの量とのバランスから、合金炭化物および合金炭窒化物の種類と、それによる各温度での析出強化モル分率を変動させて、各温度および常温での機械特性を調べた。   In the component range of the present invention containing Nb in a range of 0.06% or less, pay attention to Mo and Nb in the alloy element group constituting the alloy carbide and the alloy carbonitride, and balance with the amounts of C and N From the above, the types of alloy carbides and alloy carbonitrides and the resulting precipitation strengthening molar fraction at each temperature were varied, and the mechanical properties at each temperature and room temperature were examined.

析出モル分率については、Moを主成分とし、V、Nbも一部固溶する合金炭化物をM2C型とし、V、Nbを主成分とし、Moも一部固溶する合金炭窒化物をMCN型として、熱力学平衡計算によって予測するのが好ましい。連続冷却で行われる実プロセスの場合は、熱力学平衡計算値とは若干相違するので補正するとよい。 Regarding the precipitation mole fraction, the alloy carbide containing Mo as a main component and partly dissolved in V and Nb is M 2 C type, and the alloy carbonitride containing V and Nb as the main components and partly dissolved in Mo. Is preferably MCN type and is predicted by thermodynamic equilibrium calculation. In the case of an actual process performed by continuous cooling, it may be corrected because it is slightly different from the calculated thermodynamic equilibrium.

まず、耐火性を確保するためには、600℃での機械特性、特に0.2%耐力が重要である。157MPa以上が必要である。   First, in order to ensure fire resistance, mechanical properties at 600 ° C., particularly 0.2% proof stress are important. 157 MPa or more is required.

合金元素群、CおよびNのバランスを変動させて、合金炭化物および合金炭窒化物の合計析出モル分率を0〜1.0%の範囲で変動させて調べた結果、0.2%以上にするとよいことが判った。   The balance of the alloy element group, C and N was changed, and the total precipitation mole fraction of the alloy carbide and the alloy carbonitride was changed in the range of 0 to 1.0%, and as a result, it was found to be 0.2% or more. I knew it was good.

次に、常温での強度および降伏比までも大きくなり過ぎる問題を解消するために、合金炭化物および合金炭窒化物の合計析出モル分率の比、即ち、300℃での値と600℃での値との比と、各温度および常温での機械特性の適性化を調べた。   Next, in order to solve the problem that the strength and yield ratio at room temperature are too large, the ratio of the total precipitation mole fraction of alloy carbide and alloy carbonitride, that is, the value at 300 ° C. and the value at 600 ° C. The ratio between the values and the suitability of the mechanical properties at each temperature and room temperature were investigated.

すなわち、常温での過剰な強度を押さえつつ耐火性を確保し、これらを両立させるためには、常温では、(1)フランジ部の引張強度を400MPa以上、かつ、(2)0℃でのシャルピー衝撃吸収エネルギーを100J以上を確保しつつ、耐火性については、(3)600℃での0.2%耐力を157MPa以上とする必要があることが判った。   That is, in order to ensure fire resistance while suppressing excessive strength at room temperature and to achieve both, (1) Tensile strength of the flange portion is 400 MPa or more and (2) Charpy at 0 ° C. As for fire resistance, it was found that (2) the 0.2% proof stress at 600 ° C. should be 157 MPa or more while ensuring the impact absorption energy of 100 J or more.

特に、Moの代替としてNbを含有させた上で、合金元素群の量と、CおよびNとのバランスを変動させて、合金炭化物および合金炭窒化物の合計析出モル分率を0〜10.0%の範囲で変動させた結果、4.0以下とするとよいことが判った。   In particular, Nb is contained as an alternative to Mo, and the balance between the amount of the alloy element group and C and N is changed, so that the total precipitation molar fraction of the alloy carbide and the alloy carbonitride is 0 to 10. As a result of changing within a range of 0%, it was found that it should be 4.0 or less.

以上により、Moの代替としてNbを含有させた上で、合金元素群の量と、CおよびNとのバランスを変動させた結果、例えば、図2(a)および図2(b)に示すような合金炭化物および合金炭窒化物を、新たに設計できる。   As described above, as a result of changing the balance between the amount of the alloy element group and C and N after containing Nb as an alternative to Mo, for example, as shown in FIGS. 2 (a) and 2 (b) New alloy carbides and alloy carbonitrides can be newly designed.

ここで、VおよびNbも一部固溶する合金炭化物であるM2C型と、VおよびNbを主成分とし、Moも一部固溶する合金炭窒化物であるMCN型とを合計した量を、「total」として折れ線で図示する。 Here, the total amount of the M 2 C type, which is an alloy carbide in which V and Nb are also partly dissolved, and the MCN type, which is an alloy carbonitride in which V and Nb are the main components and Mo is also partly dissolved. Is indicated by a broken line as “total”.

Nbを0.02%含有する例を、図2(a)に示す。600℃での合金炭化物および合金炭窒化物の合計析出モル分率は0.54%である。また、600℃から300℃に温度が低下した場合の合金炭化物および合金炭窒化物の合計析出モル分率は、約0.54%から約1.28%に増大するに留まって、それらの比は2.37であって、本発明で規定する要件の4.0以下を満たすことが判る。   An example containing 0.02% Nb is shown in FIG. The total precipitation mole fraction of alloy carbide and alloy carbonitride at 600 ° C. is 0.54%. In addition, the total precipitation mole fraction of alloy carbide and alloy carbonitride when the temperature drops from 600 ° C. to 300 ° C. only increases from about 0.54% to about 1.28%, Is 2.37, and it can be seen that the requirement specified in the present invention is 4.0 or less.

Nbを0.06%含有する例を、図2(b)に示す。600℃での合金炭化物および合金炭窒化物の合計析出モル分率は約0.41%である。一方、300℃での合金炭化物および合金炭窒化物の合計析出モル分率は約1.14%である。この結果、両者の比は2.78に抑えられており、本発明で規定する要件の4.0以下を満たすことが判る。   An example containing 0.06% Nb is shown in FIG. The total precipitation mole fraction of alloy carbide and alloy carbonitride at 600 ° C. is about 0.41%. On the other hand, the total precipitation mole fraction of alloy carbide and alloy carbonitride at 300 ° C. is about 1.14%. As a result, the ratio between the two is suppressed to 2.78, and it is understood that the requirement defined by the present invention is 4.0 or less.

これらに示す通り、結果として、この析出物による析出強化効果についても、600℃での耐火性を維持しつつ、常温での過剰な強度増大を抑えることが可能となる成分設計技術である。   As shown in these figures, as a result, it is a component design technique that can suppress the excessive increase in strength at room temperature while maintaining the fire resistance at 600 ° C. with respect to the precipitation strengthening effect of the precipitate.

図3(a)および図3(b)に従来技術を示す。図3(a)も図3(b)も、成分範囲は本発明で規定する成分範囲に包含されている。   The prior art is shown in FIGS. In both FIG. 3A and FIG. 3B, the component ranges are included in the component ranges defined in the present invention.

図3(a)に示す従来技術では、600℃での合金炭化物および合金炭窒化物の合計析出モル分率が約0.16%であって、本発明で規定する要件の0.20%以上を満足していない。さらに、600℃と300℃とでの合計析出モル分率比も4.6と、本発明で規定する要件の4.0以下を満足しておらず、結果的に常温での強度が高くなり過ぎてしまっている。   In the prior art shown in FIG. 3 (a), the total precipitation mole fraction of alloy carbide and alloy carbonitride at 600 ° C. is about 0.16%, which is 0.20% or more of the requirement defined in the present invention. Not satisfied. Furthermore, the total precipitation mole fraction ratio at 600 ° C. and 300 ° C. is 4.6, which does not satisfy the requirement of 4.0 or less, and as a result, the strength at normal temperature is increased. It has passed.

また、図3(b)に示す従来技術では、600℃での合金炭化物および合金炭窒化物の合計析出モル分率が約0.204%と、本発明で既定する要件の0.2%以上を満足している。   In the prior art shown in FIG. 3B, the total precipitation mole fraction of the alloy carbide and the alloy carbonitride at 600 ° C. is about 0.204%, which is 0.2% or more of the requirement defined in the present invention. Is satisfied.

しかし、600℃と300℃とでの合計析出モル分率の比は、300℃での合金炭化物および合金炭窒化物の合計析出モル分率が約0.84%となってしまった結果、4.2と大きくなっており、本発明で規定する要件の4.0以下から逸脱している。これにより、常温での強度が強化され過ぎていることが判る。   However, the ratio of the total precipitation mole fraction at 600 ° C. and 300 ° C. is that the total precipitation mole fraction of the alloy carbide and alloy carbonitride at 300 ° C. is about 0.84%. .2, which deviates from the requirement of 4.0 or less defined in the present invention. Thereby, it turns out that the intensity | strength in normal temperature is strengthened too much.

合金炭化物および合金炭窒化物など析出物のサイズについても影響があるので、目標とする強度に応じて、該サイズを、10〜1000nmに微細化するなどの工夫を追加するのが好ましい。熱間圧延前に一旦溶体化し、熱間圧延から冷却過程で析出させるプロセスと、600℃で保持して析出させるプロセスがよい。   Since the size of precipitates such as alloy carbide and alloy carbonitride is also affected, it is preferable to add a device such as reducing the size to 10 to 1000 nm according to the target strength. A process of forming a solution before hot rolling and precipitating in the cooling process from hot rolling, and a process of precipitating by holding at 600 ° C. are preferable.

本発明では、300〜600℃の範囲内において温度依存性の少ない安定した析出量を示すMCN型炭窒化物と、同温度範囲において比較的温度依存性の高いM2C型炭化物との析出量比を特に規定しないが、従来と比較すれば、MCN型炭窒化物析出量/M2C型炭化物析出量の比(以下、MCN/M2C比)を増加させている点に特徴がある。 In the present invention, the precipitation amount of MCN type carbonitride showing a stable precipitation amount with little temperature dependency in the range of 300 to 600 ° C. and M 2 C type carbide having a relatively high temperature dependency in the same temperature range. Although the ratio is not particularly defined, the ratio of MCN-type carbonitride precipitation / M 2 C-type carbide precipitation (hereinafter referred to as MCN / M 2 C ratio) is increased as compared with the prior art. .

例えば、高温域の一例として600℃を取りあげてみた場合、MCN/M2C比を0.1以上とすることで効果が顕著になる。ただし、M2C総量を低減した場合には、MCN/M2C比だけで決め難いので、例え0.1未満であっても、本発明で規定する範囲から排除されるものではない。 For example, when 600 ° C. is taken up as an example of the high temperature region, the effect becomes remarkable by setting the MCN / M 2 C ratio to 0.1 or more. However, when the total amount of M 2 C is reduced, it is difficult to determine only by the MCN / M 2 C ratio. Therefore, even if it is less than 0.1, it is not excluded from the range defined in the present invention.

次に、熱間圧延工程でのプロセスについて限定した理由を述べる。   Next, the reason why the process in the hot rolling process is limited will be described.

まず、鋼片を1100〜1300℃に再加熱する。再加熱温度を1100〜1300℃に限定したのは、H形鋼の熱間圧延において、オーステナイト域での加工を行うに十分な温度を確保するとともに、合金炭化物および合金炭窒化物を一旦溶体化して、析出強化を十分に発現させるためである。   First, a steel piece is reheated to 1100-1300 degreeC. The reheating temperature is limited to 1100 to 1300 ° C., in the hot rolling of H-section steel, while securing a sufficient temperature to perform processing in the austenite region, alloy carbide and alloy carbonitride are once solutionized. This is for fully expressing precipitation strengthening.

再加熱後、鋼片を熱間圧延するが、その工程は、基本的には、孔型圧延によるブレークダウン工程、エッジャー圧延機とユニバーサル圧延機から構成される中間ユニバーサル圧延機群による中間圧延工程、および、ユニバーサル圧延機による仕上げ圧延工程により構成される。なお、上記工程には、H形鋼のウェブ高を制御するスキューロール圧延工程も含まれる。   After reheating, the steel slab is hot-rolled. The process is basically a breakdown process by punching, an intermediate rolling process by an intermediate universal rolling mill group consisting of an edger rolling mill and a universal rolling mill. And a finish rolling process using a universal rolling mill. In addition, the said process also includes the skew roll rolling process which controls the web height of H-section steel.

上記圧延工程において、上記ブレークダウン工程にて、孔底中央に突起を有し、孔底幅の異なる孔型を複数配置した圧延ロールで、鋼片の幅方向に圧延加工を施し、より適正なフランジ幅およびウェブ高さを確保する。   In the rolling step, in the breakdown step, a rolling roll having a protrusion at the center of the hole bottom and a plurality of hole molds having different hole bottom widths is subjected to rolling in the width direction of the steel slab. Ensure flange width and web height.

続いて、上記中間圧延工程にて、エッジャー圧延機で、適正なフランジ幅を確保し、また、ユニバーサル圧延機で、適正なウェブ厚とフランジ厚を確保する。さらに、仕上げ圧延工程で、フランジ部の表面温度を860℃以上として、所定のH形鋼サイズに成形する。   Subsequently, in the intermediate rolling step, an appropriate flange width is secured with an edger rolling mill, and an appropriate web thickness and flange thickness are secured with a universal rolling mill. Further, in the finish rolling process, the surface temperature of the flange portion is set to 860 ° C. or higher to form a predetermined H-section steel size.

本発明では、例えば、ウェブ厚9mm、フランジ厚12mm、ウェブ高さ500mm、フランジ幅200mmのH形鋼から、ウェブ厚40mm、フランジ厚60mm、ウェブ高さ500mm、フランジ幅500mmの大型H形鋼を対象とするのが好ましい。   In the present invention, for example, a large H-section steel having a web thickness of 40 mm, a flange thickness of 60 mm, a web height of 500 mm, and a flange width of 500 mm is selected from an H-section steel having a web thickness of 9 mm, a flange thickness of 12 mm, a web height of 500 mm, and a flange width of 200 mm. It is preferable to be a target.

再加熱後の熱間圧延においては、圧延中、H形鋼のフランジ部表面を700℃以下にまで水冷し、復熱過程で圧延する水冷・圧延サイクルを1回以上行うことが好ましい。   In the hot rolling after reheating, it is preferable to perform one or more water-cooling / rolling cycles in which the surface of the flange portion of the H-shaped steel is water-cooled to 700 ° C. or lower during rolling and rolled in the reheating process.

前述したように、H形鋼の形状に起因して、ウェブよりも、フィレットおよびフランジが高温となるので、この温度の不均一を軽減するため、圧延工程において、上記水冷・圧延サイクルを1回以上行う。なお、上記水冷・圧延サイクルは、H形鋼のサイズ、圧延パス回数に併せて、1回以上適宜の回数実施するのが好ましい。   As described above, the fillet and the flange are hotter than the web due to the shape of the H-section steel. Therefore, in order to reduce this temperature non-uniformity, the water cooling / rolling cycle is performed once in the rolling process. Do it above. The water-cooling / rolling cycle is preferably carried out one or more times in accordance with the size of the H-section steel and the number of rolling passes.

本発明において、熱間圧延の終了後は、放冷するか、または、加速冷却後、放冷するのが好ましい。この冷却過程で、ミクロ組織を細粒化して、H形鋼の常温強度、靭性および高温強度を高めることができる。   In the present invention, it is preferable to cool after completion of hot rolling, or to cool after accelerated cooling. In this cooling process, the microstructure can be refined to increase the normal temperature strength, toughness and high temperature strength of the H-section steel.

放冷前に、加速冷却を行う場合、600℃までの平均冷却速度が0.5〜5.0℃/sとなる加速冷却を行うことが、ミクロ組織をより微細化する点で好ましい。   When performing accelerated cooling before standing to cool, it is preferable to perform accelerated cooling with an average cooling rate up to 600 ° C. of 0.5 to 5.0 ° C./s in terms of further miniaturizing the microstructure.

本発明においては、上記冷却工程を経て、フランジ部の常温引張強度が400MPa級で、600℃での0.2%耐力が157MPa以上、かつ、0℃シャルピー衝撃吸収エネルギーが100J以上の機械的性質を有する耐火性に優れたH形鋼、および、フランジ部の常温引張強度が490MPa級で、600℃での0.2%耐力が217MPa以上、かつ、0℃シャルピー衝撃吸収エネルギーが100J以上の機械的性質を有する耐火性に優れたH形鋼を製造することができる。   In the present invention, after the cooling step, mechanical properties of the normal temperature tensile strength of the flange portion of 400 MPa class, 0.2% proof stress at 600 ° C. of 157 MPa or more, and 0 ° C. Charpy impact absorption energy of 100 J or more. H-shaped steel having excellent fire resistance, and a machine having a flange portion having a normal temperature tensile strength of 490 MPa class, a 0.2% proof stress at 600 ° C. of 217 MPa or more, and a 0 ° C. Charpy impact absorption energy of 100 J or more H-shaped steel having excellent properties and fire resistance can be produced.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性および効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

表1に示す成分組成を有し、かつ、平衡計算によって600℃および300℃での合金炭化物および合金炭窒化物の析出モル分率をそれぞれ求めて試作した鋼(発明鋼と比較鋼)を転炉で溶製し、連続鋳造により、240〜300mm厚のスラブ鋼片を鋳造した。   The steels (invention steel and comparative steel) that had the component compositions shown in Table 1 and were obtained by respectively determining the precipitation mole fractions of alloy carbide and alloy carbonitride at 600 ° C. and 300 ° C. by equilibrium calculation were converted. The slab steel pieces having a thickness of 240 to 300 mm were cast by melting in a furnace and continuously casting.

表中、「tr」は、トレース(=分析しても検出不可能か、もしくは不可避不純物レベル)を意味する。   In the table, “tr” means a trace (= not detectable even if analyzed, or unavoidable impurity level).

Figure 2006063442
Figure 2006063442

比較鋼とした試作鋼a〜eについて、aは、本発明の要件である600℃での合金炭化物および合金炭窒化物の合計析出モル分率が0.2%以上を満たしていないものであり、a〜eは、(300℃での合金炭化物および合金炭窒化物の合計析出モル分率)/(600℃での合金炭化物および合金炭窒化物の合計析出モル分率)で求める比が4.0以下とした要件を満たしていないものである。   For the trial steels a to e used as comparative steels, a is that the total precipitation molar fraction of alloy carbide and alloy carbonitride at 600 ° C., which is a requirement of the present invention, does not satisfy 0.2% or more. , A to e have a ratio obtained by (total precipitation mole fraction of alloy carbide and alloy carbonitride at 300 ° C.) / (Total precipitation mole fraction of alloy carbide and alloy carbonitride at 600 ° C.). It does not meet the requirement of 0.0 or less.

上記鋼片を1100〜1300℃に再加熱した後、孔型圧延によるブレークダウン工程、エッジャー圧延機とユニバーサル圧延機から構成される中間ユニバーサル圧延機群による中間圧延工程、および、ユニバーサル圧延機による仕上げ圧延工程により構成される熱間圧延工程に供し、所定サイズのH形鋼を製造した。   After the steel slab is reheated to 1100-1300 ° C., a breakdown process by hole rolling, an intermediate rolling process by an intermediate universal rolling mill group consisting of an edger rolling mill and a universal rolling mill, and finishing by a universal rolling mill It used for the hot rolling process comprised by a rolling process, and manufactured the H-shaped steel of a predetermined size.

なお、上記熱間圧延工程においては、スキューロール圧延工程により、H形鋼のウェブ高を、適宜制御した。   In the hot rolling process, the web height of the H-section steel was appropriately controlled by the skew roll rolling process.

上記H型鋼は、ウェブ厚9mm、フランジ厚12mm、ウェブ高さ500mm、フランジ幅200mmから、ウェブ厚40mm、フランジ厚60mm、ウェブ高さ500mm、フランジ幅500mmまでのサイズ範囲で製造した。   The H-shaped steel was manufactured in a size range from a web thickness of 9 mm, a flange thickness of 12 mm, a web height of 500 mm, and a flange width of 200 mm to a web thickness of 40 mm, a flange thickness of 60 mm, a web height of 500 mm, and a flange width of 500 mm.

製造したH形鋼の機械的特性は、図1に示すように、フランジにおける板厚t2の中心部(1/2t2)でのフランジ幅全長(B)の1/4および1/2幅(それぞれ1/4B、1/2B)、および、ウェブにおける板厚中心部でのウェブ高さの1/2H)の3箇所から採集した試験片について、各種試験を実施して求めた。 As shown in FIG. 1, the mechanical properties of the manufactured H-section steel are ¼ and ½ width of the flange width overall length (B) at the center portion (½ t 2 ) of the plate thickness t 2 in the flange. The test pieces collected from three locations (1 / 4B and 1 / 2B, respectively) and 1 / 2H of the web height at the center of the thickness of the web were obtained by performing various tests.

上記フランジ1/4部(1/4B)における機械的性質は、H形鋼のフランジ部における機械的特性を代表できるが、今回は常温でのウェブにおける機械的特性が強化され過ぎるという問題点が解消されたことを確認するために、ウェブの機械的特性と3箇所の平均値とを調査した。3箇所の機械的特性の平均値でウェブの機械的特性を除した比を調査した。なお、測定はC断面で行った。   The mechanical properties of the flange 1/4 part (1 / 4B) can represent the mechanical characteristics of the flange part of the H-shaped steel, but this time there is a problem that the mechanical characteristics of the web at room temperature are excessively strengthened. In order to confirm that it was eliminated, the mechanical properties of the web and the average value of the three locations were investigated. The ratio of the mechanical properties of the web divided by the average value of the mechanical properties at three locations was investigated. The measurement was performed on the C cross section.

表2に、上記試験の結果得られた、常温降伏強度、常温引張強度、常温降伏比、シャルピー試験での0℃衝撃吸収エネルギー値(3点平均値)、600℃での0.2%耐力を示す。なお、シャルピー試験は、H形鋼断面部位の中で最も低い値となるフランジ1/2B部(フィレット)での測定値を採用した。   Table 2 shows the room temperature yield strength, room temperature tensile strength, room temperature yield ratio, 0 ° C impact absorption energy value (3-point average value) in Charpy test, and 0.2% yield strength at 600 ° C obtained as a result of the above test. Indicates. In addition, the Charpy test employ | adopted the measured value in the flange 1 / 2B part (fillet) used as the lowest value in a H-section steel cross-section part.

600℃での0.2%耐力はH形鋼の強度を代表する部位として、フランジ1/4B部での測定値を採用した。鋼に要求される強度クラスとしては2種類ある。   For the 0.2% proof stress at 600 ° C., the measured value at the flange 1 / 4B portion was adopted as a portion representing the strength of the H-shaped steel. There are two types of strength classes required for steel.

1つは、SN400級と規定される常温引張強度が400MPaクラス(今回は一例として、400〜520MPaレベル)のものであり、もう1つは、SN490級(今回は一例として、500〜611MPaレベル)、常温引張強度が490MPaクラスのものであり、これらを分けて表記した。また、3箇所の機械的特性の平均値でウェブの機械的特性を除した比を併記した。   One is a 400 MPa class normal temperature tensile strength defined as SN 400 class (this time, as an example, 400 to 520 MPa level), and the other is SN 490 class (as an example, 500 to 611 MPa level). The room temperature tensile strength is of the 490 MPa class, and these are shown separately. Moreover, the ratio which remove | divided the mechanical characteristic of the web by the average value of the mechanical characteristic of three places was written together.

Figure 2006063442
Figure 2006063442

発明鋼は、本発明で規定する成分組成および合金炭化物および合金炭窒化物の析出モル分率に関する要件を満たし、かつ、製造条件によって降伏強度、引張強度、0℃衝撃吸収エネルギーなど、特に、フランジ部の(600℃での0.2%耐力)/(常温での降伏強度)で求められる強度比と、常温での降伏比について、目標機械特性および高温(600℃)での機械特性を満足している。   The invention steel satisfies the requirements regarding the component composition and the precipitation mole fraction of alloy carbides and alloy carbonitrides defined in the present invention, and, depending on the production conditions, yield strength, tensile strength, 0 ° C. impact absorption energy, etc. Satisfying the target mechanical properties and mechanical properties at high temperature (600 ° C) with respect to the strength ratio obtained by (0.2% yield strength at 600 ° C) / (yield strength at normal temperature) and the yield ratio at normal temperature is doing.

発明鋼のうち、No.3およびNo.6について、合金炭化物および合金炭窒化物の析出モル分率の総量の温度推移を、図4(a)および図4(b)に示す。   Among the inventive steels, No. 3 and no. FIG. 4 (a) and FIG. 4 (b) show the temperature transition of the total amount of precipitation mole fraction of alloy carbide and alloy carbonitride for No. 6.

合金炭化物および合金炭窒化物の合計析出モル分率の300℃と600℃との比を4.0以下に抑える手法として、300℃での合金炭化物および合金炭窒化物の合計析出モル分率を抑えるアプローチと、600℃での合金炭化物および合金炭窒化物の合計析出モル分率を大きくするアプローチとを示す。   As a method of suppressing the ratio of the total precipitation mole fraction of alloy carbide and alloy carbonitride to 300 ° C. and 600 ° C. to 4.0 or less, the total precipitation mole fraction of alloy carbide and alloy carbonitride at 300 ° C. An approach to suppress and an approach to increase the total precipitation mole fraction of alloy carbide and alloy carbonitride at 600 ° C. are shown.

一方、比較鋼は、本発明で既定する成分条件は満足しているものの、合金炭化物および合金炭窒化物の析出モル分率に関する要件を満たしていないため目標とする常温機械特性および高温機械特性のうちの1つまたは2つ以上を満足していないことが判る。   On the other hand, although the comparative steel satisfies the component conditions specified in the present invention, it does not meet the requirements for the precipitation molar fraction of alloy carbide and alloy carbonitride, so it has the target normal temperature mechanical properties and high temperature mechanical properties. It turns out that one or more of them are not satisfied.

比較鋼a、c、dについて、高温(ここでは600℃)での0.2%耐力がSN400級のaは、157MPa以上を目標としているにも関わらず、157MPa未満であり、SN490級の比較鋼cおよびdは、217MPaを目標としているにもかかわらず、206MPaと209MPaと未達である。   For comparative steels a, c, and d, 0.2% proof stress at a high temperature (here, 600 ° C.) of SN400 class a is less than 157 MPa even though the target is 157 MPa or more. Although steels c and d are targeted at 217 MPa, they do not reach 206 MPa and 209 MPa.

また、比較鋼bは、SN400級の目標引張り強度が510MPa以下であるのに対して544MPaと、常温で大きくなり過ぎてしまっている。   Further, the comparative steel b has an SN400 class target tensile strength of 510 MPa or less, which is 544 MPa, which is too large at room temperature.

比較鋼eは、SN490級の目標値610MPaを超えてしまっている。さらに、100J以上を目標とする0℃衝撃吸収エネルギーが不足している。   The comparative steel e has exceeded the SN490 grade target value of 610 MPa. Furthermore, 0 ° C. shock absorption energy targeting 100 J or more is insufficient.

前述したように、本発明によれば、H形鋼の製造過程で、適正なNbとMoの添加量バランスの下で、NbおよびMoを主体とした合金炭化物および合金炭窒化物を形成し、所要の高温強度および常温での機械的特性を有する耐火性に優れたH形鋼を提供することができる。   As described above, according to the present invention, an alloy carbide and an alloy carbonitride mainly composed of Nb and Mo are formed in an H-section steel manufacturing process under an appropriate balance of the amount of Nb and Mo added. It is possible to provide an H-shaped steel having a required high temperature strength and mechanical properties at room temperature and excellent in fire resistance.

したがって、上記H形鋼は、鋼構造物の構造材として有用であり、本発明は、産業上の利用可能性の大きいものである。   Therefore, the above H-section steel is useful as a structural material for steel structures, and the present invention has great industrial applicability.

H形鋼において、ミクロ組織および機械的特性を求めるための試験片を採取する位置(フランジにおける板厚t2の中心部(1/2t2)でのフランジ幅全長(B)の1/4および1/2幅(それぞれ1/4B、1/2B)、および、ウェブにおける板厚中心部でのウェブ高さの1/2H)を示す図である。In the H-section steel, the position at which a specimen for obtaining the microstructure and mechanical properties is taken (1/4 and 1/1 of the flange width overall length (B) at the center (1 / 2t2) of the thickness t2 of the flange. It is a figure which shows 2 width (1 / 4B, 1 / 2B, respectively) and 1 / 2H of the web height in the plate | board thickness center part in a web. Nbを0.02%含有する本発明の一例を示す図である。600℃での合金炭化物および合金炭窒化物の合計析出モル分率は、およそ0.54%となっており、600℃と300℃とでの合金炭化物および合金炭窒化物の合計析出モル分率比は2.37程度である。It is a figure which shows an example of this invention containing 0.02% of Nb. The total precipitation mole fraction of alloy carbide and alloy carbonitride at 600 ° C. is approximately 0.54%, and the total precipitation mole fraction of alloy carbide and alloy carbonitride at 600 ° C. and 300 ° C. The ratio is about 2.37. Nbを0.06%含有する本発明の一例を示す図である。600℃での合金炭化物および合金炭窒化物の合計析出モル分率は0.41%となっており、600℃と300℃とでの合金炭化物および合金炭窒化物の合計析出モル分率比は2.78程度である。なお、VおよびNbも一部固溶する合金炭化物であるM2C型の析出モル分率の温度推移(%)と、VおよびNbを主成分とし、Moも一部固溶する合金炭窒化物であるMCN型の析出モル分率の温度推移(%)と、これら2つを合計した「total」の析出モル分率の温度推移(%)の3種類について、折れ線で図示する。It is a figure which shows an example of this invention containing 0.06% of Nb. The total precipitation mole fraction of alloy carbide and alloy carbonitride at 600 ° C. is 0.41%, and the total precipitation mole fraction ratio of alloy carbide and alloy carbonitride at 600 ° C. and 300 ° C. is It is about 2.78. The temperature transition (%) of the precipitation mole fraction of M 2 C type, which is an alloy carbide in which V and Nb are also partly dissolved, and alloy carbonitriding in which V and Nb are the main components and Mo is also partly dissolved. Three types of temperature transition (%) of the precipitation mole fraction of the MCN type, which is a product, and the temperature transition (%) of the “total” precipitation mole fraction, which is the sum of these two, are illustrated by broken lines. 従来技術を示す図である。M2C型とMCN型と、それらを合計した「total」の3種類について、折れ線で図示する。MCNの温度依存性がM2Cに比べて低い一例を示す。600℃での合金炭化物および合金炭窒化物の合計析出モル分率、および600℃と300℃とでの合金炭化物および合金炭窒化物の合計析出モル分率比とが、本発明の範囲を外れている。It is a figure which shows a prior art. Three types of M 2 C type, MCN type, and “total” obtained by adding them are shown by broken lines. An example is shown in which the temperature dependency of MCN is lower than that of M 2 C. The total precipitation mole fraction of alloy carbide and alloy carbonitride at 600 ° C. and the total precipitation mole fraction ratio of alloy carbide and alloy carbonitride at 600 ° C. and 300 ° C. are outside the scope of the present invention. ing. 従来技術を示す図である。M2C型とMCN型と、それらを合計した「total」の3種類について、折れ線で図示する。600℃での合金炭化物および合金炭窒化物の合計析出モル分率は本発明の範囲内であるが、600℃と300℃とでの合金炭化物および合金炭窒化物の合計析出モル分率比とが、本発明の範囲を外れている。It is a figure which shows a prior art. Three types of M 2 C type, MCN type, and “total” obtained by adding them are shown by broken lines. The total precipitation mole fraction of alloy carbide and alloy carbonitride at 600 ° C. is within the scope of the present invention, but the total precipitation mole fraction ratio of alloy carbide and alloy carbonitride at 600 ° C. and 300 ° C. Is outside the scope of the present invention. 本発明の実施例の発明例No.3を示す図である。Invention Example No. of the embodiment of the present invention. FIG. 本発明の実施例の発明例No.6を示す図である。Invention Example No. of the embodiment of the present invention. FIG.

符号の説明Explanation of symbols

1 H形鋼
2 フランジ
3 ウェブ
4 フィレット部
B フランジ幅
H ウェブの高さ
t1 ウェブの板厚
t2 フランジの板厚
1 H-section steel 2 Flange 3 Web 4 Fillet part B Flange width H Web height t1 Web thickness t2 Flange thickness

Claims (6)

質量%で、本質的に、
C :0.03〜0.15%、
Mo:0.1〜0.6%、
Nb≦0.06%、
N :0.002〜0.012%
を含む耐火性に優れたH形鋼であって、
(x)600℃での合金炭化物および合金炭窒化物の合計析出モル分率が0.2%以上、かつ、
(y)合金炭化物および合金炭窒化物の合計析出モル分率比=(300℃での合金炭化物および合金炭窒化物の合計析出モル分率)/(600℃での合金炭化物および合金炭窒化物の合計析出モル分率)が4.0以下
であることを特徴とする耐火性に優れたH形鋼。
In mass%, essentially
C: 0.03-0.15%,
Mo: 0.1 to 0.6%,
Nb ≦ 0.06%,
N: 0.002 to 0.012%
H-shaped steel with excellent fire resistance, including
(X) the total precipitation mole fraction of alloy carbide and alloy carbonitride at 600 ° C. is 0.2% or more, and
(Y) Total precipitation mole fraction ratio of alloy carbide and alloy carbonitride = (total precipitation mole fraction of alloy carbide and alloy carbonitride at 300 ° C.) / (Alloy carbide and alloy carbonitride at 600 ° C. H-shaped steel excellent in fire resistance, characterized in that the total precipitation molar fraction of) is 4.0 or less.
さらに、質量%で、
Si:0.05〜0.50%、
Mn:0.4〜1.6%、
Nb:0.02〜0.06%、
Al≦0.01%
を含む耐火性に優れたH形鋼であって、
(z1)フランジ部の常温引張強度が400MPa以上、
(z2)600℃での0.2%耐力が157MPa以上、かつ、
(z3)0℃でのシャルピー衝撃吸収エネルギーが100J以上
であることを特徴とする請求項1に記載の耐火性に優れたH形鋼。
Furthermore, in mass%,
Si: 0.05 to 0.50%,
Mn: 0.4 to 1.6%,
Nb: 0.02 to 0.06%,
Al ≦ 0.01%
H-shaped steel with excellent fire resistance, including
(Z1) The normal temperature tensile strength of the flange portion is 400 MPa or more,
(Z2) 0.2% yield strength at 600 ° C. is 157 MPa or more, and
(Z3) The H-section steel excellent in fire resistance according to claim 1, wherein Charpy impact absorption energy at 0 ° C is 100 J or more.
さらに、質量%で、
V ≦0.20%、
Ti≦0.02%、
Cr≦0.7%、
Ni≦1.0%、
Cu≦1.0%、
のうちの1種または2種以上を含むことを特徴とする請求項1または2に記載の耐火性に優れたH形鋼。
Furthermore, in mass%,
V ≦ 0.20%,
Ti ≦ 0.02%,
Cr ≦ 0.7%,
Ni ≦ 1.0%,
Cu ≦ 1.0%,
1 type or 2 types or more of these are included, The H-section steel excellent in fire resistance of Claim 1 or 2 characterized by the above-mentioned.
請求項1〜3のいずれか1項に記載の成分組成を有する鋼片を、1100〜1300℃に再加熱した後、熱間圧延を開始し、フランジ部の表面温度を860℃以上として仕上げ、次いで、放冷するか、または、加速冷却後、放冷することを特徴とする耐火性に優れたH形鋼の製造方法。   After the steel slab having the component composition according to any one of claims 1 to 3 is reheated to 1100 to 1300 ° C, hot rolling is started, and the surface temperature of the flange portion is finished at 860 ° C or higher, Next, the method for producing an H-shaped steel excellent in fire resistance, wherein the method is allowed to cool or is cooled after accelerated cooling. 前記熱間圧延工程において、H形鋼のフランジ部の表面を700℃以下にまで水冷し、復熱過程で圧延する水冷・圧延サイクルを1回以上行うことを特徴とする請求項4に記載の耐火性に優れたH形鋼の製造方法。   The said hot rolling process WHEREIN: The surface of the flange part of H-section steel is water-cooled to 700 degrees C or less, and the water-cooling and rolling cycle which rolls in a recuperation process is performed 1 time or more. A method for producing H-shaped steel with excellent fire resistance. 前記加速冷却において、600℃までの平均冷却速度を0.5〜5.0℃/sとなるように加速冷却を行うことを特徴とする請求項5に記載の耐火性に優れたH形鋼の製造方法。   The H-shaped steel excellent in fire resistance according to claim 5, wherein the accelerated cooling is performed so that an average cooling rate up to 600 ° C is 0.5 to 5.0 ° C / s. Manufacturing method.
JP2005207097A 2004-07-28 2005-07-15 H-section steel excellent in fire resistance and method for producing the same Expired - Fee Related JP4954507B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005207097A JP4954507B2 (en) 2004-07-28 2005-07-15 H-section steel excellent in fire resistance and method for producing the same
TW094125099A TW200609362A (en) 2004-07-28 2005-07-25 Shaped steel excellent in fire resistance and producing method therefor
PCT/JP2005/013998 WO2006011617A1 (en) 2004-07-28 2005-07-26 Shaped steel excellent in fire resistance and producing method therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004220623 2004-07-28
JP2004220623 2004-07-28
JP2005207097A JP4954507B2 (en) 2004-07-28 2005-07-15 H-section steel excellent in fire resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006063442A true JP2006063442A (en) 2006-03-09
JP4954507B2 JP4954507B2 (en) 2012-06-20

Family

ID=34973109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005207097A Expired - Fee Related JP4954507B2 (en) 2004-07-28 2005-07-15 H-section steel excellent in fire resistance and method for producing the same

Country Status (3)

Country Link
JP (1) JP4954507B2 (en)
TW (1) TW200609362A (en)
WO (1) WO2006011617A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044027A (en) * 2011-08-25 2013-03-04 Jfe Steel Corp Fire-resistant steel material and its production method
JP2013072118A (en) * 2011-09-28 2013-04-22 Jfe Steel Corp Steel excellent in high-temperature strength and method for production thereof
JP2017121655A (en) * 2016-01-07 2017-07-13 新日鐵住金株式会社 Method for manufacturing h-section steel and h-section steel product
JPWO2017119195A1 (en) * 2016-01-07 2018-10-04 新日鐵住金株式会社 H-section steel manufacturing method and H-section steel products

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103042367B (en) * 2013-01-28 2015-03-25 新兴铸管股份有限公司 Production method of metallurgical composite channel steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277523A (en) * 1988-06-13 1990-03-16 Nippon Steel Corp Production of building low yield ratio steel having excellent fire resistance and building steel material using same steel
JP2000054060A (en) * 1998-07-31 2000-02-22 Nippon Steel Corp Rolled shape steel with high strength and high toughness, and its production

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1320110C (en) * 1988-06-13 1993-07-13 Hiroshi Tamehiro Process for manufacturing building construction steel having excellent fire resistance and low yield ratio, and construction steel material
JP2661845B2 (en) * 1992-09-24 1997-10-08 新日本製鐵株式会社 Manufacturing method of oxide-containing refractory section steel by controlled rolling
WO2001075182A1 (en) * 2000-04-04 2001-10-11 Nippon Steel Corporation Rolled h-shaped steel having uniform microstructure and uniform mechanical properties and method for producing the same
JP2003096534A (en) * 2001-07-19 2003-04-03 Mitsubishi Heavy Ind Ltd High strength heat resistant steel, method of producing high strength heat resistant steel, and method of producing high strength heat resistant tube member
KR100630402B1 (en) * 2002-03-29 2006-10-02 신닛뽄세이테쯔 카부시키카이샤 High tensile steel excellent in high temperature strength and method for production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277523A (en) * 1988-06-13 1990-03-16 Nippon Steel Corp Production of building low yield ratio steel having excellent fire resistance and building steel material using same steel
JP2000054060A (en) * 1998-07-31 2000-02-22 Nippon Steel Corp Rolled shape steel with high strength and high toughness, and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044027A (en) * 2011-08-25 2013-03-04 Jfe Steel Corp Fire-resistant steel material and its production method
JP2013072118A (en) * 2011-09-28 2013-04-22 Jfe Steel Corp Steel excellent in high-temperature strength and method for production thereof
JP2017121655A (en) * 2016-01-07 2017-07-13 新日鐵住金株式会社 Method for manufacturing h-section steel and h-section steel product
JPWO2017119195A1 (en) * 2016-01-07 2018-10-04 新日鐵住金株式会社 H-section steel manufacturing method and H-section steel products

Also Published As

Publication number Publication date
JP4954507B2 (en) 2012-06-20
WO2006011617A1 (en) 2006-02-02
TW200609362A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
JP7018510B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
WO2015093321A1 (en) H-shaped steel and method for producing same
WO2018117228A1 (en) H-steel and method for manufacturing same
JP6540764B2 (en) Wear-resistant steel plate and method of manufacturing the same
WO2011099408A1 (en) Production method for thick steel plate
JP6344191B2 (en) High-strength ultra-thick H-shaped steel with excellent toughness and method for producing the same
JP2017115200A (en) H-shaped steel for low temperature and production method therefor
JP6645107B2 (en) H-section steel and manufacturing method thereof
WO2018020660A1 (en) High-strength steel sheet
KR101185977B1 (en) Fire-resistant steel excellent in high-temperature strength, toughness and reheat embrittlement resistance and process for production of the same
JP2023506822A (en) High-hardness wear-resistant steel with excellent low-temperature impact toughness and method for producing the same
JP4954507B2 (en) H-section steel excellent in fire resistance and method for producing the same
JP5565102B2 (en) Steel for machine structure and manufacturing method thereof
JP4506985B2 (en) Extra heavy steel material and method for manufacturing the same
JP6589503B2 (en) H-section steel and its manufacturing method
JP2011157573A (en) High strength extra-thick wide flange shape having excellent toughness, and method for producing the same
WO2013084265A1 (en) Steel for mechanical structures and manufacturing method therefor
JP4786556B2 (en) Steel material excellent in fire resistance and method for producing the same
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP2006063443A (en) H-shaped steel excellent in fire resistance and production method therefor
JP2017186594A (en) H-shaped steel for low temperature and manufacturing method therefor
JP2008121121A (en) Fire-resistant steel excellent in high-temperature strength, toughness and reheat embrittlement resistance and production process for the same
JP3536752B2 (en) Thin-walled steel plate with excellent resistance to hydrogen-induced cracking and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R151 Written notification of patent or utility model registration

Ref document number: 4954507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees