JP4786556B2 - Steel material excellent in fire resistance and method for producing the same - Google Patents

Steel material excellent in fire resistance and method for producing the same Download PDF

Info

Publication number
JP4786556B2
JP4786556B2 JP2007003300A JP2007003300A JP4786556B2 JP 4786556 B2 JP4786556 B2 JP 4786556B2 JP 2007003300 A JP2007003300 A JP 2007003300A JP 2007003300 A JP2007003300 A JP 2007003300A JP 4786556 B2 JP4786556 B2 JP 4786556B2
Authority
JP
Japan
Prior art keywords
steel
rolling
strength
temperature
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007003300A
Other languages
Japanese (ja)
Other versions
JP2007224415A (en
Inventor
卓 吉田
裕史 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007003300A priority Critical patent/JP4786556B2/en
Publication of JP2007224415A publication Critical patent/JP2007224415A/en
Application granted granted Critical
Publication of JP4786556B2 publication Critical patent/JP4786556B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、建築構造用部材として用いられる、低降伏点比で、かつ靭性と耐火性に優れた鋼材、特にH形鋼(以降、耐火H形鋼と略記)およびその製造方法に関する。   The present invention relates to a steel material having a low yield point ratio and excellent toughness and fire resistance, particularly an H-section steel (hereinafter abbreviated as refractory H-section steel) and a method for producing the same.

従来、昭和62年3月制定の建設省(現 国土交通省)告示第332号に基づいて、高温設計強度を確保し、建築構造物に使用される鋼材の耐火被覆の不要化または低減を可能とする「新耐火設計法」に供される耐火鋼材が提供されている。   Previously, based on the Ministry of Construction (now Ministry of Land, Infrastructure, Transport and Tourism) Notification No. 332 established in March 1987, high temperature design strength can be secured, and fireproof coating of steel used for building structures can be made unnecessary or reduced. Refractory steel materials for use in the “New Fireproof Design Method” are provided.

このような動向に対応し、H形鋼についても、Mo系の炭化物の析出強化により600℃での強度を確保する技術、すなわち析出強化技術をベースとして高温域での強度および降伏比の確保、即ち、耐火性を確保した多くの先行技術が開示されている。   Corresponding to such trends, for H-section steel, a technology for securing strength at 600 ° C. by precipitation strengthening of Mo-based carbides, that is, securing strength and yield ratio in a high temperature region based on precipitation strengthening technology, That is, many prior arts that ensure fire resistance are disclosed.

これまでに、例えば特許文献1では、上述のMo系炭化物の析出強化技術による耐火H形形が提案されている。この特許文献1では、高温強度を確保するためにMo0.3%以上の添加が必須であり、Moが0.3%未満であれば、Mo系炭化物の析出量が不十分で、十分な高温強度が確保できないという知見が得られている。一方、Moは比較的高価な合金元素であり、経済性の観点からも、Mo無添加での耐火機能を安定的に有する合金成分での製造が求められていた。   So far, for example, Patent Document 1 has proposed a refractory H-shape by the aforementioned Mo-based carbide precipitation strengthening technique. In this Patent Document 1, it is essential to add Mo 0.3% or more in order to ensure high temperature strength. If Mo is less than 0.3%, the precipitation amount of Mo-based carbide is insufficient and sufficient high temperature is obtained. The knowledge that strength cannot be secured has been obtained. On the other hand, Mo is a relatively expensive alloy element, and from the viewpoint of economy, production with an alloy component that stably has a fireproof function without addition of Mo has been required.

特開平05−105947号公報JP 05-105947 A

本発明者らは、例えば特許文献1に開示されている耐火性に優れたH形鋼を製造していたが、以下の問題点を明らかにし、解消すべく改善を重ねた。   The inventors of the present invention, for example, manufactured an H-shaped steel having excellent fire resistance disclosed in Patent Document 1, but made the following problems clear and made improvements.

特許文献1のようにMo系炭化物を析出制御することにより、高温域での強度および降伏比を確保するためには、強度確保に必要なMo系炭化物を析出させるために充分な量のMoを添加する必要があるが、Moは比較的高価な合金元素であり、耐火鋼材を市場に普及させるには、経済性追求して、安価な成分系を見出す必要が生じていた。   In order to ensure the strength and yield ratio in the high temperature range by controlling the precipitation of Mo-based carbide as in Patent Document 1, a sufficient amount of Mo is required to precipitate the Mo-based carbide necessary for ensuring the strength. Although it is necessary to add, Mo is a relatively expensive alloy element, and in order to spread refractory steel materials to the market, it has been necessary to find an inexpensive component system in pursuit of economy.

更に、析出強化は高温域での強度および降伏比の確保、つまり、耐火性の確保には有効であるが、特許文献1で開示されているMo系炭化物は、主としてMo2Cであり、特許文献1の成分範囲においては、600〜650℃の温度範囲で、鋼中へ完全に固溶することが予測される。このような場合、鋼材強度に対する合金炭化物および合金炭窒化物の析出強化による効果は消失してしまう。また、Moは比較的希少な合金元素であり、省資源化および製造原価高回避の観点から、可能な限りMoを添加しない成分での同様な特性を発揮させる必要があった。   Further, precipitation strengthening is effective in ensuring strength and yield ratio in a high temperature range, that is, ensuring fire resistance. However, the Mo-based carbide disclosed in Patent Document 1 is mainly Mo2C. In the component range, the solid solution is expected to be completely dissolved in the steel in the temperature range of 600 to 650 ° C. In such a case, the effect of precipitation strengthening of the alloy carbide and the alloy carbonitride on the steel strength is lost. Further, Mo is a relatively rare alloy element, and from the viewpoint of saving resources and avoiding high manufacturing costs, it is necessary to exhibit similar characteristics with a component to which Mo is not added as much as possible.

また、析出強化の主たる制御要素は、合金炭化物および合金炭窒化物の析出量(以下「析出モル分率」で示す。)であり、これには温度依存性がある。温度依存性は、鋼中の炭素濃度や、合金炭化物および合金炭窒化物の種類などに起因する熱力学特性の影響を受ける。   The main control element for precipitation strengthening is the precipitation amount of alloy carbide and alloy carbonitride (hereinafter referred to as “precipitation molar fraction”), which has temperature dependency. The temperature dependence is affected by the thermodynamic characteristics resulting from the carbon concentration in the steel, the type of alloy carbide and alloy carbonitride, and the like.

炭素濃度の影響とは、炭窒化物を生成するMo、Ti、V、Nb、Cr等(合金元素)の濃度と比較して十分に多い場合には、温度低下に伴うフェライト中の固溶炭素濃度の低下に伴って、析出に寄与する炭素量が多くなるため、合金炭化物および合金炭窒化物の合計析出モル分率も多くなる。   The effect of the carbon concentration is that the solid solution carbon in the ferrite accompanying the temperature drop when the concentration is sufficiently higher than the concentration of Mo, Ti, V, Nb, Cr, etc. (alloy elements) that produce carbonitrides. As the concentration decreases, the amount of carbon contributing to precipitation increases, so the total precipitation mole fraction of alloy carbide and alloy carbonitride also increases.

この結果、温度低下幅が同一でも炭素濃度が多くて合金炭化物および合金炭窒化物の合計析出モル分率の増加幅が大きい場合、常温での強度および降伏比までも大きくなり過ぎていた。   As a result, even when the temperature drop width was the same, when the carbon concentration was high and the increase in the total precipitation mole fraction of the alloy carbide and alloy carbonitride was large, the strength and yield ratio at room temperature were too large.

Mo以外の析出物として、Ti、V、Nb、Cr等の合金炭化物および合金炭窒化物の析出強化、および、これらに加えてMn、Cr等による硫化物の微細析出制御による析出強化を検討した。析出物による析出強化は、材料製造時の再加熱工程で一旦溶体化されて、後続の熱間圧延工程での冷却過程で析出する合金炭化物および合金炭窒化物でなければ、析出強化に効果的に寄与しないから、合金炭化物および合金炭窒化物にとっては、熱力学特性が安定していることだけが望ましいことではなく、加熱温度において固溶する程度とする必要があるという考えに至った。   As precipitates other than Mo, precipitation strengthening of Ti, V, Nb, Cr and other alloy carbides and alloy carbonitrides, and in addition to these, precipitation strengthening by controlling fine precipitation of sulfides by Mn, Cr, etc. were studied. . Precipitation strengthening due to precipitates is effective for precipitation strengthening unless it is an alloy carbide and alloy carbonitride that are once solutionized in the reheating process during material production and then precipitated in the cooling process in the subsequent hot rolling process. Therefore, it has not been desirable for alloy carbides and alloy carbonitrides to have stable thermodynamic properties, but has led to the idea that they should be dissolved at heating temperature.

以上の課題について精査した結果、高温域および常温域での合金炭化物および合金炭窒化物の合計析出モル分率の変動幅を適切に制御する必要があるが、そのためには、具体的に、以下の項目を考慮して鋼の成分設計を行う必要があることを知見した。   As a result of examining the above problems, it is necessary to appropriately control the fluctuation range of the total precipitation molar fraction of the alloy carbide and the alloy carbonitride in the high temperature range and the normal temperature range. It was found that it was necessary to design the steel components in consideration of the above items.

即ち、
(i)常温域に至った時の、強度および降伏比の過剰な増大を抑制するため、常温域での合金炭化物および合金炭窒化物の合計析出モル分率を抑制する。
That is,
(I) In order to suppress an excessive increase in strength and yield ratio when reaching the normal temperature range, the total precipitation mole fraction of alloy carbide and alloy carbonitride in the normal temperature range is suppressed.

(ii)高温域での強度を確保するため、所定の高温域での所定量以上の合金炭化物および合金炭窒化物の合計析出モル分率を確保するのが良い。   (Ii) In order to ensure the strength in the high temperature region, it is preferable to ensure the total precipitation molar fraction of the alloy carbide and the alloy carbonitride in a predetermined amount or more in the predetermined high temperature region.

こうした観点を踏まえて、本発明者は合金炭化物および合金炭窒化物の設計を種々行った。析出量についてはTi、V、Nb、Cr等の合金炭化物および合金炭窒化物を構成する合金元素群と、CおよびNとの量的バランスで制御し、熱力学特性については、合金元素群の中で相互の量的バランスで制御するH形鋼を発明した。なお、本発明で対象とする”合金炭窒化物”とは、セメンタイトを除く合金炭化物、および合金炭窒化物の合計を意味する。   Based on this viewpoint, the present inventor has made various designs of alloy carbides and alloy carbonitrides. The amount of precipitation is controlled by the quantitative balance between the alloy elements that constitute alloy carbides and alloy carbonitrides such as Ti, V, Nb, and Cr, and C and N. The thermodynamic characteristics of the alloy elements are Invented the H-section steel which is controlled by mutual quantitative balance. In addition, the “alloy carbonitride” targeted in the present invention means the total of alloy carbide excluding cementite and alloy carbonitride.

具体的には、これまで耐火H形鋼の高温強度を確保するために必須とされていたMoを非添加とし、その代替としてV添加を基本としてV単独、あるいはV+Nb、V+Ti、V+Nb+Tiなどの複合添加により、高温安定性が高く、好ましい種類の合金炭窒化物の生成を制御できることを知見し、上記の課題を解決させることが有効なことを見出した。さらにMn、Crの添加量を最適化することにより、常温強度レベルで引張強度が400MPa超級から490MPa超級までの引張特性を有し、靭性が優れ、かつ600℃での耐火特性に優れた成分の組合せを見出した。   Specifically, Mo, which has been indispensable for securing the high temperature strength of the refractory H-shaped steel, is not added. Instead, V alone is basically used as an alternative, or V + Nb, V + Ti, It has been found that the combined addition of V + Nb + Ti and the like has high temperature stability and can control the formation of a preferred type of alloy carbonitride, and it has been found effective to solve the above problems. Furthermore, by optimizing the addition amount of Mn and Cr, the tensile strength of the component at a normal temperature strength level from 400 MPa class to 490 MPa class, excellent toughness, and excellent fire resistance at 600 ° C. A combination was found.

本発明は、上記知見に基づいてなされたもので、その要旨は、以下のとおりである。
(1)質量%で、C:0.03〜0.10%、Si:0.05〜0.50%、Mn:0.05〜1.3%、Al≦0.01%、V:0.15〜0.35%、Cr:1.5〜3%、N:0.002〜0.008%、S:0.003〜0.02%、P:0.0001〜0.1%、を含み残部鉄及び不可避的不物からなることを特徴とする耐火性に優れた鋼材。
)前記(1)に記載の成分を有する鋼片を再加熱した後、熱間圧延して鋼材を製造する方法であって、
(a)1100〜1300℃に再加熱後、熱間圧延を開始し、
(b)圧延終了後、
(c)放冷するか、または加速冷却後、放冷する
ことを特徴とする前記(1)に記載の耐火性に優れた鋼材の製造方法。
)鋼材の表面を700℃以下にまで水冷し、復熱過程で圧延する水冷・圧延サイクルを1回以上行うことを特徴とする(記載の耐火性に優れた鋼材の製造方法。
)圧延終了温度から600℃までの平均冷却速度が0.5〜5.0℃/sで加速冷却を行うことを特徴とする()又は()に記載の耐火性に優れた鋼材の製造方法。
)(1)に記載の成分を有する鋼片を再加熱した後、熱間圧延して鋼材を製造する方法であって、
(a)1100〜1300℃に再加熱後、熱間圧延を開始し、
(b)圧延終了温度を鋼材表面の温度で850℃以上とし、
(c)圧延終了後、800℃から500℃までの範囲の平均冷却速度を3〜15℃/sとして加速冷却し、停止温度を鋼材表面の温度で300〜550℃の範囲とし、その後放冷することを特徴とする(1)に記載の耐火性に優れた鋼材の製造方法。
This invention was made | formed based on the said knowledge, The summary is as follows.
(1) By mass%, C: 0.03 to 0.10%, Si: 0.05 to 0.50%, Mn: 0.05 to 1.3%, Al ≦ 0.01%, V: 0 .15-0.35%, Cr: 1.5-3%, N: 0.002-0.008%, S: 0.003-0.02%, P: 0.0001-0.1%, hints balance iron and unavoidable refractory excellent steel which is characterized by comprising a non-pure product.
( 2 ) A method for producing a steel material by re-heating a steel slab having the component described in (1 ), followed by hot rolling.
(A) After reheating to 1100-1300 ° C., hot rolling is started,
(B) After rolling,
(C) The method for producing a steel material having excellent fire resistance according to the above (1 ), wherein the steel material is allowed to cool or is cooled after accelerated cooling.
( 3 ) The method for producing a steel material having excellent fire resistance according to ( 2 ) , wherein the surface of the steel material is water-cooled to 700 ° C. or lower and a water-cooling / rolling cycle for rolling in the reheating process is performed once or more. .
( 4 ) Excellent fire resistance as described in ( 2 ) or ( 3 ), wherein accelerated cooling is performed at an average cooling rate of 0.5 to 5.0 ° C./s from the rolling end temperature to 600 ° C. Steel manufacturing method.
( 5 ) A method of manufacturing a steel material by re-heating a steel slab having the component according to (1 ), followed by hot rolling,
(A) After reheating to 1100-1300 ° C., hot rolling is started,
(B) The rolling end temperature is 850 ° C. or more at the steel surface temperature,
(C) After the rolling is completed, the average cooling rate in the range from 800 ° C. to 500 ° C. is accelerated to 3 to 15 ° C./s, the stop temperature is set to the range of 300 to 550 ° C. at the surface temperature of the steel material, and then allowed to cool. A method for producing a steel material having excellent fire resistance as described in (1 ) .

尚、本発明では、積極的にMoを添加しないが、不純物としてのMoを0.03%以下含有することを許容するものとする。   In the present invention, Mo is not actively added, but it is allowed to contain 0.03% or less of Mo as an impurity.

本発明によれば、所定の成分組成とした鋼片を、熱間圧延等の所定の製造工程を経ることにより、Moを無添加とし、適正なVの添加量バランスの下で、Vを主体とした合金炭化物および合金炭窒化物を形成し、さらに微細硫化物による析出強化等を適宜組み合わせることにより、所要の高温強度および常温での機械的特性を有する耐火性に優れた鋼材を提供すること、さらに耐火性に優れた鋼材及びH形鋼の製造方法を提供することができる。   According to the present invention, a steel slab having a predetermined component composition is subjected to a predetermined manufacturing process such as hot rolling, so that Mo is not added, and V is mainly contained under an appropriate V addition amount balance. To provide a steel material with excellent fire resistance that has the required high-temperature strength and mechanical properties at room temperature, by forming the alloy carbide and alloy carbonitride that have been used, and by appropriately combining precipitation strengthening with fine sulfides, etc. Further, it is possible to provide a steel material and a method for producing an H-shaped steel having excellent fire resistance.

まず、本発明において、圧延に供する鋼片の化学成分を限定した理由について説明する。なお、%は、質量%を意味する。   First, the reason why the chemical composition of the steel slab used for rolling is limited in the present invention will be described. In addition,% means the mass%.

Cは、鋼の強度を向上させる有効な成分として添加するが、0.03%未満では、構造用鋼として必要な強度が得られず、一方、0.10%を超える過剰の添加は、母材靭性、耐溶接割れ性、溶接熱影響部(HAZ)靭性等を著しく低下させる。なお、C濃度の限定範囲は、0.03〜0.08%が好ましい。   C is added as an effective component for improving the strength of the steel. However, if it is less than 0.03%, the strength required for the structural steel cannot be obtained. On the other hand, excessive addition exceeding 0.10% Material toughness, weld crack resistance, weld heat affected zone (HAZ) toughness, etc. are significantly reduced. The limited range of the C concentration is preferably 0.03 to 0.08%.

Siは、脱酸元素として機能することに加えて、母材の強度確保に必要な成分であるが、0.05%未満では、殆ど強度向上に寄与せず、一方、0.50%超では、HAZにおいて硬化組織である高炭素島状マルテンサイトを生成し、靭性を著しく損なう。したがって、Si濃度の限定範囲を0.05〜0.50%とした。好ましくは0.05〜0.20%とする。   In addition to functioning as a deoxidizing element, Si is a component necessary for ensuring the strength of the base material, but if it is less than 0.05%, it hardly contributes to strength improvement, while if it exceeds 0.50% , HAZ produces high carbon island martensite, which is a hardened structure, and significantly deteriorates toughness. Therefore, the limited range of the Si concentration is set to 0.05 to 0.50%. Preferably it is 0.05 to 0.20%.

Mnは、0.4%以下の添加量の場合は、Mn系硫化物(MnS)が微細化し、靭性向上、特に板幅方向の靭性が著しく向上することに加え、析出強化機構が効果的に発揮され、特に常温強度と比較して、高温域での強度低下を抑制する。さらにこの微細に析出するMnSはV系M(C、N)型炭窒化物の析出サイトとして機能し、析出強化にも有効に機能する。ただし、Mn量が0.05%を下回ると硫化物の生成が不十分で固溶S量が増加し、粒界脆化するため、鋼片割れ、熱間圧延時の鋼材割れを引き起こす。したがって、Mn濃度の限定範囲を0.05〜0.4%とした。好ましい下限は、0.1%以上である。   When Mn is added in an amount of 0.4% or less, the Mn-based sulfide (MnS) is refined and the toughness is improved, particularly the toughness in the sheet width direction is remarkably improved, and the precipitation strengthening mechanism is effective. Demonstrated and suppresses strength drop in high temperature range, especially compared to normal temperature strength. Further, this finely precipitated MnS functions as a precipitation site for V-based M (C, N) type carbonitrides and functions effectively for precipitation strengthening. However, if the amount of Mn is less than 0.05%, the generation of sulfide is insufficient and the amount of solute S increases and the grain boundary becomes brittle, which causes steel slab cracking and steel material cracking during hot rolling. Therefore, the limited range of the Mn concentration is set to 0.05 to 0.4%. A preferable lower limit is 0.1% or more.

Alは、強力な脱酸元素であるが、0.01%を超えて含有すると、Nと化合してAlNを析出させ、本発明の特徴である炭窒化物の析出量を低減させる。したがって、Al濃度の限定範囲を0.01%以下とする。一方、Alが0%でも本発明の効果を得ることができるので、Alの下限は0%を含むものとする。   Al is a strong deoxidizing element, but if it is contained in an amount exceeding 0.01%, it combines with N to precipitate AlN, thereby reducing the amount of precipitation of carbonitride that is a feature of the present invention. Therefore, the limited range of the Al concentration is set to 0.01% or less. On the other hand, since the effect of the present invention can be obtained even when Al is 0%, the lower limit of Al includes 0%.

Vは、炭窒化物を構成し、析出強化に寄与する合金元素である。Mo無添加条件でVの添加量を適正化させることにより、M(C、N)型炭窒化物の析出量、分布状態を制御する。また、前述した微細析出したMnS上に優先的に析出することにより、その析出強化機能は効果的に発揮される。このとき、CやNに対して当量程度のVを多量に添加することにより、低温域での析出量増加にともなう析出強化寄与の増大化を回避する。この低温域での過剰な析出を確実に抑制させるにはVを0.15%以上含有することが必要である。一方、Vを0.35%超添加すると、上記炭窒化物の析出量が過剰となり、母材靭性およびHAZ靭性を損なうことになる。したがって、V濃度は0.35%以下とする。従って、V濃度の限定範囲は0.15〜0.35%とする。   V is an alloy element that constitutes carbonitride and contributes to precipitation strengthening. By optimizing the addition amount of V under the Mo-free condition, the precipitation amount and distribution state of the M (C, N) type carbonitride are controlled. Moreover, the precipitation strengthening function is effectively exhibited by preferentially depositing on the finely precipitated MnS. At this time, by adding a large amount of V equivalent to C or N, an increase in the precipitation strengthening contribution accompanying an increase in the precipitation amount in the low temperature region is avoided. In order to reliably suppress excessive precipitation in this low temperature range, it is necessary to contain V by 0.15% or more. On the other hand, if V is added in excess of 0.35%, the amount of precipitation of the carbonitride becomes excessive, and the base metal toughness and the HAZ toughness are impaired. Therefore, the V concentration is set to 0.35% or less. Therefore, the limited range of the V concentration is 0.15 to 0.35%.

Crは炭化物および硫化物を生成させるのみならず、多量の含有で焼入れ性を向上させ、常温強度および高温強度を向上させる。1.5%未満のCr添加では、強度向上効果が十分に発揮できない。一方、3%を越える添加は靭性の低下をもたらす。以上から、Cr濃度の限定範囲は1.5〜3%とする。なお、好ましくは、1.7〜3%の範囲とする。   Cr not only generates carbides and sulfides, but also improves hardenability when contained in a large amount, and improves normal temperature strength and high temperature strength. If Cr is added in an amount of less than 1.5%, the strength improving effect cannot be sufficiently exhibited. On the other hand, addition exceeding 3% causes a decrease in toughness. From the above, the limited range of the Cr concentration is 1.5 to 3%. In addition, Preferably it is set as 1.7 to 3% of range.

Nは、炭窒化物を構成する重要な成分であり、0.002%未満では、析出量が不充分で、一方、0.008%超では、高温域で鋼中に固溶するNにより連続鋳造での鋼片割れの可能性が懸念される。したがって、N濃度の限定範囲を0.002〜0.008%とした。さらに連続鋳造での鋼片割れの可能性を抑制させるために、好ましくは、後述するTi,Nbのいずれか少なくとも1つが添加される場合は0.004〜0.008%、Ti,Nbのいずれも添加されない場合は0.002〜0.006%の範囲が好ましい。   N is an important component constituting carbonitride, and if it is less than 0.002%, the amount of precipitation is insufficient. On the other hand, if it exceeds 0.008%, it is continuously formed by N dissolved in the steel in a high temperature range. There is concern about the possibility of steel piece cracking during casting. Therefore, the limited range of the N concentration is set to 0.002 to 0.008%. Further, in order to suppress the possibility of steel piece cracking in continuous casting, preferably, when at least one of Ti and Nb described later is added, 0.004 to 0.008%, both Ti and Nb When not added, the range of 0.002 to 0.006% is preferable.

Sは、従来不可避不純物として鋼中に存在する元素として考えられてきたが、本発明ではMnおよびCrとの組合せにより、硫化物を微細に析出させ、靭性向上、分散強化による高温強度向上に機能させる事ができる。0.003%以下では硫化物の体積分率が低く、上述の効果は充分でない。また、0.02%を超える添加は硫化物が粗大化するため、硫化物微細化による上記の機械特性向上の効果は発揮されない。以上から、S濃度の限定範囲を0.003〜0.02%とした。硫化物の微細化効果をもっとも良く発揮させるには、0.005〜0.015%が好ましい。   S has conventionally been considered as an element present in steel as an inevitable impurity, but in the present invention, by combining with Mn and Cr, sulfide is finely precipitated and functions to improve toughness and high-temperature strength by dispersion strengthening. You can make it. If it is 0.003% or less, the volume fraction of sulfide is low, and the above effect is not sufficient. Further, if the addition exceeds 0.02%, the sulfide becomes coarse, so the above-mentioned effect of improving the mechanical properties due to the refinement of the sulfide is not exhibited. From the above, the limited range of the S concentration is set to 0.003 to 0.02%. 0.005 to 0.015% is preferable for best exhibiting the effect of refining sulfide.

Pは不可避不純物として鋼中に存在する元素であり、可能な限り低減することが望ましいが、0.0001%未満までの低減には、脱燐処理に要するコスト上昇が著しくなる。一方、0.1%を越える含有は、靭性を著しく低下させる。以上から、Pの含有範囲は0.0001〜0.1%とする。なお、好ましい範囲は0.001〜0.03%である。   P is an element present in steel as an unavoidable impurity, and it is desirable to reduce it as much as possible. However, for the reduction to less than 0.0001%, the cost increase required for the dephosphorization treatment becomes significant. On the other hand, if the content exceeds 0.1%, the toughness is remarkably lowered. From the above, the content range of P is set to 0.0001 to 0.1%. A preferred range is 0.001 to 0.03%.

次に、本発明において選択的に添加する合金元素の濃度範囲に係る限定理由について、説明する。   Next, the reason for limitation related to the concentration range of the alloy element selectively added in the present invention will be described.

Nbは、VやTiと同様に、M(C、N)型炭窒化物を構成し、析出強化に寄与する合金元素である。ただし、Nb添加量が0.04%を超える場合、熱間圧延前の加熱温度1100〜1300℃でも溶体化されない炭窒化物量が増加し、析出強化には寄与しない。   Nb, like V and Ti, is an alloy element that constitutes an M (C, N) type carbonitride and contributes to precipitation strengthening. However, when the Nb addition amount exceeds 0.04%, the amount of carbonitride that is not solutionized increases even at a heating temperature of 1100 to 1300 ° C. before hot rolling, and does not contribute to precipitation strengthening.

また、Nb添加量が0.005%に満たない場合、析出強化による強度向上が不十分であり、無添加と同等である。したがって、Nb濃度の限定範囲を0.005〜0.04%とすることが好ましい。   Moreover, when Nb addition amount is less than 0.005%, the strength improvement by precipitation strengthening is inadequate, and it is equivalent to no addition. Therefore, it is preferable that the limited range of the Nb concentration is 0.005 to 0.04%.

Tiは、NbやVと同様に、M(C、N)炭窒化物を構成し、析出強化に寄与する合金元素である。本発明におけるV添加、または、VとNbの複合添加により生成するM(C、N)型炭窒化物に固溶し、(V、Ti)(C、N)または(V、Ti、Nb)(C、N)を構成して、炭窒化物の熱安定性を変化させる。具体的には、0.005%以上のTi添加により、M(C、N)型炭窒化物の熱安定性を、高温域まで拡大する。ただし、Ti添加量が0.02%を超えると、熱間圧延前の加熱温度1100〜1300℃でも溶体化されない炭窒化物量が増加し、析出強化には寄与しない。したがって、Ti濃度の限定範囲を0.005〜0.02%とすることが好ましい。   Ti, like Nb and V, is an alloy element that constitutes M (C, N) carbonitride and contributes to precipitation strengthening. In the present invention, it is dissolved in M (C, N) type carbonitride produced by V addition or combined addition of V and Nb, and (V, Ti) (C, N) or (V, Ti, Nb) (C, N) is configured to change the thermal stability of the carbonitride. Specifically, the thermal stability of the M (C, N) type carbonitride is expanded to a high temperature region by adding 0.005% or more of Ti. However, if the Ti addition amount exceeds 0.02%, the amount of carbonitride that is not solutionized increases even at a heating temperature of 1100 to 1300 ° C. before hot rolling, and does not contribute to precipitation strengthening. Therefore, it is preferable that the limited range of the Ti concentration is 0.005 to 0.02%.

Niは、母材の靭性を高めるのに有効な合金元素である。ただし、1.0%超の添加は、成分コストを著しく上昇させるので、Ni濃度の限定範囲を1.0%以下とすることが好ましい。上記の効果を十分に得るためには、Niの下限は0.3%とすることが好ましい。   Ni is an alloy element effective for increasing the toughness of the base material. However, addition of more than 1.0% remarkably increases the component cost, so the Ni concentration limit range is preferably 1.0% or less. In order to sufficiently obtain the above effects, the lower limit of Ni is preferably set to 0.3%.

Cuは、母材の強化に有効な合金元素であるが、同時に焼入れ性を上昇させ、母材靭性およびHAZ靭性を損なう合金元素でもある。したがって、Cu濃度の上限は1.0%以下が好ましい。上記の効果を十分に得るためには、Cuの下限は0.3%とすることが好ましい。   Cu is an alloy element effective for strengthening the base material, but is also an alloy element that simultaneously increases the hardenability and impairs the base material toughness and the HAZ toughness. Therefore, the upper limit of the Cu concentration is preferably 1.0% or less. In order to sufficiently obtain the above effect, the lower limit of Cu is preferably set to 0.3%.

耐火性を確保するためには600℃での機械特性、特に0.2%耐力が重要である。常温の引張強度で400〜520MPa級の強度レベルの鋼材では157MPa以上、常温の引張強度で490〜611MPa級の強度レベルの鋼材では217MPa以上が必要である。また、十分な靭性を確保するためには、0℃でのシャルピー衝撃吸収エネルギーは100J以上必要である。   In order to ensure fire resistance, mechanical properties at 600 ° C., particularly 0.2% proof stress are important. 157 MPa or more is required for steel materials having a strength level of 400 to 520 MPa class at ordinary temperature and 217 MPa or more for steel materials having a strength level of 490 to 611 MPa class at ordinary temperature. Moreover, in order to ensure sufficient toughness, Charpy impact absorption energy at 0 ° C. is required to be 100 J or more.

合金元素群、CおよびNのバランスを変動させて圧延鋼材の機械特性を調べた結果、上述の成分範囲で上記の目標を実現できることが判った。   As a result of investigating the mechanical properties of the rolled steel material by changing the balance of the alloy element group, C and N, it was found that the above-mentioned target can be realized in the above-described component range.

次に、鋼材のうち、具体例として、H形鋼の熱間圧延工程での製造条件について、限定した理由を述べる。   Next, as a specific example of the steel material, the reason for limiting the manufacturing conditions in the hot rolling process of the H-section steel will be described.

まず、鋼片を1100〜1300℃に再加熱する。再加熱温度を1100〜1300℃に限定したのは、H形鋼の熱間圧延において、オーステナイト域での加工を行うに十分な温度を確保するとともに、合金炭化物および合金炭窒化物を一旦溶体化して、析出強化を十分に発現させるためである。   First, a steel piece is reheated to 1100-1300 degreeC. The reheating temperature is limited to 1100 to 1300 ° C., in the hot rolling of H-section steel, while securing a sufficient temperature to perform processing in the austenite region, alloy carbide and alloy carbonitride are once solutionized. This is for fully expressing precipitation strengthening.

再加熱後、鋼片を熱間圧延するが、その工程は、基本的には、孔型圧延によるブレークダウン工程、エッジャー圧延機とユニバーサル圧延機から構成される中間ユニバーサル圧延機群による中間圧延工程、および、ユニバーサル圧延機による仕上げ圧延工程により構成される。なお、上記工程には、H形鋼のウェブ高を制御するスキューロール圧延工程も含まれる。   After reheating, the steel slab is hot-rolled. The process is basically a breakdown process by punching, an intermediate rolling process by an intermediate universal rolling mill group consisting of an edger rolling mill and a universal rolling mill. And a finish rolling process using a universal rolling mill. In addition, the said process also includes the skew roll rolling process which controls the web height of H-section steel.

上記圧延工程において、上記ブレークダウン工程にて、孔底中央に突起を有し、孔底幅の異なる孔型を複数配置した圧延ロールで、鋼片の幅方向に圧延加工を施し、より適正なフランジ幅およびウェブ高さを確保する。   In the rolling step, in the breakdown step, a rolling roll having a protrusion at the center of the hole bottom and a plurality of hole molds having different hole bottom widths is subjected to rolling in the width direction of the steel slab. Ensure flange width and web height.

続いて、上記中間圧延工程にて、エッジャー圧延機で、適正なフランジ幅を確保し、また、ユニバーサル圧延機で、適正なウェブ厚とフランジ厚を確保する。さらに、仕上げ圧延工程で、フランジ部の表面温度を800℃以上に維持して、所定のH形鋼サイズに成形することが好ましい。   Subsequently, in the intermediate rolling step, an appropriate flange width is secured with an edger rolling mill, and an appropriate web thickness and flange thickness are secured with a universal rolling mill. Furthermore, it is preferable that the surface temperature of the flange portion is maintained at 800 ° C. or higher in the finish rolling process, and is formed into a predetermined H-section steel size.

上記の本発明の製造方法は、例えば、ウェブ厚9mm、フランジ厚12mm、ウェブ高さ500mm、フランジ幅200mmのH形鋼から、ウェブ厚40mm、フランジ厚60mm、ウェブ高さ500mm、フランジ幅500mmの大型H形鋼への適用に好適である。なお、鋼材が厚鋼板である場合は、鋼片の再加熱温度を1100〜1300℃として、通常の厚板圧延を行った後、放冷するか、または加速冷却後、放冷すれば良い。また、仕上温度は鋼板の表面温度で800℃以上とすることが好ましい。   The manufacturing method of the present invention described above includes, for example, an H-shaped steel having a web thickness of 9 mm, a flange thickness of 12 mm, a web height of 500 mm, and a flange width of 200 mm, a web thickness of 40 mm, a flange thickness of 60 mm, a web height of 500 mm, and a flange width of 500 mm. Suitable for application to large H-section steel. When the steel material is a thick steel plate, the reheating temperature of the steel slab is set to 1100 to 1300 ° C., and after carrying out normal thick plate rolling, it is allowed to cool, or after accelerated cooling, it is allowed to cool. Moreover, it is preferable that finishing temperature shall be 800 degreeC or more with the surface temperature of a steel plate.

再加熱後の熱間圧延においては、圧延中、H形鋼のフランジ部表面を700℃以下にまで水冷し、復熱過程で圧延する水冷・圧延サイクルを1回以上行うことが好ましい。   In the hot rolling after reheating, it is preferable to perform one or more water-cooling / rolling cycles in which the surface of the flange portion of the H-shaped steel is water-cooled to 700 ° C. or lower during rolling and rolled in the reheating process.

前述したように、H形鋼の形状に起因して、ウェブよりも、フィレットおよびフランジが高温となるので、この温度の不均一を軽減するため、圧延工程において、上記水冷・圧延サイクルを1回以上行うことが好ましい。なお、上記水冷・圧延サイクルは、H形鋼のサイズ、圧延パス回数に併せて、1回以上適宜の回数実施するのが好ましい。なお、鋼材が厚鋼板である場合も、鋼板の表面を700℃以下に水冷し、複熱過程で圧延しても良い。   As described above, the fillet and the flange are hotter than the web due to the shape of the H-section steel. Therefore, in order to reduce this temperature non-uniformity, the water cooling / rolling cycle is performed once in the rolling process. It is preferable to perform the above. The water-cooling / rolling cycle is preferably carried out one or more times in accordance with the size of the H-section steel and the number of rolling passes. Even when the steel material is a thick steel plate, the surface of the steel plate may be water-cooled to 700 ° C. or less and rolled in a double heat process.

本発明において、熱間圧延の終了後は、放冷すれば良く、または、加速冷却後、放冷するのが好ましい。この冷却過程で、ミクロ組織を細粒化して、鋼材、特にH形鋼の常温強度、靭性および高温強度を高めることができる。   In the present invention, after hot rolling is finished, it may be allowed to cool, or after accelerated cooling, it is preferably allowed to cool. In this cooling process, the microstructure can be refined to increase the normal temperature strength, toughness, and high temperature strength of steel materials, particularly H-shaped steel.

放冷前に、加速冷却を行う場合、圧延終了温度から600℃までを平均冷却速度が0.5〜5.0℃/sで加速冷却を行うことが、ミクロ組織をより微細化する点で好ましい。   In the case of performing accelerated cooling before allowing to cool, performing the accelerated cooling from the rolling end temperature to 600 ° C. at an average cooling rate of 0.5 to 5.0 ° C./s makes the microstructure finer. preferable.

本発明においては、上記冷却工程を経て、フランジ部の(600℃での0.2%耐力)/(常温での降伏強度)で求められる強度比が50%以上、かつ、常温での降伏比が80%以下、かつ、0℃でのシャルピー衝撃吸収エネルギーが100J以上の機械的性質を有する耐火性に優れたH形鋼が得られ、強度レベルに応じて、フランジ部の常温引張強度が400MPa級で、600℃での0.2%耐力が157MPa以上、かつ、0℃シャルピー衝撃吸収エネルギーが100J以上の機械的性質を有する耐火性に優れたH形鋼が得られ、または、フランジ部の常温引張強度が490MPa級で、600℃での0.2%耐力が217MPa以上、かつ、0℃シャルピー衝撃吸収エネルギーが100J以上の機械的性質を有する耐火性に優れたH形鋼を製造することができる。なお、本発明においてはシャルピー試験片としてJIS4号2mmVノッチを、高温引張試験片としてJISA2号を、常温での引張試験片としてJIS13A号またはJIS13B号などをそれぞれ採用して求めた。   In the present invention, after the cooling step, the strength ratio obtained by (0.2% yield strength at 600 ° C.) / (Yield strength at normal temperature) of the flange portion is 50% or more, and the yield ratio at normal temperature. Is an H-shaped steel excellent in fire resistance having mechanical properties of 80 J or less and Charpy impact absorption energy at 0 ° C. of 100 J or more, and the normal temperature tensile strength of the flange portion is 400 MPa depending on the strength level. Grade, 0.2% proof stress at 600 ° C. is 157 MPa or more, and 0 ° C. Charpy impact absorption energy is 100 J or more. H with excellent fire resistance with mechanical properties of room temperature tensile strength of 490 MPa, 0.2% proof stress at 600 ° C. of 217 MPa or more, and 0 ° C. Charpy impact absorption energy of 100 J or more It is possible to manufacture the steel. In the present invention, JIS No. 2 mmV notch was used as the Charpy test piece, JIS No. 2 was used as the high-temperature tensile test piece, and JIS 13A or JIS 13B was used as the tensile test piece at room temperature.

更に、上記()に示した耐火鋼材の製造方法について説明する。 Furthermore, the manufacturing method of the fireproof steel materials shown in said ( 5 ) is demonstrated.

まず、鋼片を1100〜1300℃に再加熱するが、この理由は、上述のH形鋼の製造方法と同様、オーステナイト域での加工を行うに十分な温度を確保するとともに、合金炭化物および合金炭窒化物を一旦溶体化して、析出強化を十分に発現させるためである。   First, the steel slab is reheated to 1100 to 1300 ° C. The reason for this is that, similarly to the above-described method for manufacturing the H-shaped steel, a sufficient temperature for processing in the austenite region is secured, and alloy carbides and alloys This is because the carbonitride is once solutionized to sufficiently develop precipitation strengthening.

次に、再加熱後の鋼片を、所定の板厚まで複数回の熱間圧延を行い、最終圧延パスすなわち仕上げ圧延工程で、鋼材の表面温度を850℃以上に維持して、熱間圧延を完了する。これは、仕上げ圧延で鋼材の表面温度が850℃未満であると、後続の水冷等の加速冷却の開始が遅れた場合、800から500℃までの間の冷却速度を3℃/s以上とすることが困難になるためである。   Next, the re-heated steel slab is hot-rolled a plurality of times to a predetermined thickness, and the surface temperature of the steel is maintained at 850 ° C. or higher in the final rolling pass, that is, the finish rolling process, and hot-rolled. To complete. If the surface temperature of the steel material is less than 850 ° C. in the finish rolling, the cooling rate between 800 and 500 ° C. is set to 3 ° C./s or more when the start of subsequent accelerated cooling such as water cooling is delayed. This is because it becomes difficult.

熱間圧延終了後の加速冷却は、水冷によって行えば良いが、冷却設備に応じて、ミスト冷却、送風で行っても良い。加速冷却は、熱間圧延の終了後、直ちに行っても良く、開始温度を鋼材の表面温度で850℃以上とすることが好ましい。   The accelerated cooling after completion of hot rolling may be performed by water cooling, but may be performed by mist cooling or air blowing depending on the cooling equipment. The accelerated cooling may be performed immediately after the end of hot rolling, and the starting temperature is preferably set to 850 ° C. or more at the surface temperature of the steel material.

加速冷却は、800℃から500℃までの間の平均冷却速度が3〜15℃/sとなるようにして行うことが必要である。この冷却過程で、合金炭窒化物の析出を抑制させて、常温での強度上昇を抑制することができる。また、加速冷却によりミクロ組織も細粒化され、靭性を高めることができる。   Accelerated cooling needs to be performed such that the average cooling rate between 800 ° C. and 500 ° C. is 3 to 15 ° C./s. In this cooling process, precipitation of the alloy carbonitride can be suppressed, and an increase in strength at room temperature can be suppressed. Moreover, the microstructure is also refined by accelerated cooling, and the toughness can be increased.

この加速冷却の停止温度は、鋼材の表面の温度で、300〜550℃の範囲とすることが必要である。これは、水冷停止が300℃未満の場合、その後、放冷した際に、自己焼戻し効果が得られず、靭性が低くなるためである。すなわち、加速冷却を停止した後、放冷によって、自己焼戻し効果により靭性が向上する。この効果を得るには、加速冷却を、より高温で停止することが好ましい。一方、加速冷却の停止温度を550℃超とすると、800℃〜500℃の平均冷却速度を3℃/s以上とすることが困難になるためである。なお、550℃で加速冷却を停止する場合、550℃以下は放冷である。   The stop temperature of this accelerated cooling is the surface temperature of the steel material and needs to be in the range of 300 to 550 ° C. This is because, when the water cooling stop is less than 300 ° C., the self-tempering effect cannot be obtained and the toughness is lowered when the water is cooled. That is, after the accelerated cooling is stopped, the toughness is improved by the self-tempering effect by cooling. In order to obtain this effect, it is preferable to stop the accelerated cooling at a higher temperature. On the other hand, if the accelerated cooling stop temperature is higher than 550 ° C, it is difficult to set the average cooling rate of 800 ° C to 500 ° C to 3 ° C / s or more. In addition, when accelerating cooling is stopped at 550 ° C., cooling at 550 ° C. or lower is allowed to cool.

このような製造工程によって製造された鋼材は、常温での降伏比が80%以下、0℃でのシャルピー衝撃吸収エネルギーが100J以上という、優れた機械的性質を有する。また、上記()の製造条件を満足することによって、700℃での0.2%耐力が常温での降伏強度の規格値の下限の2/3以上になり、700℃での耐火性に優れた鋼材が得られる。なお、必要とされる700℃の強度は規格レベルに応じて、常温引張強度が400MPa級で、700℃での0.2%耐力が157MPa以上、常温引張強度が490MPa級で、700℃での0.2%耐力が217MPa以上である。 The steel material manufactured by such a manufacturing process has excellent mechanical properties such that the yield ratio at room temperature is 80% or less and the Charpy impact absorption energy at 0 ° C. is 100 J or more. Moreover, by satisfying the production condition ( 5 ) above, the 0.2% proof stress at 700 ° C. becomes 2/3 or more of the lower limit of the standard value of the yield strength at room temperature, and the fire resistance at 700 ° C. is improved. Excellent steel material can be obtained. The required strength at 700 ° C. is that the normal temperature tensile strength is 400 MPa class, the 0.2% proof stress at 700 ° C. is 157 MPa or more, the normal temperature tensile strength is 490 MPa class, and the strength at 700 ° C. The 0.2% proof stress is 217 MPa or more.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

表1に示す成分組成を有する試作鋼(発明鋼と比較鋼)を転炉で溶製し、連続鋳造により、240〜300mm厚のスラブ鋼片を鋳造した。「tr」はトレース(=分析しても検出不可能か、もしくは不可避不純物レベル)を意味する。尚、Moは全ての実施例について添加せず、分析値は何れも0.01%以下であった。   Trial steels (invention steel and comparative steel) having the composition shown in Table 1 were melted in a converter and slab steel pieces having a thickness of 240 to 300 mm were cast by continuous casting. “Tr” means a trace (= not detectable even if analyzed, or unavoidable impurity level). In addition, Mo was not added about all the Examples, and all the analysis values were 0.01% or less.

比較鋼とした試作鋼a〜gについては、a〜cは本発明の要件である成分範囲を逸脱したものである。   For the trial steels a to g used as comparative steels, a to c depart from the component ranges that are requirements of the present invention.

上記鋼片を1100〜1300℃に再加熱した後、孔型圧延によるブレークダウン工程、エッジャー圧延機とユニバーサル圧延機から構成される中間ユニバーサル圧延機群による中間圧延工程、および、ユニバーサル圧延機による仕上げ圧延工程により構成される熱間圧延工程に供し、所定サイズのH形鋼を製造した。   After the steel slab is reheated to 1100-1300 ° C., a breakdown process by hole rolling, an intermediate rolling process by an intermediate universal rolling mill group consisting of an edger rolling mill and a universal rolling mill, and finishing by a universal rolling mill It used for the hot rolling process comprised by a rolling process, and manufactured the H-shaped steel of a predetermined size.

なお、上記熱間圧延工程においては、スキューロール圧延工程により、H形鋼のウェブ高を、適宜制御した。   In the hot rolling process, the web height of the H-section steel was appropriately controlled by the skew roll rolling process.

上記H形鋼は、ウェブ厚9mm、フランジ厚12mm、ウェブ高さ500mm、フランジ幅200mmから、ウェブ厚40mm、フランジ厚60mm、ウェブ高さ500mm、フランジ幅500mmまでのサイズ範囲で製造した。   The H-shaped steel was manufactured in a size range from a web thickness of 9 mm, a flange thickness of 12 mm, a web height of 500 mm, and a flange width of 200 mm to a web thickness of 40 mm, a flange thickness of 60 mm, a web height of 500 mm, and a flange width of 500 mm.

製造したH形鋼の機械的特性は、図1に示すように、フランジにおける板厚t2の中心部(1/2t2)でのフランジ幅全長(B)の1/4および1/2幅(それぞれ1/4B、1/2B)、および、ウェブにおける板厚中心部(1/2t1)でのウェブ高さの1/2Hの3箇所から採取した試験片について、各種試験を実施して求めた。フランジ1/4部(1/4B)における機械的性質は、H形鋼のフランジ部における機械的特性を代表できるが、今回は常温でのウェブにおける機械的特性が強化され過ぎるという問題点が解消されたことを確認するために、ウェブの機械的特性と3箇所の平均値とを調査した。3箇所の機械的特性の平均値でウェブの機械的特性を除した比を調査した。なお、測定はC断面で行った。 As shown in FIG. 1, the mechanical characteristics of the manufactured H-section steel are ¼ and ½ width of the flange width overall length (B) at the center portion (1 / 2t 2 ) of the plate thickness t 2 in the flange. Various tests were conducted on test specimens collected from three locations (1 / 2B and 1 / 2B, respectively) and 1 / 2H of the web height at the center of the thickness (1 / 2t 1 ) of the web. Asked. The mechanical properties of the flange 1/4 part (1 / 4B) can be representative of the mechanical properties of the H-shaped steel flange, but this time the problem of excessively strengthening the mechanical properties of the web at room temperature has been resolved. In order to confirm that this was done, the mechanical properties of the web and the average value of the three locations were investigated. The ratio of the mechanical properties of the web divided by the average value of the mechanical properties at three locations was investigated. The measurement was performed on the C cross section.

表2に、上記試験の結果得られた、常温降伏強度、常温引張強度、常温降伏比、シャルピー試験での0℃衝撃吸収エネルギー値(3点平均値)、600℃での0.2%耐力、600℃での0.2%耐力と常温での降伏強度の比を示す。なお、シャルピー試験は、H形鋼断面部位の中で最も低い値となるフランジ1/2B部(フィレット)での測定値を採用した。600℃での0.2%耐力はH形鋼の強度を代表する部位として、フランジ1/4B部での測定値を採用した。鋼に要求される強度クラスとしては2種類あって、1つはSN400級と規定される常温引張強度が400MPaクラス(今回は一例として、400〜520MPaレベル)のものであり、もう1つはSN490級(今回は一例として、500〜611MPaレベル)、常温引張強度が490MPaクラスのものであって、これらを分けて表記した。   Table 2 shows the room temperature yield strength, room temperature tensile strength, room temperature yield ratio, 0 ° C impact absorption energy value (3-point average value) in Charpy test, and 0.2% yield strength at 600 ° C obtained as a result of the above test. The ratio of 0.2% yield strength at 600 ° C. and yield strength at room temperature is shown. In addition, the Charpy test employ | adopted the measured value in the flange 1 / 2B part (fillet) used as the lowest value in a H-section steel cross-section part. For the 0.2% proof stress at 600 ° C., the measured value at the flange 1 / 4B portion was adopted as a portion representing the strength of the H-shaped steel. There are two types of strength classes required for steel. One is a 400 MPa class (normal temperature 400 to 520 MPa level) normal temperature tensile strength defined as SN 400 class, and the other is SN 490. Class (this time, as an example, 500 to 611 MPa level) and room temperature tensile strength of 490 MPa class, which are shown separately.

発明鋼は、本発明で規定する成分組成の要件を満たし、降伏強度、引張強度、0℃衝撃吸収エネルギーなどの常温での機械特性、および600℃での0.2%耐力について、目標機械特性を満足している。なお、SN400級、即ちTS400MPa超級の目標は、常温における降伏強度YPが235MPa以上、好ましくは355MPa以下、引張強度TSが400〜520MPa、0℃における衝撃吸収エネルギーが100J以上、600℃での0.2%耐力PSが157MPa以上である。また、SN490級、即ちTS490MPa超級の目標は、YPが325MPa以上、好ましくは445MPa以下、TSが490〜611MPa、0℃衝撃吸収エネルギーが100J以上、PSが217MPa以上である。   Invented steel satisfies the requirements of the component composition specified in the present invention, and has target mechanical properties for yield strength, tensile strength, mechanical properties at normal temperature such as 0 ° C. impact absorption energy, and 0.2% proof stress at 600 ° C. Is satisfied. The target of SN 400 class, that is, TS 400 MPa class or higher, is that yield strength YP at room temperature is 235 MPa or more, preferably 355 MPa or less, tensile strength TS is 400 to 520 MPa, impact absorption energy at 0 ° C. is 100 J or more, and is 0. The 2% yield strength PS is 157 MPa or more. Further, the target of SN 490 class, that is, TS 490 MPa class or higher, is that YP is 325 MPa or more, preferably 445 MPa or less, TS is 490 to 611 MPa, 0 ° C. impact absorption energy is 100 J or more, and PS is 217 MPa or more.

一方比較鋼は、本発明で既定する成分条件は満足していないため目標とする常温機械特性および高温機械特性のうちの1つまたは2つ以上を満足していないことが判る。   On the other hand, it can be seen that the comparative steel does not satisfy one or more of the target normal temperature mechanical properties and high temperature mechanical properties because the component conditions defined in the present invention are not satisfied.

比較鋼gはC、Mn、V及びNbが本発明の範囲を外れているため、常温の引張強度が611MPaを超え、0℃衝撃吸収エネルギーが不足している。SN400級の比較鋼bはC及びCrが、比較鋼cはCrが、それぞれ、本発明の範囲を外れているため、600℃での0.2%耐力が目標としている157MPa未満である。比較鋼bはCが少ないため、常温の引張強度も400MPa未満に低下している。
SN490級の比較鋼a,d,fではそれぞれ、C、Mn、V、Cr、Nbの1以上が本発明の範囲を外れているため、600℃での0.2%耐力が、それぞれ158,207又は175MPaと目標を未達であり、比較鋼dは常温の引張強度が611MPaを超えている。SN490級の比較鋼eは、C、Mn、V及びCrが本発明の範囲を外れているため、常温での引張強度が上限値611MPaを超えてしまう。
Since the comparative steel g has C, Mn, V and Nb outside the scope of the present invention, the tensile strength at normal temperature exceeds 611 MPa and the 0 ° C. impact absorption energy is insufficient. Since the SN400 grade comparative steel b has C and Cr, and the comparative steel c has Cr outside the scope of the present invention, the 0.2% proof stress at 600 ° C. is less than 157 MPa. Since the comparative steel b has a small amount of C, the tensile strength at room temperature is also reduced to less than 400 MPa.
Since one or more of C, Mn, V, Cr, and Nb are out of the scope of the present invention in each of SN490 grade comparative steels a, d, and f, 0.2% proof stress at 600 ° C. is 158, The target of 207 or 175 MPa is not achieved, and the comparative steel d has a tensile strength at room temperature exceeding 611 MPa. Since SN, 490 grade comparative steel e has C, Mn, V and Cr outside the scope of the present invention, the tensile strength at room temperature exceeds the upper limit of 611 MPa.

Figure 0004786556
Figure 0004786556

Figure 0004786556
Figure 0004786556

更に、本発明の実施例について説明するが、この条件も上記の実施例と同様、本発明の実施可能性および効果を確認するために採用した一条件例である。
表3に示す成分組成を有する試作鋼(発明鋼と比較鋼)を転炉で溶製し、連続鋳造により、240〜250mm厚のスラブ鋼片を鋳造した。「tr」はトレース(=分析しても検出不可能か、もしくは不可避不純物レベル)を意味する。尚、Moは全ての実施例について添加せず、分析値は何れも0.01%以下であった。比較鋼とした試作鋼aa〜agは、本発明の要件である成分範囲を逸脱したものであり、下線は、本発明の範囲外であることを意味する。
Furthermore, although the Example of this invention is described, this condition is also one example of conditions adopted in order to confirm the feasibility and effect of this invention like the above-mentioned Example.
Trial steels (invention steel and comparative steel) having the composition shown in Table 3 were melted in a converter and slab steel pieces having a thickness of 240 to 250 mm were cast by continuous casting. “Tr” means a trace (= not detectable even if analyzed, or unavoidable impurity level). In addition, Mo was not added about all the Examples, and all the analysis values were 0.01% or less. The trial steels aa to ag used as comparative steels deviate from the component range which is a requirement of the present invention, and the underline means outside the scope of the present invention.

上記の成分を有する鋼片を表4に示した条件で、再加熱した後、熱間圧延して鋼板とし、圧延終了後に水冷による加速冷却を施した。鋼板の板厚中央部から、圧延方向に対して垂直方向となる板幅方向に、常温引張特性、シャルピー特性および高温引張特性を調査するためのサンプルを採取した。
常温引張特性は、試験実施サンプル数を2とし、その平均値を代表データとして採用した。シャルピー特性は、試験温度を0℃とし、試験実施サンプル数を3とし、その平均値を代表データとして採用した。高温引張特性は、JIS G 0567に準拠し、温度700℃に昇温後10分間保定した後に、引張荷重を付与し、0.2%耐力、引張強度を測定した。
The steel slab having the above components was reheated under the conditions shown in Table 4 and then hot rolled to obtain a steel plate, and accelerated cooling by water cooling was performed after the rolling. A sample for investigating normal temperature tensile characteristics, Charpy characteristics, and high temperature tensile characteristics was collected from the central part of the thickness of the steel sheet in the sheet width direction perpendicular to the rolling direction.
For room temperature tensile properties, the number of test samples was 2, and the average value was used as representative data. For the Charpy characteristics, the test temperature was 0 ° C., the number of test samples was 3, and the average value was used as representative data. The high temperature tensile properties were measured in accordance with JIS G 0567, after raising the temperature to 700 ° C. and holding for 10 minutes, then applying a tensile load and measuring 0.2% proof stress and tensile strength.

上記試験の結果得られた、常温降伏強度、常温引張強度、シャルピー試験での0℃衝撃吸収エネルギー値(3点平均値)、700℃での0.2%耐力を、製造条件と共に表4に示す。なお、表4の下線は、目標とする機械特性を満足していないことを意味する。
ここで、TS400MPa超級の目標値は、常温における降伏強度YPが235MPa以上、好ましくは355MPa以下、引張強度TSが400〜520MPa、0℃における衝撃吸収エネルギーが100J以上、700℃での0.2%耐力PSが157MPa以上である。また、TS490MPa超級の目標値は、YPが325MPa以上、好ましくは445MPa以下、TSが490〜611MPa、0℃衝撃吸収エネルギーが100J以上、PSが217MPa以上である。
Table 4 shows the room temperature yield strength, room temperature tensile strength, 0 ° C impact absorption energy value (3-point average value) in Charpy test, and 0.2% proof stress at 700 ° C, obtained as a result of the above test, together with the manufacturing conditions. Show. In addition, the underline of Table 4 means that the target mechanical characteristics are not satisfied.
Here, the target value of the TS400 MPa class is that the yield strength YP at room temperature is 235 MPa or more, preferably 355 MPa or less, the tensile strength TS is 400 to 520 MPa, the impact absorption energy at 0 ° C. is 100 J or more, and 0.2% at 700 ° C. Yield strength PS is 157 MPa or more. Further, target values of TS490MPa or higher class are YP of 325 MPa or more, preferably 445 MPa or less, TS of 490 to 611 MPa, 0 ° C. impact absorption energy of 100 J or more, and PS of 217 MPa or more.

表4の101〜117は、本発明で規定する成分組成および製造条件の要件を満たす発明鋼である。これらは、常温での降伏強度、引張強度および0℃衝撃吸収エネルギーの機械特性、並びに700℃での0.2%耐力が良好であり、目標とする機械特性を満足している。一方、比較鋼であるaa〜agは、成分組成が本発明の範囲外であるため、それぞれ1つ以上、目標を満足しない特性がある。   In Table 4, 101 to 117 are invention steels that satisfy the requirements of the component composition and production conditions defined in the present invention. These materials have good mechanical properties such as yield strength at normal temperature, tensile strength and 0 ° C. impact absorption energy, and 0.2% proof stress at 700 ° C., and satisfy the target mechanical properties. On the other hand, aa to ag, which are comparative steels, have properties that do not satisfy the target, since each component composition is outside the scope of the present invention.

比較鋼aaは、MnおよびVが本発明の範囲よりも少ないため、常温の引張強度が低下している。比較鋼abは、C、VおよびCrが本発明の範囲よりも少ないため、常温および700℃強度が不足し、SおよびNが本発明の範囲よりも多いため、靭性も低下している。比較鋼acは、本発明の範囲よりも、Mnが多く、Crが少ないため、常温引張強度および700℃0.2%耐力が低下している。比較鋼adは、本発明の範囲よりも、Mnが多く、VおよびNbが少ないため、常温強度および700℃0.2%耐力が低下している。   Since the comparative steel aa has less Mn and V than the range of the present invention, the tensile strength at normal temperature is lowered. Since the comparative steel ab has less C, V and Cr than the range of the present invention, the normal temperature and 700 ° C. strength are insufficient, and since S and N are larger than the range of the present invention, the toughness is also lowered. Since the comparative steel ac has more Mn and less Cr than the scope of the present invention, the normal temperature tensile strength and the 700 ° C. 0.2% proof stress are lowered. Since the comparative steel ad has more Mn and less V and Nb than the range of the present invention, the normal temperature strength and the 700 ° C. 0.2% proof stress are lowered.

比較鋼aeは、本発明の範囲よりも、Crは少ないものの、C、Si、Mn、VおよびNbが多く、常温強度が規格上限を超えた例である。比較鋼afは、C、S、NおよびTiが本発明の範囲よりも多く、常温引張強度、700℃0.2%耐力が目標に到達せず、靭性も低下している。比較鋼agは、C、Mn、S、およびNbが過剰で、常温引張強度が規格上限を超え、0℃シャルピー衝撃吸収エネルギーは100Jに満たない。なお、比較鋼agは、Vが不足してはいるものの、析出強化に寄与するNbを過剰に含むため、700℃0.2%耐力は目標に到達している。   The comparative steel ae is an example in which Cr is less than the range of the present invention, but C, Si, Mn, V and Nb are large, and the normal temperature strength exceeds the upper limit of the standard. The comparative steel af has more C, S, N, and Ti than the range of the present invention, the normal temperature tensile strength and the 700 ° C. 0.2% proof stress do not reach the targets, and the toughness is also lowered. In the comparative steel ag, C, Mn, S, and Nb are excessive, the room temperature tensile strength exceeds the upper limit of specification, and the 0 ° C. Charpy impact absorption energy is less than 100J. In addition, although comparative steel ag has insufficient V, since Nb which contributes to precipitation strengthening is included excessively, 700 degreeC 0.2% yield strength has reached the target.

また、表5は参考例又は本発明で規定する成分組成の範囲内である、鋼No.108〜110を用いて、製造条件が本発明の要件を満足しない例を示したものであり、比較のために、表4の本発明例と共に示した。成分が本発明の範囲内である、110でも、圧延後の加速冷却の冷却速度が小さい場合、水冷停止温度が300℃以下となる場合は強度不足あるいは、靭性不足が発生する。

Figure 0004786556
Figure 0004786556
Figure 0004786556
Table 5 shows the steel No. which is within the range of the component composition defined in the reference example or the present invention. Nos. 108 to 110 are used to show examples in which the production conditions do not satisfy the requirements of the present invention. Component is in the range of the present invention, even 1 10, when the cooling rate of the accelerated cooling after rolling is small, if the water cooling stop temperature is 300 ° C. or less insufficient strength or toughness shortage is generated.
Figure 0004786556
Figure 0004786556
Figure 0004786556

上述したように、本発明によれば、H形鋼の製造過程で、Moを添加しない成分系において、適正なVとCおよびNの添加量バランスの下で、Vを主体とした合金炭窒化物を形成し、さらに必要強度レベルに応じて合金元素を適宜添加して、所要の高温強度および常温での機械的特性を有する耐火性に優れた鋼材を提供することができる。また、上記鋼材のなかで特にH形鋼に代表される鋼材は、鋼構造物の構造材として有用であり、本発明は、産業上の利用可能性の大きいものである。   As described above, according to the present invention, in the process of manufacturing an H-section steel, an alloy carbonitriding mainly composed of V under an appropriate balance of added amounts of V, C, and N in a component system in which Mo is not added. A steel material excellent in fire resistance having required high temperature strength and mechanical properties at room temperature can be provided by forming an article and adding an alloy element as appropriate according to the required strength level. Among the above steel materials, steel materials represented by H-shaped steel are particularly useful as structural materials for steel structures, and the present invention has great industrial applicability.

H形鋼において、ミクロ組織および機械的特性を求めるための試験片を採取する位置(フランジにおける板厚t2の中心部(1/2t2)でのフランジ幅全長(B)の1/4および1/2幅(それぞれ1/4B、1/2B)、および、ウェブにおける板厚中心部でのウェブ高さの1/2H)を示す図である。In the H-section steel, the position at which a specimen for obtaining the microstructure and mechanical properties is taken (1/4 and 1/1 of the flange width overall length (B) at the center (1 / 2t2) of the thickness t2 of the flange. It is a figure which shows 2 width (1 / 4B, 1 / 2B, respectively) and 1 / 2H of the web height in the plate | board thickness center part in a web.

符号の説明Explanation of symbols

1 H形鋼
2 フランジ
3 ウェブ
4 フィレット部
B フランジ幅
H ウェブの高さ
t1 ウェブの板厚
t2 フランジの板厚
1 H-section steel 2 Flange 3 Web 4 Fillet part B Flange width H Web height t1 Web thickness t2 Flange thickness

Claims (5)

質量%で、
C :0.03〜0.10%、
Si:0.05〜0.50%、
Mn:0.05〜0.4%、
Al≦0.01%
V :0.15〜0.35%、
Cr:1.5〜3%、
N :0.002〜0.008%、
S :0.003〜0.02%、
P :0.0001〜0.1%、
を含み、残部鉄及び不可避的不純物からなることを特徴とする耐火性に優れた鋼材。
% By mass
C: 0.03-0.10%,
Si: 0.05 to 0.50%,
Mn: 0.05 to 0.4%,
Al ≦ 0.01%
V: 0.15-0.35%,
Cr: 1.5-3%,
N: 0.002 to 0.008%,
S: 0.003 to 0.02%,
P: 0.0001 to 0.1%
A steel material excellent in fire resistance, characterized by comprising iron and the inevitable impurities.
請求項1に記載の成分を有する鋼片を再加熱した後、熱間圧延して鋼材を製造する方法であって、
(a)1100〜1300℃に再加熱後、熱間圧延を開始し、
(b)圧延終了後、
(c)放冷するか、または加速冷却後、放冷する
ことを特徴とする請求項1に記載の耐火性に優れた鋼材の製造方法。
A method of manufacturing a steel material by hot rolling after reheating a steel slab having the component according to claim 1 ,
(A) After reheating to 1100-1300 ° C., hot rolling is started,
(B) After rolling,
(C) The method for producing a steel material having excellent fire resistance according to claim 1, wherein the steel material is allowed to cool or is cooled after accelerated cooling.
鋼材の表面を700℃以下にまで水冷し、復熱過程で圧延する水冷・圧延サイクルを1回以上行うことを特徴とする請求項2に記載の耐火性に優れた鋼材の製造方法。 The method for producing a steel material having excellent fire resistance according to claim 2, wherein the surface of the steel material is water-cooled to 700 ° C or lower and a water-cooling / rolling cycle for rolling in the reheating process is performed once or more. 圧延終了温度から600℃までを平均冷却速度が0.5〜5.0℃/sで加速冷却を行うことを特徴とする請求項又はに記載の耐火性に優れた鋼材の製造方法。 The method for producing a steel material excellent in fire resistance according to claim 2 or 3 , wherein accelerated cooling is performed from the rolling end temperature to 600 ° C at an average cooling rate of 0.5 to 5.0 ° C / s. 請求項1に記載の成分を有する鋼片を再加熱した後、熱間圧延して鋼材を製造する方法であって、
(a)1100〜1300℃に再加熱後、熱間圧延を開始し、
(b)圧延終了温度を鋼材表面の温度で850℃以上とし、
(c)圧延終了後、800℃から500℃までの範囲の平均冷却速度を3〜15℃/sとして加速冷却し、停止温度を鋼材表面の温度で300〜550℃の範囲とし、その後放冷することを特徴とする請求項1に記載の耐火性に優れた鋼材の製造方法。
A method of manufacturing a steel material by hot rolling after reheating a steel slab having the component according to claim 1 ,
(A) After reheating to 1100-1300 ° C., hot rolling is started,
(B) The rolling end temperature is 850 ° C. or more at the steel surface temperature,
(C) After rolling, the average cooling rate in the range from 800 ° C. to 500 ° C. is accelerated to 3 to 15 ° C./s, the stop temperature is set to the range of 300 to 550 ° C. at the surface temperature of the steel material, and then allowed to cool. The method for producing a steel material having excellent fire resistance according to claim 1 .
JP2007003300A 2006-01-27 2007-01-11 Steel material excellent in fire resistance and method for producing the same Expired - Fee Related JP4786556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007003300A JP4786556B2 (en) 2006-01-27 2007-01-11 Steel material excellent in fire resistance and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006019213 2006-01-27
JP2006019213 2006-01-27
JP2007003300A JP4786556B2 (en) 2006-01-27 2007-01-11 Steel material excellent in fire resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007224415A JP2007224415A (en) 2007-09-06
JP4786556B2 true JP4786556B2 (en) 2011-10-05

Family

ID=38546485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007003300A Expired - Fee Related JP4786556B2 (en) 2006-01-27 2007-01-11 Steel material excellent in fire resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4786556B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5218312B2 (en) * 2009-07-17 2013-06-26 新日鐵住金株式会社 1-pass high heat input welded joint for fireproof structure with excellent high temperature characteristics and toughness, and its manufacturing method
CN107841681B (en) * 2017-10-24 2020-01-17 上海大学 Perforating gun barrel material and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733902B2 (en) * 2001-12-27 2006-01-11 住友金属工業株式会社 Low alloy ferritic heat resistant steel

Also Published As

Publication number Publication date
JP2007224415A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
JP5267048B2 (en) Manufacturing method of thick steel plate with excellent weldability and ductility in the thickness direction
JP5130796B2 (en) Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same
JP5079794B2 (en) Steel material excellent in high-temperature strength and toughness and manufacturing method thereof
US20060016526A1 (en) High-strength steel for welded structures excellent in high temperature strength and method of production of the same
WO2015093321A1 (en) H-shaped steel and method for producing same
KR101033711B1 (en) Wear-resistant steel sheet having excellent wear resistance at high temperatures and excellent bending workability and method for manufacturing the same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
KR102513656B1 (en) Steel section having a thickness of at least 100 millimeters and method of manufacturing the same
JP5849846B2 (en) Refractory steel and manufacturing method thereof
JP6645107B2 (en) H-section steel and manufacturing method thereof
JP6344191B2 (en) High-strength ultra-thick H-shaped steel with excellent toughness and method for producing the same
JP4696602B2 (en) Method for producing rolled H-section steel with excellent low-temperature toughness
KR20240000646A (en) Hot rolled steel sheet with high hole expansion ratio and manufacturing process thereof
JP2010121191A (en) High-strength thick steel plate having superior delayed fracture resistance and weldability, and method for manufacturing the same
JP5114743B2 (en) High strength rolled steel for fireproofing and method for producing the same
JP4954507B2 (en) H-section steel excellent in fire resistance and method for producing the same
JP4506985B2 (en) Extra heavy steel material and method for manufacturing the same
JP6589503B2 (en) H-section steel and its manufacturing method
JP4786556B2 (en) Steel material excellent in fire resistance and method for producing the same
KR102339890B1 (en) Steel plate and method of producing same
JP2009228051A (en) Method for producing non-heattreated steel material
RU2711696C1 (en) Method of producing cold-rolled steel strip from high-strength manganese steel with trip-properties
JP5245414B2 (en) Steel plate for low yield ratio high strength steel pipe, its manufacturing method and low yield ratio high strength steel pipe
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110713

R151 Written notification of patent or utility model registration

Ref document number: 4786556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees