WO2013084265A1 - Steel for mechanical structures and manufacturing method therefor - Google Patents

Steel for mechanical structures and manufacturing method therefor Download PDF

Info

Publication number
WO2013084265A1
WO2013084265A1 PCT/JP2011/006857 JP2011006857W WO2013084265A1 WO 2013084265 A1 WO2013084265 A1 WO 2013084265A1 JP 2011006857 W JP2011006857 W JP 2011006857W WO 2013084265 A1 WO2013084265 A1 WO 2013084265A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
steel
ferrite
addition
Prior art date
Application number
PCT/JP2011/006857
Other languages
French (fr)
Japanese (ja)
Inventor
稔 本庄
長谷 和邦
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to IN1143KON2014 priority Critical patent/IN2014KN01143A/en
Priority to PCT/JP2011/006857 priority patent/WO2013084265A1/en
Publication of WO2013084265A1 publication Critical patent/WO2013084265A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a machine structural steel suitable for automobile parts, machine structural parts, etc., in particular, a machine structural steel that does not require tempering treatment by quenching and tempering, and a method for producing the same.
  • parts that require high strength and high toughness include carbon steel materials for machine structures represented by S45C, and low mechanical structures containing Cr and Mo. Alloy steel quenching and tempering treatment materials have been used. However, in recent years, from the viewpoint of cost reduction or CO 2 emission reduction, development of non-tempered steel that can omit the quenching and tempering treatment has been actively promoted.
  • Non-Patent Document 1 As a typical non-heat treated steel, there is a ferrite / pearlite type non-heat treated steel (for example, see Non-Patent Document 1). This is because, in the cooling process after rolling, the ferrite and pearlite transformation precipitates almost at the same time, strengthening the ferrite with V carbide and obtaining the same strength as the quenched and tempered material, but the toughness is lower than the quenched and tempered material There was a problem.
  • Patent Document 1 discloses rolling (first rolling) in which coarse austenite crystal grains before rolling are recrystallized in the austenite recrystallization region, and austenite in the austenite non-recrystallized region. It is described that strain is imparted (second rolling) and the generation of pro-eutectoid ferrite in the crystal grains is promoted by the strain, thereby obtaining a fine ferrite-pearlite structure to improve low-temperature toughness.
  • Patent Document 2 states that the surface reduction rate of rough rolling in the temperature range below T1 ° C. is 25% or less, and then the surface reduction is performed in the temperature range from (T2-200) to T2 ° C. according to the following T2. After finishing rolling with a rate of 25% or more, toughness is improved by cooling to 650 ° C. at a cooling rate of 5 ° C./s or more.
  • T1 (° C.) ⁇ 5440 / (log [V] [C] ⁇ 3.314) ⁇ 173
  • T2 (° C.) 910 ⁇ 203 [C] +44.7 [Si] ⁇ 30 [Mn] ⁇ 20 [Cu] ⁇ 15.2 [Ni] -11 [Cr] +31.5 [Mo] +104 [V] +400 [Ti] +460 [Al] +700 [P]
  • an object of the present invention is to provide a high-strength and high-toughness steel for machine structures with a non-tempered and low alloy composition.
  • the inventors manufactured steels in which the addition amount of C, Si, Mn, P, S, Al, and O was changed and the fraction of processed ferrite was changed, and the strength and toughness. Investigated earnestly. As a result, it has been found that the strength and toughness of the material are improved by optimizing the addition amount of C, Si, Mn, P, S, Al and O, and controlling the fraction of processed ferrite within an appropriate range.
  • the present invention has been completed.
  • the gist configuration of the present invention is as follows. (1) C: 0.35 to 0.60 mass%, Si: 0.1 to 1.0 mass%, Mn: 0.1-1.5% by mass, P: 0.025 mass% or less, S: 0.025 mass% or less, Al: 0.01 to 0.10% by mass and O: 0.0015% by mass or less, having a component composition consisting of the balance inevitable impurities and Fe, and comprising a ferrite and pearlite structure containing 10 to 50% processed ferrite Machine structural steel.
  • Nb 0.1% by mass or less
  • B 0.0002 to 0.005 mass%
  • Rolling with a reduction rate of 10% or more per pass in a temperature range of 3 points or less of Ar is performed at least in one pass, and the finishing temperature is (Ar 3 ⁇ 10 ° C.) to (Ar 3 ⁇ 150 ° C.)
  • a method for producing steel for machine structural use characterized in that hot rolling is performed and then left to cool.
  • Nb 0.1% by mass or less
  • C 0.35-0.60 mass%
  • C is an essential element for ensuring the necessary strength. If it is less than 0.35% by mass, the strength of the steel decreases, so 0.35% by mass or more is added. On the other hand, if it exceeds 0.60% by mass, the toughness of the steel is reduced. From the above, the C content is set to 0.35 to 0.60 mass%.
  • Si 0.1-1.0 mass% Si is an effective element for adjusting the deoxidizer and strength in the steelmaking process. To obtain these effects, 0.1% by mass or more is necessary. On the other hand, if it exceeds 1.0% by mass, the toughness is impaired, so the range is 0.1 to 1.0% by mass.
  • Mn 0.1-1.5% by mass Mn is an important element for adjusting the strength, but in order to obtain the effect, 0.1% by mass or more is necessary. On the other hand, if it exceeds 1.5% by mass, the toughness is impaired, so 0.1 to 1.5% by mass The range.
  • P and S are elements that deteriorate toughness, and it is preferable to reduce them as much as possible, but 0.025% by mass is allowed.
  • Al 0.01-0.10 mass% Al is an element added as a deoxidizer, and its effect is poor when it is less than 0.01% by mass. On the other hand, if it exceeds 0.10% by mass, the toughness is adversely affected, so Al is in the range of 0.01 to 0.10% by mass. To do.
  • O 0.0015% by mass or less
  • O is preferably as low as possible because it combines with Si and Al to form hard oxide-based nonmetallic inclusions, resulting in a decrease in toughness.
  • the O content is 0.0015% by mass or less.
  • Cr 1.0 mass% or less
  • Cu 1.0 mass% or less
  • Mo 1.0 mass% or less
  • W 1.0 mass% or less
  • Ni 1.0 mass% or less Cr
  • Cu, Mo, W and Ni solid solution strengthening elements. It is an effective element for strength adjustment. Therefore, as needed, it is possible to add any one or two or more of the above five types, preferably 0.05% by mass or more.
  • any element exceeds 1.0% by mass, the toughness decreases, and therefore, it is preferably 1.0% by mass or less.
  • Nb 0.1% by mass or less
  • Ti 0.2% by mass or less
  • V 0.15% by mass or less
  • Nb has an effect of preventing coarsening of crystal grains by forming carbonitrides and forms precipitates with C. Although it is an element useful for obtaining strength, if added over 0.1 mass%, the toughness decreases, so it was made 0.1 mass% or less.
  • Ti has an effect of fixing N in steel as TiN and preventing coarsening of crystal grains, and also forms a precipitate with C in the same manner as Nb, and thus is an element useful for obtaining strength.
  • the toughness decreases, so the content was made 0.2% by mass or less.
  • V is an element that contributes to the improvement of strength by forming precipitates with C like Nb and Ti. The effect is saturated even if added over 0.15% by mass. Further, since precipitates increase and toughness decreases on the contrary, the content is preferably 0.15% by mass or less.
  • B 0.0002 to 0.005 mass%
  • B is an element that increases the strength of the steel after tempering by increasing the hardenability, and can be contained as necessary. In order to acquire the said effect, adding at 0.0002 mass% or more is preferable. However, if added over 0.005 mass%, the toughness deteriorates. Therefore, B is preferably 0.0002 to 0.005 mass%.
  • Pb 0.01 to 0.40 mass%
  • Bi 0.01 to 0.40 mass%
  • Ca 0.0005 to 0.0100 mass%
  • Pb 0.01-0.40 mass%
  • Pb is an element that improves machinability.
  • Pb is preferably added in an amount of 0.01% by mass or more.
  • the toughness is lowered, so 0.010 to 0.40 mass% is preferable.
  • Bi 0.01-0.40 mass% Bi is an element that improves machinability. In order to acquire the effect, it is preferable to add at 0.01 mass% or more. On the other hand, if added over 0.40% by mass, the toughness is remarkably lowered, so 0.01 to 0.40% by mass is preferable.
  • Ca 0.0005 to 0.0100 mass% Ca is an element that improves machinability. In order to acquire the effect, adding at 0.0005 mass% or more is preferable. On the other hand, even if added over 0.0100% by mass, the effect is saturated, so 0.0005 to 0.0100% by mass is preferable.
  • the structure of the steel for machine structure of the present invention will be described.
  • a low-temperature transformation structure such as martensite, bainite or a mixed structure other than ferrite and pearlite as a base structure
  • steel for machine structure represented by a large diameter steel bar having a diameter of 100 mm ⁇ or more
  • the base structure is not a low-temperature transformation structure but a ferrite and pearlite structure.
  • Means for achieving high strength in the ferrite and pearlite structures include a method of increasing the pearlite fraction of the second phase, a method of further reducing the ferrite structure, and a method of hardening the ferrite by solid solution strengthening and precipitation strengthening.
  • a method of rolling in a two-phase region (austenite + ferrite) to increase a part of ferrite to a high dislocation density, etc. can be considered.
  • the method of refining ferrite is advantageous for increasing the yield stress (hereinafter referred to as YP), but the increase in tensile strength (hereinafter referred to as TS) is small.
  • YP yield stress
  • TS tensile strength
  • the method for increasing the pearlite fraction requires addition of a large amount of C.
  • excessive addition of C is not preferable because it causes a decrease in toughness as described above.
  • the method of strengthening ferrite by adding a solid solution strengthening element or a precipitation strengthening element requires a large amount of alloy elements to be added, resulting in an increase in alloy costs and a decrease in toughness.
  • the use of processed ferrite can suppress the addition of C and alloy elements to the minimum, and can increase YP and TS.
  • the method using the processed ferrite can increase the strength without controlled cooling (accelerated cooling) after hot rolling, so the thermal stress generated during cooling and the transformation stress generated along with the transformation It is possible to increase the strength while suppressing the occurrence of internal cracks due to the effect of.
  • the microstructure of the steel is a ferrite and pearlite structure containing processed ferrite in an area ratio of 10 to 50%.
  • the reason why the processed ferrite fraction is in the range of 10 to 50% of the entire steel structure in terms of the area ratio is as follows. That is, if the fraction of the processed ferrite is less than 10%, the steel cannot be sufficiently strengthened. On the other hand, if it exceeds 50%, the strength increases but the toughness decreases and the two phases (austenite + ferrite). This is because the risk of roll breakage accompanying an increase in load during zone rolling increases.
  • the processed ferrite is a ferrite introduced with work strain formed by hot rolling in a two-phase region (austenite + ferrite) below the Ar 3 transformation point. Usually, the ferrite is traced, If the length of the minor axis and the major axis is determined, and the ratio of the major axis to the minor axis (aspect ratio) is defined as ferrite having a ratio of 2 or more, the area occupied in the microstructure can be quantified. The rate can be measured.
  • the steel having the above-described component composition is melted by a usual method using a converter, an electric furnace or the like, and a usual method such as a continuous casting method or an ingot casting method is used.
  • a steel material such as slab, billet or bloom.
  • treatment such as ladle refining or vacuum degassing may be added.
  • the steel material is charged into a heating furnace, reheated, and then hot-rolled to obtain, for example, a non-tempered steel bar having desired dimensions, structure, and characteristics.
  • the reheating temperature of the steel material needs to be in the range of 900 to 1250 ° C.
  • the heating temperature is less than 900 ° C.
  • the deformation resistance during rolling becomes large, so that hot rolling becomes difficult.
  • heating above 1250 ° C may cause surface marks, increase scale loss and fuel consumption.
  • it is in the range of 900 to 1200 ° C.
  • the cumulative area reduction rate at a temperature of 3 points or less of Ar exceeds 80%, the rolling load increases and rolling becomes difficult, or the number of rolling passes increases, leading to a decrease in productivity. Furthermore, the amount of processed ferrite exceeds 50%, and the strength of the steel increases too much, leading to a decrease in toughness. Therefore, the cumulative area reduction rate at 3 points or less of Ar is 80% or less.
  • the cooling following the hot rolling It is preferable to cool the cooling following the hot rolling. This is because when accelerated cooling is performed after hot rolling, the structure becomes a low-temperature transformation structure such as martensite, bainite, or a mixed structure other than ferrite + pearlite, and it is difficult to make the structure in the cross section uniform. In addition, internal cracking is likely to occur due to the thermal stress generated during cooling and the transformation stress generated with the transformation. Therefore, it is preferable to cool the cooling following hot rolling. Specifically, the cooling may be performed at 0.5 ° C./s or less.
  • a steel bar will be specifically described as an example of steel for machine structural use.
  • Steel having the component composition shown in Table 1 is melted in a vacuum melting furnace or converter to form a bloom, and this bloom is charged into a heating furnace and heated, and then hot rolled in accordance with the conditions shown in Table 2. Hot rolled into a round bar.
  • a JIS No. 4 tensile test piece and a JIS No. 3 Charpy impact test piece were cut out from a 1/4 depth portion from the surface of the obtained rolled steel bar, and the mechanical properties were evaluated.
  • the rolling temperature was measured by installing a radiation thermometer on the entry side and the exit side of the mill. Further, the finish rolling temperature in Table 2 refers to the temperature on the exit side during final rolling. Yield strength, tensile strength, and toughness (impact value) were judged to have improved characteristics when improved by 10% or more compared to conventional S45C (reference steel).
  • Table 3 shows the processed ferrite fraction, yield strength, tensile strength, impact value, and structure evaluation results.
  • the results of Table 3 are summarized in FIGS. 1 to 3.
  • Steels B-4 to 8 satisfying the component composition, structure and production conditions of the present invention show yield values, tensile strengths and impact values that are 10% or more better than standard steels, It can be seen that while having high strength, it has high toughness.
  • the steels B-2, 3, 9 and 10 which do not have the microstructure of the present invention have yield strength, tensile strength and impact value. It can be seen that the toughness is reduced due to the standard steel level or higher strength.
  • Table 6 shows the processed ferrite fraction, yield strength, tensile strength, impact value, and structure evaluation results.
  • Steels C-1 to C-11 satisfying the component composition, structure and production condition of the present invention have yield values, tensile strengths, and impact values that are 10% or more better than those of standard steels. It can be seen that it is strong but has high toughness.

Abstract

According to the present invention, a high-strength and high-toughness steel for mechanical structures is obtained without tempering and with little alloying, said steel comprising a ferrite and pearlite composition and having a component composition that includes 0.35-0.60 mass% C, 0.1-1.0 mass% Si, 0.1-1.5 mass% Mn, not more than 0.025 mass% P, not more than 0.025 mass% S, 0.01-0.10 mass% Al, and not more than 0.0015 mass% O, with the remainder comprising unavoidable impurities and Fe, and including 10-50% processed ferrite.

Description

機械構造用鋼およびその製造方法Steel for machine structure and manufacturing method thereof
 本発明は、自動車部品、機械構造部品等に好適な機械構造用鋼、とくに焼入れ焼戻しの調質処理を必要としない機械構造用鋼とその製造方法に関するものである。 The present invention relates to a machine structural steel suitable for automobile parts, machine structural parts, etc., in particular, a machine structural steel that does not require tempering treatment by quenching and tempering, and a method for producing the same.
 従来、建築機械、産業機械および船舶の分野において、高強度かつ高靭性を要求される部品には、S45Cに代表される機械構造用炭素鋼材や、これにCrやMoを含有した機械構造用低合金鋼の焼入れ焼戻し処理材が用いられてきた。ところが、近年の省コスト化或いは、CO2排出量削減の観点から、焼入れ焼戻し処理を省略可能な、非調質鋼の開発が積極的に進められてきた。 Conventionally, in the fields of construction machinery, industrial machinery and ships, parts that require high strength and high toughness include carbon steel materials for machine structures represented by S45C, and low mechanical structures containing Cr and Mo. Alloy steel quenching and tempering treatment materials have been used. However, in recent years, from the viewpoint of cost reduction or CO 2 emission reduction, development of non-tempered steel that can omit the quenching and tempering treatment has been actively promoted.
 代表的な非調質鋼としては、フェライト・パーライト型非調質鋼がある(例えば、非特許文献1参照)。これは、圧延後の冷却過程において、フェライト・パーライト変態とほぼ同時に析出する、V炭化物によりフェライトを強化して焼入れ焼戻し材並みの強度を得ているが、焼入れ焼戻し材に比べて靭性が低いという問題があった。 As a typical non-heat treated steel, there is a ferrite / pearlite type non-heat treated steel (for example, see Non-Patent Document 1). This is because, in the cooling process after rolling, the ferrite and pearlite transformation precipitates almost at the same time, strengthening the ferrite with V carbide and obtaining the same strength as the quenched and tempered material, but the toughness is lower than the quenched and tempered material There was a problem.
 そこで、フェライト・パーライト型非調質鋼材の勒性を改善する試みがなされた。例えば、靭性を改善する方法として、特許文献1には、オーステナイト再結晶域で圧延前の粗大なオーステナイト結晶粒に再結晶を起こさせる圧延(第1圧延)と、オーステナイト未再結晶域でオーステナイトに歪みを付与(第2圧延)し、その歪みによって結晶粒内での初析フェライトの発生を促して、微細なフェライト・パーライト組織を得ることによって低温靭性を改善することが記載されている。 Therefore, an attempt was made to improve the fertility of ferrite-pearlite type non-heat treated steel. For example, as a method of improving toughness, Patent Document 1 discloses rolling (first rolling) in which coarse austenite crystal grains before rolling are recrystallized in the austenite recrystallization region, and austenite in the austenite non-recrystallized region. It is described that strain is imparted (second rolling) and the generation of pro-eutectoid ferrite in the crystal grains is promoted by the strain, thereby obtaining a fine ferrite-pearlite structure to improve low-temperature toughness.
 さらに、特許文献2には、下記のT1℃以下の温度域での粗圧延の減面率を25%以下とし、その後、下記のT2に従って(T2-200)~T2℃の温度域で減面率25%以上の仕上げ圧延を施した後、650℃まで5℃/s以上の冷却速度で冷却することによって、靭性を改善している。
          記
T1(℃)=-5440/(log[V][C]-3.314)-173
T2(℃)=910-203[C]+44.7[Si]-30[Mn]-20[Cu]-15.2[Ni]
-11[Cr]+31.5[Mo]+104[V]+400[Ti]+460[Al]+700[P]
Furthermore, Patent Document 2 states that the surface reduction rate of rough rolling in the temperature range below T1 ° C. is 25% or less, and then the surface reduction is performed in the temperature range from (T2-200) to T2 ° C. according to the following T2. After finishing rolling with a rate of 25% or more, toughness is improved by cooling to 650 ° C. at a cooling rate of 5 ° C./s or more.
T1 (° C.) = − 5440 / (log [V] [C] −3.314) −173
T2 (° C.) = 910−203 [C] +44.7 [Si] −30 [Mn] −20 [Cu] −15.2 [Ni]
-11 [Cr] +31.5 [Mo] +104 [V] +400 [Ti] +460 [Al] +700 [P]
特許3214731号公報Japanese Patent No. 3214731 特開2009-215576号公報JP 2009-215576 A
 しかし、特許文献1に記載の技術では、低温靭性は改善するものの、この靭性を改善するために実施する、圧延により強度が低下することから、所期した量以上のVを添加する必要があり、低合金化によるコスト削減を求める産業界の要求に必ずしも応えるものではなかった。 However, in the technique described in Patent Document 1, although the low-temperature toughness is improved, the strength is reduced by rolling performed to improve the toughness, so it is necessary to add more V than the expected amount. However, it did not necessarily meet the demands of the industry for cost reduction by using low alloys.
 また、特許文献2に記載の技術では、圧延後に加速冷却を実施するため、ベイナイト組織などが生成し、鋼の強度が上昇し、却って靭性が低下する可能性があった。 Further, in the technique described in Patent Document 2, since accelerated cooling is performed after rolling, a bainite structure or the like is generated, the strength of the steel is increased, and the toughness may be decreased.
 そこで、本発明は、高強度かつ高靭性の機械構造用鋼を非調質かつ低合金組成の下に提供することを目的とする。 Therefore, an object of the present invention is to provide a high-strength and high-toughness steel for machine structures with a non-tempered and low alloy composition.
 発明者らは、前記課題を解決するため、C、Si、Mn、P、S、AlおよびOの添加量を変化させ、かつ加工フェライトの分率を変化させた鋼を製作し、強度および靭性について鋭意調査した。その結果、C、Si、Mn、P、S、AlおよびOの添加量の最適化、ならびに加工フェライトの分率を適正範囲に制御することにより、素材の強度並びに靭性が向上することを見出し、本発明を完成するに到った。 In order to solve the above problems, the inventors manufactured steels in which the addition amount of C, Si, Mn, P, S, Al, and O was changed and the fraction of processed ferrite was changed, and the strength and toughness. Investigated earnestly. As a result, it has been found that the strength and toughness of the material are improved by optimizing the addition amount of C, Si, Mn, P, S, Al and O, and controlling the fraction of processed ferrite within an appropriate range. The present invention has been completed.
 すなわち、本発明の要旨構成は、次のとおりである。
(1)C:0.35~0.60質量%、
 Si:0.1~1.0質量%、
 Mn:0.1~1.5質量%、
 P:0.025質量%以下、
 S:0.025質量%以下、
 Al:0.01~0.10質量%および
 O:0.0015質量%以下
を含み、残部不可避不純物およびFeからなる成分組成を有し、加工フェライトを10~50%含む、フェライトおよびパーライトの組織からなることを特徴とする機械構造用鋼。
That is, the gist configuration of the present invention is as follows.
(1) C: 0.35 to 0.60 mass%,
Si: 0.1 to 1.0 mass%,
Mn: 0.1-1.5% by mass,
P: 0.025 mass% or less,
S: 0.025 mass% or less,
Al: 0.01 to 0.10% by mass and O: 0.0015% by mass or less, having a component composition consisting of the balance inevitable impurities and Fe, and comprising a ferrite and pearlite structure containing 10 to 50% processed ferrite Machine structural steel.
(2)上記成分組成に、さらに
 Cr:1.0質量%以下、
 Cu:1.0質量%以下、
 Mo:1.0質量%以下、
 W:1.0質量%以下および
 Ni:1.0質量%以下
のうちから選ばれる1種または2種以上を含有することを特徴とする前記(1)に記載の機械構造用鋼。
(2) In addition to the above component composition, Cr: 1.0% by mass or less,
Cu: 1.0 mass% or less,
Mo: 1.0% by mass or less,
W: 1.0 mass% or less and Ni: 1.0 mass% or less, 1 type or 2 types or more selected from the above, Steel for machine structure as described in said (1) characterized by the above-mentioned.
(3)上記成分組成に、さらに
 Nb:0.1質量%以下、
 Ti:0.2質量%以下および
 V:0.15質量%以下
のうちから選ばれる1種または2種以上を含有することを特徴とする前記(1)または(2)に記載の機械構造用鋼。
(3) In addition to the above component composition, Nb: 0.1% by mass or less,
The steel for machine structural use as described in (1) or (2) above, containing one or more selected from Ti: 0.2% by mass or less and V: 0.15% by mass or less.
(4)上記成分組成に、さらに
 B:0.0002~0.005質量%
を含有することを特徴とする前記(1)から(3)のいずれかに記載の機械構造用鋼。
(4) In addition to the above component composition, B: 0.0002 to 0.005 mass%
The steel for machine structure according to any one of (1) to (3), characterized in that
(5)上記成分組成に、さらに
 Pb:0.01~0.40質量%、
 Bi:0.01~0.40質量%および
 Ca:0.0005~0.0100質量%
のうちから選ばれる1種または2種以上を含有することを特徴とする前記(1)から(4)のいずれかに記載の機械構造用鋼。
(5) In addition to the above component composition, Pb: 0.01 to 0.40 mass%,
Bi: 0.01 to 0.40 mass% and Ca: 0.0005 to 0.0100 mass%
The structural structural steel according to any one of (1) to (4) above, which contains one or more selected from among the above.
(6)C:0.35~0.60質量%、
 Si:0.1~1.0質量%、
 Mn:0.1~1.5質量%、
 P:0.025質量%以下、
 S:0.025質量%以下、
 Al:0.01~0.10質量%および
 O:0.0015質量%以下
を含み、残部不可避不純物およびFeからなる素材を、900~1250℃に加熱後、Ar点以下の温度での累積減面率が80%以下、かつAr点以下の温度域にて1パス当たりの減面率が10%以上の圧延を少なくとも1パスは行い、仕上温度を(Ar-10℃)~(Ar-150℃)とする、熱間圧延を施し、その後、放冷することを特徴とする機械構造用鋼の製造方法。
(6) C: 0.35 to 0.60 mass%,
Si: 0.1 to 1.0 mass%,
Mn: 0.1-1.5% by mass,
P: 0.025 mass% or less,
S: 0.025 mass% or less,
Al: 0.01% to 0.10% by mass and O: 0.0015% by mass or less, and the material consisting of the remainder inevitable impurities and Fe is heated to 900 to 1250 ° C, and the cumulative area reduction at a temperature of 3 points or less is 80%. Rolling with a reduction rate of 10% or more per pass in a temperature range of 3 points or less of Ar is performed at least in one pass, and the finishing temperature is (Ar 3 −10 ° C.) to (Ar 3 −150 ° C.) A method for producing steel for machine structural use, characterized in that hot rolling is performed and then left to cool.
(7)上記素材に、さらに
 Cr:1.0質量%以下、
 Cu:1.0質量%以下、
 Mo:1.0質量%以下、
 W:1.0質量%以下および
 Ni:1.0質量%以下
のうちから選ばれる1種または2種以上を含有することを特徴とする前記(6)に記載の機械構造用鋼の製造方法。
(7) In addition to the above materials, Cr: 1.0% by mass or less,
Cu: 1.0 mass% or less,
Mo: 1.0% by mass or less,
One or two or more types selected from W: 1.0% by mass or less and Ni: 1.0% by mass or less are contained.
(8)上記素材に、さらに
 Nb:0.1質量%以下、
 Ti:0.2質量%以下および
 V:0.15質量%以下
のうちから選ばれる1種または2種以上を含有することを特徴とする前記(6)または(7)に記載の機械構造用鋼の製造方法。
(8) In addition to the above materials, Nb: 0.1% by mass or less,
The process for producing steel for machine structure as described in (6) or (7) above, comprising one or more selected from Ti: 0.2% by mass or less and V: 0.15% by mass or less .
(9)上記素材に、さらに
 B:0.0002~0.005質量%
を含有することを特徴とする前記(6)から(8)のいずれかに記載の機械構造用鋼の製造方法。
(9) In addition to the above materials, B: 0.0002 to 0.005 mass%
The method for producing steel for machine structure according to any one of (6) to (8), characterized in that
(10)上記素材に、さらに
 Pb:0.01~0.40質量%、
 Bi:0.01~0.40質量%および
 Ca:0.0005~0.0100質量%
のうちから選ばれる1種または2種以上を含有することを特徴とする前記(6)から(9)のいずれかに記載の機械構造用鋼の製造方法。
(10) In addition to the above materials, Pb: 0.01-0.40 mass%,
Bi: 0.01 to 0.40 mass% and Ca: 0.0005 to 0.0100 mass%
1 or 2 types or more chosen from among these, The manufacturing method of the steel for machine structure in any one of said (6) to (9) characterized by the above-mentioned.
 本発明によれば、鋼材の合金成分を高めることなく、高い強度及び靭性を有する非調質の機械構造用鋼を安定して製造することが可能となる。更には、焼入れ焼戻し処理が省略可能となり、CO排出量削減にも寄与するため、産業上有益な効果がもたらされる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to stably manufacture the non-heat-treated steel for machine structures having high strength and toughness without increasing the alloy component of the steel material. Furthermore, the quenching and tempering process can be omitted, and contributes to the reduction of CO 2 emissions, thereby providing an industrially beneficial effect.
加工フェライト分率と降伏強さとの関係を示す図である。It is a figure which shows the relationship between a processed ferrite fraction and yield strength. 加工フェライト分率と引張強さとの関係を示す図である。It is a figure which shows the relationship between a processed ferrite fraction and tensile strength. 加工フェライト分率と衝撃値との関係を示す図である。It is a figure which shows the relationship between a processed ferrite fraction and an impact value.
 次に、本発明の機械構造用鋼について、まず、成分組成における各成分の限定理由から説明する。
C:0.35~0.60質量%
 Cは、必要な強度を確保するために必須の元素であり、0.35質量%未満では鋼の強度が低下するため0.35質量%以上で添加する。一方、0.60質量%を超えると、鋼の靭性の低下を招く。以上のことから、C量は0.35~0.60質量%とする。
Next, the steel for machine structure of the present invention will be described first from the reasons for limiting each component in the component composition.
C: 0.35-0.60 mass%
C is an essential element for ensuring the necessary strength. If it is less than 0.35% by mass, the strength of the steel decreases, so 0.35% by mass or more is added. On the other hand, if it exceeds 0.60% by mass, the toughness of the steel is reduced. From the above, the C content is set to 0.35 to 0.60 mass%.
Si:0.1~1.0質量%
 Siは、製鋼プロセスにおいて、脱酸剤および強度を調整するのに有効な元素である。これらの効果を得るには、0.1質量%以上が必要であり、一方1.0質量%を超えると靭性が損なわれるため、0.1~1.0質量%の範囲とする。
Si: 0.1-1.0 mass%
Si is an effective element for adjusting the deoxidizer and strength in the steelmaking process. To obtain these effects, 0.1% by mass or more is necessary. On the other hand, if it exceeds 1.0% by mass, the toughness is impaired, so the range is 0.1 to 1.0% by mass.
Mn:0.1~1.5質量%
 Mnは、強度を調整するために重要な元素であるが、その効果を得るためには0.1質量%以上が必要であり、一方1.5質量%を超えると靭性が損われるため、0.1~1.5質量%の範囲とする。
Mn: 0.1-1.5% by mass
Mn is an important element for adjusting the strength, but in order to obtain the effect, 0.1% by mass or more is necessary. On the other hand, if it exceeds 1.5% by mass, the toughness is impaired, so 0.1 to 1.5% by mass The range.
P、S:0.025質量%以下
 PおよびSは、靭性を劣化させる元素であり、極力低減することが好ましいが、それぞれ0.025質量%までは許容される。
P, S: 0.025% by mass or less P and S are elements that deteriorate toughness, and it is preferable to reduce them as much as possible, but 0.025% by mass is allowed.
Al:0.01~0.10質量%
 Alは、脱酸剤として添加する元素であり、0.01質量%未満ではその効果に乏しく、一方0.10質量%を超えて添加すると、靭性に悪影響を及ぼすため、Alは0.01~0.10質量%の範囲とする。
Al: 0.01-0.10 mass%
Al is an element added as a deoxidizer, and its effect is poor when it is less than 0.01% by mass. On the other hand, if it exceeds 0.10% by mass, the toughness is adversely affected, so Al is in the range of 0.01 to 0.10% by mass. To do.
O:0.0015質量%以下
 Oは、SiやAlと結合し、硬質な酸化物系非金属介在物を形成して、靭性の低下を招くため、可能な限り低い方が良い。本発明では、O含有量は0.0015質量%以下とする。
O: 0.0015% by mass or less O is preferably as low as possible because it combines with Si and Al to form hard oxide-based nonmetallic inclusions, resulting in a decrease in toughness. In the present invention, the O content is 0.0015% by mass or less.
 本発明では、さらに、次の元素の1種または2種以上を添加することが可能である。
Cr:1.0質量%以下、Cu:1.0質量%以下、Mo:1.0質量%以下、W:1.0質量%以下およびNi:1.0質量%以下
 Cr、Cu、Mo、W及びNiは、固溶強化元素として強度調整に有効な元素である。そのため、必要に応じて、上記5種のいずれか1種または2種以上を、好ましくはそれぞれ0.05質量%以上で添加することが可能である。一方、いずれの元素も、1.0質量%を超えると靭性が低下するため、1.0質量%以下とすることが好ましい。
In the present invention, it is possible to add one or more of the following elements.
Cr: 1.0 mass% or less, Cu: 1.0 mass% or less, Mo: 1.0 mass% or less, W: 1.0 mass% or less, and Ni: 1.0 mass% or less Cr, Cu, Mo, W and Ni are solid solution strengthening elements. It is an effective element for strength adjustment. Therefore, as needed, it is possible to add any one or two or more of the above five types, preferably 0.05% by mass or more. On the other hand, if any element exceeds 1.0% by mass, the toughness decreases, and therefore, it is preferably 1.0% by mass or less.
 同様に、次の元素の1種または2種以上を、さらに添加することが可能である。
Nb:0.1質量%以下、Ti:0.2質量%以下およびV:0.15質量%以下
 Nbは、炭窒化物を形成することによって結晶粒の粗大化を防止する効果を有するとともに、Cと析出物を形成し、強度を得るために有用な元素であるが、0.1質量%を超えて添加すると靭性が低下するため、0.1質量%以下とした。
Similarly, one or more of the following elements can be further added.
Nb: 0.1% by mass or less, Ti: 0.2% by mass or less, and V: 0.15% by mass or less Nb has an effect of preventing coarsening of crystal grains by forming carbonitrides and forms precipitates with C. Although it is an element useful for obtaining strength, if added over 0.1 mass%, the toughness decreases, so it was made 0.1 mass% or less.
 Tiは、鋼中のNをTiNとして固定し、結晶粒の粗大化を防止する効果を有するとともに、Nbと同様にCと析出物を形成するため、強度を得るのに有用な元素であるが、0.2質量%を超えて添加すると靭性が低下するため、0.2質量%以下とした。 Ti has an effect of fixing N in steel as TiN and preventing coarsening of crystal grains, and also forms a precipitate with C in the same manner as Nb, and thus is an element useful for obtaining strength. When added in excess of 0.2% by mass, the toughness decreases, so the content was made 0.2% by mass or less.
 Vは、NbやTiと同様にCと析出物を形成して強度の向上に寄与する元素である。0.15質量%を超えて添加しても効果が飽和する。また、析出物が増加するため、靭性が却って低下するため、0.15質量%以下とすることが好ましい。 V is an element that contributes to the improvement of strength by forming precipitates with C like Nb and Ti. The effect is saturated even if added over 0.15% by mass. Further, since precipitates increase and toughness decreases on the contrary, the content is preferably 0.15% by mass or less.
 さらにまた、以下の元素を添加することが可能である。
B:0.0002~0.005質量%
 Bは、焼入れ性の増大により焼戻し後の鋼の強度を高める元素であり、必要に応じて含有することができる。上記効果を得るためには、0.0002質量%以上にて添加することが好ましい。しかし、0.005質量%を超えて添加すると、靭性が劣化する。よって、Bは0.0002~0.005質量%とすることが好ましい。
Furthermore, it is possible to add the following elements.
B: 0.0002 to 0.005 mass%
B is an element that increases the strength of the steel after tempering by increasing the hardenability, and can be contained as necessary. In order to acquire the said effect, adding at 0.0002 mass% or more is preferable. However, if added over 0.005 mass%, the toughness deteriorates. Therefore, B is preferably 0.0002 to 0.005 mass%.
 また、本発明では、被削性を向上させるために、次の元素の1種または2種以上を添加することが可能である。
Pb:0.01~0.40質量%、Bi:0.01~0.40質量%およびCa:0.0005~0.0100質量%。
Pb:0.01~0.40質量%
 Pbは、被削性を向上させる元素であり、その効果を得るためには、0.01質量%以上で添加することが好ましい。一方、0.40質量%を超えて添加すると、靭性を低下させるため、0.010~0.40質量%とすることが好ましい。
In the present invention, in order to improve machinability, it is possible to add one or more of the following elements.
Pb: 0.01 to 0.40 mass%, Bi: 0.01 to 0.40 mass%, and Ca: 0.0005 to 0.0100 mass%.
Pb: 0.01-0.40 mass%
Pb is an element that improves machinability. In order to obtain the effect, Pb is preferably added in an amount of 0.01% by mass or more. On the other hand, if added over 0.40 mass%, the toughness is lowered, so 0.010 to 0.40 mass% is preferable.
Bi:0.01~0.40質量%
 Biは、被削性を向上させる元素である。その効果を得るためには、0.01質量%以上で添加することが好ましい。一方、0.40質量%を超えて添加すると、靭性を著しく低下させるため、0.01~0.40質量%とすることが好ましい。
Bi: 0.01-0.40 mass%
Bi is an element that improves machinability. In order to acquire the effect, it is preferable to add at 0.01 mass% or more. On the other hand, if added over 0.40% by mass, the toughness is remarkably lowered, so 0.01 to 0.40% by mass is preferable.
Ca:0.0005~0.0100質量%
 Caは、被削性を向上させる元素である。その効果を得るためには、0.0005質量%以上で添加することが好ましい。一方、0.0100質量%を超えて添加しても効果が飽和するため、0.0005~0.0100質量%とすることが好ましい。
Ca: 0.0005 to 0.0100 mass%
Ca is an element that improves machinability. In order to acquire the effect, adding at 0.0005 mass% or more is preferable. On the other hand, even if added over 0.0100% by mass, the effect is saturated, so 0.0005 to 0.0100% by mass is preferable.
 次に、本発明の機械構造用鋼の組織について説明する。
 さて、直径100mmφ以上のような大径棒鋼に代表される、機械構造用鋼に、基地組織として、フェライトおよびパーライト以外の、マルテンサイト、ベイナイトあるいはそれらの混合組織などの低温変態組織を適用すると、例えば棒鋼の断面内組織を均一にすることが困難となる上、冷却中に発生する熱応力と変態に伴い発生する、変態応力の影響にて、内部割れが発生しやすくなる。このようなことから、本発明では、基地組織を、低温変態組織ではなく、フェライトおよびパーライト組織とした。
Next, the structure of the steel for machine structure of the present invention will be described.
By applying a low-temperature transformation structure such as martensite, bainite or a mixed structure other than ferrite and pearlite as a base structure to steel for machine structure, represented by a large diameter steel bar having a diameter of 100 mmφ or more, For example, it becomes difficult to make the structure in the cross section of the steel bar uniform, and internal cracking is likely to occur due to the influence of transformation stress generated by thermal stress and transformation that occurs during cooling. For this reason, in the present invention, the base structure is not a low-temperature transformation structure but a ferrite and pearlite structure.
 このフェライトおよびパーライト組織において高強度化を実現する手段としては、第2相のパーライト分率を増やす方法、フェライト組織を一層細粒化する方法、フェライトを固溶強化や析出強化して硬くする方法、あるいは(オーステナイト+フェライト)2相域で圧延してフェライトの一部を高転位密度化する方法、等が考えられる。 Means for achieving high strength in the ferrite and pearlite structures include a method of increasing the pearlite fraction of the second phase, a method of further reducing the ferrite structure, and a method of hardening the ferrite by solid solution strengthening and precipitation strengthening. Alternatively, a method of rolling in a two-phase region (austenite + ferrite) to increase a part of ferrite to a high dislocation density, etc. can be considered.
 上記の諸方法のうち、フェライトを細粒化する方法は、降伏応力(以降、YPと示す)を上昇させるには有利であるが、引張強さ(以降、TSと示す)の上昇は小さいため、この手法のみでは十分な高強度化は図れない。また、パーライト分率を増加する方法は、Cを多量に添加する必要があるが、Cの過度な添加は上述したように、靭性の低下を招くため好ましくない。固溶強化元素や析出強化元素を添加してフェライトを強化する方法は、合金元素の多量添加が必要となり、合金コストの上昇や、靭性の低下を招いたりする。 Among the above methods, the method of refining ferrite is advantageous for increasing the yield stress (hereinafter referred to as YP), but the increase in tensile strength (hereinafter referred to as TS) is small. However, sufficient strength cannot be achieved by this method alone. The method for increasing the pearlite fraction requires addition of a large amount of C. However, excessive addition of C is not preferable because it causes a decrease in toughness as described above. The method of strengthening ferrite by adding a solid solution strengthening element or a precipitation strengthening element requires a large amount of alloy elements to be added, resulting in an increase in alloy costs and a decrease in toughness.
 一方、加工フェライトの活用は、Cや合金元素の添加を最小限に抑制し、YPおよびTSを上昇させることができる。すなわち、加工フェライトを利用する方法は、熱間圧延後、制御冷却(加速冷却)することなく高強度化を図ることができるため、冷却中に発生する熱応力と変態に伴い発生する変態応力との影響による、内部割れの発生を抑えながら、高強度化することが可能である。 On the other hand, the use of processed ferrite can suppress the addition of C and alloy elements to the minimum, and can increase YP and TS. In other words, the method using the processed ferrite can increase the strength without controlled cooling (accelerated cooling) after hot rolling, so the thermal stress generated during cooling and the transformation stress generated along with the transformation It is possible to increase the strength while suppressing the occurrence of internal cracks due to the effect of.
 そこで、本発明においては、機械構造用鋼の高強度化手段として、鋼のミクロ組織が、加工フェライトを面積率で10~50%含むフェライトおよびパーライトの組織とする方法を採用することにしたのである。ここで、加工フェライトの分率を、面積率にして鋼組織全体の10~50%の範囲としたのは、次の理由によるものである。
 すなわち、加工フェライトの分率が10%未満では、鋼の強化が十分に得られず、一方、50%を超えると、強度は上昇するものの靭性が低下すると共に、(オーステナイト+フェライト)の2相域圧延時の荷重増大に伴うロール割損リスクが増加するからである。
 なお、上記加工フェライトは、Ar変態点以下の(オーステナイト+フェライト)2相域での熱間圧延によって形成された、加工歪が導入されたフェライトのことであり、通常、フェライトをトレースし、短軸および長軸の長さを求めて、短軸に対する長軸の比(アスペクト比)が2以上のフェライトを加工フェライトと定義し、これがミクロ組織中に占める面積を定量化すれば、その分率を測定することができる。
Therefore, in the present invention, as a means for increasing the strength of the steel for machine structural use, a method is adopted in which the microstructure of the steel is a ferrite and pearlite structure containing processed ferrite in an area ratio of 10 to 50%. is there. Here, the reason why the processed ferrite fraction is in the range of 10 to 50% of the entire steel structure in terms of the area ratio is as follows.
That is, if the fraction of the processed ferrite is less than 10%, the steel cannot be sufficiently strengthened. On the other hand, if it exceeds 50%, the strength increases but the toughness decreases and the two phases (austenite + ferrite). This is because the risk of roll breakage accompanying an increase in load during zone rolling increases.
The processed ferrite is a ferrite introduced with work strain formed by hot rolling in a two-phase region (austenite + ferrite) below the Ar 3 transformation point. Usually, the ferrite is traced, If the length of the minor axis and the major axis is determined, and the ratio of the major axis to the minor axis (aspect ratio) is defined as ferrite having a ratio of 2 or more, the area occupied in the microstructure can be quantified. The rate can be measured.
 次に、本発明の鋼を得るための製造条件について説明する。
 本発明の機械構造用鋼の製造に当たっては、先ず、上記した成分組成を有する鋼を転炉や電気炉等による、通常の方法にて溶製し、連続鋳造法や造塊法等の通常の方法にてスラブ、ビレットまたはブルーム等の鋼素材とする。なお、溶製後、取鍋精錬や真空脱ガス等の処理を付加しても良い。
Next, production conditions for obtaining the steel of the present invention will be described.
In the production of the steel for machine structural use of the present invention, first, the steel having the above-described component composition is melted by a usual method using a converter, an electric furnace or the like, and a usual method such as a continuous casting method or an ingot casting method is used. Use a steel material such as slab, billet or bloom. In addition, after melting, treatment such as ladle refining or vacuum degassing may be added.
 その後、上記鋼素材を、加熱炉に装入して再加熱後、熱間圧延して所望の寸法、組織及び特性を有する、例えば非調質棒鋼とする。この際、鋼素材の再加熱温度は、900~1250℃の範囲とする必要がある。加熱温度が900℃未満では、圧延時の変形抵抗が大きくなるため、熱間圧延が難しくなる。一方、1250℃を超える加熱は、表面痕の発生原因となったり、スケールロスや燃料原単位が増加したりする。好ましくは、900~1200℃の範囲である。 Thereafter, the steel material is charged into a heating furnace, reheated, and then hot-rolled to obtain, for example, a non-tempered steel bar having desired dimensions, structure, and characteristics. At this time, the reheating temperature of the steel material needs to be in the range of 900 to 1250 ° C. When the heating temperature is less than 900 ° C., the deformation resistance during rolling becomes large, so that hot rolling becomes difficult. On the other hand, heating above 1250 ° C may cause surface marks, increase scale loss and fuel consumption. Preferably, it is in the range of 900 to 1200 ° C.
 続く熱間圧延は、まず、Ar点以下の温度で圧延を行う必要がある。この温度で圧延を行わないと、鋼のミクロ組織が加工フェライトを含まないものとなり、必要な強度および靭性を確保することができない。Ar点以下の温度での圧延は、1パス当たり10%以上の減面率を有する圧延を少なくとも1パス行う必要がある。なぜなら、この減面率が10%未満の場合、加工フェライトの生成量が少なくなるため、2相域圧延による強度や靭性を高める効果が十分に得られないからである。
 Ar点以下の温度での累積減面率が80%を超えると、圧延荷重が増大して圧延が困難となったり、圧延のパス回数が増えて生産性の低下を招いたりする。さらに、加工フェライト量が50%を超えるようになり、鋼の強度が上昇し過ぎて、却って靭性の低下を招く。よって、Ar点以下での累積減面率は80%以下とする。
In the subsequent hot rolling, it is first necessary to perform rolling at a temperature of 3 points or less of Ar. If rolling is not performed at this temperature, the microstructure of the steel does not contain processed ferrite, and the necessary strength and toughness cannot be ensured. For rolling at a temperature of 3 points or less of Ar, it is necessary to carry out at least one pass of rolling having a reduction in area of 10% or more per pass. This is because when the area reduction ratio is less than 10%, the amount of processed ferrite produced is reduced, and the effect of enhancing the strength and toughness by the two-phase region rolling cannot be obtained sufficiently.
When the cumulative area reduction rate at a temperature of 3 points or less of Ar exceeds 80%, the rolling load increases and rolling becomes difficult, or the number of rolling passes increases, leading to a decrease in productivity. Furthermore, the amount of processed ferrite exceeds 50%, and the strength of the steel increases too much, leading to a decrease in toughness. Therefore, the cumulative area reduction rate at 3 points or less of Ar is 80% or less.
 さらに、上記熱間圧延における、仕上温度を(Ar-10℃)~(Ar-180℃)の条件にて行う必要がある。圧延仕上温度が、(Ar-10℃)超えでは、2相域圧延による靭性を高める効果が十分に得られず、一方、(Ar-180℃)未満では、変形抵抗の増大により圧延荷重が増加し、圧延することが困難となり、さらに、加工フェライト量が50%を超えるようになり、鋼の強度が上昇し過ぎて、靭性の低下を招く。 Furthermore, it is necessary to perform the finishing temperature in the hot rolling under the conditions of (Ar 3 −10 ° C.) to (Ar 3 −180 ° C.). When the rolling finishing temperature exceeds (Ar 3 −10 ° C.), the effect of enhancing the toughness by the two-phase rolling cannot be obtained sufficiently, whereas when the rolling finishing temperature is less than (Ar 3 −180 ° C.), the rolling load increases due to the increase in deformation resistance. As a result, it becomes difficult to roll, the amount of processed ferrite exceeds 50%, the strength of the steel increases too much, and the toughness decreases.
 上記熱間圧延に続く冷却は、放冷することが好ましい。なぜなら、熱間圧延後に加速冷却を行うと、組織がフェライト+パーライト以外の、マルテンサイト、べイナイトあるいはそれらの混合組織などの低温変態組織となり、断面内の組織を均一な組織とすることが困難となる上、冷却中に発生する熱応力と変態に伴い発生する変態応力の影響にて、内部割れが発生しやすくなる。そのために、熱間圧延に続く冷却は、放冷することが好ましい。具体的には、0.5℃/s以下で冷却するとよい。 It is preferable to cool the cooling following the hot rolling. This is because when accelerated cooling is performed after hot rolling, the structure becomes a low-temperature transformation structure such as martensite, bainite, or a mixed structure other than ferrite + pearlite, and it is difficult to make the structure in the cross section uniform. In addition, internal cracking is likely to occur due to the thermal stress generated during cooling and the transformation stress generated with the transformation. Therefore, it is preferable to cool the cooling following hot rolling. Specifically, the cooling may be performed at 0.5 ° C./s or less.
 以下に、機械構造用鋼として棒鋼を例に、具体的に説明する。
 表1に示す成分組成を有する鋼を、真空溶解炉または転炉で溶製してブルームとし、このブルームを加熱炉に装入して加熱後、表2に示した条件に従う熱間圧延にて丸棒に熱間圧延した。得られた圧延ままの棒鋼の表面から直径の1/4深さ部分より、JIS4号引張試験片およびJIS3号シャルピー衝撃試験片を切り出し、機械的特性を評価した。
Hereinafter, a steel bar will be specifically described as an example of steel for machine structural use.
Steel having the component composition shown in Table 1 is melted in a vacuum melting furnace or converter to form a bloom, and this bloom is charged into a heating furnace and heated, and then hot rolled in accordance with the conditions shown in Table 2. Hot rolled into a round bar. A JIS No. 4 tensile test piece and a JIS No. 3 Charpy impact test piece were cut out from a 1/4 depth portion from the surface of the obtained rolled steel bar, and the mechanical properties were evaluated.
 なお、シャルピー衝撃試験は、試験温度20℃で3本実施し、平均衝撃値で評価した。また、上述した試験片の採取位置と同じ位置から組織観察用の試料を採取し、光学顕微鏡にて倍率400倍で5視野観察し、生成したフェライトのトレースを行い、NIPPON ROPER製「Image-Pro」(商品名)を使用して、該フェライトの短軸および長軸の長さを求め、アスペクト比が2以上のフェライト(加工フェライト)のミクロ組織中に占める面積を定量化し、加工フェライトの分率を求めた。 Three Charpy impact tests were conducted at a test temperature of 20 ° C., and the average impact value was evaluated. In addition, a sample for tissue observation is collected from the same position as the above-mentioned specimen collection position, and observed with an optical microscope at a magnification of 400 times in five fields, and the generated ferrite is traced. “Image-Pro” manufactured by NIPPON ROPER (Trade name) to determine the lengths of the short axis and long axis of the ferrite, quantify the area of the ferrite (processed ferrite) with an aspect ratio of 2 or more in the microstructure, The rate was determined.
 圧延温度は、ミルの入側および出側に放射温度計を設置して測定した。また、表2の仕上圧延温度は、最終圧延時の出側の温度のことを言う。
 降伏強さ、引張強さおよび靭性(衝撃値)は、従来のS45C(基準鋼)に比べて10%以上向上した場合に特性が向上したと判断した。
The rolling temperature was measured by installing a radiation thermometer on the entry side and the exit side of the mill. Further, the finish rolling temperature in Table 2 refers to the temperature on the exit side during final rolling.
Yield strength, tensile strength, and toughness (impact value) were judged to have improved characteristics when improved by 10% or more compared to conventional S45C (reference steel).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表3に、加工フェライト分率、降伏強さ、引張強さ、衝撃値および組織の評価結果を示す。また、表3の結果を、図1~図3に整理して示す。本発明の成分組成、組織および製造条件を満たす、鋼B-4~8の鋼は、降伏強さ、引張強さ並びに衝撃値が基準鋼に比べて10%以上良好な値を示しており、高強度でありながら高靭性を有していることがわかる。これに対して、成分組成が本発明範囲内であっても、本発明の組織形態を有していない鋼B-2、3、9および10は、降伏強さ、引張強さ並びに衝撃値が基準鋼レベル、または高強度化により靭性が低下していることが分かる。 Table 3 shows the processed ferrite fraction, yield strength, tensile strength, impact value, and structure evaluation results. The results of Table 3 are summarized in FIGS. 1 to 3. Steels B-4 to 8 satisfying the component composition, structure and production conditions of the present invention show yield values, tensile strengths and impact values that are 10% or more better than standard steels, It can be seen that while having high strength, it has high toughness. On the other hand, even if the component composition is within the range of the present invention, the steels B-2, 3, 9 and 10 which do not have the microstructure of the present invention have yield strength, tensile strength and impact value. It can be seen that the toughness is reduced due to the standard steel level or higher strength.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表4に示す成分組成を有する鋼を、真空溶解炉または転炉で溶製してブルームとし、このブルームを加熱炉に装入して加熱後、表5に示した条件で熱間圧延を行い、丸棒に熱間圧延した。得られた圧延ままの棒鋼に対して、上述した試験を実施し評価した。 Steel having the composition shown in Table 4 is melted in a vacuum melting furnace or converter to form a bloom, and this bloom is charged into a heating furnace and heated, and then hot-rolled under the conditions shown in Table 5. , Hot rolled into a round bar. The above-mentioned test was implemented and evaluated with respect to the obtained rolled steel bar.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表6に、加工フェライト分率、降伏強さ、引張強さ、衝撃値および組織の評価結果を示す。本発明の成分組成、組織および製造条件を満たす、鋼C-1~11は、降伏強さ、引張強さ並びに衝撃値が、基準鋼に比べて10%以上良好な値を示しており、高強度でありながら高靭性を有していることが分かる。これに対して、成分組成が本発明範囲内であっても、本発明の組織形態を有していない鋼C-12~16、製造条件が本発明の範囲外であって本発明の組織形態を有していない鋼C-17~19の鋼は、降伏強さ、引張強さ並びに衝撃値のいずれかが基準鋼レベル、または高強度化により靭性が低下していることが分かる。なお、発明鋼についての内部観察では内部割れは発生していないが、比較例である鋼C-18(水冷材)については内部割れが発生していた。 Table 6 shows the processed ferrite fraction, yield strength, tensile strength, impact value, and structure evaluation results. Steels C-1 to C-11 satisfying the component composition, structure and production condition of the present invention have yield values, tensile strengths, and impact values that are 10% or more better than those of standard steels. It can be seen that it is strong but has high toughness. On the other hand, even if the component composition is within the scope of the present invention, Steel C-12 to 16 which does not have the microstructure of the present invention, the production conditions are outside the scope of the present invention, and the microstructure of the present invention It can be seen that the steels C-17 to 19 that do not have any of the above have lower toughness due to the yield strength, tensile strength, and impact value being either the standard steel level or higher strength. Internal cracks did not occur in the internal observation of the inventive steel, but internal cracks occurred in the comparative steel C-18 (water-cooled material).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Claims (10)

  1.  C:0.35~0.60質量%、
     Si:0.1~1.0質量%、
     Mn:0.1~1.5質量%、
     P:0.025質量%以下、
     S:0.025質量%以下、
     Al:0.01~0.10質量%および
     O:0.0015質量%以下
    を含み、残部不可避不純物およびFeからなる成分組成を有し、加工フェライトを10~50%含む、フェライトおよびパーライトの組織からなることを特徴とする機械構造用鋼。
    C: 0.35-0.60 mass%,
    Si: 0.1 to 1.0 mass%,
    Mn: 0.1-1.5% by mass,
    P: 0.025 mass% or less,
    S: 0.025 mass% or less,
    Al: 0.01 to 0.10% by mass and O: 0.0015% by mass or less, having a component composition consisting of the balance inevitable impurities and Fe, and comprising a ferrite and pearlite structure containing 10 to 50% processed ferrite Machine structural steel.
  2.  上記成分組成に、さらに
     Cr:1.0質量%以下、
     Cu:1.0質量%以下、
     Mo:1.0質量%以下、
     W:1.0質量%以下および
     Ni:1.0質量%以下
    のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の機械構造用鋼。
    In addition to the above component composition, Cr: 1.0% by mass or less,
    Cu: 1.0 mass% or less,
    Mo: 1.0% by mass or less,
    The machine structural steel according to claim 1, comprising one or more selected from W: 1.0 mass% or less and Ni: 1.0 mass% or less.
  3.  上記成分組成に、さらに
     Nb:0.1質量%以下、
     Ti:0.2質量%以下および
     V:0.15質量%以下
    のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1または2に記載の機械構造用鋼。
    In addition to the above component composition, Nb: 0.1% by mass or less,
    The steel for machine structural use according to claim 1 or 2, comprising one or more selected from Ti: 0.2 mass% or less and V: 0.15 mass% or less.
  4.  上記成分組成に、さらに
     B:0.0002~0.005質量%
    を含有することを特徴とする請求項1から3のいずれかに記載の機械構造用鋼。
    In addition to the above component composition, B: 0.0002 to 0.005 mass%
    The mechanical structural steel according to claim 1, comprising:
  5.  上記成分組成に、さらに
     Pb:0.01~0.40質量%、
     Bi:0.01~0.40質量%および
     Ca:0.0005~0.0100質量%
    のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1から4のいずれかに記載の機械構造用鋼。
    In addition to the above component composition, Pb: 0.01-0.40 mass%,
    Bi: 0.01 to 0.40 mass% and Ca: 0.0005 to 0.0100 mass%
    It contains 1 type, or 2 or more types chosen from among these, Steel for machine structure in any one of Claim 1 to 4 characterized by the above-mentioned.
  6.  C:0.35~0.60質量%、
     Si:0.1~1.0質量%、
     Mn:0.1~1.5質量%、
     P:0.025質量%以下、
     S:0.025質量%以下、
     Al:0.01~0.10質量%および
     O:0.0015質量%以下
    を含み、残部不可避不純物およびFeからなる素材を、900~1250℃に加熱後、Ar点以下の温度での累積減面率が80%以下、かつAr点以下の温度域にて1パス当たりの減面率が10%以上の圧延を少なくとも1パスは行い、仕上温度を(Ar-10℃)~(Ar-150℃)とする、熱間圧延を施し、その後、放冷することを特徴とする機械構造用鋼の製造方法。
    C: 0.35-0.60 mass%,
    Si: 0.1 to 1.0 mass%,
    Mn: 0.1-1.5% by mass,
    P: 0.025 mass% or less,
    S: 0.025 mass% or less,
    Al: 0.01% to 0.10% by mass and O: 0.0015% by mass or less, and the material consisting of the remainder inevitable impurities and Fe is heated to 900 to 1250 ° C, and the cumulative area reduction at a temperature of 3 points or less is 80%. Rolling with a reduction rate of 10% or more per pass in a temperature range of 3 points or less of Ar is performed at least in one pass, and the finishing temperature is (Ar 3 −10 ° C.) to (Ar 3 −150 ° C.) A method for producing steel for machine structural use, characterized in that hot rolling is performed and then left to cool.
  7.  上記素材に、さらに
     Cr:1.0質量%以下、
     Cu:1.0質量%以下、
     Mo:1.0質量%以下、
     W:1.0質量%以下および
     Ni:1.0質量%以下
    のうちから選ばれる1種または2種以上を含有することを特徴とする請求項6に記載の機械構造用鋼の製造方法。
    In addition to the above materials, Cr: 1.0 mass% or less,
    Cu: 1.0 mass% or less,
    Mo: 1.0% by mass or less,
    The method for producing steel for machine structural use according to claim 6, comprising one or more selected from W: 1.0 mass% or less and Ni: 1.0 mass% or less.
  8.  上記素材に、さらに
     Nb:0.1質量%以下、
     Ti:0.2質量%以下および
     V:0.15質量%以下
    のうちから選ばれる1種または2種以上を含有することを特徴とする請求項6または7に記載の機械構造用鋼の製造方法。
    In addition to the above materials, Nb: 0.1% by mass or less,
    The method for producing steel for machine structural use according to claim 6 or 7, comprising one or more selected from Ti: 0.2% by mass or less and V: 0.15% by mass or less.
  9.  上記素材に、さらに
     B:0.0002~0.005質量%
    を含有することを特徴とする請求項6から8のいずれかに記載の機械構造用鋼の製造方法。
    In addition to the above materials, B: 0.0002 to 0.005 mass%
    The manufacturing method of the steel for machine structures in any one of Claim 6 to 8 characterized by the above-mentioned.
  10.  上記素材に、さらに
     Pb:0.01~0.40質量%、
     Bi:0.01~0.40質量%および
     Ca:0.0005~0.0100質量%
    のうちから選ばれる1種または2種以上を含有することを特徴とする請求項6から9のいずれかに記載の機械構造用鋼の製造方法。
     
     
     
     
     
     
     
     
     
     
    In addition to the above materials, Pb: 0.01-0.40 mass%,
    Bi: 0.01 to 0.40 mass% and Ca: 0.0005 to 0.0100 mass%
    The method for producing steel for machine structural use according to any one of claims 6 to 9, comprising one or more selected from among the above.









PCT/JP2011/006857 2011-12-07 2011-12-07 Steel for mechanical structures and manufacturing method therefor WO2013084265A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
IN1143KON2014 IN2014KN01143A (en) 2011-12-07 2011-12-07
PCT/JP2011/006857 WO2013084265A1 (en) 2011-12-07 2011-12-07 Steel for mechanical structures and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/006857 WO2013084265A1 (en) 2011-12-07 2011-12-07 Steel for mechanical structures and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2013084265A1 true WO2013084265A1 (en) 2013-06-13

Family

ID=48573677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006857 WO2013084265A1 (en) 2011-12-07 2011-12-07 Steel for mechanical structures and manufacturing method therefor

Country Status (2)

Country Link
IN (1) IN2014KN01143A (en)
WO (1) WO2013084265A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107245653A (en) * 2017-05-27 2017-10-13 江苏金基特钢有限公司 A kind of steel pipe for natural gas transmission
CN107245654A (en) * 2017-05-27 2017-10-13 江苏金基特钢有限公司 A kind of bearing steel and preparation method thereof
CN112063929A (en) * 2020-09-21 2020-12-11 江阴方圆环锻法兰有限公司 Novel bearing forging for shield tunneling machine and forging method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199750A (en) * 1986-02-27 1987-09-03 Nippon Steel Corp Unrefined steel bar having superior toughness and its manufacture
JP2004346415A (en) * 2003-05-26 2004-12-09 Nippon Steel Corp Ultrahigh-temperature hot-forged non-heat-treated parts and manufacturing method therefor
JP2009263684A (en) * 2008-04-22 2009-11-12 Nissan Motor Co Ltd Method for manufacturing steel-made parts
JP2010229475A (en) * 2009-03-26 2010-10-14 Jfe Steel Corp Method for manufacturing high-strength high-toughness hot-forged product
JP2011241465A (en) * 2010-05-21 2011-12-01 Sumitomo Metal Ind Ltd Rolled steel material for induction hardening and method for manufacturing the same
JP2011246769A (en) * 2010-05-27 2011-12-08 Jfe Steel Corp Steel for machine structural use and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199750A (en) * 1986-02-27 1987-09-03 Nippon Steel Corp Unrefined steel bar having superior toughness and its manufacture
JP2004346415A (en) * 2003-05-26 2004-12-09 Nippon Steel Corp Ultrahigh-temperature hot-forged non-heat-treated parts and manufacturing method therefor
JP2009263684A (en) * 2008-04-22 2009-11-12 Nissan Motor Co Ltd Method for manufacturing steel-made parts
JP2010229475A (en) * 2009-03-26 2010-10-14 Jfe Steel Corp Method for manufacturing high-strength high-toughness hot-forged product
JP2011241465A (en) * 2010-05-21 2011-12-01 Sumitomo Metal Ind Ltd Rolled steel material for induction hardening and method for manufacturing the same
JP2011246769A (en) * 2010-05-27 2011-12-08 Jfe Steel Corp Steel for machine structural use and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107245653A (en) * 2017-05-27 2017-10-13 江苏金基特钢有限公司 A kind of steel pipe for natural gas transmission
CN107245654A (en) * 2017-05-27 2017-10-13 江苏金基特钢有限公司 A kind of bearing steel and preparation method thereof
CN112063929A (en) * 2020-09-21 2020-12-11 江阴方圆环锻法兰有限公司 Novel bearing forging for shield tunneling machine and forging method thereof

Also Published As

Publication number Publication date
IN2014KN01143A (en) 2015-10-16

Similar Documents

Publication Publication Date Title
US9708681B2 (en) High-strength seamless steel pipe for oil well use having excellent resistance to sulfide stress cracking
EP2617850B1 (en) High-strength hot rolled steel sheet having excellent toughness and method for producing same
JP5079793B2 (en) Steel material excellent in high temperature characteristics and toughness and method for producing the same
EP3653736B1 (en) Hot-rolled steel strip and manufacturing method
WO2015093321A1 (en) H-shaped steel and method for producing same
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
US20170369958A1 (en) Thick-walled high-toughness high-strength steel plate and method for manufacturing the same
JPWO2011049006A1 (en) Induction hardening steel and method of manufacturing induction hardening steel parts
JP5565102B2 (en) Steel for machine structure and manufacturing method thereof
JP2012122111A (en) Method for producing tmcp and tempering process type high-strength thick steel plate having both excellent productivity and weldability, and excellent in drop-weight characteristic after pwht
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP5194572B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
WO2018061101A1 (en) Steel
JP5266804B2 (en) Method for producing rolled non-heat treated steel
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
WO2013084265A1 (en) Steel for mechanical structures and manufacturing method therefor
KR102339890B1 (en) Steel plate and method of producing same
JP2009228051A (en) Method for producing non-heattreated steel material
CN108699650B (en) Rolled wire
CN108350550B (en) High-strength cold-rolled steel sheet having excellent shear workability and method for producing same
JP6536459B2 (en) Thick steel plate and method of manufacturing the same
JP6459704B2 (en) Steel for cold forging parts
JP2023045253A (en) Steel plate and method for producing the same
KR102289520B1 (en) Steel reinforcement and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP