JP2017137576A - Angle steel and production method of angle steel - Google Patents

Angle steel and production method of angle steel Download PDF

Info

Publication number
JP2017137576A
JP2017137576A JP2017012332A JP2017012332A JP2017137576A JP 2017137576 A JP2017137576 A JP 2017137576A JP 2017012332 A JP2017012332 A JP 2017012332A JP 2017012332 A JP2017012332 A JP 2017012332A JP 2017137576 A JP2017137576 A JP 2017137576A
Authority
JP
Japan
Prior art keywords
angle steel
mass
temperature
mpa
component composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017012332A
Other languages
Japanese (ja)
Other versions
JP6520965B2 (en
Inventor
木村 達己
Tatsuki Kimura
達己 木村
知夫 堀田
Tomoo Hotta
知夫 堀田
健太郎 脇田
Kentaro Wakita
健太郎 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2017137576A publication Critical patent/JP2017137576A/en
Application granted granted Critical
Publication of JP6520965B2 publication Critical patent/JP6520965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an angle steel having excellent mechanical properties, namely, yield stress (YS):460 MPa or more and tensile strength (TS):570 MPa or more.SOLUTION: The angle steel is provided that has a component composition containing, by mass%, C:0.03 to 0.18%, Si:0.05 to 0.50%, Mn:0.1 to 1.8%, P:0.030% or less, S:0.010% or less, Al:0.005 to 0.07%, N:0.006 to 0.018% and one or both of V:0.01 to 0.12% and Nb:0.001 to 0.05% and the balance Fe with inevitable impurities and having carbon equivalent Ceq defined by the following formula (1), and that has a micro structure including deformed ferrite of 0.36 to 0.44% and has mechanical properties, namely, YS:460 MPa or more, TS:570 MPa or more and Charpy absorption energy at -5°C:47 J or more. Ceq (mass%)=C+Mn/6+(Cu+Ni)/15+(Mo+V)/5... (1).SELECTED DRAWING: None

Description

本発明は、造船用の補強材やクレーンガーターの補強材などに用いられる山形鋼に関し、特に、降伏応力(YS)が460MPa以上である山形鋼に関する。また、本発明は、前記山形鋼の製造方法に関する。なお、ここで「山形鋼」とは、不等辺不等厚山形鋼、等辺山形鋼、バルブプレート(球平形鋼)、およびチャンネル(溝形鋼)のいずれをも包含するものとする。   The present invention relates to angle irons used for shipbuilding reinforcements, crane garter reinforcements, and the like, and particularly relates to angle steels having a yield stress (YS) of 460 MPa or more. The present invention also relates to a method for producing the angle steel. Here, the “angle steel” includes any of unequal side unequal thickness angle steel, equilateral angle steel, valve plate (spherical flat steel), and channel (grooved steel).

造船所で大型船等の各種船舶を建造する際には、所定寸法に切断した厚鋼板を溶接して船体の外板をビルトアップする。船体の外板には、その裏側長手方向にT型、L型等各種形状のロンジ材が補強材として溶接されて、外板を補強する構造となっている。近年、海上輸送の効率を上げるために、各種船舶の大型化が進んでおり、外板や補強材が厚肉化や大型化する傾向にある。   When building various types of ships such as large ships at a shipyard, a steel plate cut to a predetermined size is welded to build up the outer plate of the hull. The outer plate of the hull is structured to reinforce the outer plate by welding a long material of various shapes such as T-type and L-type as a reinforcing material in the longitudinal direction on the back side. In recent years, in order to increase the efficiency of marine transportation, various ships have been increased in size, and outer plates and reinforcing materials tend to be thicker and larger.

また、港湾や造船を建造するドックにおいて重量物を吊り上げ、運搬するクレーンのガーターにも補強材が用いられている。この補強材も、近年、大スパン化や積載重量増大とともに厚肉化、大型化する傾向にある。   Reinforcing materials are also used in the garters of cranes that lift and carry heavy objects at docks for harbors and shipbuilding. In recent years, this reinforcing material also tends to become thicker and larger as the span increases and the load weight increases.

補強材として用いられているT型ロンジ材は、素材を厚板等の鋼板から切出して、溶接法により製作される。このT型ロンジ材は、断面係数が高く、寸法形状を任意に選択することや、必要に応じてフランジとウエブの強度を自由に組み合わせることができるという様々な利点を有するが、溶接してT型形状にするため、手間とコストがかかるという問題点がある。   A T-shaped longi material used as a reinforcing material is manufactured by welding a material from a steel plate such as a thick plate. This T-type longe material has a high section modulus, and has various advantages that the dimensions and shapes can be arbitrarily selected and the strength of the flange and web can be freely combined as required. There is a problem that it takes time and cost to form the mold.

一方、補強材として用いられているもう一つの部材に山形鋼がある。山形鋼は熱間圧延により製造されるので、溶接して製造されるT形鋼と比べて手間やコストがかからないという利点があり、需要者にとって施工期間短縮やコスト削減などの大きなメリットがある。   On the other hand, another member used as a reinforcing material is angle steel. Since angle steel is manufactured by hot rolling, it has the advantage that it does not require labor and cost compared to T-shaped steel manufactured by welding, and there are significant advantages such as shortening the construction period and cost reduction for consumers.

山形鋼としては、軟鋼、YS325、YS360MPa級までの強度グレードのものが主に用いられているが、近年、ますます巨大化する船舶やそれを製造するドックに設置されるクレーンに用いるために、今以上に高強度で且つ溶接性に優れる山形鋼が求められている。具体的には、降伏応力(YS):460MPa以上、引張強さ(TS):570MPa以上の高強度を有する山形鋼が求められている。   As the angle steel, those of mild steel, strength grades up to YS325, YS360MPa class are mainly used, but in recent years, for use in ships that are becoming increasingly large and cranes installed in the docks that produce them, There is a need for an angle steel that has higher strength and better weldability. Specifically, there is a demand for angle steel having high strength such as yield stress (YS): 460 MPa or more and tensile strength (TS): 570 MPa or more.

山形鋼の製造技術に関しては、例えば特許文献1では、不等辺不等厚山形鋼(NAB)の製造において、仕上圧延における薄肉辺(長辺)と厚肉辺(短辺)の温度を所定の範囲に制御することが提案されている。   With regard to the manufacturing technology of angle steel, for example, in Patent Document 1, the temperature of the thin wall side (long side) and the thick wall side (short side) in finish rolling is set to a predetermined value in the manufacture of unequal side unequal thick angle steel (NAB). It has been proposed to control to a range.

また、特許文献2では、不等辺不等厚山形鋼の製造において、厚肉部と薄肉部の温度が等しくなるように、圧延途中および圧延後に強制冷却を施すことが提案されている。   In addition, Patent Document 2 proposes that forced cooling is performed during and after rolling so that the temperatures of the thick wall portion and the thin wall portion are equal in the manufacture of unequal side unequal thick angle steel.

特許文献3では、フランジ(短辺側)部の強度がウエブ(長辺側)部の強度より高いことを特徴とする山形鋼が提案されている。特許文献3では、前記山形鋼を製造するために、仕上圧延機前段に配置された中間圧延機の前後面で、圧延材を各パス毎に、サイドガイドで拘束しながらフランジ部を、制御冷却することが示されている。   Patent Document 3 proposes an angle steel characterized in that the strength of the flange (short side) portion is higher than the strength of the web (long side) portion. In Patent Document 3, in order to manufacture the angle steel, the flange portion is controlled and cooled on the front and rear surfaces of the intermediate rolling mill arranged in the front stage of the finish rolling mill while restraining the rolled material with a side guide for each pass. Has been shown to do.

特開昭53−040670号公報JP-A-53-040670 特開昭53−055458号公報JP-A 53-055458 特開2007−216251号公報JP 2007-216251 A

しかし、特許文献1、2に記載されている方法は、いずれも温度の不均一さに起因する大曲りやウエブ波を防止するためのものであり、山形鋼の強度を向上させることを目的としたものではない。また、特許文献3に記載されている山形鋼では、フランジ部とウエブ部の強度が制御されているものの、その強度は依然として十分ではなかった。   However, the methods described in Patent Documents 1 and 2 are for preventing large bending and web waves caused by temperature non-uniformity, and aimed to improve the strength of the angle steel. It is not a thing. Further, in the angle steel described in Patent Document 3, the strength of the flange portion and the web portion is controlled, but the strength is still not sufficient.

山形鋼、特に不等辺不等厚山形鋼においては、断面形状が複雑であるため、厚鋼板と同様の制御圧延・加速冷却プロセス(TMCP)を採用することは困難である。特に、圧延途中での曲がりや反りに配慮しながら、材質の造りこみを行う必要があるため、降伏応力YSが460MPa以上の高強度形鋼とするためには、山形鋼独自の製造方法を検討する必要がある。また、溶接性にも十分配慮する必要がある。   In angle irons, in particular, inhomogeneous unequal thickness angle steels, the cross-sectional shape is complicated, and therefore it is difficult to employ a controlled rolling / accelerated cooling process (TMCP) similar to that for thick steel sheets. In particular, because it is necessary to build the material while considering bending and warping during rolling, in order to obtain a high-strength section steel with a yield stress YS of 460 MPa or more, an original manufacturing method for angle steel is studied. There is a need to. In addition, sufficient consideration must be given to weldability.

本発明は、上記実状に鑑みてなされたものであり、降伏応力(YS):460MPa以上、引張強さ(TS):570MPa以上という優れた機械的特性を有する山形鋼を安定的に提供することを目的とする。特に、バルブプレートの球部の中心は断面が大きく、その中心部は加工熱処理による圧延、冷却効果が得られにくい部位であり、こうした部位においても優れた機械的性質(高強度と高靭性)を満たすことを目的とする。   This invention is made | formed in view of the said actual condition, and provides stably the angle iron which has the outstanding mechanical characteristics of yield stress (YS): 460 MPa or more and tensile strength (TS): 570 MPa or more. With the goal. In particular, the center of the bulb plate sphere has a large cross-section, and the center is difficult to obtain rolling and cooling effects by thermomechanical treatment. Even in these areas, excellent mechanical properties (high strength and high toughness) are obtained. The purpose is to satisfy.

発明者らは、上記課題を解決するために鋭意検討を行った結果、成分組成および製造条件を特定の範囲に制御し、ミクロ組織を最適化することによって、上記機械的特性を有する山形鋼を製造できることを知見した。   As a result of intensive studies to solve the above problems, the inventors have controlled the component composition and manufacturing conditions to a specific range, and optimized the microstructure to obtain an angle steel having the above mechanical characteristics. It was found that it can be manufactured.

本発明は、上記知見に基づいてなされたものであり、その要旨構成は次のとおりである。
1.質量%で、
C :0.03〜0.18%、
Si:0.05〜0.50%、
Mn:0.1〜1.8%、
P :0.030%以下、
S :0.010%以下、
Al:0.005〜0.07%、
N :0.006〜0.018%、ならびに
V:0.01〜0.12%およびNb:0.001〜0.05%の一方または両方を含有し、残部がFeおよび不可避不純物からなり、下記(1)式で定義される炭素当量Ceqが0.36〜0.44%である成分組成を有し、
加工フェライトを含むミクロ組織を有し、
YS:460MPa以上、TS:570MPa以上、−5℃におけるシャルピー吸収エネルギー:47J以上である機械的特性を有する、山形鋼。

Ceq(質量%)=C+Mn/6+(Cu+Ni)/15+(Mo+V)/5・・・(1)
This invention is made | formed based on the said knowledge, The summary structure is as follows.
1. % By mass
C: 0.03-0.18%,
Si: 0.05 to 0.50%,
Mn: 0.1 to 1.8%,
P: 0.030% or less,
S: 0.010% or less,
Al: 0.005 to 0.07%,
N: 0.006 to 0.018%, and V: 0.01 to 0.12% and Nb: 0.001 to 0.05% or both of which contain Fe and inevitable impurities, The carbon equivalent Ceq defined by the following formula (1) has a component composition of 0.36 to 0.44%,
Has a microstructure containing processed ferrite,
Angle steel with mechanical properties of YS: 460 MPa or more, TS: 570 MPa or more, Charpy absorbed energy at −5 ° C .: 47 J or more.
Ceq (mass%) = C + Mn / 6 + (Cu + Ni) / 15 + (Mo + V) / 5 (1)

2.上記成分組成が、質量%で、
Cu:0.05〜0.50%、
Ni:0.05〜0.25%、および
Mo:0.01〜0.50%からなる群より選択される少なくとも1種をさらに含有する、前記1に記載の山形鋼。
2. The component composition is mass%,
Cu: 0.05 to 0.50%,
The angle steel according to the above 1, further comprising at least one selected from the group consisting of Ni: 0.05 to 0.25% and Mo: 0.01 to 0.50%.

3.上記成分組成が、質量%で、
Ti:0.001〜0.1%および
Zr:0.001〜0.1%の一方または両方をさらに含有する、前記1または2に記載の山形鋼。
3. The component composition is mass%,
The angle steel according to 1 or 2, further containing one or both of Ti: 0.001 to 0.1% and Zr: 0.001 to 0.1%.

4.上記成分組成が、質量%で、
B :0.0002〜0.003%をさらに含有する、前記1〜3のいずれか一項に記載の山形鋼。
4). The component composition is mass%,
B: Angle iron as described in any one of said 1-3 which further contains 0.0002 to 0.003%.

5.上記成分組成が、質量%で、
Ca:0.0002〜0.01%および
REM:0.0002〜0.015%の一方または両方をさらに含有する、前記1〜4のいずれか一項に記載の山形鋼。
5. The component composition is mass%,
The angle steel according to any one of the above 1 to 4, further containing one or both of Ca: 0.0002 to 0.01% and REM: 0.0002 to 0.015%.

6.前記1〜5のいずれか一項に記載の成分組成を有する鋼素材を用意し、1150〜1350℃に加熱した後、熱間圧延して山形鋼を製造する方法であって、
前記熱間圧延を、Ar3温度以下における累積圧下率:20〜80%、仕上温度:(Ar3−50)〜(Ar3−120)℃の条件で行い、
前記熱間圧延後に、冷却開始温度:(Ar3−50)〜(Ar3−120)℃、冷却停止温度:650〜500℃の条件で加速冷却を行う、山形鋼の製造方法。
6). A steel material having the component composition according to any one of 1 to 5 above is prepared, heated to 1150 to 1350 ° C., and then hot rolled to produce an angle steel,
The hot rolling is performed under the conditions of the cumulative rolling reduction at Ar3 temperature or lower: 20 to 80%, the finishing temperature: (Ar3-50) to (Ar3-120) ° C.
A method for producing angle iron, in which, after the hot rolling, accelerated cooling is performed under conditions of a cooling start temperature: (Ar3-50) to (Ar3-120) ° C. and a cooling stop temperature: 650 to 500 ° C.

本発明によれば、厚板鋼板を溶接して製造されるT形鋼や、H形鋼などの形鋼のウエブを切断して製造されるT形鋼に比べて安価でありながら、強度、靭性、および溶接性に優れた山形鋼を提供することができる。   According to the present invention, while being cheaper than a T-shaped steel manufactured by welding thick steel plates and a T-shaped steel manufactured by cutting a shaped steel web such as an H-shaped steel, the strength, An angle steel excellent in toughness and weldability can be provided.

バルブプレートの断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape of a valve plate. バルブプレートからの試験片採取位置を示す図である。It is a figure which shows the test piece collection position from a valve plate.

[成分組成]
次に、本発明を実施する方法について具体的に説明する。本発明においては、山形鋼および山形鋼を製造する際に使用される鋼素材が上記成分組成を有することが重要である。そこで、まず本発明において成分組成を上記のように限定する理由を説明する。なお、以下の説明において各成分の含有量の単位として用いられる「%」は、特に断らない限り「質量%」を意味する。
[Ingredient composition]
Next, a method for carrying out the present invention will be specifically described. In this invention, it is important that the steel raw material used when manufacturing angle iron and angle steel has the said component composition. First, the reason why the component composition is limited as described above in the present invention will be described. In the following description, “%” used as a unit of content of each component means “% by mass” unless otherwise specified.

C:0.03〜0.18%
Cは、鋼の強度を高めるのに有効な元素であり、本発明では、所望の強度を得るためにC含有量を0.03%以上とする必要がある。一方、0.18%を超えるCの添加は、溶接性や溶接熱影響部(HAZ)の靭性を低下させる。よって、C含有量は0.03〜0.18%とする。なお、後述する加工フェライトによって強度と靭性を両立させる観点からは、C含有量を0.05〜0.15%とすることが好ましい。
C: 0.03-0.18%
C is an element effective for increasing the strength of steel. In the present invention, the C content needs to be 0.03% or more in order to obtain a desired strength. On the other hand, the addition of C exceeding 0.18% lowers the weldability and the toughness of the weld heat affected zone (HAZ). Therefore, the C content is 0.03 to 0.18%. In addition, it is preferable to make C content 0.05 to 0.15% from a viewpoint of making intensity | strength and toughness compatible by the processed ferrite mentioned later.

Si:0.05〜0.50%
Siは、脱酸剤として、また、鋼の強度を高めるために添加される元素であり、本発明では、Si含有量を0.05%以上とする。一方、0.50%を超えるSiの添加は、HAZ靱性を低下させるので、Si含有量は0.50%以下とする。
Si: 0.05 to 0.50%
Si is an element added as a deoxidizer and to increase the strength of steel. In the present invention, the Si content is 0.05% or more. On the other hand, the addition of Si exceeding 0.50% lowers the HAZ toughness, so the Si content is 0.50% or less.

Mn:0.1〜1.8%
Mnは、鋼の強度を高める効果がある元素であり、0.1%以上添加する。しかし、1.8%を超えるMnの添加は、鋼の靭性および溶接性を低下させるため、Mn含有量は1.8%以下とする。Mn含有量は0.5〜1.6%とすることが好ましい。
Mn: 0.1 to 1.8%
Mn is an element that has an effect of increasing the strength of steel, and is added in an amount of 0.1% or more. However, addition of Mn exceeding 1.8% decreases the toughness and weldability of the steel, so the Mn content is set to 1.8% or less. The Mn content is preferably 0.5 to 1.6%.

P:0.030%以下
Pは、鋼の母材靭性、溶接性および溶接部靭性を低下させる有害な元素であるため、できるかぎり低減することが望ましい。特に、P含有量が0.030%を超えると、母材靭性および溶接部靭性の低下が大きくなる。よって、P含有量は0.030%以下とする。P含有量は0.020%以下とすることが好ましい。
P: 0.030% or less P is a harmful element that lowers the base metal toughness, weldability, and weld zone toughness of steel, so it is desirable to reduce it as much as possible. In particular, when the P content exceeds 0.030%, the deterioration of the base metal toughness and weld zone toughness becomes large. Therefore, the P content is 0.030% or less. The P content is preferably 0.020% or less.

S:0.010%以下
Sは、鋼の靭性および溶接性を低下させる有害な元素であるため、できるかぎり低減することが望ましく、本発明では、S含有量を0.010%以下とする。
S: 0.010% or less Since S is a harmful element that lowers the toughness and weldability of steel, it is desirable to reduce it as much as possible. In the present invention, the S content is 0.010% or less.

Al:0.005〜0.07%
Alは、脱酸剤として添加される元素であり、0.005%以上添加する必要がある。しかし、0.07%を超えて添加すると、粗大な酸化物系介在物が鋼中に存在するようになるため、靭性が却って低下する。よって、Al含有量は0.07%以下とする。
Al: 0.005 to 0.07%
Al is an element added as a deoxidizer, and it is necessary to add 0.005% or more. However, if added over 0.07%, coarse oxide inclusions are present in the steel, so that the toughness is reduced. Therefore, the Al content is set to 0.07% or less.

N:0.006〜0.018%
Nは、後述するVやNbと結合してV(C,N)やNb(C,N)を形成して強度を向上させる効果を有する元素である。本発明では、前記効果を得るために、N含有量を0.006%以上とする。一方、フリーなNは、靭性に対して有害であるとともに、連続鋳造時に表面割れを助長することなどから、N含有量は0.018%以下とする。N含有量は、0.008〜0.015%とすることが好ましい。
N: 0.006 to 0.018%
N is an element having an effect of improving the strength by forming V (C, N) or Nb (C, N) by combining with V or Nb described later. In this invention, in order to acquire the said effect, N content shall be 0.006% or more. On the other hand, free N is harmful to toughness and promotes surface cracking during continuous casting. Therefore, the N content is set to 0.018% or less. The N content is preferably 0.008 to 0.015%.

V:0.01〜0.12%、Nb:0.001〜0.05%の一方または両方
VおよびNbは、炭素や窒素と結合してV(C,N)やNb(C,N)を形成し、高強度化に寄与する元素である。前記効果を期待するためには、Vは0.01%以上、Nbは0.001%以上が必要である。一方、Vを0.12%を超えて含有するとHAZ靱性が低下することから、V含有量は0.12%以下とする。同様に、Nbも、0.05%を超えて含有するとHAZ靱性が低下するので、Nb含有量は0.05%以下とする。なお、VとNbを複合添加する場合には、その総量は0.10%以下とすることが好ましい。
One or both of V: 0.01 to 0.12% and Nb: 0.001 to 0.05% V and Nb combine with carbon and nitrogen to form V (C, N) or Nb (C, N) Is an element that contributes to higher strength. In order to expect the effect, V needs to be 0.01% or more and Nb needs to be 0.001% or more. On the other hand, if the V content exceeds 0.12%, the HAZ toughness decreases, so the V content is set to 0.12% or less. Similarly, if Nb is contained in excess of 0.05%, the HAZ toughness decreases, so the Nb content is set to 0.05% or less. When V and Nb are added in combination, the total amount is preferably 0.10% or less.

本発明の一実施形態における鋼の成分組成は、以上の成分と、残部Feおよび不可避不純物とからなる。なお、「残部Feおよび不可避不純物からなる」とは、本発明の作用・効果を損なわない限りにおいて、不可避不純物をはじめ、他の微量元素を含有するものが本発明の範囲に含まれることを意味する。   The component composition of steel in one embodiment of the present invention is composed of the above components, the remainder Fe and inevitable impurities. In addition, “consisting of remaining Fe and inevitable impurities” means that the elements containing other trace elements including inevitable impurities are included in the scope of the present invention as long as the effects and effects of the present invention are not impaired. To do.

本発明の他の実施形態においては、上記成分組成が、さらにCu:0.05〜0.50%、Ni:0.05〜0.25%、およびMo:0.01〜0.50%からなる群より選択される少なくとも1種を含有することができる。   In another embodiment of the present invention, the component composition further comprises Cu: 0.05 to 0.50%, Ni: 0.05 to 0.25%, and Mo: 0.01 to 0.50%. At least one selected from the group consisting of:

Cu:0.05〜0.50%
Cuは、鉄中に固溶して鋼の強度を高める効果を有する元素であるが、0.05%未満の添加では不十分である。一方、0.50%を超えて添加すると靭性が低下する。そのため、Cuを添加する場合、その含有量は0.05〜0.50%とする。
Cu: 0.05 to 0.50%
Cu is an element having an effect of increasing the strength of steel by solid solution in iron, but addition of less than 0.05% is insufficient. On the other hand, if added over 0.50%, toughness decreases. Therefore, when adding Cu, the content is made 0.05 to 0.50%.

Ni:0.05〜0.25%
Niは、低温靱性を向上させる効果を有する元素であり、前記効果を期待する場合に添加することができるが、0.05%未満ではその効果が小さい。一方、Niは非常に高価な元素であり、0.25%を超えての添加はコスト上昇を招く。そのため、Niを添加する場合、その含有量は0.05〜0.25%とする。
Ni: 0.05-0.25%
Ni is an element having an effect of improving low-temperature toughness, and can be added when the effect is expected, but if it is less than 0.05%, the effect is small. On the other hand, Ni is a very expensive element, and addition exceeding 0.25% causes an increase in cost. Therefore, when adding Ni, the content is made 0.05 to 0.25%.

Mo:0.01〜0.50%
Moは、焼入れ性や高温強度を向上させる効果を有する元素であり、前記効果を得るためには、0.01%以上の添加が必要である。一方、MoもNiと同様に高価な元素であり、0.50%を超えての添加はコスト上昇を招くとともに、溶接性を低下させる。そのため、Moを添加する場合、その含有量は0.01〜0.50%とする。
Mo: 0.01 to 0.50%
Mo is an element having an effect of improving hardenability and high temperature strength, and in order to obtain the effect, addition of 0.01% or more is necessary. On the other hand, Mo is an expensive element like Ni, and addition over 0.50% causes an increase in cost and lowers weldability. Therefore, when adding Mo, the content is made 0.01 to 0.50%.

本発明の他の実施形態においては、上記成分組成が、さらに強度や靭性の向上を目的として、Ti:0.001〜0.1%およびZr:0.001〜0.1%の一方または両方を含有することができる。   In another embodiment of the present invention, one or both of Ti: 0.001 to 0.1% and Zr: 0.001 to 0.1% is used for the purpose of further improving the strength and toughness. Can be contained.

Ti:0.001〜0.1%
Zr:0.001〜0.1%
TiおよびZrは、いずれも鋼のHAZ靱性を向上させる元素であり、任意に一方または両方を添加することができる。Tiは、HAZ靭性の向上効果を得るためには0.001%以上添加する必要がある。一方、0.1%を超えてTiを添加すると過剰にTiCが形成されてかえって脆化するので、Ti含有量は0.1%以下とする。同様に、Zrも、HAZ靭性の向上効果を得るためには0.001%以上添加する必要がある。一方、0.1%を超えてのZrの添加は、かえって靱性を低下させるので、Zr含有量は0.1%以下とする。
Ti: 0.001 to 0.1%
Zr: 0.001 to 0.1%
Ti and Zr are both elements that improve the HAZ toughness of the steel, and one or both of them can be optionally added. In order to obtain the effect of improving the HAZ toughness, Ti needs to be added by 0.001% or more. On the other hand, if Ti is added in excess of 0.1%, TiC is excessively formed and embrittles on the contrary, so the Ti content is set to 0.1% or less. Similarly, Zr needs to be added in an amount of 0.001% or more in order to obtain the effect of improving the HAZ toughness. On the other hand, the addition of Zr exceeding 0.1% rather reduces the toughness, so the Zr content is 0.1% or less.

本発明の他の実施形態においては、上記成分組成が、さらにB:0.0002〜0.003%を含有することができる。   In another embodiment of the present invention, the component composition may further contain B: 0.0002 to 0.003%.

B:0.0002〜0.003%
Bは、鋼の強度を高める効果を有する元素であり、任意に含有させることができる。前記効果を得るために、0.0002%以上の添加が必要である。一方、0.003%を超えて添加すると、かえって靭性が低下する。そのため、Bを含有させる場合、その含有量を0.0002〜0.003%とする。
B: 0.0002 to 0.003%
B is an element having an effect of increasing the strength of steel, and can be arbitrarily contained. In order to acquire the said effect, 0.0002% or more needs to be added. On the other hand, if added over 0.003%, the toughness is rather lowered. Therefore, when it contains B, the content shall be 0.0002 to 0.003%.

本発明の他の実施形態においては、上記成分組成が、さらにCa:0.0002〜0.01%およびREM:0.0002〜0.015%の一方または両方を含有することができる。   In another embodiment of the present invention, the component composition may further contain one or both of Ca: 0.0002 to 0.01% and REM: 0.0002 to 0.015%.

Ca:0.0002〜0.01%
REM:0.0002〜0.015%
CaおよびREM(希土類金属)は、いずれも溶接熱影響部の靭性向上に効果のある元素であり、一方または両方を任意に添加することができる。前記効果は、Ca:0.0002%以上、REM:0.0002%以上の添加で得られる。一方、Ca:0.01%、REM:0.015%を超えて添加すると、かえって靭性の低下を招く。そのため、Caを添加する場合は、その含有量を0.0002〜0.01%とし、REMを添加する場合は、その含有量を。0.0002〜0.015%とする。
Ca: 0.0002 to 0.01%
REM: 0.0002 to 0.015%
Ca and REM (rare earth metal) are both elements that are effective in improving the toughness of the weld heat affected zone, and one or both of them can be arbitrarily added. The said effect is acquired by addition of Ca: 0.0002% or more and REM: 0.0002% or more. On the other hand, when Ca is added in excess of 0.01% and REM: 0.015%, the toughness is reduced. Therefore, when adding Ca, the content shall be 0.0002 to 0.01%, and when adding REM, the content. 0.0002 to 0.015%.

[炭素当量Ceq]
次に、炭素当量の限定理由について述べる。本発明においては、上記成分組成がさらに、Ceq:0.36〜0.44%との条件を満たすことが重要である。ここでCeqとは、下記(1)式で定義される炭素当量である。なお、(1)式中の元素記号「C」、「Mn」、「Cu」、「Ni」、「Mo」、および「V」は、いずれも「質量%」単位で表した各元素の含有量を意味し、当該元素が添加されていない場合には「0」とする。
Ceq(質量%)=C+Mn/6+(Cu+Ni)/15+(Mo+V)/5・・・(1)
[Carbon equivalent Ceq]
Next, the reason for limiting the carbon equivalent will be described. In the present invention, it is important that the component composition further satisfies the condition of Ceq: 0.36 to 0.44%. Here, Ceq is a carbon equivalent defined by the following formula (1). It should be noted that the element symbols “C”, “Mn”, “Cu”, “Ni”, “Mo”, and “V” in the formula (1) are all contained in units of “mass%”. This means an amount, and is “0” when the element is not added.
Ceq (mass%) = C + Mn / 6 + (Cu + Ni) / 15 + (Mo + V) / 5 (1)

Ceqが0.36%未満であると、山形鋼として目標とする十分な強度を得ることができない。一方、Ceqが0.44%を越えると溶接時の低温割れが懸念されることから予熱が必要となり、溶接作業性の低下を招く。よって、Ceqは、0.36〜0.44%の範囲とした。好ましくは、0.36〜0.43%の範囲である。   When Ceq is less than 0.36%, it is not possible to obtain sufficient strength as an angle steel. On the other hand, if Ceq exceeds 0.44%, there is a concern about cold cracking during welding, so preheating is required, leading to a decrease in welding workability. Therefore, Ceq is set in the range of 0.36 to 0.44%. Preferably, it is 0.36 to 0.43% of range.

[ミクロ組織]
次に、本発明におけるミクロ組織の限定理由について説明する。本発明では、山形鋼のミクロ組織が加工フェライトを含むことが重要である。ミクロ組織が加工フェライトを含まない場合、十分な強度と低温靱性を得ることが困難である。なお、加工フェライトとは、Ar3変態点以下の(オーステナイト+フェライト)2相域での熱間圧延によって形成された、扁平化したフェライトのことである。本発明においては、短軸に対する長軸の比(アスペクト比)が2.0以上のフェライトを加工フェライトと定義する。
[Microstructure]
Next, the reason for limiting the microstructure in the present invention will be described. In the present invention, it is important that the microstructure of the angle steel includes processed ferrite. When the microstructure does not contain processed ferrite, it is difficult to obtain sufficient strength and low temperature toughness. The processed ferrite is a flattened ferrite formed by hot rolling in the two-phase region (austenite + ferrite) below the Ar3 transformation point. In the present invention, a ferrite having a ratio of the major axis to the minor axis (aspect ratio) of 2.0 or more is defined as processed ferrite.

加工フェライトの面積分率は特に限定されないが、機械的強度を向上させるという観点からは、15%以上とすることが好ましく、20%以上とすることがより好ましい。なお、ミクロ組織は、不等辺山形鋼の場合は短辺(フランジ)の1/2幅部、板厚1/4t位置を、等辺山形鋼の場合は各辺の1/2幅部、板厚1/4t位置を、バルブプレートの場合は球部1/2幅部の板厚中心を、観察位置とする。   The area fraction of the processed ferrite is not particularly limited, but is preferably 15% or more, and more preferably 20% or more from the viewpoint of improving the mechanical strength. In addition, in the case of an unequal angle iron, the microstructure is a ½ width part of the short side (flange) and a thickness of 1/4 t, and in the case of an equilateral angle iron, a ½ width part of each side and a thickness. The ¼t position is the observation position in the case of a valve plate, and the center of the thickness of the sphere part ½ width part.

本発明においては、ミクロ組織が、加工フェライト以外の組織を含有することは許容される。加工フェライト以外の残部組織は特に限定されず、任意の組織であってよいが、例えば、加工フェライトではない、パーライト、およびベイナイトからなる群より選択される1種以上とすることができる。特に、強度を一層向上させるという観点からは、第2相組織をベイナイトとすることが好ましい。   In the present invention, the microstructure is allowed to contain a structure other than the processed ferrite. The remaining structure other than the processed ferrite is not particularly limited and may be an arbitrary structure. For example, the remaining structure may be one or more selected from the group consisting of pearlite and bainite that are not processed ferrite. In particular, from the viewpoint of further improving the strength, the second phase structure is preferably bainite.

次に、本発明の一実施形態における山形鋼の製造方法について説明する。本発明の山形鋼は、上記成分組成を有する鋼素材を用意し、1150〜1350℃に加熱した後、熱間圧延することによって製造することができる。そしてその際には、前記熱間圧延を、Ar3温度以下における累積圧下率:20〜80%、仕上温度:(Ar3−50)℃〜(Ar3−120)℃の条件で行い、前記熱間圧延後に、冷却開始温度:(Ar3−50)〜(Ar3−120)℃、冷却停止温度:650〜500℃の条件で加速冷却を行うことが重要である。以下、各工程における条件の限定理由について説明する。   Next, the manufacturing method of the angle iron in one Embodiment of this invention is demonstrated. The angle steel of the present invention can be manufactured by preparing a steel material having the above composition and heating it to 1150 to 1350 ° C., followed by hot rolling. And in that case, the said hot rolling is performed on the conditions of the cumulative reduction rate in Ar3 temperature or less: 20-80%, finishing temperature: (Ar3-50) degreeC-(Ar3-120) degreeC, The said hot rolling Later, it is important to perform accelerated cooling under the conditions of the cooling start temperature: (Ar3-50) to (Ar3-120) ° C. and the cooling stop temperature: 650 to 500 ° C. Hereinafter, the reasons for limiting the conditions in each step will be described.

[加熱]
加熱温度:1150〜1350℃
鋼素材の熱間圧延における変形抵抗を低減するとともに、凝固組織を均質化し、さらにNbやVの析出物を一旦固溶させるためには、十分高温に加熱する必要がある。加熱温度が1150℃未満ではこれらの十分な効果が認められない。そのため、熱間圧延前の加熱温度は1150℃以上とする。一方、加熱温度が1350℃を超えると、スケールロスによる歩留まり低下、生産性の低下などの問題が生じる。そのため、加熱温度は1350℃以下とする。なお、加熱温度は1180〜1320℃とすることが好ましい。
[heating]
Heating temperature: 1150-1350 ° C
In order to reduce the deformation resistance in hot rolling of a steel material, to homogenize the solidified structure, and to once dissolve Nb and V precipitates, it is necessary to heat to a sufficiently high temperature. When the heating temperature is less than 1150 ° C., these sufficient effects are not recognized. Therefore, the heating temperature before hot rolling is 1150 ° C. or higher. On the other hand, when the heating temperature exceeds 1350 ° C., problems such as a decrease in yield due to scale loss and a decrease in productivity occur. Therefore, heating temperature shall be 1350 degrees C or less. In addition, it is preferable that heating temperature shall be 1180-1320 degreeC.

[熱間圧延]
Ar3温度以下における累積圧下率:20〜80%
Ar3温度以下における累積圧下率が20%未満では、フェライトが十分に強化されない。一方、Ar3温度以下における累積圧下率が80%を超えると、圧延方向と幅方向での異方性が強くなり、シャルピー吸収エネルギーが低下する。さらに、変形抵抗が高くなり造形も困難となる。そのため、熱間圧延の際の、Ar3温度以下における累積圧下率を20〜80%とする。なお、Ar3点の値は下記の式で求めることができる。
Ar3(℃)=910−273C+25Si−74Mn−56Ni−9Mo−5Cu
ただし、上記式における元素記号は、各元素の含有量(質量%)を表し、当該元素が含有されていない場合にはゼロとする。
[Hot rolling]
Cumulative rolling reduction below Ar3 temperature: 20-80%
If the cumulative rolling reduction at an Ar3 temperature or lower is less than 20%, the ferrite is not sufficiently strengthened. On the other hand, when the cumulative rolling reduction at the Ar3 temperature or lower exceeds 80%, the anisotropy in the rolling direction and the width direction becomes strong, and the Charpy absorbed energy decreases. In addition, the deformation resistance becomes high and modeling becomes difficult. Therefore, the cumulative rolling reduction at the Ar3 temperature or lower during hot rolling is set to 20 to 80%. In addition, the value of Ar3 point can be calculated | required by the following formula.
Ar3 (° C.) = 910-273C + 25Si-74Mn-56Ni-9Mo-5Cu
However, the element symbol in the above formula represents the content (% by mass) of each element, and is zero when the element is not contained.

仕上温度:(Ar3−50)〜(Ar3−120)℃
仕上温度が、(Ar3−50)℃を超えると加工フェライト量が少なくなるため、強度が低下する。一方、仕上温度が(Ar3−120)℃未満であると、圧延負荷が高く、造形性が低下する。したがって、圧延仕上温度は(Ar3−50)℃以上、(Ar3−120)℃以下とする。
Finishing temperature: (Ar3-50) to (Ar3-120) ° C
When the finishing temperature exceeds (Ar3-50) ° C., the amount of processed ferrite decreases, and the strength decreases. On the other hand, if the finishing temperature is less than (Ar3-120) ° C., the rolling load is high and the formability is lowered. Therefore, rolling finishing temperature shall be (Ar3-50) degreeC or more and (Ar3-120) degreeC or less.

[加速冷却]
冷却開始温度:(Ar3−50)〜(Ar3−120)℃
熱間圧延終了後、加速冷却を行う。その際の冷却開始温度は、(Ar3−50)〜(Ar3−120)℃とする。冷却開始温度を前記範囲とすることにより、強度を向上させることができる。
[Accelerated cooling]
Cooling start temperature: (Ar3-50) to (Ar3-120) ° C
After hot rolling is completed, accelerated cooling is performed. The cooling start temperature in that case shall be (Ar3-50)-(Ar3-120) ° C. By setting the cooling start temperature within the above range, the strength can be improved.

上記加速冷却の方法は特に限定されないが、スプレーなどによる水冷が好ましい。また、強度を一層向上させるという観点からは、熱間圧延終了後、直ちに加速冷却を開始することが好ましく、具体的には、熱間圧延終了後5秒以内に開始することが好ましい。圧延終了後、直ちに加速冷却することで、第2相組織をベイナイト変態させ強度を一層向上させることができる。熱間圧延終了から加速冷却の開始までに時間を要すると、一部オーステナイトからパーライト変態を生じ、強度が低下する。   The accelerated cooling method is not particularly limited, but water cooling by spraying or the like is preferable. Further, from the viewpoint of further improving the strength, it is preferable to start accelerated cooling immediately after the end of hot rolling, and specifically, it is preferable to start within 5 seconds after the end of hot rolling. Immediately after the end of rolling, accelerated cooling can transform the second phase structure to bainite and further improve the strength. When time is required from the end of hot rolling to the start of accelerated cooling, pearlite transformation occurs from some austenite and the strength decreases.

冷却停止温度:650〜500℃
650℃よりも高温で冷却を停止すると、十分な強度が得られない。一方、500℃未満まで冷却すると、冷却時に発生する残留応力によってねじれ、曲がりや反りなどが生じ、形状が保てない。そのため、冷却停止温度は650〜500℃とする。冷却停止温度は、650℃〜550℃とすることが好ましい。
Cooling stop temperature: 650-500 ° C
If cooling is stopped at a temperature higher than 650 ° C., sufficient strength cannot be obtained. On the other hand, when cooled to below 500 ° C., the residual stress generated during cooling causes twisting, bending, warping, etc., and the shape cannot be maintained. Therefore, cooling stop temperature shall be 650-500 degreeC. The cooling stop temperature is preferably 650 ° C to 550 ° C.

<実施例1>
表1に示した成分組成を有する鋼を真空溶解炉または転炉で溶製してブルームとし、前記ブルームを加熱炉に装入して加熱後、熱間圧延および加速冷却を施して表2に示す断面寸法の不等辺不等厚山形鋼を製造した。熱間圧延前の加熱、熱間圧延、および熱間圧延後の加速冷却の条件は、表2に示した通りとした。なお、圧延温度としては、ミルの入側、出側に放射温度計を設置し、短辺の温度を測定した。表2における仕上温度は、最終圧延時の入り側温度である。その後、得られた山形鋼のそれぞれについて、ミクロ組織ならびにフランジ部と溶接ボンド部における機械的特性を評価した。測定結果を表3に示す。なお、評価方法は、それぞれ以下の通りとした。
<Example 1>
Steel having the component composition shown in Table 1 is melted in a vacuum melting furnace or converter to form a bloom. After the bloom is charged into a heating furnace and heated, it is subjected to hot rolling and accelerated cooling. An unequal unequal thick angle steel with the indicated cross-sectional dimensions was produced. Conditions for heating before hot rolling, hot rolling, and accelerated cooling after hot rolling were as shown in Table 2. In addition, as rolling temperature, the radiation thermometer was installed in the entrance side of the mill, and the exit side, and the temperature of the short side was measured. The finishing temperature in Table 2 is the entry side temperature at the time of final rolling. Then, about each of the obtained angle steel, the microstructure and the mechanical characteristic in a flange part and a weld bond part were evaluated. Table 3 shows the measurement results. The evaluation methods were as follows.

(ミクロ組織)
不等辺不等厚山形鋼の短辺(フランジ)1/2幅部、板厚1/4t位置におけるミクロ組織を光学顕微鏡で観察した。倍率×500で、3視野以上観察するとともに、金属組織としてフェライト部のトレースを行った。その後、画像解析ソフトにより、フェライト粒の短軸と長軸およびアスペクト比を求めた。アスペクト比が2.0以上のものを加工フェライトと定義し、それぞれの加工フェライトの面積を算出し、金属組織中に占める加工フェライトの面積分率を算出した。
(Micro structure)
The microstructure at the short side (flange) 1/2 width part and the plate thickness 1 / 4t position of the unequal side unequal thickness angle steel was observed with an optical microscope. While observing at least three fields of view at a magnification of 500, the ferrite portion was traced as a metal structure. Thereafter, the minor axis, major axis, and aspect ratio of the ferrite grains were determined by image analysis software. A ferrite having an aspect ratio of 2.0 or more was defined as a processed ferrite, the area of each processed ferrite was calculated, and the area fraction of the processed ferrite in the metal structure was calculated.

(機械的特性)
山形鋼の短辺から、JIS 1A号引張試験片を採取し、引張特性(降伏応力YS、引張強さTS、伸びEl)を測定した。靭性については、同じく短辺からJIS Z 2242に記載の2mmVノッチシャルピー衝撃試験片を採取し、−5℃での靭性を評価した。また、入熱2kJ/mmの多層盛り溶接を行った後、溶接ボンド部の−5℃での靭性も併せて評価した。
(Mechanical properties)
From a short side of the angle steel, a JIS No. 1A tensile test piece was collected and measured for tensile properties (yield stress YS, tensile strength TS, elongation El). As for toughness, 2 mmV notch Charpy impact test pieces described in JIS Z 2242 were similarly collected from the short side, and the toughness at −5 ° C. was evaluated. Further, after multi-layer welding with a heat input of 2 kJ / mm, the toughness at −5 ° C. of the weld bond portion was also evaluated.

Figure 2017137576
Figure 2017137576

Figure 2017137576
Figure 2017137576

Figure 2017137576
Figure 2017137576

表1〜3より分かるように、本発明の条件を満たす発明例の山形鋼は、YS:460MPa以上、TS:570MPa以上という優れた強度を有するともに、母材および溶接部における靭性にも優れていた。これに対して、本発明の条件を満たさない比較例では、YS、TS、および靭性のいずれかが劣っていた。なお、No.21では、冷却後のねじれ反りや曲がりが過大であり、正常に成形できなかったため、機械的特性の評価を行わなかった。また、No.22では、圧延負荷が過大であり、正常に熱間圧延が行えなかったため、圧延を途中で中止した。   As can be seen from Tables 1 to 3, the angle steel of the inventive example that satisfies the conditions of the present invention has excellent strength such as YS: 460 MPa or more, TS: 570 MPa or more, and is excellent in toughness in the base material and the welded portion. It was. On the other hand, in the comparative example which does not satisfy the conditions of the present invention, any of YS, TS, and toughness was inferior. In addition, No. In No. 21, the torsional warping and bending after cooling were excessive and could not be molded normally, so the mechanical properties were not evaluated. No. In No. 22, the rolling load was excessive and the hot rolling could not be performed normally, so the rolling was stopped halfway.

<実施例2>
表4に示した成分組成を有する鋼を真空溶解炉または転炉で溶製してブルームとし、前記ブルームを加熱炉に装入して加熱後、熱間圧延および加速冷却を施して、図1および表5に示す断面形状・寸法のバルブプレートを製造した。熱間圧延前の加熱、熱間圧延、および熱間圧延後の加速冷却の条件は、表5に示した通りとした。なお、圧延温度としては、ミルの入側、出側に放射温度計を設置し、長辺(ウエブ)の温度を測定した。表5における仕上温度は、最終圧延時の入側温度である。その後、得られたバルブプレートのそれぞれについて、ミクロ組織と機械的性質および溶接ボンド部のシャルピー衝撃特性を評価した。測定結果を表6に示す。なお、評価方法は、それぞれ以下の通りとした。
<Example 2>
A steel having the composition shown in Table 4 is melted in a vacuum melting furnace or converter to form a bloom. The bloom is charged into a heating furnace and heated, and then subjected to hot rolling and accelerated cooling. And the valve plate of the cross-sectional shape and dimension shown in Table 5 was manufactured. Conditions for heating before hot rolling, hot rolling, and accelerated cooling after hot rolling were as shown in Table 5. In addition, as rolling temperature, the radiation thermometer was installed in the entrance side of the mill, and the exit side, and the temperature of the long side (web) was measured. The finishing temperature in Table 5 is the entry temperature at the time of final rolling. Thereafter, for each of the obtained valve plates, the microstructure and mechanical properties and the Charpy impact properties of the weld bond were evaluated. Table 6 shows the measurement results. The evaluation methods were as follows.

(ミクロ組織)
図2に示す、バルブプレートの球部1/2幅部の板厚中心位置1(板厚tの中心位置)におけるミクロ組織を光学顕微鏡で観察した。倍率×500で、3視野以上観察するとともに、金属組織としてフェライト部のトレースを行った。その後、画像解析ソフトにより、フェライト粒の短軸と長軸およびアスペクト比を求めた。アスペクト比が2.0以上のものを加工フェライトと定義し、それぞれの加工フェライトの面積を算出し、金属組織中に占める加工フェライトの面積分率を算出した。
(Micro structure)
2, was observed microstructure in the sheet thickness center position 1 of the sphere part 1/2 width portion of the valve plate (center position of the sheet thickness t 2) with an optical microscope. While observing at least three fields of view at a magnification of 500, the ferrite portion was traced as a metal structure. Thereafter, the minor axis, major axis, and aspect ratio of the ferrite grains were determined by image analysis software. A ferrite having an aspect ratio of 2.0 or more was defined as a processed ferrite, the area of each processed ferrite was calculated, and the area fraction of the processed ferrite in the metal structure was calculated.

また、図2に示すように、バルブプレートのウエブ1/3幅部2から、引張方向がバルブプレートの長さ方向(圧延方向)と平行となるようにJIS 1A号引張試験片を採取し、引張特性(降伏応力YS、引張強さTS、伸びEl)を測定した。さらに、図2に示すように、球部1/2幅部の板厚中心位置1から、引張方向がバルブプレートの長さ方向(圧延方向)となる丸棒のミクロ引張試験片(平行部径6mmφ、GL25mm)を採取し、引張特性(降伏応力YS,引張強さTS,伸びEl)を測定した。靭性については、ウエブ1/3幅部2および球部1/2幅部の板厚中心位置1から、それぞれJIS Z 2242に記載の2mmVノッチシャルピー衝撃試験片を採取し、−5℃での靭性を評価した。また、入熱2kJ/mmの多層盛り溶接を行った後、溶接ボンド部の−5℃での靭性も併せて評価した。   Further, as shown in FIG. 2, a JIS No. 1A tensile test piece was taken from the web plate 1/3 width portion 2 so that the tensile direction was parallel to the length direction (rolling direction) of the valve plate, Tensile properties (yield stress YS, tensile strength TS, elongation El) were measured. Furthermore, as shown in FIG. 2, the micro tensile test piece (parallel part diameter) of a round bar whose tensile direction is the length direction (rolling direction) of the valve plate from the plate thickness center position 1 of the sphere part 1/2 width part. 6 mmφ, GL25 mm) was sampled, and tensile properties (yield stress YS, tensile strength TS, elongation El) were measured. As for toughness, 2 mm V notch Charpy impact test pieces described in JIS Z 2242 were sampled from the plate thickness center positions 1 of the web 1/3 width portion 2 and the sphere width 1/2 width portion, respectively, and the toughness at −5 ° C. Evaluated. Further, after multi-layer welding with a heat input of 2 kJ / mm, the toughness at −5 ° C. of the weld bond portion was also evaluated.

Figure 2017137576
Figure 2017137576

Figure 2017137576
Figure 2017137576

Figure 2017137576
Figure 2017137576

表4〜表6より分かるように、本発明の条件を満たす発明例のバルブプレートは、YS:460MPa以上、TS:570MPa以上という高い強度を断面積の大きな球部の中心においても有するとともに、溶接部も含め靭性にも優れていた。これに対して、本発明の条件を満たさない比較例では、YS、TS、および靭性のいずれかが劣っていた。また、ウエブ部強度は十分満たしても球部の強度が低い、あるいは靭性が低いデータも見られた。これらは、球部においては制御圧延効果がウエブに比べて低いことを表している。   As can be seen from Tables 4 to 6, the valve plate of the invention example that satisfies the conditions of the present invention has high strength at the center of a sphere having a large cross-sectional area, such as YS: 460 MPa or more and TS: 570 MPa or more, and welding. Excellent toughness including the part. On the other hand, in the comparative example which does not satisfy the conditions of the present invention, any of YS, TS, and toughness was inferior. In addition, even when the web part strength was sufficiently satisfied, data on the strength of the sphere part was low or the toughness was low. These represent that the control rolling effect is lower in the ball portion than in the web.

本発明によれば、成分組成と製造条件を最適化することで、高強度と高靭性を付与したYS:460MPa以上、TS:570MPa以上、−5℃でのシャルピー吸収エネルギー:47J以上の山形鋼を生産性よく、安価に製造することができる。   According to the present invention, by optimizing the component composition and manufacturing conditions, angle steel with high strength and high toughness, YS: 460 MPa or more, TS: 570 MPa or more, Charpy absorbed energy at −5 ° C .: 47 J or more Can be manufactured at low cost with good productivity.

1 球部1/2幅部の板厚中心位置
2 ウエブ1/3幅部
1 Thickness center position of sphere part 1/2 width part 2 Web 1/3 width part

Claims (6)

質量%で、
C :0.03〜0.18%、
Si:0.05〜0.50%、
Mn:0.1〜1.8%、
P :0.030%以下、
S :0.010%以下、
Al:0.005〜0.07%、
N :0.006〜0.018%、ならびに
V:0.01〜0.12%およびNb:0.001〜0.05%の一方または両方を含有し、残部がFeおよび不可避不純物からなり、下記(1)式で定義される炭素当量Ceqが0.36〜0.44%である成分組成を有し、
加工フェライトを含むミクロ組織を有し、
YS:460MPa以上、TS:570MPa以上、−5℃におけるシャルピー吸収エネルギー:47J以上である機械的特性を有する、山形鋼。

Ceq(質量%)=C+Mn/6+(Cu+Ni)/15+(Mo+V)/5・・・(1)
% By mass
C: 0.03-0.18%,
Si: 0.05 to 0.50%,
Mn: 0.1 to 1.8%,
P: 0.030% or less,
S: 0.010% or less,
Al: 0.005 to 0.07%,
N: 0.006 to 0.018%, and V: 0.01 to 0.12% and Nb: 0.001 to 0.05% or both of which contain Fe and inevitable impurities, The carbon equivalent Ceq defined by the following formula (1) has a component composition of 0.36 to 0.44%,
Has a microstructure containing processed ferrite,
Angle steel with mechanical properties of YS: 460 MPa or more, TS: 570 MPa or more, Charpy absorbed energy at −5 ° C .: 47 J or more.
Ceq (mass%) = C + Mn / 6 + (Cu + Ni) / 15 + (Mo + V) / 5 (1)
上記成分組成が、質量%で、
Cu:0.05〜0.50%、
Ni:0.05〜0.25%、および
Mo:0.01〜0.50%からなる群より選択される少なくとも1種をさらに含有する、請求項1に記載の山形鋼。
The component composition is mass%,
Cu: 0.05 to 0.50%,
The angle steel according to claim 1, further comprising at least one selected from the group consisting of Ni: 0.05 to 0.25% and Mo: 0.01 to 0.50%.
上記成分組成が、質量%で、
Ti:0.001〜0.1%および
Zr:0.001〜0.1%の一方または両方をさらに含有する、請求項1または2に記載の山形鋼。
The component composition is mass%,
The angle steel according to claim 1 or 2, further comprising one or both of Ti: 0.001 to 0.1% and Zr: 0.001 to 0.1%.
上記成分組成が、質量%で、
B :0.0002〜0.003%をさらに含有する、請求項1〜3のいずれか一項に記載の山形鋼。
The component composition is mass%,
B: Angle iron as described in any one of Claims 1-3 which further contains 0.0002 to 0.003%.
上記成分組成が、質量%で、
Ca:0.0002〜0.01%および
REM:0.0002〜0.015%の一方または両方をさらに含有する、請求項1〜4のいずれか一項に記載の山形鋼。
The component composition is mass%,
The angle steel according to any one of claims 1 to 4, further containing one or both of Ca: 0.0002 to 0.01% and REM: 0.0002 to 0.015%.
請求項1〜5のいずれか一項に記載の成分組成を有する鋼素材を用意し、1150〜1350℃に加熱した後、熱間圧延して山形鋼を製造する方法であって、
前記熱間圧延を、Ar3温度以下における累積圧下率:20〜80%、仕上温度:(Ar3−50)〜(Ar3−120)℃の条件で行い、
前記熱間圧延後に、冷却開始温度:(Ar3−50)〜(Ar3−120)℃、冷却停止温度:650〜500℃の条件で加速冷却を行う、山形鋼の製造方法。
A steel material having the composition according to any one of claims 1 to 5 is prepared, heated to 1150 to 1350 ° C, and then hot rolled to produce an angle steel,
The hot rolling is performed under the conditions of the cumulative rolling reduction at Ar3 temperature or lower: 20 to 80%, the finishing temperature: (Ar3-50) to (Ar3-120) ° C.
A method for producing angle iron, in which, after the hot rolling, accelerated cooling is performed under conditions of a cooling start temperature: (Ar3-50) to (Ar3-120) ° C. and a cooling stop temperature: 650 to 500 ° C.
JP2017012332A 2016-01-29 2017-01-26 Method of manufacturing unequal-area unequal-thickness angle steel and unequal-area unequal-angle angle steel Active JP6520965B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016016259 2016-01-29
JP2016016259 2016-01-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019023691A Division JP6725020B2 (en) 2016-01-29 2019-02-13 Valve plate and method for manufacturing valve plate

Publications (2)

Publication Number Publication Date
JP2017137576A true JP2017137576A (en) 2017-08-10
JP6520965B2 JP6520965B2 (en) 2019-05-29

Family

ID=59564734

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017012332A Active JP6520965B2 (en) 2016-01-29 2017-01-26 Method of manufacturing unequal-area unequal-thickness angle steel and unequal-area unequal-angle angle steel
JP2019023691A Active JP6725020B2 (en) 2016-01-29 2019-02-13 Valve plate and method for manufacturing valve plate

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019023691A Active JP6725020B2 (en) 2016-01-29 2019-02-13 Valve plate and method for manufacturing valve plate

Country Status (1)

Country Link
JP (2) JP6520965B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110819891A (en) * 2019-10-14 2020-02-21 长沙东鑫环保材料有限责任公司 Niobium-nitrogen-containing microalloyed HRB500E steel bar and production method thereof
JP2020117779A (en) * 2019-01-24 2020-08-06 日本製鉄株式会社 Steel plate and method for manufacturing steel plate
CN111636030A (en) * 2020-05-29 2020-09-08 南京钢铁股份有限公司 Q420C-grade hot-rolled angle steel and preparation method thereof based on machine learning
CN111876654A (en) * 2020-07-01 2020-11-03 石横特钢集团有限公司 Production method of low-temperature impact resistant blank for D-level power angle steel
CN112011737A (en) * 2020-08-18 2020-12-01 马鞍山钢铁股份有限公司 390 MPa-grade-20-DEG C-resistant hot-rolled angle steel for bridge structure and production method thereof
CN115679181A (en) * 2022-08-31 2023-02-03 马鞍山钢铁股份有限公司 Hot-rolled angle steel with yield strength of 420MPa and resistance to temperature of-20 ℃ and production method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462415A (en) * 1987-08-31 1989-03-08 Nippon Kokan Kk Production of high-tensile unequal-sided unequal thickness steel shape
US5100613A (en) * 1990-10-16 1992-03-31 Bethlehem Steel Co. Hot-rolled microalloyed steel and its use in variable-thickness sections
JPH10195592A (en) * 1997-01-08 1998-07-28 Nkk Corp Shape steel excellent in brittle fracture resistance under high speed deformation
JPH10310846A (en) * 1997-05-12 1998-11-24 Nkk Corp Non-heat treated high tensile strength steel
JPH11158543A (en) * 1997-12-01 1999-06-15 Sumitomo Metal Ind Ltd Production of rolled shape steel excellent in toughness in weld zone
JP2002105586A (en) * 2000-09-29 2002-04-10 Nkk Corp Shape steel having excellent collision resistance and its production method
JP2006144087A (en) * 2004-11-22 2006-06-08 Jfe Steel Kk Web thin high strength wide flange shape and its production method
JP2010222669A (en) * 2009-03-25 2010-10-07 Jfe Steel Corp Hot-rolled t-shaped steel and method for producing the same
US20160016211A1 (en) * 2015-03-03 2016-01-21 Iran National Steel Industrial Group System and methof for fabricating hot-rolled semi light weight i-form beam

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462415A (en) * 1987-08-31 1989-03-08 Nippon Kokan Kk Production of high-tensile unequal-sided unequal thickness steel shape
US5100613A (en) * 1990-10-16 1992-03-31 Bethlehem Steel Co. Hot-rolled microalloyed steel and its use in variable-thickness sections
JPH10195592A (en) * 1997-01-08 1998-07-28 Nkk Corp Shape steel excellent in brittle fracture resistance under high speed deformation
JPH10310846A (en) * 1997-05-12 1998-11-24 Nkk Corp Non-heat treated high tensile strength steel
JPH11158543A (en) * 1997-12-01 1999-06-15 Sumitomo Metal Ind Ltd Production of rolled shape steel excellent in toughness in weld zone
JP2002105586A (en) * 2000-09-29 2002-04-10 Nkk Corp Shape steel having excellent collision resistance and its production method
JP2006144087A (en) * 2004-11-22 2006-06-08 Jfe Steel Kk Web thin high strength wide flange shape and its production method
JP2010222669A (en) * 2009-03-25 2010-10-07 Jfe Steel Corp Hot-rolled t-shaped steel and method for producing the same
US20160016211A1 (en) * 2015-03-03 2016-01-21 Iran National Steel Industrial Group System and methof for fabricating hot-rolled semi light weight i-form beam

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020117779A (en) * 2019-01-24 2020-08-06 日本製鉄株式会社 Steel plate and method for manufacturing steel plate
JP7248885B2 (en) 2019-01-24 2023-03-30 日本製鉄株式会社 Steel plate and steel plate manufacturing method
CN110819891A (en) * 2019-10-14 2020-02-21 长沙东鑫环保材料有限责任公司 Niobium-nitrogen-containing microalloyed HRB500E steel bar and production method thereof
CN111636030A (en) * 2020-05-29 2020-09-08 南京钢铁股份有限公司 Q420C-grade hot-rolled angle steel and preparation method thereof based on machine learning
CN111636030B (en) * 2020-05-29 2021-10-26 南京钢铁股份有限公司 Q420C-grade hot-rolled angle steel and preparation method thereof based on machine learning
CN111876654A (en) * 2020-07-01 2020-11-03 石横特钢集团有限公司 Production method of low-temperature impact resistant blank for D-level power angle steel
CN111876654B (en) * 2020-07-01 2021-12-07 石横特钢集团有限公司 Production method of low-temperature impact resistant blank for D-level power angle steel
CN112011737A (en) * 2020-08-18 2020-12-01 马鞍山钢铁股份有限公司 390 MPa-grade-20-DEG C-resistant hot-rolled angle steel for bridge structure and production method thereof
CN112011737B (en) * 2020-08-18 2021-10-15 马鞍山钢铁股份有限公司 390 MPa-grade-20-DEG C-resistant hot-rolled angle steel for bridge structure and production method thereof
CN115679181A (en) * 2022-08-31 2023-02-03 马鞍山钢铁股份有限公司 Hot-rolled angle steel with yield strength of 420MPa and resistance to temperature of-20 ℃ and production method thereof
CN115679181B (en) * 2022-08-31 2023-12-19 马鞍山钢铁股份有限公司 Hot rolled angle steel with yield strength of 420MPa and minus 20 ℃ resistance and production method thereof

Also Published As

Publication number Publication date
JP6520965B2 (en) 2019-05-29
JP6725020B2 (en) 2020-07-15
JP2019094570A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
US10287661B2 (en) Hot-rolled steel sheet and method for producing the same
JP6725020B2 (en) Valve plate and method for manufacturing valve plate
JP4874434B1 (en) Thick steel plate manufacturing method
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
US9863022B2 (en) High-strength ultra-thick H-beam steel
JP5867381B2 (en) High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same
JP2008261046A (en) High-tensile steel excellent in weldability and plastic deformability, and cold-formed steel pipe formed therefrom
JP4329583B2 (en) Low yield ratio H-section steel excellent in earthquake resistance and manufacturing method thereof
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
WO2014175122A1 (en) H-shaped steel and method for producing same
KR102002241B1 (en) Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
JP5842359B2 (en) Non-tempered low yield ratio high tensile steel sheet and method for producing the same
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP7031477B2 (en) Hot-rolled steel sheet, square steel pipe, and its manufacturing method
JP4506985B2 (en) Extra heavy steel material and method for manufacturing the same
JP6589503B2 (en) H-section steel and its manufacturing method
JP6354571B2 (en) Rolled H-section steel and its manufacturing method
JP6421907B1 (en) Rolled H-section steel and its manufacturing method
WO2013175745A1 (en) High-strength thick steel plate for structural use which has excellent brittle crack arrestability, and method for producing same
JP5891748B2 (en) High-strength, high-toughness thick-walled steel plate with excellent material uniformity in the steel plate and method for producing the same
KR20230041060A (en) Thick steel plate and its manufacturing method
JP6123734B2 (en) Low yield ratio high strength electric resistance welded steel pipe for steel pipe pile and method for manufacturing the same
JP2013049896A (en) High-strength welded steel pipe having high uniform elongation characteristic and excellent in weld zone toughness and method for manufacturing the same
JP2021147630A (en) Hot rolled steel sheet, square steel pipe and method for manufacturing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R150 Certificate of patent or registration of utility model

Ref document number: 6520965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250