JPH10195592A - Shape steel excellent in brittle fracture resistance under high speed deformation - Google Patents

Shape steel excellent in brittle fracture resistance under high speed deformation

Info

Publication number
JPH10195592A
JPH10195592A JP146197A JP146197A JPH10195592A JP H10195592 A JPH10195592 A JP H10195592A JP 146197 A JP146197 A JP 146197A JP 146197 A JP146197 A JP 146197A JP H10195592 A JPH10195592 A JP H10195592A
Authority
JP
Japan
Prior art keywords
steel
brittle fracture
under high
speed deformation
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP146197A
Other languages
Japanese (ja)
Inventor
Sadahiro Yamamoto
定弘 山本
Hiroyasu Yokoyama
泰康 横山
Nobuyuki Ishikawa
信行 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP146197A priority Critical patent/JPH10195592A/en
Publication of JPH10195592A publication Critical patent/JPH10195592A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shape steel for structural purpose excellent in brittle fracture resistance even under high speed deformation caused by active fault type big earthquakes, the collision of vessels or the like. SOLUTION: This shape steel is the one having a flange, a web or a flange and a fillet part as the joint part therebetween and having a compsn. contg., by weight, 0.05 to 0.2% C, 0.05 to 0.5% Si, 0.5 to 1.8% Mn, 0.001 to 0.06% Al, <=0.005% S, <=0.003% O, and the balance Fe with inevitable impurities. In a tension test using a test piece having a notch by which the stress concn. factor in the fillet part of the shape steel is >=5, it has >=30% value of reduction of area under static loading conditions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は土木建築分野または
船舶、エネルギー分野等における各種建造物に利用され
る形鋼に係り、特に地震や船の衝突等で生じる高速変形
下においても優れた耐脆性破壊特性が要求される建造物
への利用に適した構造用形鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a section steel used for various types of buildings in the field of civil engineering and construction, ships, and energy, etc., and in particular, has excellent brittle resistance even under high-speed deformation caused by an earthquake, ship collision, or the like. The present invention relates to a structural section steel suitable for use in a building requiring fracture characteristics.

【0002】[0002]

【従来の技術】地震や船の衝突では鋼材に大きな変形が
加わるため建造物の崩壊等、極めて大きな被害が生じ
る。建築分野における耐震設計法では、鋼材の塑性変形
によって地震のエネルギーを吸収することにより、建築
物の崩壊を防ごうとする設計がなされているが、このよ
うな建築物に適用される鋼材には優れた塑性変形能が要
求されており、特開昭55−119152号公報、特開
昭63−223123号公報、特開平1−115642
2号公報、特開平3−115524号公報等では、降伏
比を低下させることにより一様伸び特性を向上させた鋼
材が提案されている。またJIS・G3136の建築構
造用圧延鋼材においても降伏比を80%以下とすること
が規定されているように、耐震性向上に関する鋼材面か
らの対応としては、低降伏比による塑性変形能の向上が
中心となっている。
2. Description of the Related Art In the event of an earthquake or a collision of a ship, a large deformation is applied to a steel material, which causes extremely large damage such as collapse of a building. In the seismic design method in the building field, designs are made to prevent the collapse of buildings by absorbing the energy of earthquakes by plastic deformation of steel materials, but steel materials applied to such buildings include Excellent plastic deformability is required, and is disclosed in JP-A-55-119152, JP-A-63-223123, and JP-A-1-115564.
No. 2, Japanese Unexamined Patent Publication No. 3-115524 and the like propose a steel material in which the uniform elongation property is improved by lowering the yield ratio. In addition, as stipulated in JIS G3136 that the yield ratio of rolled steel for building structures is set to be 80% or less, the response from the steel surface to the improvement of seismic resistance is to improve the plastic deformability by the low yield ratio. Is the center.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、一般に
形鋼においては、造形上の問題よりフランジおよびウェ
ブにくらべ、その接合部であるフィレットにおいては組
織の微細化が難しく、また不純物の偏析の影響が著しく
あらわれるため、材質の劣化が生じ易い。また、形状的
にフィレット部では大きな応力集中が生じる場合が多い
ため、地震や船の衝突のような高速変形下において脆性
破壊が生じ易い傾向がある。
However, in general, in the case of shaped steel, it is more difficult to refine the structure of the fillet, which is the joint thereof, than in the case of the flange and the web due to modeling problems, and the influence of segregation of impurities is less. Because of the remarkable appearance, deterioration of the material is likely to occur. In addition, a large stress concentration often occurs at the fillet portion in terms of shape, so that brittle fracture tends to easily occur under high-speed deformation such as an earthquake or ship collision.

【0004】1994年1月のアメリカ・ノースリッジ
地震や1995年1月の阪神淡路大地震では多くの鉄骨
構造物が甚大な被害を受けたが、その特徴的な破壊形態
として、柱−梁接合部やスカラップ部等の形状不連続部
からの脆性破壊があげられる。また、ノースリッジ地震
や阪神淡路大地震は活断層タイプの地震で震源が近かっ
たために、揺れの速度が非常に速く、変形速度は歪速度
で1〜10/秒にも達していたと考えられている。
[0004] Many steel structures were severely damaged by the Northridge Earthquake of January 1994 and the Great Hanshin-Awaji Earthquake of January 1995. Brittle fracture from a shape discontinuity such as a part or a scalloped part. In addition, the North Ridge earthquake and the Hanshin-Awaji Earthquake were considered to be very active, and the speed of shaking was very high because the epicenter was close, and the deformation rate reached a strain rate of 1 to 10 / sec. I have.

【0005】鋼材が高速変形を受けた場合、通常の静的
な変形速度に比べ延性脆性遷移温度が上昇するといわれ
ているが、ノースリッジ地震や阪神淡路大地震でみられ
た破壊は、柱−梁接合部やスカラップ部等の応力集中部
に高速の変形が加わったため、その部分の延性脆性遷移
温度が上昇し、鋼材が塑性変形能を発揮する前に脆性破
壊を生じたためと考えられる。従って、低降伏比による
塑性変形能向上という従来の考え方では、ノースリッジ
地震や阪神淡路大地震のような揺れの速度が速い地震が
起きた場合、脆性破壊発生による建築物の崩壊を防ぐこ
とはできないことを示唆している。
[0005] It is said that when a steel material undergoes high-speed deformation, the ductile-brittle transition temperature rises as compared with the normal static deformation speed. However, the failures observed in the Northridge earthquake and the Hanshin-Awaji great earthquake are column-like. It is considered that the high-speed deformation was applied to the stress-concentrated portion such as the beam joint and the scalloped portion, and the ductile-brittle transition temperature in that portion increased, and brittle fracture occurred before the steel material exhibited the plastic deformability. Therefore, the conventional concept of improving plastic deformability by a low yield ratio does not prevent buildings from collapsing due to brittle fracture when a high-speed earthquake such as the Northridge Earthquake or the Hanshin-Awaji Earthquake occurs. Suggests that you cannot.

【0006】また、船の衝突事故においても鋼材が局部
的に高速変形を受けるため、脆性破壊を起こす場合があ
り問題となっている。本発明の目的は上記した問題点を
解決するために、活断層タイプの大地震や船の衝突など
で生じる高速変形下においても、耐脆性破壊特性が優れ
た構造用形鋼を提供することにある。
[0006] Further, even in a collision accident of a ship, since steel materials are locally subjected to high-speed deformation, brittle fracture may occur, which is a problem. An object of the present invention is to provide a structural steel having excellent brittle fracture resistance even under high-speed deformation caused by an active fault type large earthquake or ship collision in order to solve the above problems. is there.

【0007】[0007]

【課題を解決するための手段】前記課題を解決し目的を
達成するために、本発明は以下に示す手段を用いてい
る。 (1)本発明の形鋼は、重量%で、C:0.05〜0.
2%と、Si:0.05〜0.5%と、Mn:0.5〜
1.8%と、Al:0.001〜0.06%と、S≦
0.005%と、O≦0.003%と、残部がFe及び
不可避的不純物とからなる、フランジと、ウェブまたは
フランジと、その接合部であるフィレット部とを有する
形鋼であって、形鋼のフィレット部の応力集中係数が5
以上となる切欠を有する試験片を用いた引張試験におい
て、静的載荷条件で30%以上の絞り値を有することを
特徴とする、高速変形下における耐脆性破壊特性に優れ
た構造用形鋼である。
In order to solve the above problems and achieve the object, the present invention uses the following means. (1) The shaped steel of the present invention is expressed in terms of% by weight, C: 0.05 to 0.1%.
2%, Si: 0.05 to 0.5%, Mn: 0.5 to
1.8%, Al: 0.001 to 0.06%, and S ≦
A shape steel having a flange, a web or a flange, and a fillet portion that is a joint portion thereof, the shape steel comprising 0.005%, O ≦ 0.003%, and the balance being Fe and unavoidable impurities. Stress concentration factor of steel fillet is 5
In a tensile test using a specimen having a notch as described above, a structural section steel excellent in brittle fracture resistance under high-speed deformation characterized by having a drawing value of 30% or more under static loading conditions. is there.

【0008】(2)本発明の形鋼は、重量%で、さら
に、Ti≦0.1%、Nb≦0.04%、V≦0.1
%、Cu≦0.5%、Ni≦0.5%、Cr≦1%、M
o≦0.6%、Ca≦0.005%、及びREM≦0.
03%の群から選択された1種または2種以上を含有す
る、上記(1)に記載の高速変形下における耐脆性破壊
特性に優れた構造用形鋼である。
(2) The shaped steel according to the present invention further includes Ti ≦ 0.1%, Nb ≦ 0.04%, V ≦ 0.1% by weight.
%, Cu ≦ 0.5%, Ni ≦ 0.5%, Cr ≦ 1%, M
o ≦ 0.6%, Ca ≦ 0.005%, and REM ≦ 0.
The structural steel according to the above (1), which has excellent brittle fracture resistance under high-speed deformation, containing one or more selected from the group of 03%.

【0009】[0009]

【発明の実施の形態】本発明者は、活断層タイプの大地
震や船の衝突などで生じる高速変形下においても、耐脆
性破壊特性が優れた構造用形鋼を得るために、高速変形
下での形鋼の破壊特性について鋭意研究を重ねた結果、
以下の知見を得るに至った。
BEST MODE FOR CARRYING OUT THE INVENTION The inventor of the present invention has proposed a method for producing structural steel having excellent brittle fracture resistance even under high-speed deformation caused by an active fault type large earthquake or ship collision. As a result of intensive studies on the fracture characteristics of shaped steel in
The following findings have been obtained.

【0010】鋼材が塑性変形する場合、塑性変形に要し
たエネルギーが熱エネルギーに変わるが、高速変形下で
は熱伝導により熱が散逸する時間が少ないため、鋼材の
温度が上昇する。そして、塑性変形量が多いほどそれに
よる発熱も大きくなる。一般に温度が高いほど鋼材のシ
ャルピー吸収エネルギーが高くなるとともに、脆性破面
率が低下するが、応力集中部が高速変形下でも十分に塑
性変形すれば、応力集中部の温度が上昇し、高速変形に
よる延性脆性遷移温度の上昇、つまり脆性破面率の上昇
を抑制できることから、阪神淡路大地震等において見ら
れたような脆性破壊を防ぐことが可能となる。
When a steel material undergoes plastic deformation, the energy required for the plastic deformation is converted to heat energy. However, under high-speed deformation, the time required for heat to be dissipated by heat conduction is short, and the temperature of the steel material rises. Then, the greater the amount of plastic deformation, the greater the amount of heat generated thereby. In general, the higher the temperature, the higher the Charpy absorbed energy of the steel material and the lower the brittle fracture surface ratio.However, if the stress-concentrated portion is sufficiently plastically deformed even under high-speed deformation, the temperature of the stress-concentrated portion rises, resulting in high-speed deformation. This can suppress an increase in the ductile-brittle transition temperature, that is, an increase in the brittle fracture surface ratio, thereby making it possible to prevent a brittle fracture as seen in the Great Hanshin-Awaji Earthquake and the like.

【0011】しかし、鋼材の塑性変形能は、JIS・Z
2201に規定された平行部を有する引張試験片により
求まる絞り値や伸びで評価されるのが一般的であり、H
形鋼のスカラップ部に代表されるような応力集中部では
高い3軸応力状態にあるため、このような応力集中部で
の塑性変形能は、従来の平行部を有する引張試験片では
正しく評価できない。そこで、高い3軸応力状態での塑
性変形能を評価する方法について検討を重ねた結果、H
形鋼のスカラップ部等で見られる応力集中状態に相当す
る応力集中係数を有する切欠付丸棒試験片を用いて引張
試験を行えば、その時の絞り値によって、応力集中部で
の塑性変形能を正しく評価できることがわかった。
[0011] However, the plastic deformability of steel materials is based on JIS Z
In general, it is evaluated by the reduction value and elongation obtained from a tensile test piece having a parallel portion specified in 2201.
Since a stress concentrated portion such as a scallop portion of a section steel is in a high triaxial stress state, the plastic deformability at such a stress concentrated portion cannot be correctly evaluated by a conventional tensile test piece having a parallel portion. . Therefore, as a result of repeated studies on a method of evaluating plastic deformability under a high triaxial stress state, H
If a tensile test is performed using a notched round bar specimen having a stress concentration coefficient equivalent to the stress concentration state seen in the scallop part of a shaped steel, etc., the plastic deformation ability at the stress concentration part will be determined by the drawing value at that time. It turns out that we can evaluate correctly.

【0012】図1(a−1)に示すフランジ1とウェブ
2とその接合部であるフィレット部3とを有するH形鋼
のフィレット部3から採取した切欠丸棒試験片(図1
(b)、応力集中係数α=6.7)を用いて、引張試験
を行ったときの脆性破面率と温度の関係を図2に示す。
評点間の平均歪速度が0.001/秒(静的変形)と1
0/秒(地震時の高速変形に対応)の2条件で行った
が、静的変形に比べ高速変形の方が脆性破面率が高く、
延性脆性破面遷移温度が上昇していることが明らかであ
り、ノースリッジ地震や阪神淡路大地震でみられたよう
な、高速変形下での破壊挙動が再現されていることがわ
かる。
A notched round bar test piece (FIG. 1) taken from a fillet portion 3 of an H-shaped steel having a flange 1, a web 2, and a fillet portion 3 as a joining portion shown in FIG.
FIG. 2 shows the relationship between the brittle fracture surface ratio and the temperature when a tensile test was performed using (b), stress concentration coefficient α = 6.7).
The average strain rate between grades is 0.001 / sec (static deformation) and 1
0 / sec (corresponding to high-speed deformation at the time of earthquake), but the brittle fracture rate of high-speed deformation is higher than that of static deformation.
It is clear that the transition temperature of the ductile brittle fracture surface has risen, and that the fracture behavior under high-speed deformation, as seen in the Northridge earthquake and the Hanshin-Awaji great earthquake, is reproduced.

【0013】また、図3に種々のH形鋼のフィレット部
から採取した切欠丸棒試験片(図1(b))を用いて、
常温で静的引張試験を行ったときの絞り値と高速変形に
よる破面遷移温度の変化の関係を示す。切欠丸棒試験片
を用いて静的条件で引張試験を行った場合の絞り値が、
30%以上であれば、高速変形による破面遷移温度の上
昇は認められない。これは高速変形下においても十分に
塑性変形する場合は、応力集中部の温度が上昇し、脆性
破壊の割合を低下させたためと考えられる。
FIG. 3 shows cutaway round bar specimens (FIG. 1 (b)) taken from fillets of various H-beams.
The relationship between the aperture value when performing a static tensile test at room temperature and the change in the fracture surface transition temperature due to high-speed deformation is shown. When a tensile test was performed under static conditions using a notched round bar specimen, the aperture value was
If it is 30% or more, no increase in the fracture surface transition temperature due to high-speed deformation is observed. This is considered to be due to the fact that, when plastic deformation is sufficient even under high-speed deformation, the temperature of the stress concentrated portion was increased, and the rate of brittle fracture was reduced.

【0014】従来、鋼の脆性破壊に対する抵抗について
は、従来JIS・Z2242に規定されたシャルピー衝
撃試験等によって評価されてきた。しかし、シャルピー
衝撃試験では変形速度に伴う破壊挙動の違いを比較する
ことはできず、地震で見られるような高速変形による脆
性破面率の上昇に対する抵抗力、すなわち高速変形下で
の耐脆性破壊特性を評価することは不可能である。高速
変形下での耐脆性破壊特性を向上するには、高い3軸応
力状態での塑性変形能を高めることが重要なのであり、
たとえシャルピー衝撃試験による破面遷移温度(vTr
s)が低い、すなわち靭性が高い鋼であっても、切欠試
験片での絞り値が低ければ、高速変形での脆性破面率の
上昇を抑制することは困難となるものである。
Conventionally, the resistance of steel to brittle fracture has been conventionally evaluated by a Charpy impact test or the like defined in JIS Z2242. However, the Charpy impact test cannot compare the difference in fracture behavior with the deformation rate, and the resistance to an increase in the brittle fracture rate due to high-speed deformation as seen in an earthquake, that is, brittle fracture under high-speed deformation It is impossible to evaluate properties. In order to improve the brittle fracture resistance under high-speed deformation, it is important to increase the plastic deformability under high triaxial stress conditions.
Even if the fracture surface transition temperature (vTr
Even if the steel has a low s), that is, a high toughness, it is difficult to suppress an increase in the brittle fracture rate during high-speed deformation if the drawing value of the notched specimen is low.

【0015】また鋼の塑性変形能、すなわち延性に対し
て硫化物系及び酸化物系介在物が悪影響を及ぼすことは
以前より知られており、通常、S及びOは材質が劣化し
ない程度まで低減されている。しかし、H形鋼のスカラ
ップ部等の高い3軸応力状態下では、通常の引張試験で
評価されるような伸びや絞り値が低下しない程度のS量
またはO量であっても、硫化物系及び酸化物系介在物が
ミクロボイドの発生起点となり、延性亀裂が進展しやす
くなるため、十分な塑性変形能が得られない場合があ
る。そのため、応力集中部での塑性変形能を高めるため
にはS量またはO量を厳しく制限する必要がある。
It has been known for some time that sulfide and oxide inclusions have an adverse effect on the plastic deformability, ie, ductility, of steel. Generally, S and O are reduced to such an extent that the material does not deteriorate. Have been. However, under a high triaxial stress state such as a scalloped portion of an H-section steel, even if the amount of S or O is such that the elongation and the drawing value do not decrease as evaluated in a normal tensile test, the sulfide-based In addition, the oxide-based inclusions serve as starting points of microvoids, and ductile cracks are easily propagated, so that sufficient plastic deformability may not be obtained. Therefore, in order to increase the plastic deformability at the stress concentration portion, it is necessary to severely limit the amount of S or O.

【0016】以上の知見に基づき、本発明者は、鋼のS
量またはO量を厳しく制限し、形鋼のフィレット部の応
力集中係数を特定した切欠試験片を用いた静的載荷条件
下の引張試験における絞り値を一定値以上に制御するよ
うにして、高速変形下における耐脆性破壊特性に優れた
本発明の形鋼を見出し、本発明を完成させた。
Based on the above findings, the present inventor has proposed that S
The amount of O or O is severely restricted, and the drawing value in a tensile test under a static loading condition using a notched test specimen with a specified stress concentration coefficient at the fillet portion of a shaped steel is controlled to a certain value or more, so that high speed The present inventors have found a shaped steel of the present invention having excellent brittle fracture resistance under deformation, and have completed the present invention.

【0017】すなわち、本発明は鋼組成及び切欠試験片
による静的載荷条件下の引張特性(絞り値)を下記範囲
に限定することにより、活断層タイプの大地震や船の衝
突などで生じる高速変形下における耐脆性破壊特性に優
れた形鋼を提供できる。以下に本発明の成分添加理由、
成分限定理由及び応力集中部での塑性変形特性の限定理
由について説明する。
That is, the present invention limits the tensile properties (aperture value) under static loading conditions of the steel composition and the notched test specimen to the following ranges, so that a high-speed active fault-type earthquake or ship collision occurs. A section steel having excellent brittle fracture resistance under deformation can be provided. The reasons for adding the components of the present invention below,
The reason for limiting the components and the reason for limiting the plastic deformation characteristics in the stress concentration portion will be described.

【0018】(1)成分組成範囲 C:0.05〜0.2% Cは鋼材の強度を確保するために必要な元素であるが、
0.05%未満では強度が不足し、0.2%を越えて添
加すると偏析部の特性、溶接性を損ねるので、その含有
量は0.05〜0.2%である。 Si:0.05〜0.5% Siは鋼材の強度を高めるとともに製鋼過程における脱
酸剤として必要であるが、0.05%未満ではその効果
が不十分であり、0.5%を越えて添加すると偏析部の
特性、溶接部の靭性を劣化させるので、その含有量は
0.05〜0.5%である。
(1) Component composition range C: 0.05 to 0.2% C is an element necessary for securing the strength of the steel material.
If it is less than 0.05%, the strength is insufficient, and if it exceeds 0.2%, the properties of the segregated portion and the weldability are impaired, so the content is 0.05 to 0.2%. Si: 0.05 to 0.5% Si is necessary not only to increase the strength of the steel material but also as a deoxidizing agent in the steel making process, but if it is less than 0.05%, its effect is insufficient, and it exceeds 0.5%. If added in such a manner, the properties of the segregated portion and the toughness of the welded portion are deteriorated, so the content is 0.05 to 0.5%.

【0019】Mn:0.5〜1.8% Mnは鋼材の強度を高めるために添加されるが、0.5
%未満では強度が不足し、1.8%を越えて添加すると
偏析が著しくなり靭性が劣化するため、その含有量は
0.5〜1.8%である。 Al:0.001〜0.06% Alは脱酸剤として必要であるが、0.001%未満で
は脱酸が不十分であり、0.06%を越えて添加される
とスラブの表面疵の原因となるため、その含有量は0.
001〜0.06%である。 S≦0.005% Sは硫化物系介在物を生成する元素であるが、柱−梁接
合部やスカラップ部等の応力集中部のような高い3軸応
力状態では、硫化物系介在物がミクロボイドの発生起点
となり、延性亀裂発生進展を助長するため、応力集中部
での塑性変形能が著しく低下する。しかし、0.005
%以下では問題ないので、その含有量の上限は0.00
5%である。
Mn: 0.5 to 1.8% Mn is added to increase the strength of the steel material.
If the content is less than 1.8%, the strength is insufficient, and if the content exceeds 1.8%, segregation becomes remarkable and toughness is deteriorated, so that the content is 0.5 to 1.8%. Al: 0.001 to 0.06% Al is required as a deoxidizing agent, but if it is less than 0.001%, deoxidation is insufficient, and if it exceeds 0.06%, surface defects of the slab , Causing its content to be 0.1.
001 to 0.06%. S ≦ 0.005% S is an element that forms sulfide inclusions, but in a high triaxial stress state such as a stress-concentrated portion such as a column-beam joint or a scallop, sulfide inclusions are not formed. It becomes the starting point of microvoid generation and promotes the development of ductile cracks, so that the plastic deformability at the stress concentrated portion is significantly reduced. However, 0.005
% Or less, the upper limit of the content is 0.00%.
5%.

【0020】O≦0.003% Oは酸化物系介在物となって鋼中に存在するが、硫化物
系介在物と同様にミクロボイドの発生起点となり、延性
亀裂発生進展を助長するため、応力集中部での塑性変形
能が著しく低下する。しかし、0.003%以下では問
題ないので、その含有量の上限は0.003%である。
O ≦ 0.003% O is present in the steel as oxide-based inclusions, but, like sulfide-based inclusions, becomes a starting point of microvoids and promotes the development of ductile cracks. The plastic deformability at the concentrated part is significantly reduced. However, since there is no problem if the content is 0.003% or less, the upper limit of the content is 0.003%.

【0021】本発明では上記の合金元素のほかに、鋼材
の強度・靭性を高めるためにTi、Nb、V、Cu、N
i、Cr、Mo、Ca、REMの1種または2種以上を
含有してもよいが、以下にその成分の限定理由を述べ
る。
In the present invention, in addition to the above alloying elements, Ti, Nb, V, Cu, N
One or more of i, Cr, Mo, Ca, and REM may be contained, and the reasons for limiting the components are described below.

【0022】Ti≦0.1% TiはTiNを形成し、溶接部の組織粗大化を抑制しH
AZ靭性の向上に寄与する元素であり微量の添加で大き
な効果が得られるが、0.1%を越えて添加されると逆
に溶接性が低下するため、その含有量は0.1%以下で
ある。 Nb≦0.04% NbはNb(C,N)として微細析出し強度上昇に寄与
する元素であるが、0.04%を越えて添加されると溶
接性または溶接部の靭性が低下するため、その含有量は
0.04%以下である。 V≦0.1% VはVCとして析出し強度向上に寄与するが、0.00
5%未満ではその効果が得られず、0.1%を越えて添
加してもその効果が飽和するので、その含有量は0.0
05〜0.1%である。 Cu≦0.5% Cuは強度・靭性の向上に有効な元素であるが、0.5
%を越えて添加すると熱間加工性が低下するだけでな
く、表面疵が発生しやすくなるので、その含有量は0.
5%以下である。 Ni≦0.5% Niは靭性の向上に極めて有効な元素であるが、また非
常に高価な元素であることから0.5%を越えて添加す
るとコスト的に不利になるため、その含有量は0.5%
以下である。 Cr≦1% Crは強度向上に有効な元素であるが、1%を越えて添
加すると溶接性が低下するので、その含有量は1%以下
である。 Mo≦0.6% MoもCrと同様に強度向上に有効な元素であるが、
0.6%を越えて添加すると溶接性が低下するだけでな
く、コスト的にも不利になるため、その含有量は0.6
%以下である。 Ca≦0.005% Caは硫化物系介在物の形状を制御することにより、靭
性を向上する元素であるが、0.005%を越えて添加
すると鋼の清浄性に悪影響を及ぼすため、その添加量は
0.005%以下である。 REM≦0.03% REM(希土類元素)も、Caと同様に硫化物系介在物
の形状を制御することにより、靭性を向上する元素であ
るが、0.03%を越えて添加すると鋼の材質に悪影響
を及ぼすため、その添加量は0.03%以下である。な
お、Pは本発明の効果を阻害しない範囲での混入は許容
される。
Ti ≦ 0.1% Ti forms TiN, suppresses the structure coarsening of the welded portion, and
It is an element that contributes to the improvement of AZ toughness, and a large effect can be obtained with a small amount of addition. However, if added in excess of 0.1%, the weldability is reduced, so the content is 0.1% or less. It is. Nb ≦ 0.04% Nb is an element that precipitates finely as Nb (C, N) and contributes to an increase in strength. However, if added over 0.04%, the weldability or the toughness of the welded portion is reduced. , Its content is not more than 0.04%. V ≦ 0.1% V precipitates as VC and contributes to the improvement of strength.
If the content is less than 5%, the effect cannot be obtained, and if the content exceeds 0.1%, the effect is saturated.
Between 0.5 and 0.1%. Cu ≦ 0.5% Cu is an element effective for improving strength and toughness.
%, The hot workability is lowered and the surface flaws are liable to be generated.
5% or less. Ni ≦ 0.5% Ni is an extremely effective element for improving toughness, but is an extremely expensive element, so if added over 0.5%, it is disadvantageous in terms of cost. Is 0.5%
It is as follows. Cr ≦ 1% Cr is an element effective for improving the strength, but if added in excess of 1%, the weldability is reduced, so the content is 1% or less. Mo ≦ 0.6% Mo is an element effective for improving the strength similarly to Cr,
If added in excess of 0.6%, not only will the weldability be reduced, but it will also be disadvantageous in terms of cost.
% Or less. Ca ≦ 0.005% Ca is an element that improves toughness by controlling the shape of sulfide-based inclusions. However, if added over 0.005%, the cleanliness of steel is adversely affected. The amount of addition is 0.005% or less. REM ≦ 0.03% REM (rare earth element) is also an element that improves toughness by controlling the shape of sulfide-based inclusions, similar to Ca, but when added in excess of 0.03%, the steel becomes rare. Since the material has an adverse effect, the amount of addition is 0.03% or less. P is allowed to be mixed in a range that does not impair the effects of the present invention.

【0023】上記の成分組成範囲に調整することによ
り、応力集中部において高い塑性変形能が得られるた
め、高速変形時の発熱量が大きく優れた耐脆性破壊特性
を有する形鋼を得ることが可能となる。
By adjusting to the above-mentioned composition range, high plastic deformability can be obtained in the stress-concentrated portion, so that it is possible to obtain a shaped steel having a large calorific value at high-speed deformation and excellent brittle fracture resistance. Becomes

【0024】このような特性の形鋼は、さらに以下の切
欠試験片による静的載荷条件下の引張特性を有する。 (2)切欠試験片による静的載荷条件下の引張特性 図1(a−1)に示す本発明のフランジ1とウェブ2と
その接合部であるフィレット部3とを有する形鋼(H形
鋼)は、フィレット部3から採取した応力集中係数が5
以上となる切欠を有する試験片を用いた引張試験におい
て、静的載荷条件で30%以上の絞り値を有する。
The section steel having such properties has tensile properties under static loading conditions by the following notched test pieces. (2) Tensile Properties of Notched Specimen under Static Loading Conditions A section steel (H-section steel) having a flange 1 and a web 2 of the present invention shown in FIG. ) Indicates that the stress concentration coefficient obtained from the fillet portion 3 is 5
In the tensile test using the test piece having the notch as described above, it has an aperture value of 30% or more under the static loading condition.

【0025】形鋼におけるフィレット部3を切欠試験片
として選定した理由は、一般に形鋼においては、造形上
の問題よりフランジ1及びウェブ2に比べ、その接合部
であるフィレット部3における組織の微細化が難しく、
材質の劣化が生じ易いことと、形状的にフィレット部3
では大きな応力集中が生じる場合が多いため、地震や船
の衝突のような高速変形下において脆性破壊が生じ易い
傾向があるためである。
The reason why the fillet portion 3 in the section steel was selected as the notch test piece is that, in general, in the section steel, compared with the flange 1 and the web 2, the microstructure of the fillet section 3, which is the joint portion, is smaller than that of the flange 1 and the web 2 due to modeling problems. Difficult to
The material is apt to deteriorate, and the fillet 3
In this case, large stress concentration often occurs, so that brittle fracture tends to occur under high-speed deformation such as an earthquake or ship collision.

【0026】応力集中係数が5以上となる切欠を有する
試験片を用いるのは、応力集中係数が5未満の切欠を有
する試験片あるいは切欠のない試験片では、高速変形下
(歪み速度で1/秒以上)での耐脆性破壊特性を評価す
ることは不可能であるためである。また、静的載荷条件
で引張試験を行った時の絞り値が30%以上と限定した
理由は、図3に示したように切欠引張試験での絞り値が
30%未満では応力集中部の塑性変形能が十分とは言え
ず、高速変形下において応力集中部の温度上昇が小さ
く、延性脆性遷移温度が上昇、すなわち脆性破面率が増
加することにより脆性破壊を生じやすくなるためであ
る。なお、切欠試験片は、応力集中係数が5以上であれ
ば、任意のものを使用することができる。また、本発明
の形鋼には、図1(a−2)に示すフランジ1とウェブ
2とその接合部であるフィレット部3とを有する形鋼
(不等辺山形鋼)や図1(a−3)に示すフランジ1と
フランジ1とその接合部であるフィレット部3とを有す
る形鋼(等辺山形鋼)も含まれる。
A test piece having a notch with a stress concentration coefficient of 5 or more is used for a test piece having a notch with a stress concentration coefficient of less than 5 or a test piece without a notch under high-speed deformation (1/3 at a strain rate). This is because it is impossible to evaluate the brittle fracture resistance in (seconds or more). In addition, the reason why the aperture value at the time of performing the tensile test under the static loading condition is limited to 30% or more is that, as shown in FIG. This is because the deformability is not sufficient, and the temperature rise in the stress concentrated portion is small under high-speed deformation, and the brittle transition temperature rises, that is, the brittle fracture rate is increased, so that brittle fracture is likely to occur. In addition, any notch test piece can be used as long as the stress concentration coefficient is 5 or more. Further, the section steel of the present invention includes a section steel (unequal angle angle steel) having a flange 1, a web 2, and a fillet portion 3 as a joint portion thereof as shown in FIG. Shaped steel (equilateral angle steel) having the flange 1 shown in 3), the flange 1 and the fillet portion 3 which is a joint thereof is also included.

【0027】上記の成分組成範囲及び切欠試験片による
静的載荷条件下の引張特性(絞り値)に調整することに
より、活断層タイプの大地震や船の衝突などで生じる高
速変形下においても、耐脆性破壊特性が優れた構造用形
鋼を得ることが可能となる。
By adjusting the above composition range and tensile properties (aperture value) under static loading conditions using notched test pieces, even under high-speed deformation caused by an active fault type large earthquake or ship collision, etc. It is possible to obtain a structural steel having excellent brittle fracture resistance.

【0028】なお、製造方法については本発明では特に
限定されない。すなわち、鋼の溶製方法、構造用形鋼製
造時の圧延方法及び熱処理方法は通常採用される条件で
あればよい。また、形鋼に用いる鋼材については、例え
ば、制御圧延、加速冷却、圧延後徐冷など低降伏比鋼材
の製造条件を採用することも可能である。以下に本発明
の実施例を挙げ、本発明の効果を立証する。
The manufacturing method is not particularly limited in the present invention. In other words, the method of smelting steel, the method of rolling at the time of producing the structural steel, and the method of heat treatment may be conditions that are usually adopted. Further, as for the steel material used for the section steel, for example, it is also possible to adopt the production conditions of the low yield ratio steel material such as controlled rolling, accelerated cooling, and slow cooling after rolling. Hereinafter, examples of the present invention will be described to demonstrate the effects of the present invention.

【0029】[0029]

【実施例】【Example】

(実施例1)表1に示した成分の鋼(本発明鋼No.1
〜9、比較鋼No.10〜13)を溶製し、600×3
00×12×25mmのサイズを有するH形鋼に圧延し
た。
(Example 1) Steel having the components shown in Table 1 (Steel No. 1 of the present invention)
-9, Comparative steel No. 10-13) are melted, and 600 × 3
It was rolled into an H-beam having a size of 00 × 12 × 25 mm.

【0030】各H形鋼のフィレット部より丸棒引張試験
片、シャルピー衝撃試験片及び図1(b)に示したよう
な応力集中係数6.5の切欠を有する試験片を採取し
た。丸棒試験片については、JIS・Z2241の引張
試験を行い降伏応力(YS)、引張強度(TS)を測定
し、シャルピー衝撃試験片についてはJIS・Z224
2のシャルピー衝撃試験を行い、破面遷移温度を測定し
た。
From a fillet portion of each H-section steel, a round bar tensile test piece, a Charpy impact test piece and a test piece having a notch with a stress concentration coefficient of 6.5 as shown in FIG. 1B were collected. The round bar test piece was subjected to a JIS Z2241 tensile test to measure the yield stress (YS) and the tensile strength (TS). The Charpy impact test piece was JIS Z224.
The Charpy impact test of No. 2 was performed to measure the fracture surface transition temperature.

【0031】切欠を有する試験片についてはアクチュエ
ーター式の引張試験機により、評点間の平均歪速度で
0.001/秒の静的引張試験、及び平均歪速度10/
秒の高速引張試験を行い、絞り値(RA)及び脆性破面
率を測定した。また、高速変形に伴う脆性破面率の変化
量より、耐脆性破壊特性を評価した。なお、試験温度は
引張試験は室温で行い、シャルピー衝撃試験は−80℃
〜室温の範囲の温度で行った。
With respect to the test piece having a notch, a static tensile test at an average strain rate of 0.001 / sec between the scores and an average strain rate of 10 /
A high-speed tensile test was performed for a second to measure the aperture value (RA) and the brittle fracture ratio. In addition, the brittle fracture resistance was evaluated based on the amount of change in the brittle fracture rate due to high-speed deformation. The test temperature was performed at room temperature for the tensile test, and -80 ° C for the Charpy impact test.
The test was performed at a temperature ranging from to room temperature.

【0032】これらの結果をあわせて表1に示した。本
発明条件の成分範囲をいずれも満たす本発明鋼No.1
〜9は、いずれも静的引張試験での絞り値が30%以上
であり、高速引張試験においては脆性破面率が低下して
いることから、本発明鋼は高速変形下での耐脆性破壊特
性に優れていることが明らかである。一方、本発明条件
を満たしていない比較鋼No.10〜13は、静的引張
試験での絞り値が本発明の範囲より小さいため、高速引
張試験では脆性破面率が大幅に増加している。また、シ
ャルピー衝撃試験片での破面遷移温度が低いものであっ
ても、本発明の範囲を満たしていなければ、脆性破面率
が上昇していることがわかる。
The results are shown in Table 1. The steel No. of the present invention which satisfies all the component ranges of the present invention conditions. 1
No. 9 to No. 9 each have a reduction value of 30% or more in a static tensile test and a low brittle fracture rate in a high-speed tensile test. It is clear that the properties are excellent. On the other hand, Comparative Steel No. which does not satisfy the conditions of the present invention. In Nos. 10 to 13, the drawing value in the static tensile test is smaller than the range of the present invention, so that the brittle fracture rate is greatly increased in the high-speed tensile test. In addition, even if the fracture surface transition temperature in the Charpy impact test specimen is low, the brittle fracture surface ratio is found to increase if the range of the present invention is not satisfied.

【0033】[0033]

【表1】 [Table 1]

【0034】(実施例2)表2に示した成分の鋼(本発
明鋼No.14〜18,22〜24、比較鋼No.19
〜21)を溶製し、鋼No.14〜21は350×10
0×12×17mmのサイズを有する不等辺山形鋼、鋼
No.22〜24は400×400×60×80mmの
サイズを有する極厚H形鋼にそれぞれ圧延した。また一
部の不等辺山形鋼については圧延後、加速冷却を行っ
た。
(Example 2) Steels having the components shown in Table 2 (steel Nos. 14 to 18, 22 to 24 of the present invention, comparative steel No. 19)
To 21). 14-21 is 350 × 10
Non-equilateral angle iron with a size of 0 × 12 × 17 mm, steel no. Each of Nos. 22 to 24 was rolled into an extremely thick H-section steel having a size of 400 × 400 × 60 × 80 mm. Some unequal angle irons were subjected to accelerated cooling after rolling.

【0035】各形鋼のフィレット部より丸棒引張試験
片、シャルピー衝撃試験片および図1に示したような応
力集中係数6.5の切欠を有する試験片を採取した。丸
棒引張試験片については、JIS・Z2241の引張試
験を行い降伏応力(YS)、引張強度(TS)を測定
し、シャルピー衝撃試験片についてはJIS・Z224
2のシャルピー衝撃試験を行い、破面遷移温度を測定し
た。
From the fillet portion of each section steel, a round bar tensile test piece, a Charpy impact test piece and a test piece having a notch with a stress concentration coefficient of 6.5 as shown in FIG. 1 were collected. For round bar tensile test specimens, a JIS Z2241 tensile test was performed to measure the yield stress (YS) and tensile strength (TS). For Charpy impact test specimens, JIS Z224
The Charpy impact test of No. 2 was performed to measure the fracture surface transition temperature.

【0036】切欠を有する試験片についてはアクチュエ
ーター式の引張試験機により、評点間の平均歪速度で
0.001/秒の静的引張試験、及び平均歪速度10/
秒の高速引張試験を行い、絞り値及び脆性破面率を測定
した。また、高速変形による脆性破面率の変化量より、
耐脆性破壊特性を評価した。なお、試験温度は引張試験
は室温で行い、シャルピー衝撃試験は−80℃〜室温の
範囲の温度で行った。
For the test piece having a notch, a static tensile test at an average strain rate of 0.001 / sec between the scores and an average strain rate of 10 /
A high-speed tensile test for a second was performed to measure the aperture value and the brittle fracture ratio. Also, from the change in brittle fracture rate due to high-speed deformation,
The brittle fracture resistance was evaluated. In addition, as for the test temperature, the tensile test was performed at room temperature, and the Charpy impact test was performed at a temperature in the range of -80 ° C to room temperature.

【0037】これらの結果をあわせて表2に示した。本
発明条件の成分範囲をいずれも満たす本発明鋼No.1
4〜18及び22〜24は、いずれも静的引張試験での
絞り値が30%以上であり、高速引張試験においては脆
性破面率が変化しないか、または低下していることか
ら、本発明鋼は高速変形下での耐脆性破壊特性に優れて
いることが明らかである。一方、本発明条件を満たして
いない比較鋼No.19〜21は、静的引張試験での絞
り値が本発明の範囲より小さいため、高速引張試験では
脆性破面率が大幅に増加している。また、シャルピー衝
撃試験片での破面遷移温度が低いものであっても、本発
明の範囲を満たしていなければ、脆性破面率が上昇して
いることがわかる。
The results are shown in Table 2. The steel No. of the present invention which satisfies all the component ranges of the present invention conditions. 1
Nos. 4 to 18 and 22 to 24 each have a reduction value of 30% or more in the static tensile test, and the brittle fracture rate does not change or decreases in the high-speed tensile test. It is clear that steel has excellent brittle fracture resistance under high speed deformation. On the other hand, Comparative Steel No. which does not satisfy the conditions of the present invention. In Nos. 19 to 21, since the drawing value in the static tensile test is smaller than the range of the present invention, the brittle fracture rate is greatly increased in the high-speed tensile test. In addition, even if the fracture surface transition temperature in the Charpy impact test specimen is low, the brittle fracture surface ratio is found to increase if the range of the present invention is not satisfied.

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【発明の効果】以上に示したように、本発明によれば鋼
組成及び切欠試験片による静的載荷条件下の引張特性
(絞り値)を特定することにより、高速変形下において
も応力集中部の脆性破面率が増加する現象が起きず、耐
脆性破壊特性に優れた形鋼を提供することが可能であ
り、地震や船の衝突などで高速変形を受けるような建造
物の利用に適しているといえる。
As described above, according to the present invention, by specifying the steel composition and the tensile characteristics (drawing value) under the static loading condition by the notched test piece, the stress concentration portion can be obtained even under high-speed deformation. It does not cause the phenomenon that the brittle fracture rate increases, and it can provide shaped steel with excellent brittle fracture resistance, and is suitable for use in buildings that are subject to high-speed deformation due to earthquakes, ship collisions, etc. It can be said that.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る形鋼の模式図と引張試験
片の形状を示す図。(a−1)はH形鋼の模式図。(a
−2)は不等辺山形鋼の模式図。(a−3)は等辺山形
鋼の模式図。(b)は引張試験片の形状を示す図。
FIG. 1 is a schematic diagram of a section steel according to an example of the present invention and a diagram showing the shape of a tensile test piece. (A-1) is a schematic diagram of an H-section steel. (A
-2) is a schematic view of an unequal angle iron. (A-3) is a schematic diagram of an equilateral angle iron. (B) is a diagram showing the shape of a tensile test piece.

【図2】本発明の実施の形態に係る引張試験での温度と
脆性破面率との関係を示す図。
FIG. 2 is a diagram showing a relationship between temperature and brittle fracture rate in a tensile test according to the embodiment of the present invention.

【図3】本発明の実施の形態に係る静的引張試験での絞
り値と高速変形に伴う脆性遷移温度の上昇量との関係を
示す図。
FIG. 3 is a diagram showing a relationship between a drawing value in a static tensile test and an increase in brittle transition temperature due to high-speed deformation according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…フランジ 2…ウェブ 3…フィレット部 1. Flange 2. Web 3. Fillet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.05〜0.2%と、
Si:0.05〜0.5%と、Mn:0.5〜1.8%
と、Al:0.001〜0.06%と、S≦0.005
%と、O≦0.003%と、残部がFe及び不可避的不
純物とからなる、フランジと、ウェブまたはフランジ
と、その接合部であるフィレット部とを有する形鋼であ
って、形鋼のフィレット部の応力集中係数が5以上とな
る切欠を有する試験片を用いた引張試験において、静的
載荷条件で30%以上の絞り値を有することを特徴とす
る、高速変形下における耐脆性破壊特性に優れた構造用
形鋼。
(1) C: 0.05 to 0.2% by weight.
Si: 0.05 to 0.5% and Mn: 0.5 to 1.8%
And Al: 0.001 to 0.06%, and S ≦ 0.005
%, O ≦ 0.003%, and the balance consisting of Fe and inevitable impurities, having a flange, a web or a flange, and a fillet portion that is a joint portion thereof, wherein the fillet of the shaped steel is provided. In a tensile test using a notch with a notch where the stress concentration coefficient of the part is 5 or more, the brittle fracture resistance under high-speed deformation is characterized by having a drawing value of 30% or more under static loading conditions. Excellent structural steel.
【請求項2】 重量%で、さらに、Ti≦0.1%、N
b≦0.04%、V≦0.1%、Cu≦0.5%、Ni
≦0.5%、Cr≦1%、Mo≦0.6%、Ca≦0.
005%、及びREM≦0.03%の群から選択された
1種または2種以上を含有する、請求項1に記載の高速
変形下における耐脆性破壊特性に優れた構造用形鋼。
2. In% by weight, Ti ≦ 0.1%, N
b ≦ 0.04%, V ≦ 0.1%, Cu ≦ 0.5%, Ni
≦ 0.5%, Cr ≦ 1%, Mo ≦ 0.6%, Ca ≦ 0.
The structural section steel having excellent brittle fracture resistance under high-speed deformation according to claim 1, comprising one or more members selected from the group of 005% and REM ≤ 0.03%.
JP146197A 1997-01-08 1997-01-08 Shape steel excellent in brittle fracture resistance under high speed deformation Pending JPH10195592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP146197A JPH10195592A (en) 1997-01-08 1997-01-08 Shape steel excellent in brittle fracture resistance under high speed deformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP146197A JPH10195592A (en) 1997-01-08 1997-01-08 Shape steel excellent in brittle fracture resistance under high speed deformation

Publications (1)

Publication Number Publication Date
JPH10195592A true JPH10195592A (en) 1998-07-28

Family

ID=11502110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP146197A Pending JPH10195592A (en) 1997-01-08 1997-01-08 Shape steel excellent in brittle fracture resistance under high speed deformation

Country Status (1)

Country Link
JP (1) JPH10195592A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512800A (en) * 2012-06-25 2014-01-15 波音公司 System and method for testing a fillet bond
JP2017137576A (en) * 2016-01-29 2017-08-10 Jfeスチール株式会社 Angle steel and production method of angle steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512800A (en) * 2012-06-25 2014-01-15 波音公司 System and method for testing a fillet bond
JP2017137576A (en) * 2016-01-29 2017-08-10 Jfeスチール株式会社 Angle steel and production method of angle steel
JP2019094570A (en) * 2016-01-29 2019-06-20 Jfeスチール株式会社 Valve plate and manufacturing method of valve plate

Similar Documents

Publication Publication Date Title
EP0940477B1 (en) Wide-flange beams made from a steel with high toughness and yield strength, and process for manufacturing these products
JP4252949B2 (en) Low yield ratio high-tensile steel sheet with small acoustic anisotropy and excellent weldability, and method for producing the same
JP6572876B2 (en) Low yield ratio high tensile steel plate and method for producing the same
JP3849244B2 (en) Steel material excellent in ductile crack growth resistance under repeated large deformation and its manufacturing method
JP3214281B2 (en) Low-temperature building steel
JPH10195592A (en) Shape steel excellent in brittle fracture resistance under high speed deformation
JP3757027B2 (en) High strength hot rolled steel with excellent weldability, high strength steel wire and high strength steel bar using the same
JPH0995731A (en) Production of building steel for low temperature use
JPH1192857A (en) Corrosion-resistant and fire-resisting steel excellent in brittle fracture resistance under high speed deformation
JPH108206A (en) Rectangular steel tube excellent in brittle fracture resistance in high speed deformation
JPH0995730A (en) Production of building steel for low temperature use
JPH108190A (en) Steel for structural purpose excellent in brittle fracture resistance in high speed deformation
JP3454670B2 (en) Steel members with excellent buckling resistance
JPH10204584A (en) Heat treated type earthquake-proof steel product excellent in hot-dip galvanizing crack resistance
JP3371712B2 (en) Manufacturing method of earthquake resistant building steel with excellent fire resistance
JP3371699B2 (en) Manufacturing method of earthquake resistant building steel with excellent fire resistance
JPH1192856A (en) Corrosion-resistant steel excellent in brittle fracture resistance under high speed deformation
JPH10204570A (en) Earthquake resistant steel for structural purpose
JP3314649B2 (en) High-strength steel with excellent earthquake resistance
JP3289594B2 (en) Earthquake-resistant building steel with excellent fire resistance, low yield ratio even at high strain rate deformation, and high toughness even after repeated plastic deformation
JPH1060577A (en) Steel with low yield ratio and high tensile strength, excellent in brittle fracture resistance under high speed deformation, and its production
JPH1088283A (en) High tensile strength steel with low yield ratio, excellent in brittle fracture resistance under high speed deformation
JP3632559B2 (en) Rolled section steel and method for producing the same
JPH10121194A (en) Refractory steel material for structural use, excellent in brittle fracture resistance under high speed deformation
JPH09291310A (en) Production of steel material for earthquake-proof building