JP3371699B2 - Manufacturing method of earthquake resistant building steel with excellent fire resistance - Google Patents

Manufacturing method of earthquake resistant building steel with excellent fire resistance

Info

Publication number
JP3371699B2
JP3371699B2 JP19185496A JP19185496A JP3371699B2 JP 3371699 B2 JP3371699 B2 JP 3371699B2 JP 19185496 A JP19185496 A JP 19185496A JP 19185496 A JP19185496 A JP 19185496A JP 3371699 B2 JP3371699 B2 JP 3371699B2
Authority
JP
Japan
Prior art keywords
steel
strain rate
less
fire resistance
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19185496A
Other languages
Japanese (ja)
Other versions
JPH1036910A (en
Inventor
伸一 鈴木
典己 和田
隆二 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP19185496A priority Critical patent/JP3371699B2/en
Publication of JPH1036910A publication Critical patent/JPH1036910A/en
Application granted granted Critical
Publication of JP3371699B2 publication Critical patent/JP3371699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐震性を重視して
設計される建築分野、主として活断層近傍の重要構造物
に用いられる耐火性に優れた耐震用建築鋼材の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of construction designed with emphasis on seismic resistance, and more particularly to a method of manufacturing seismic resistant building steel material having excellent fire resistance, which is mainly used for important structures near active faults.

【0002】[0002]

【従来の技術】昭和56年に改正施行された建築物の耐
震設計法は、鋼材が降伏後、最大強さに達するまでの塑
性域での変形能力を活用して、地震入力エネルギーを吸
収させ、建築物の耐震安全性を確保しようとするもの
で、それまでの構造体各部に生ずる応力度を鋼材の降伏
点以内に留めるという弾性設計を大幅に変更している。
このことから、新耐震設計法が適用される建築物の鋼材
は、降伏後の変形性能を表すパラメーターである降伏比
(YR)が低いこと、すなわち低降伏比が求められるよ
うになった。
2. Description of the Related Art The seismic design method for buildings, which was revised and implemented in 1981, absorbs earthquake input energy by utilizing the deformability in the plastic region until the steel material reaches its maximum strength after yielding. In order to ensure the seismic safety of a building, the elastic design of keeping the stress level in each part of the structure within the yield point of steel has been changed.
From this, steel materials for buildings to which the new seismic design method is applied are required to have a low yield ratio (YR), which is a parameter indicating the deformation performance after yield, that is, a low yield ratio.

【0003】TS490MPa級の鋼材は、熱間圧延を
再結晶域で仕上げ、組織の粗粒化を図り低降伏比を確保
している。また、TS570MPa級あるいはそれ以上
の鋼強度鋼では、フェライト−オーステナイトの2相域
から焼入することで、フェライトとベイナイトあるいは
マルテンサイトの2相組織にすることで低降伏比を確保
している。
The steel material of TS490 MPa class is subjected to hot rolling in a recrystallization region to coarsen the structure and secure a low yield ratio. Further, in the case of a steel strength steel of TS570 MPa class or higher, by quenching from a two-phase region of ferrite-austenite, a low yield ratio is secured by forming a two-phase structure of ferrite and bainite or martensite.

【0004】1995年1月の阪神大地震では、上記の
耐震設計法で想定していたような震源が遠方にある海洋
型タイプの地震と異なり、震源が非常に近い活断層タイ
プの地震であった。活断層タイプの地震の場合に揺れの
速度が非常に速く、建物に歪速度にして10-1〜10/
秒の高速変形が加えられるという特徴がある。現在の建
築鋼材は上述したように低YRであるが、それは通常の
歪速度10-2/秒前後で引張った時の値であり、上記の
ような高歪速度での変形の場合、低YRを示すか不明で
あった。そこで、本発明者らが従来の圧延まま(フェラ
イト+パーライト組織)のSN490級の鋼について歪
速度を変化させ引張試験を行ったところ、歪速度10-2
/秒前後の場合にはYR<80%であったものが、歪速
度10/秒前後の場合にはYRは大きく上昇し80%以
上の値になってしまうことが判明した。
The Great Hanshin Earthquake of January 1995 was an active fault type earthquake whose epicenter was very close, unlike an ocean type earthquake in which the hypothesis assumed by the above seismic design method was far away. It was In the case of an active fault type earthquake, the shaking speed is very fast, and the strain rate of the building is 10 -1 to 10 /
It has the feature that high-speed deformation of seconds is added. The current building steel has low YR as described above, but it is a value when pulled at a normal strain rate of 10 -2 / sec or so, and in the case of deformation at a high strain rate as described above, low YR. It was unclear whether to indicate. Therefore, when the present inventors conducted a tensile test while changing the strain rate for the conventional as-rolled (ferrite + pearlite structure) SN490 grade steel, the strain rate was 10 -2.
It was found that YR <80% when the strain rate was around 10 sec / sec, but the YR greatly increased to a value of 80% or higher when the strain rate was around 10 sec / sec.

【0005】また、阪神大地震では、構造部材が高速の
繰り返し塑性変形を受け脆化し、次の引張変形を受けた
時に脆性破壊する事例があった。脆性破壊が起こると建
物の大崩壊にもつながりかねないため、耐震用鋼材とし
ては避けなければならない破壊様式である。従来のSN
490級の鋼も予歪を受けていない場合には、脆性−延
性破面遷移温度は室温以下と十分な靭性を有している
が、高速の繰り返し予歪が加わった場合には、どの程度
の劣化を示すか不明であった。本発明者らは、従来のS
N490級の数種類の鋼に対し、歪速度10/秒で正負
交番の歪漸増型(1%圧縮塑性歪付与→1%引張塑性歪
付与→2%圧縮塑性歪付与→2%引張塑性歪付与→4%
圧縮塑性歪付与→4%引張塑性歪付与、以後この予歪付
加を±1+2+4%と記す)の予歪を与えた後、シャル
ピー衝撃試験を実施したところ、脆性−延性破面遷移温
度が室温以上になるものも現れた。
Further, in the Great Hanshin Earthquake, there have been cases in which structural members become brittle due to high-speed cyclic plastic deformation and become brittle when subjected to the next tensile deformation. Since brittle fracture can lead to major collapse of buildings, it is a fracture mode that must be avoided for seismic steel. Conventional SN
The 490 grade steel also has sufficient toughness that the brittle-ductile fracture surface transition temperature is room temperature or less when not subjected to prestrain, but to what extent when high-speed cyclic prestrain is applied. It was unclear whether or not it showed deterioration. We use the conventional S
For several types of N490 grade steel, positive and negative alternating strain increasing type at a strain rate of 10 / sec (1% compressive plastic strain application → 1% tensile plastic strain application → 2% compressive plastic strain application → 2% tensile plastic strain application → 4%
Compressive plastic strain application → 4% tensile plastic strain application, and after applying a prestrain of ± 1 + 2 + 4%), a Charpy impact test was conducted, and the brittle-ductile fracture surface transition temperature was above room temperature. Something that has become.

【0006】建築鋼材の従来技術の中には、特開平2-19
7522号公報や特開平5-21440 号公報のように低温靭性に
優れた低降伏比鋼に関するものがある。しかしながら、
どちらも通常の歪速度での引張試験しか実施しておら
ず、高歪速度でのYR値が示されていない。また、靭性
も予歪が無い場合でのシャルピー衝撃試験値であり、予
歪が加わった後の靭性値は不明である。そこで、本発明
者らは、上記両提案に沿って鋼を試作し、これら試作鋼
の高歪速度(=10/秒)での引張特性ならびに高歪速
度(=10/秒)で±1+2+4%の繰り返し予歪を与
えた後の靭性について調べた。その結果、高歪速度(=
10/秒)での引張試験のYRは80%を越える値とな
った。また、高速繰り返し予歪後の靭性はばらつき、な
かには vE-5<20Jを示す著しく脆化しているものが
散見された。すなわち、これらの鋼は、活断層タイプの
地震の場合には、十分な耐震性を有していないことがわ
かった。
Among the conventional technologies for building steel materials is Japanese Patent Laid-Open No. 2-19.
There is a low yield ratio steel excellent in low temperature toughness such as Japanese Patent No. 7522 and Japanese Patent Laid-Open No. 5-21440. However,
In both cases, only a tensile test was performed at a normal strain rate, and the YR value at a high strain rate was not shown. Further, the toughness is also a Charpy impact test value when there is no prestrain, and the toughness value after the prestrain is applied is unknown. Therefore, the present inventors prototyped steels according to both of the above proposals, and obtained tensile properties of these prototype steels at high strain rates (= 10 / sec) and ± 1 + 2 + 4% at high strain rates (= 10 / sec). The toughness after repeated prestraining was investigated. As a result, high strain rate (=
The YR in the tensile test at 10 / sec) was a value exceeding 80%. Further, the toughness after high-speed cyclic pre-strain was uneven, and among them, vE-5 <20J, which was markedly brittle, was observed. That is, it was found that these steels do not have sufficient seismic resistance in the case of active fault type earthquakes.

【0007】さらに、建築物の火災に関して、耐火設計
の見直しが行われたことにより、高温強度に優れた耐火
鋼を用いて耐火被覆を減らすことが可能となった。耐火
鋼材の使用は、工期の短縮、工事費の削減、建築物内の
有効面積の拡張を図ることにつながるため、こういった
新しい設計法が盛んになってきている。低降伏比と耐火
性を兼ね備えた建築用鋼材については、特開平4-83821
号公報、特開平4-56723 号公報、特開平4-56362 号公報
等が提案されている。そこで本発明者らは、上記両提案
に沿って鋼を試作し、これら試作鋼についても、前述し
た発明鋼(特開平2-197522号公報や特開平5-21440 号公
報)と同様に、高歪速度での引張特性を調べた。その結
果、高歪速度(=10/秒)での降伏比が80%以上に
なってしまうことが判明した。
Further, with respect to the fire of the building, the review of the fire resistant design has made it possible to reduce the fire resistant coating by using the fire resistant steel excellent in high temperature strength. Since the use of refractory steel leads to shortening the construction period, reducing the construction cost, and expanding the effective area in the building, such new design methods are becoming popular. Japanese Patent Application Laid-Open No. 4-83821 discloses a steel material for construction having both a low yield ratio and fire resistance.
Japanese Patent Application Laid-Open No. 4-56723, Japanese Patent Application Laid-Open No. 4-56362, and the like are proposed. Therefore, the present inventors prototyped steels in accordance with both of the above proposals, and these prototyped steels were also manufactured in the same manner as the above-mentioned invention steels (JP-A-2-197522 and JP-A-5-21440). The tensile properties at strain rate were investigated. As a result, it was found that the yield ratio at high strain rate (= 10 / sec) was 80% or more.

【0008】[0008]

【発明が解決しようとする課題】以上のことから、本発
明が解決しようとする課題は、高歪速度で変形を受ける
場合にも低YR(≦80%)を示し、かつ高歪速度で繰
り返し予歪を受けた後も安定して優れた靭性を示し、さ
らに耐火性に優れた、耐火設計と活断層近傍の構造物の
塑性耐震設計を組み合わせた設計法を可能にする耐火性
に優れた耐震鋼材の製造方法を提供するものである。
From the above, the problem to be solved by the present invention is to exhibit low YR (≤80%) even when subjected to deformation at a high strain rate, and to repeat at a high strain rate. Stable and excellent toughness even after being subjected to pre-strain, and also excellent in fire resistance, which enables a design method that combines a fire resistant design with a plastic seismic design of a structure near an active fault. A method for manufacturing earthquake-resistant steel material is provided.

【0009】[0009]

【課題を解決するための手段】本発明者らは、この課題
を解決すべく、ミクロ組織と高歪速度におけるYRの関
係を鋭意検討した結果、以下に示す重要な知見を見いだ
した。
Means for Solving the Problems In order to solve this problem, the present inventors have made extensive studies on the relationship between the microstructure and YR at a high strain rate, and have found the following important findings.

【0010】まず、図1は表3〜表5のA1〜A3鋼板
を供試材に用いて、引張歪速度と降伏比(=降伏強度/
引張強度)の関係を示したものであり、図中の“α”は
フェライトの略称、“B”はベイナイトの略称、“焼戻
しM”は焼戻しマルテンサイトの略称、Pはパーライト
の略称で、図中の“粗粒α+B+焼戻しM(●)”がA
l鋼板、“細粒α+B+焼戻しM(○)”がA2鋼板、
“α+P(△)”がA3鋼板である。図からわかるよう
に、YR値はいずれの場合も引張試験における歪速度が
大きくなるほど上昇する。しかし、フェライト+パーラ
イト組織(△)よりもフェライト+ベイナイト+焼戻し
マルテンサイト混合組織(●,○)の方が上昇程度が低
い。また、フェライト+ベイナイト+焼戻しマルテンサ
イト混合組織の中ではフェライトが粗粒なほど(●)、
高歪速度(>0.1/秒)で低YR値が得られることが
わかった。粗粒フェライトとベイナイトと焼戻しマルテ
ンサイトの混合組織にすることで歪速度10/秒でもY
R<80%以下が達成されている。本発明で、粗粒フェ
ライトとはASTM粒度No.11以下のものを言う。
First, FIG. 1 shows the tensile strain rate and the yield ratio (= yield strength / yield strength /
In the figure, "α" is an abbreviation for ferrite, "B" is an abbreviation for bainite, "tempering M" is an abbreviation for tempered martensite, and P is an abbreviation for pearlite. "Coarse grain α + B + tempered M (●)" is A
l steel plate, "fine grain α + B + tempered M (○)" is A2 steel plate,
“Α + P (Δ)” is an A3 steel plate. As can be seen from the figure, the YR value increases in each case as the strain rate in the tensile test increases. However, the degree of increase is lower in the ferrite + bainite + tempered martensite mixed structure (●, ◯) than in the ferrite + pearlite structure (△). Further, in the mixed structure of ferrite + bainite + tempered martensite, the coarser the ferrite (●),
It was found that low YR values were obtained at high strain rates (> 0.1 / sec). By using a mixed structure of coarse-grained ferrite, bainite, and tempered martensite
R <80% or less is achieved. In the present invention, coarse-grained ferrite means ASTM grain size No. Say 11 or less.

【0011】図2はA鋼と同鋼種において酸素のみ19
〜43ppmの範囲で変化させた鋼を供試鋼に用いて、
粗粒フェライト(ASTM粒度No.=9〜11)とベ
イナイトと焼戻しマルテンサイトの混合組織に高歪速度
(=10/秒)の繰り返し予歪を与えた後の vE-5に及
ぼす酸素含有量の影響を調べたものである。高歪速度
(=10/秒)の繰り返し予歪を与えた後の靭性は、図
2に示すようにかなりのばらつきを有しているが、その
下限値は酸素含有量により支配され、酸素含有量を30
ppm以下にすることで vE-5(minimum )>100J
を満たす安定した靭性が得られることがわかった。これ
は、酸素含有量を30ppm以下にすることで、高速繰
り返し予歪を与えた時にマイクロ歪集中源となる鋼中酸
化物が減少、微細化したためである。
FIG. 2 shows that in the same steel type as steel A, only oxygen is 19
Using a steel that has been changed in the range of ~ 43 ppm as the test steel,
Of the oxygen content on vE-5 after cyclic prestrain of high strain rate (= 10 / sec) was applied to the mixed structure of coarse-grained ferrite (ASTM grain size No. = 9 to 11), bainite and tempered martensite. This is a study of the effects. The toughness after repeated prestrain of high strain rate (= 10 / sec) has a considerable variation as shown in FIG. 2, but the lower limit is controlled by the oxygen content, Quantity 30
vE-5 (minimum)> 100J by reducing to below ppm
It was found that stable toughness satisfying the above conditions was obtained. This is because by setting the oxygen content to 30 ppm or less, the oxide in the steel, which is a micro strain concentration source when the high-speed cyclic pre-strain is applied, is reduced and refined.

【0012】さらに、本発明者らは、(Mo+3.5V
+20Nb)量を変化させた50キロ級鋼種を用いて、
粗粒フェライトとベイナイトの混合組織の鋼に対し、常
温で高歪速度(=10/秒)での引張試験を行うととも
に、600℃でJIS G0567に定められた歪速度
(=0.3%/分)でも引張試験を行った。その結果を
図3に示す。(Mo+3.5V+20Nb)量が0.1
2%未満の場合、高温強度(0.2%耐力)が常温での
YSの2/3(目標値)を満足しない。また、(Mo+
3.5V+20Nb)量が0.8%を越えると、高歪速
度でのYR値が80%を超えてしまう。従って、(Mo
+3.5V+20Nb)量を0.12%以上0.8%以
下に限定した。
Furthermore, the present inventors have found that (Mo + 3.5V
+ 20Nb) 50kg class steel grade with different amount,
A steel having a mixed structure of coarse-grained ferrite and bainite was subjected to a tensile test at a high strain rate (= 10 / sec) at room temperature, and at 600 ° C., a strain rate (= 0.3% / 0.3%) specified in JIS G0567. Min) was also tested. The result is shown in FIG. (Mo + 3.5V + 20Nb) amount is 0.1
When it is less than 2%, the high temperature strength (0.2% yield strength) does not satisfy 2/3 (target value) of YS at room temperature. Also, (Mo +
If the amount of 3.5 V + 20 Nb) exceeds 0.8%, the YR value at a high strain rate exceeds 80%. Therefore, (Mo
The amount of + 3.5V + 20Nb) was limited to 0.12% or more and 0.8% or less.

【0013】以上のことから、高歪速度で変形を受ける
場合にも低YR(≦80%)であり、高歪速度で繰り返
し予歪を受けた後も安定して優れた靭性を示し、かつ耐
火性に優れた、活断層近傍の構造物の塑性耐震設計と耐
火設計を組み合わせた設計を可能にする耐震鋼材の必要
条件は、0.12%≦(Mo+3.5V+20Nb)%
≦0.8%を満足し、酸素含有量が30ppm以下で粗
粒フェライトとベイナイトと焼戻しマルテンサイトの混
合組織の特徴を有するものであることがわかった。
From the above, low YR (≤80%) even when subjected to deformation at a high strain rate, stably exhibiting excellent toughness even after repeated prestrain at a high strain rate, and The requirement of seismic resistant steel material that enables the design that combines the plastic seismic design and the fire resistant design of the structure near the active fault with excellent fire resistance is 0.12% ≦ (Mo + 3.5V + 20Nb)%
It was found that the content of ≦ 0.8% was satisfied, the oxygen content was 30 ppm or less, and it had a characteristic of a mixed structure of coarse-grain ferrite, bainite, and tempered martensite.

【0014】本発明はこれらの知見に基づいてなされた
もので、(1)重量%で、C:0.04〜0.18%,
Si:0.05〜0.4%,Mn:0.6〜1.7%,
Mo:0.1〜0.6%,V:0.005〜0.1%,
Al:0.001〜0.06%,N≦30ppm,O≦
30ppmで、かつ0.12%≦(Mo+3.5V)%
≦0.8%を満足し、残部がFeおよび不可避的不純物
からなる鋼をオーステナイト域で熱間圧延後、Ar3 点
経過後から水冷し、400℃以下で水冷を停止した後、
Ac1 点以下の温度で焼戻し処理して、組織ASTM
粒度No.=9〜11の粗粒フェライトとベイナイトと
焼戻しマルテンサイトの混合組織とすることを特徴とす
る耐火性に優れた耐震性建築鋼材の製造方法、(2)重
量%で、C:0.04〜0.18%,Si:0.05〜
0.4%,Mn:0.6〜1.7%,Mo:0.1〜
0.6%,V:0.005〜0.1%,Al:0.00
1〜0.06%,N≦30ppm,O≦30ppmで、
かつ0.12%≦(Mo+3.5V)%≦0.8%を満
足することに加えて、Cu:0.05〜0.6%,N
i:0.05〜0.6%,Cr:0.05〜1.0%,
Ti:0.005〜0.015%のうち1種または2種
以上を含み、残部がFeおよび不可避的不純物からなる
鋼をオーステナイト域で熱間圧延後、Ar3 点経過後か
ら水冷し、400℃以下で水冷を停止した後、Ac1 点
以下の温度で焼戻し処理して、組織ASTM粒度N
o.=9〜11の粗粒フェライトとベイナイトと焼戻し
マルテンサイトの混合組織とすることを特徴とする耐火
性に優れた耐震性建築鋼材の製造方法、(3)上記
(1)または(2)の鋼組成に加えて、さらにNb:
0.005〜0.04%を含有し、かつ0.12%≦
(Mo+3.5V+20Nb)%≦0.8%を満足する
ことを特徴とする耐火性に優れた耐震性建築鋼材の製造
方法である。
The present invention has been made based on these findings. (1)% by weight, C: 0.04 to 0.18%,
Si: 0.05-0.4%, Mn: 0.6-1.7%,
Mo: 0.1-0.6%, V: 0.005-0.1%,
Al: 0.001 to 0.06%, N ≦ 30 ppm, O ≦
30 ppm and 0.12% ≦ (Mo + 3.5V)%
Steel satisfying ≦ 0.8%, the balance of which is Fe and unavoidable impurities, is hot-rolled in the austenite region, water-cooled after the Ar3 point, and stopped at 400 ° C. or less,
Tempered at a temperature below the Ac1 point to make the structure ASTM
Particle size No. = 9 to 11 of a coarse-grained ferrite, bainite, and tempered martensite, which is a mixed structure, is excellent in fire resistance. 0.18%, Si: 0.05 ~
0.4%, Mn: 0.6 to 1.7%, Mo: 0.1
0.6%, V: 0.005-0.1%, Al: 0.00
1 to 0.06%, N ≦ 30 ppm, O ≦ 30 ppm,
In addition to satisfying 0.12% ≦ (Mo + 3.5V)% ≦ 0.8%, Cu: 0.05-0.6%, N
i: 0.05 to 0.6%, Cr: 0.05 to 1.0%,
Ti: Steel containing 0.005 to 0.015% of 1 or 2 or more, the balance of which is Fe and inevitable impurities, is hot-rolled in the austenite region, water-cooled after the Ar3 point, and 400 ° C. After water cooling was stopped below, tempering was performed at a temperature below the Ac1 point , and the structure was changed to ASTM grain size N
o. = 9-11 coarse-grained ferrite, bainite, and tempered martensite are mixed structures, and the manufacturing method of the earthquake-resistant building steel material excellent in fire resistance, (3) Steel of the above-mentioned (1) or (2). In addition to the composition, Nb:
Contains 0.005-0.04%, and 0.12% ≦
(Mo + 3.5V + 20Nb)% ≦ 0.8% is satisfied, and it is a manufacturing method of an earthquake-resistant building steel material having excellent fire resistance.

【0015】[0015]

【発明の実施の形態】次に、本発明にかかる鋼材の各成
分の添加理由および添加量を限定した理由を説明する。
C,Si,Mn,Alは、通常の溶接構造用鋼において
所要の材質を得るために、従来から確認されている作用
・効果の関係をもとに、以下のごとく限定した。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the reason for adding each component of the steel material according to the present invention and the reason for limiting the addition amount will be explained.
C, Si, Mn, and Al are limited as follows based on the relationship of action and effect that has been conventionally confirmed in order to obtain a required material in ordinary welded structural steel.

【0016】Cは、最も安価な元素で高強度化に有効な
元素であるが、0.18%を超えて添加すると溶接性が
著しく低下する。0.04%未満では、厚物で強度が不
足し、多量の合金元素の添加が必要となり、コスト高を
招く。従って、Cは0.04%以上0.18%以下に限
定した。
C is the cheapest element and is an element effective for increasing the strength, but if it is added in an amount exceeding 0.18%, the weldability is remarkably reduced. If it is less than 0.04%, the material is thick and the strength is insufficient, and it is necessary to add a large amount of alloying elements, resulting in high cost. Therefore, C is limited to 0.04% or more and 0.18% or less.

【0017】Siは、鋼材の強度、溶鋼の予備脱酸に必
要な元素である。予備脱酸のためには、0.05%以上
の添加が必要である。0.4%を超える過剰の添加は、
鋼材の靭性、溶接HAZ靭性を劣化させる。従って、S
i量は0.05%以上0.4%以下に限定した。
Si is an element necessary for strength of steel materials and preliminary deoxidation of molten steel. For preliminary deoxidation, addition of 0.05% or more is necessary. Excessive addition over 0.4%
It deteriorates the toughness of steel materials and the weld HAZ toughness. Therefore, S
The i amount was limited to 0.05% or more and 0.4% or less.

【0018】Mnは、母材の強度を確保するため、必要
な元素である。0.6%未満では、厚物で強度が不足
し、多量の合金元素の添加が必要となり、コスト高を招
く。また、Mnは中央偏析しやすい元素である。1.7
%を超えて添加すると、板厚中央が著しく脆化する。従
って、Mnの範囲を0.6%以上1.7%以下に限定し
た。
Mn is a necessary element for ensuring the strength of the base material. If it is less than 0.6%, the material is thick and the strength is insufficient, so that it is necessary to add a large amount of alloying elements, resulting in high cost. Further, Mn is an element that tends to segregate in the center. 1.7
If added in excess of%, the center of the plate thickness becomes significantly brittle. Therefore, the range of Mn is limited to 0.6% or more and 1.7% or less.

【0019】Moは、鋼の中、高温強度向上に有効な元
素である。このような効果を発揮するためには、0.1
%以上の添加が必要である。0.6%を超えるMoの添
加は、降伏比を著しく上昇させる。従って、Moを0.
1%以上0.6%以下に限定した。
Mo is an element effective in improving high temperature strength in steel. In order to exert such effects, 0.1
% Or more must be added. Addition of Mo in excess of 0.6% significantly increases the yield ratio. Therefore, Mo is 0.
It was limited to 1% or more and 0.6% or less.

【0020】Nb,Vは、微量添加により常温、高温強
度の上昇に有効な元素である。Nb<0.005%、V
<0.005%では、明瞭な強度上昇効果が認められな
い。0.04%を超えるNbの添加、0.1%を超える
Vの添加は、降伏比を著しく上昇させる。従って、Nb
を0.005%以上0.04%以下、Vを0.005%
以上0.1%以下に限定した。
Nb and V are elements effective for increasing the strength at normal temperature and high temperature when added in a small amount. Nb <0.005%, V
At <0.005%, no clear strength increasing effect is observed. Addition of Nb in excess of 0.04% and addition of V in excess of 0.1% significantly increase the yield ratio. Therefore, Nb
0.005% to 0.04%, V 0.005%
It is limited to 0.1% or less.

【0021】Alは、脱酸に必要な元素である。Al量
として0.001%未満では、十分な脱酸効果が期待で
きない。また、0.06%を超えて過剰に添加すると、
連続鋳造スラブの表面にキズが発生しやすい。従って、
Al量は0.001%以上0.06%以下に限定した。
Al is an element necessary for deoxidation. If the Al content is less than 0.001%, a sufficient deoxidizing effect cannot be expected. Also, if added in excess of 0.06%,
Scratches are likely to occur on the surface of continuously cast slabs. Therefore,
The amount of Al was limited to 0.001% or more and 0.06% or less.

【0022】Nは、固体鋼中に固溶Nや窒化物系介在物
として存在する。固溶Nや粗大窒化物系介在物は、鋼の
靭性を劣化させる。30ppmを超えてNを含有する
と、固溶Nが存在する。また、最終凝固部には粗大な窒
化物(例えば、TiNやNbN)が生成しやすくなり、
優れた靭性が得られない。従って、N含有量を30pp
m以下に規制した。
N exists as solid solution N or nitride-based inclusions in the solid steel. Solid solution N and coarse nitride-based inclusions deteriorate the toughness of steel. When N is contained in excess of 30 ppm, solid solution N exists. In addition, coarse nitrides (for example, TiN and NbN) are easily generated in the final solidified portion,
Excellent toughness cannot be obtained. Therefore, N content is 30 pp
Restricted to m or less.

【0023】Oは、既に述べたように、酸素含有量を3
0ppm以下にすることで、高速繰り返し予歪を与えた
時にマイクロ歪集中源となる鋼中酸化物を減少、微細化
するためであり、30ppmを越えると、 vE-5(mini
mum )>100Jを満たす安定した靭性を得ることがで
きない。
O has an oxygen content of 3 as described above.
This is because by setting the content to 0 ppm or less, the oxide in the steel, which is a micro strain concentration source, is reduced and refined when a high-speed cyclic pre-strain is applied, and when it exceeds 30 ppm, vE-5 (mini
Stable toughness satisfying mum)> 100J cannot be obtained.

【0024】(Mo+3.5V+20Nb)量は、既に
述べたように、0.12%未満の場合、高温強度(0.
2%耐力)が常温でのYSの2/3(目標値)を満足し
ない。また、(Mo+3.5V+20Nb)量が0.8
%を越えると、高歪速度でのYR値がYR値が80%を
超えてしまう。従って、(Mo+3.5V+20Nb)
量を0.12%以上0.8%以下に限定した。
As described above, when the (Mo + 3.5V + 20Nb) content is less than 0.12%, the high temperature strength (0.
2% proof stress) does not satisfy 2/3 (target value) of YS at room temperature. In addition, the amount of (Mo + 3.5V + 20Nb) is 0.8
If it exceeds%, the YR value at a high strain rate will exceed 80%. Therefore, (Mo + 3.5V + 20Nb)
The amount was limited to 0.12% or more and 0.8% or less.

【0025】Cu,Ni,Crは、固溶強化や焼入性向
上効果を通して、高強度化に寄与する。Cu<0.05
%,Ni<0.05%,Cr<0.05%では、明瞭な
強度上昇効果が見らない。0.6%を超えるCuの添加
は、著しくCu割れ発生の危険性を増大させる。Niは
高価な元素でありコストの観点から、上限を0.6%と
した。1%を超えるCrの添加は溶接性を著しく劣化さ
せる。従って、Cuを0.05%以上0.6%以下、N
iを0.05%以上0.6%以下、Crを0.05%以
上1%以下に限定した。
Cu, Ni and Cr contribute to higher strength through solid solution strengthening and hardenability improving effects. Cu <0.05
%, Ni <0.05%, Cr <0.05%, no clear strength increasing effect is observed. Addition of Cu in excess of 0.6% significantly increases the risk of Cu cracking. Ni is an expensive element, and the upper limit is set to 0.6% from the viewpoint of cost. Addition of Cr in excess of 1% significantly deteriorates weldability. Therefore, Cu is 0.05% or more and 0.6% or less, N
i was limited to 0.05% or more and 0.6% or less, and Cr was limited to 0.05% or more and 1% or less.

【0026】Tiは、TiNの溶接HAZ部の組織粗大
化を抑制してHAZ靭性の向上に寄与する元素である。
0.005%未満のTi添加では、HAZ靭性向上効果
が発揮されない。0.015%を超えて添加すると溶接
の冷却過程でTiCが析出し、HAZ靭性の劣化を招
く。従って、Tiを0.005%以上、0.015%以
下に限定した。
Ti is an element that suppresses the coarsening of the structure of the welded HAZ portion of TiN and contributes to the improvement of HAZ toughness.
If the Ti content is less than 0.005%, the effect of improving the HAZ toughness is not exhibited. If added in excess of 0.015%, TiC precipitates during the cooling process of welding, resulting in deterioration of HAZ toughness. Therefore, Ti is limited to 0.005% or more and 0.015% or less.

【0027】P,Sは、本特許の目的とする耐震性と直
接的な関係は無いが、溶接性や板厚方向の延性の観点か
ら低い方が望ましい。また、介在物形態制御の観点か
ら、適量のCaの添加やREMの添加は望ましい。
Although P and S have no direct relation to the earthquake resistance which is the object of this patent, it is desirable that P and S are low in terms of weldability and ductility in the plate thickness direction. From the viewpoint of inclusion morphology control, it is desirable to add an appropriate amount of Ca or REM.

【0028】そして、本発明に係る鋼材のミクロ組織
は、ASTM粒度No.=9〜11の粗粒フェライトと
ベイナイトと焼戻しマルテンサイトの混合組織である。
この混合組織とする理由は、高歪速度(>0.1/秒)
で低YR値が得られるためである。
The microstructure of the steel material according to the present invention has the ASTM grain size No. = 9 to 11 is a mixed structure of coarse-grained ferrite, bainite, and tempered martensite.
The reason for using this mixed structure is the high strain rate (> 0.1 / sec)
This is because a low YR value can be obtained at.

【0029】本発明方法ではこのようなミクロ組織を得
るために、以下の製造条件で鋼材を製造する。まず、上
記成分範囲を満足する鋼をオーステナイト域で熱間圧延
する。オーステナイト域で熱間圧延する理由は、フェラ
イト域で圧延すると加工硬化し、通常の歪み速度(10
-2/秒前後)において低YRが得られないからである。
ついで、Ar3 点経過後から400℃以下まで水冷す
る。Ar3 点経過後から水冷する理由は、オーステナイ
ト域から加速冷却する場合には、その鋼の焼入性に応じ
て冷却速度を制御しなければフェライトは得られ難い
が、Ar3 点経過まで放冷し、一部フェライトが析出し
てから加速冷却した場合、非常に広い冷却速度範囲で低
YRが得られるためである。図4はA鋼を供試鋼とし
て、オーステナイト域から加速冷却した場合と、圧延後
Ar3 点経過後まで放冷し、一部フェライトが析出した
2相域から加速冷却+焼戻し処理した場合のYRと冷却
速度の関係を示している。後者の場合には非常に広い冷
却速度範囲で低YRが得られている。そしてミクロ組織
観察から、後者の場合には広い冷却速度範囲で初析フェ
ライトが得られたためであることが判明した。本発明で
400℃以下まで水冷する理由は、冷却停止温度を40
0℃以下にすることでフェライト+ベイナイト+マルテ
ンサイトの混合組織が得られ、400℃より高いとこの
混合組織が得られないためである。次にAc1 点以下の
温度で焼戻し処理を行う。Ac1 点以下の温度で焼戻し
処理する理由は、変態ままのマルテンサイトは著しく靭
性が低いので、Ac1 点以下の温度で焼戻し処理を行っ
て、靭性を回復するためである。Ac1 点を越える温度
では、また一部にα→γ変態が起こり、靭性を回復でき
ない。
In the method of the present invention, in order to obtain such a microstructure, a steel material is manufactured under the following manufacturing conditions. First, steel satisfying the above composition range is hot-rolled in the austenite region. The reason for hot rolling in the austenite region is that work is hardened when rolled in the ferrite region and the normal strain rate (10
This is because a low YR cannot be obtained at around -2 / sec).
Next, after the Ar 3 point has passed, water cooling is performed to 400 ° C. or less. The reason for water cooling after the passage of Ar 3 point is that when accelerated cooling from the austenite region, ferrite is difficult to obtain unless the cooling rate is controlled according to the hardenability of the steel, but it is released until the passage of Ar 3 point. This is because low YR can be obtained in a very wide cooling rate range when accelerated cooling is performed after cooling and partially precipitating ferrite. FIG. 4 shows the case where the steel A was used as the test steel and was accelerated cooled from the austenite region, and was left to cool after rolling until Ar 3 points and accelerated cooling + tempering treatment was performed from the two-phase region in which some ferrite was precipitated. The relationship between YR and the cooling rate is shown. In the latter case, low YR is obtained in a very wide cooling rate range. From the microstructure observation, it was found that in the latter case, proeutectoid ferrite was obtained in a wide cooling rate range. The reason for water cooling to 400 ° C. or lower in the present invention is that the cooling stop temperature is 40
This is because a mixed structure of ferrite + bainite + martensite can be obtained by setting the temperature to 0 ° C. or lower, and this mixed structure cannot be obtained when the temperature is higher than 400 ° C. Next, tempering treatment is performed at a temperature of Ac 1 point or less. The reason for tempering treatment at Ac 1 point or less in temperature, because of its low martensite significantly toughness remains transformation, performing tempering at a temperature of 1 point Ac, in order to recover the toughness. At temperatures exceeding the Ac 1 point, α → γ transformation occurs in part, and the toughness cannot be recovered.

【0030】このような処理を行うことにより、鋼材
組織ASTM粒度No.=9〜11の粗粒フェライト
とベイナイトと焼戻しマルテンサイトの混合組織とする
ことができる。
By carrying out such a treatment ,
The texture is set to ASTM grain size No. A mixed structure of coarse-grained ferrite, bainite, and tempered martensite of 9 to 11 can be used.

【0031】[0031]

【実施例】次に本発明の実施例を説明する。表1,表2
に、供試鋼の化学成分を示す。A〜Nは本発明範囲内の
鋼組成を有し、O〜Yは本発明範囲外の鋼組成を有す
る。ここで、鋼J,K,L,S,V,XはTS570M
Pa級、M,N,YはTS400MPa級の鋼であり、
その他はTS490MPa級の鋼である。これら鋼は、
すべて、軽圧下プロセスを含む連続鋳造にてスラブにさ
れた。上記の鋼を表3〜表5に示す製造条件にて鋼板と
した。表3〜表5には得られた鋼板のミクロ組織ならび
に通常の歪速度(=0.01/秒)、高歪速度(=10
/秒)での常温引張特性、および高温強度、さらに予歪
なしの場合、ならびに高歪速度(=10/秒)で±1+
2+4%の繰り返し予歪を与えた場合のシャルピー衝撃
試験結果を併記してある。
EXAMPLES Examples of the present invention will be described below. Table 1, Table 2
Shows the chemical composition of the test steel. A to N have a steel composition within the scope of the present invention, and O to Y have a steel composition outside the scope of the present invention. Here, steels J, K, L, S, V, and X are TS570M.
Pa grades, M, N and Y are TS400 MPa grade steels,
Others are TS490 MPa grade steel. These steels are
All were slabbed by continuous casting including a light reduction process. The above steel was used as a steel plate under the manufacturing conditions shown in Tables 3 to 5. Tables 3 to 5 show the microstructure of the obtained steel sheet, the normal strain rate (= 0.01 / sec), and the high strain rate (= 10).
± 1 + at room temperature tensile properties at room temperature / second), high temperature strength, no pre-strain, and high strain rate (= 10 / s)
The Charpy impact test results when a cyclic prestrain of 2 + 4% is applied are also shown.

【0032】常温引張試験は1/4tよりC方向に採取
された12mm角×平行部長さ100mm角の棒試験片
である。この試験片に対し、サーボ式の試験機でストロ
ーク速度1m/秒、すなわち歪速度10/秒で引張試験
を行った。また、同上試験片をストローク速度1m/
秒、すなわち歪速度10/秒で、1%の圧縮塑性変形→
1%の引張塑性変形→2%の圧縮塑性変形→2%の引張
塑性変形→4%の圧縮塑性変形→4%の引張塑性変形と
いう繰り返し予歪を与えた後、シャルピー衝撃試験片を
採取し、 vTs 並びに vE-5を測定した。−5℃では9
本のシャルピー衝撃試験を実施し、その平均値と最小値
を求めた。さらに、高温引張試験片は1/4tよりC方
向に採取された10mmφ×50mmGLの丸棒試験片
である。
The normal temperature tensile test is a bar test piece of 12 mm square × 100 mm square parallel part length, which is sampled in the C direction from 1/4 t. A tensile test was performed on this test piece with a servo type tester at a stroke speed of 1 m / sec, that is, a strain rate of 10 / sec. In addition, the test piece is the same as above with a stroke speed of 1 m /
Seconds, that is, strain rate of 10 / sec, compressive plastic deformation of 1% →
1% tensile plastic deformation → 2% compressive plastic deformation → 2% tensile plastic deformation → 4% compressive plastic deformation → 4% tensile plastic deformation After repeated prestraining, a Charpy impact test piece was taken. , VTs and vE-5 were measured. 9 at -5 ° C
The Charpy impact test of the book was implemented, and the average value and the minimum value were calculated. Furthermore, the high temperature tensile test piece is a 10 mmφ × 50 mmGL round bar test piece taken in the C direction from ¼t.

【0033】表3〜表5をみると、酸素含有量30pp
m以下で0.12%≦(Mo+3.5V+20Nb)≦
0.8%を満足し粗粒フェライト(ASTM No.9
〜11)とベイナイトと焼戻しマルテンサイトの混合組
織を有した本発明鋼板(A1,B1,C1,D1,E
1,F1,G1,H1,I1,J1,K1,L1,M
1,N1)は、高歪速度でのYRが80%以下で、高温
強度が目標値を満足し、繰り返し歪後も vE-5の最小値
が150J以上の靭性を有している。フェライト+パー
ライト組織であるA3,C2,F2,M2は、高歪速度
の場合、通常の引張試験に比べYRの上昇が著しく、8
0%を越える値になっている。また、これらの鋼は高歪
速度の繰り返し予歪後著しく靭性が劣化し、室温近傍の
vTs を示している。細粒フェライト(ASTM N
o.11超え)とベイナイトと焼戻しマルテンサイトの
混合組織であるA2,E2,J2は、高歪速度の引張試
験のYRが80%を超えている。また、焼戻しをしてい
ないB2は、変態ままのマルテンサイトがあるため、Y
Rが高く、靭性が低い。さらに、組織は粗粒フェライト
とベイナイトと焼戻しマルテンサイトの混合組織であっ
ても(Mo+3.5V+20Nb)<0.12%である
O1,P1,Q1,R1は、高温強度が目標値を満足し
ていない。組織が粗粒フェライトとベイナイトと焼戻し
マルテンサイトの混合組織で、(Mo+3.5V+20
Nb)>0.8%であるS1,T1,U1は、高歪速度
でのYRが80%を超えている。組織が粗粒フェライト
とベイナイトの混合組織で、酸素含有量が30ppmを
超えているV1,W1,X1,Y1は高歪速度の繰り返
し予歪後の vE-5の最小値が47Jを下回っている。
From Tables 3 to 5, the oxygen content is 30 pp.
0.12% ≦ (Mo + 3.5V + 20Nb) ≦ m
0.8% is satisfied, and coarse-grained ferrite (ASTM No. 9
~ 11), bainite and tempered martensite of the present invention having a mixed structure (A1, B1, C1, D1, E)
1, F1, G1, H1, I1, J1, K1, L1, M
1, N1) has a YR at a high strain rate of 80% or less, high temperature strength satisfies the target value, and has a toughness of vJ-5 of 150 J or more even after repeated strain. A3, C2, F2 and M2, which are ferrite + pearlite structures, show a remarkable increase in YR at a high strain rate as compared with a normal tensile test.
The value exceeds 0%. In addition, these steels have significantly deteriorated toughness after repeated prestrain at high strain rate, and
vTs is shown. Fine-grained ferrite (ASTM N
o. 11) and A2, E2, and J2, which are a mixed structure of bainite and tempered martensite, have a YR in a high strain rate tensile test of more than 80%. In addition, since B2 that has not been tempered has martensite that remains transformed, Y2
High R and low toughness. Furthermore, even if the structure is a mixed structure of coarse-grained ferrite, bainite, and tempered martensite, (Mo + 3.5V + 20Nb) <0.12%, O1, P1, Q1, and R1 have high-temperature strength satisfying the target value. Absent. The structure is a mixed structure of coarse-grained ferrite, bainite, and tempered martensite, and (Mo + 3.5V + 20
For S1, T1, and U1 with Nb)> 0.8%, the YR at a high strain rate exceeds 80%. The structure is a mixed structure of coarse-grained ferrite and bainite, and the oxygen content exceeds 30 ppm. For V1, W1, X1 and Y1, the minimum value of vE-5 after repeated pre-strain at high strain rate is less than 47J. .

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【表5】 [Table 5]

【0039】[0039]

【発明の効果】以上の実施例から明かなように、本発明
方法により製造された鋼材は、高歪速度で変形を受ける
場合にも低YR(≦80%)を示し、高歪速度で繰り返
し予歪を受けた後も安定して優れた靭性を示し、かつ優
れた耐火性を示すので、活断層近傍の構造物の塑性耐震
設計と耐火設計を組み合わせた設計を可能にする。ま
た、鋼材の大量生産も可能である。
As is apparent from the above examples, the steel material produced by the method of the present invention exhibits low YR (≤80%) even when subjected to deformation at a high strain rate, and repeats at a high strain rate. It exhibits stable toughness even after being subjected to pre-strain, and also exhibits excellent fire resistance, enabling a design that combines the plastic seismic design and fire resistant design of the structure near the active fault. Also, mass production of steel materials is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】引張歪速度と降伏比(=降伏強度/引張強度)
の関係を示した図。
Figure 1: Tensile strain rate and yield ratio (= yield strength / tensile strength)
FIG.

【図2】酸素含有量と高歪速度で繰り返し塑性歪(±1
+2+4%)を与えた後、−5℃で試験したシャルピー
衝撃吸収エネルギー(vE-5)の関係を示した図。
[Fig. 2] Cyclic plastic strain (± 1) at high oxygen content and high strain rate
The figure which showed the relationship of the Charpy impact absorption energy (vE-5) tested at -5 degreeC after giving + 2 + 4%).

【図3】(Mo+3.5V+20Nb)量と高歪速度
(=10/秒)での降伏比および高温強度(600℃で
の0.2%耐力)との関係を示した図。
FIG. 3 is a diagram showing the relationship between the (Mo + 3.5V + 20Nb) amount, the yield ratio at high strain rate (= 10 / sec), and the high temperature strength (0.2% proof stress at 600 ° C.).

【図4】常温でのYRに及ぼす冷却速度の影響を示した
図。
FIG. 4 is a diagram showing the effect of cooling rate on YR at room temperature.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 8/00 - 8/10 C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) C21D 8/00-8/10 C22C 38/00-38/60

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C:0.04〜0.18%,S
i:0.05〜0.4%,Mn:0.6〜1.7%,M
o:0.1〜0.6%,V:0.005〜0.1%,A
l:0.001〜0.06%,N≦30ppm,O≦3
0ppmで、かつ0.12%≦(Mo+3.5V)%≦
0.8%を満足し、残部がFeおよび不可避的不純物か
らなる鋼をオーステナイト域で熱間圧延後、Ar3 点経
過後から水冷し、400℃以下で水冷を停止した後、A
c1 点以下の温度で焼戻し処理して、組織ASTM粒
度No.=9〜11の粗粒フェライトとベイナイトと焼
戻しマルテンサイトの混合組織とすることを特徴とする
耐火性に優れた耐震性建築鋼材の製造方法。
1. C: 0.04 to 0.18%, S by weight%
i: 0.05 to 0.4%, Mn: 0.6 to 1.7%, M
o: 0.1-0.6%, V: 0.005-0.1%, A
1: 0.001 to 0.06%, N ≦ 30 ppm, O ≦ 3
0 ppm and 0.12% ≦ (Mo + 3.5V)% ≦
A steel satisfying 0.8% and the balance being Fe and unavoidable impurities was hot-rolled in the austenite region, water-cooled after the Ar3 point and stopped at 400 ° C or lower.
Tempered at a temperature of c1 point or lower to make the structure ASTM grain
Degree No. = 9 to 11 is a mixed structure of coarse-grained ferrite, bainite, and tempered martensite, and is a method for producing an earthquake-resistant building steel material having excellent fire resistance.
【請求項2】重量%で、C:0.04〜0.18%,S
i:0.05〜0.4%,Mn:0.6〜1.7%,M
o:0.1〜0.6%,V:0.005〜0.1%,A
l:0.001〜0.06%,N≦30ppm,O≦3
0ppmで、かつ0.12%≦(Mo+3.5V)%≦
0.8%を満足することに加えて、Cu:0.05〜
0.6%,Ni:0.05〜0.6%,Cr:0.05
〜1.0%,Ti:0.005〜0.015%のうち1
種または2種以上を含み、残部がFeおよび不可避的不
純物からなる鋼をオーステナイト域で熱間圧延後、Ar
3 点経過後から水冷し、400℃以下で水冷を停止した
後、Ac1 点以下の温度で焼戻し処理して、組織AS
TM粒度No.=9〜11の粗粒フェライトとベイナイ
トと焼戻しマルテンサイトの混合組織とすることを特徴
とする耐火性に優れた耐震性建築鋼材の製造方法。
2. C: 0.04 to 0.18%, S by weight%
i: 0.05 to 0.4%, Mn: 0.6 to 1.7%, M
o: 0.1-0.6%, V: 0.005-0.1%, A
1: 0.001 to 0.06%, N ≦ 30 ppm, O ≦ 3
0 ppm and 0.12% ≦ (Mo + 3.5V)% ≦
In addition to satisfying 0.8%, Cu: 0.05-
0.6%, Ni: 0.05 to 0.6%, Cr: 0.05
~ 1.0%, Ti: 0.005 to 0.015%, 1
Steel containing at least one kind or two or more kinds, with the balance being Fe and unavoidable impurities, is hot-rolled in the austenite region, and then Ar
After 3 points have passed, water cooling is performed, and after water cooling is stopped at 400 ° C or less, tempering is performed at a temperature of Ac 1 point or less, and the structure is AS
TM grain size No. = 9 to 11 is a mixed structure of coarse-grained ferrite, bainite, and tempered martensite, and is a method for producing an earthquake-resistant building steel material having excellent fire resistance.
【請求項3】 請求項1または請求項2の組成に加え
て、さらにNb:0.005〜0.04%を含有し、か
つ0.12%≦(Mo+3.5V+20Nb)%≦0.
8%を満足することを特徴とする耐火性に優れた耐震性
建築鋼材の製造方法。
3. In addition to the composition of claim 1 or 2, Nb: 0.005 to 0.04% is further contained, and 0.12% ≦ (Mo + 3.5V + 20Nb)% ≦ 0.
A method for manufacturing an earthquake-resistant building steel material having excellent fire resistance, characterized by satisfying 8%.
JP19185496A 1996-07-22 1996-07-22 Manufacturing method of earthquake resistant building steel with excellent fire resistance Expired - Fee Related JP3371699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19185496A JP3371699B2 (en) 1996-07-22 1996-07-22 Manufacturing method of earthquake resistant building steel with excellent fire resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19185496A JP3371699B2 (en) 1996-07-22 1996-07-22 Manufacturing method of earthquake resistant building steel with excellent fire resistance

Publications (2)

Publication Number Publication Date
JPH1036910A JPH1036910A (en) 1998-02-10
JP3371699B2 true JP3371699B2 (en) 2003-01-27

Family

ID=16281620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19185496A Expired - Fee Related JP3371699B2 (en) 1996-07-22 1996-07-22 Manufacturing method of earthquake resistant building steel with excellent fire resistance

Country Status (1)

Country Link
JP (1) JP3371699B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014554B (en) * 2011-09-26 2014-12-03 宝山钢铁股份有限公司 Low-yield-ratio high-tenacity steel plate and manufacture method thereof
JP6164171B2 (en) * 2014-07-22 2017-07-19 Jfeスチール株式会社 Low yield ratio high strength steel sheet with excellent high temperature strength and weldability and method for producing the same
CN113215499A (en) * 2021-05-12 2021-08-06 南京钢铁股份有限公司 Ultra-thick anti-seismic fire-resistant steel plate with 390 MPa-grade yield strength and manufacturing method thereof

Also Published As

Publication number Publication date
JPH1036910A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
KR101139605B1 (en) Steel material having excellent high temperature properties and excellent toughness, and method for production thereof
JP3509603B2 (en) Extra-thick H-section steel with excellent toughness and yield strength of 325 MPa or more
KR20090122371A (en) Steel material having excellent high-temperature strength and toughness, and method for production thereof
JP4833611B2 (en) 490 MPa class thick high-strength refractory steel for welded structures excellent in weldability and gas-cutting property, and method for producing the same
JP3499085B2 (en) Low Yield Ratio High Tensile Steel for Construction Excellent in Fracture Resistance and Manufacturing Method Thereof
WO2008029583A1 (en) Fire-resistant steel excellent in high-temperature strength, toughness and reheat embrittlement resistance and process for production of the same
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP2017197787A (en) High tensile strength thick steel sheet excellent in ductility and manufacturing method therefor
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JP2006274388A (en) HIGH TENSILE STRENGTH STEEL SHEET SATISFYING YIELD STRENGTH OF &gt;=650 MPa AND HAVING LOW ACOUSTIC ANISOTROPY, AND METHOD FOR PRODUCING THE SAME
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP3474661B2 (en) Sour-resistant steel plate with excellent crack arrestability
JP2006241510A (en) Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method
JP3371699B2 (en) Manufacturing method of earthquake resistant building steel with excellent fire resistance
JP2011208213A (en) Low-yield ratio high-tensile strength thick steel plate having excellent weld crack resistance and weld heat-affected zone toughness
JP3335651B2 (en) Method for producing thick 9% Ni steel with excellent CTOD characteristics of base metal and weld heat affected zone
JPH0995731A (en) Production of building steel for low temperature use
JP3371712B2 (en) Manufacturing method of earthquake resistant building steel with excellent fire resistance
WO2020255993A1 (en) Steel sheet
JP2015089948A (en) High tensile steel sheet excellent in gas cutting crack resistance and large heat input weld zone toughness
JP3863413B2 (en) High toughness high tension non-tempered thick steel plate and manufacturing method thereof
JP4433844B2 (en) Method for producing high strength steel with excellent fire resistance and toughness of heat affected zone
JP4105990B2 (en) High strength welded structural steel with excellent low temperature toughness of large heat input weld HAZ and method for producing the same
JP3743033B2 (en) Manufacturing method of steel materials for low-temperature buildings
KR20010060759A (en) High strength steel having low yield ratio and method for manufacturing it

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees