JP6164171B2 - Low yield ratio high strength steel sheet with excellent high temperature strength and weldability and method for producing the same - Google Patents

Low yield ratio high strength steel sheet with excellent high temperature strength and weldability and method for producing the same Download PDF

Info

Publication number
JP6164171B2
JP6164171B2 JP2014148483A JP2014148483A JP6164171B2 JP 6164171 B2 JP6164171 B2 JP 6164171B2 JP 2014148483 A JP2014148483 A JP 2014148483A JP 2014148483 A JP2014148483 A JP 2014148483A JP 6164171 B2 JP6164171 B2 JP 6164171B2
Authority
JP
Japan
Prior art keywords
strength
temperature
less
steel sheet
weldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014148483A
Other languages
Japanese (ja)
Other versions
JP2016023336A (en
Inventor
隆男 赤塚
隆男 赤塚
室田 康宏
康宏 室田
章夫 大森
章夫 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014148483A priority Critical patent/JP6164171B2/en
Publication of JP2016023336A publication Critical patent/JP2016023336A/en
Application granted granted Critical
Publication of JP6164171B2 publication Critical patent/JP6164171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、建築、土木分野において、各種建造物に用いる耐火性に優れた低降伏比高張力鋼板およびその製造方法に関する。   The present invention relates to a low-yield-ratio high-tensile steel plate excellent in fire resistance used for various buildings in the field of construction and civil engineering, and a method for producing the same.

鉄骨構造の高層建築物には、弾性設計(許容応力度設計)から1981年6月に施行された新耐震設計基準に基づく終局耐力設計への移行に伴い、耐震設計を確実にするため、使用鋼材の観点からは低降伏比と狭YPレンジが求められている。また火災に対しては、火災時における安全性を確保するために構造部材に施されていた耐火被覆が、建築構造物のコスト低減や美観上の観点から、耐火被覆の低減や、さらには耐火被覆の省略(無被覆化)が要望されて、耐火被覆を必要としない溶接構造用鋼材として600℃で常温強度規格値の2/3以上の高温強度を有する鋼材が求められている。   For high-rise buildings with steel structures, use to ensure seismic design with the transition from elastic design (allowable stress design) to ultimate strength design based on the new seismic design standards implemented in June 1981 From the viewpoint of steel materials, a low yield ratio and a narrow YP range are required. For fires, the fireproof coating applied to the structural members to ensure safety in the event of a fire reduces the fireproof coating from the viewpoint of cost reduction and aesthetics of the building structure. Omission of coating (no coating) is desired, and a steel material having a high-temperature strength of 2/3 or more of the normal temperature strength standard value at 600 ° C. is required as a steel material for welded structures that does not require a fireproof coating.

このような低降伏比と耐火性を兼ね備えた建築用鋼材として、特許文献1には、「質量%で、C:0.05〜0.15%、Si:0.6%以下、Mn:0.8%以下、P:0.02%以下、S:0.01%以下、Mo:0.7〜1.2%、Al:0.06%以下、N:0.006%以下、残部が鉄及び不可避的不純物からなり、ミクロ組織が面積分率で80%以上がポリゴナル、擬ポリゴナルフェライト以外で、旧γ粒の平均円相当直径が150μm以下であり、特定量のCu、Ni、Cr、Nb、V、B、Ti、Mg、Ca、REMを含有する高温強度に優れた高張力鋼」が記載されている。   As a steel material for construction having such a low yield ratio and fire resistance, Patent Document 1 discloses that "in mass%, C: 0.05 to 0.15%, Si: 0.6% or less, Mn: 0 0.8% or less, P: 0.02% or less, S: 0.01% or less, Mo: 0.7 to 1.2%, Al: 0.06% or less, N: 0.006% or less, the balance being Consisting of iron and unavoidable impurities, the microstructure has an area fraction of 80% or more other than polygonal or pseudopolygonal ferrite, the average equivalent circle diameter of the old γ grains is 150 μm or less, and specific amounts of Cu, Ni, Cr , Nb, V, B, Ti, Mg, Ca, REM and high strength steel excellent in high temperature strength ”.

特許文献2には、「重量比で、C:0.04〜0.15%、Si:0.6%以下、Mn0.5〜1.6%、Nb:0.005〜0.04%、Mo:0.4〜0.7%、Al:0.1%以下、N:0.001〜0.006%、残部が鉄及び不可避的不純物からなる鋼片を1100〜1300℃の温度域で加熱後、熱間圧延を800〜1000℃の温度範囲で終了する耐火性の優れた建築用低降伏比鋼板の製造方法」が記載されている。   Patent Document 2 states, “By weight, C: 0.04 to 0.15%, Si: 0.6% or less, Mn 0.5 to 1.6%, Nb: 0.005 to 0.04%, Mo: 0.4 to 0.7%, Al: 0.1% or less, N: 0.001 to 0.006%, the steel slab consisting of iron and unavoidable impurities in the temperature range of 1100 to 1300 ° C. "The manufacturing method of the low yield ratio steel sheet for construction with excellent fire resistance, in which hot rolling is finished in a temperature range of 800 to 1000 ° C after heating" is described.

特開2002−3985号公報Japanese Patent Laid-Open No. 2002-3985 特開平2−77523号公報Japanese Patent Laid-Open No. 2-77523

しかしながら、特許文献1や2に記載された技術では、高温強度を得るためにMoを含有させる必要があり、しかも要求耐火温度の上昇に伴い、Moの含有量を増加する必要がある。しかし、Moの多量添加は溶接性の顕著な劣化に加え、母材や溶接部の靭性も著しく劣化させるという問題がある。   However, in the techniques described in Patent Documents 1 and 2, it is necessary to contain Mo in order to obtain high-temperature strength, and it is necessary to increase the Mo content as the required fire resistance temperature increases. However, the addition of a large amount of Mo has a problem that the toughness of the base metal and the welded portion is significantly deteriorated in addition to the remarkable deterioration of the weldability.

本発明はこのような従来技術に鑑みてなされたもので、常温での引張強さ490MPa以上、降伏比を80%以下とし、600℃での降伏強度を217MPa以上とする高温強度と溶接性に優れる低降伏比高張力鋼板を提供することを目標とする。   The present invention has been made in view of such a conventional technique, and has a high temperature strength and weldability in which a tensile strength at normal temperature is 490 MPa or more, a yield ratio is 80% or less, and a yield strength at 600 ° C. is 217 MPa or more. The goal is to provide an excellent low yield ratio high strength steel sheet.

発明者は、降伏を支配する軟質相(通常フェライト)と引張強さを確保するための硬質相(パーライト、ベイナイト)とのバランスおよび高温強度を上げるためのMoの多量添加による母材や溶接部の靭性劣化を種々検討し、本発明に至ったもので、その要旨は以下の通りである。   The inventor found that the balance between the soft phase (usually ferrite) governing yield and the hard phase (pearlite, bainite) to ensure tensile strength and the base material and welded part by adding a large amount of Mo to increase the high temperature strength As a result of various studies on toughness degradation of the present invention, the present invention has been achieved.

[1] 成分組成が、質量%で、C:0.04〜0.12%、Si:0.50%以下、Mn:0.50〜1.50%、P:0.02%以下、S:0.0050%以下、Al:0.050%以下、Mo:0.40〜0.70%、V:0.070〜0.120%、Cr:0.05〜0.40%を含有し、さらに下記(1)式で定義されるCeqが、0.46以下を満たし、残部Feおよび不可避的不純物からなり、フェライトが面積率で60%以上の主相であり、更に、フェライトの平均結晶粒径が5〜70μmであり、600℃での降伏強度が217MPa以上であることを特徴とする高温強度と溶接性に優れた低降伏比高張力鋼板。
Ceq=C+Si/24+Mn/6+Cr/5+Ni/40+Mo/4+V/14
(1)
ここで、C、Si、Mn、Cr、Ni、Mo、Vは各元素の含有量(質量%)を表し、含有しない場合は0とする。
[1] Component composition is mass%, C: 0.04 to 0.12%, Si: 0.50% or less, Mn: 0.50 to 1.50%, P: 0.02% or less, S : 0.0050% or less, Al: 0.050% or less, Mo: 0.40 to 0.70%, V: 0.070 to 0.120%, Cr: 0.05 to 0.40% Further, Ceq defined by the following formula (1) satisfies 0.46 or less, the balance is Fe and unavoidable impurities, and ferrite is a main phase with an area ratio of 60% or more. Further, the average crystal of ferrite A low-yield ratio high-tensile steel sheet excellent in high-temperature strength and weldability, characterized in that the grain size is 5 to 70 μm and the yield strength at 600 ° C. is 217 MPa or more.
Ceq = C + Si / 24 + Mn / 6 + Cr / 5 + Ni / 40 + Mo / 4 + V / 14
(1)
Here, C, Si, Mn, Cr, Ni, Mo, and V represent the content (% by mass) of each element, and 0 when not contained.

[2] 成分組成が、さらに質量%で、Cu:0.05〜0.30%、Ni:0.05〜0.30%、Ti:0.005〜0.020%、Nb:0.005〜0.030%、B:0.0003〜0.0030%の1種以上を含有することを特徴とする[1]に記載の高温強度と溶接性に優れた低降伏比高張力鋼板。   [2] Component composition is further mass%, Cu: 0.05-0.30%, Ni: 0.05-0.30%, Ti: 0.005-0.020%, Nb: 0.005 The low yield ratio high-tensile steel sheet excellent in high-temperature strength and weldability according to [1], which contains at least one of ˜0.030% and B: 0.0003 to 0.0030%.

[3] 成分組成が、さらに質量%で、Ca:0.0005〜0.0050%、REM:0.0010〜0.0050%の1種以上を含有することを特徴とする[1]または[2]に記載の高温強度と溶接性に優れた低降伏比高張力鋼板。   [3] The component composition further includes one or more of Ca: 0.0005 to 0.0050% and REM: 0.0010 to 0.0050% by mass% [1] or [1] [2] A low-yield ratio high-tensile steel plate excellent in high-temperature strength and weldability.

[4] [1]乃至[3]の何れかに記載の成分組成を有する鋼素材を1050〜1200℃に加熱後、表面温度で950℃以下の温度域での累積圧下量が30%以上50%未満の熱間圧延を行い、かつ、圧延終了温度がAr−100℃以上800℃以下であり、その後、300℃以下まで空冷し、更に、400℃以上700℃以下の温度で焼戻しを行うことを特徴とする高温強度と溶接性に優れた低降伏比高張力鋼板の製造方法。 [4] After heating the steel material having the composition described in any one of [1] to [3] to 1050 to 1200 ° C., the cumulative reduction amount in the temperature range of 950 ° C. or less at the surface temperature is 30% or more and 50 subjected to hot rolling of less than%, and the rolling end temperature is at 800 ° C. or less than Ar 3 -100 ° C., then air-cooled to 300 ° C. or less, further, performing tempering at a temperature of 700 ° C. 400 ° C. or higher A method for producing a low-yield ratio high-strength steel sheet excellent in high-temperature strength and weldability.

本発明によれば常温引張強さ490MPa以上、降伏比80%以下で、600℃での降伏強さ217MPa以上、常温での斜めy形溶接割れ試験でルート割れの無い鋼板を得ることができる。   According to the present invention, a steel sheet having a tensile strength of 490 MPa or higher, a yield ratio of 80% or lower, a yield strength of 217 MPa or higher at 600 ° C., and a root crack can be obtained in an oblique y-type weld crack test at normal temperature.

以下、本発明の構成要件の限定理由について説明する。   Hereinafter, the reasons for limiting the constituent requirements of the present invention will be described.

1.成分組成について
以下、本発明における成分の限定理由について説明する。なお、各元素の%表示は特に記載がない限り質量%を意味する。
1. About component composition Hereinafter, the reason for limitation of the component in this invention is demonstrated. In addition, unless otherwise indicated, the% display of each element means the mass%.

C:0.04〜0.12%
Cは、鋼の強度を増加させ、構造用鋼材として必要な室温での強度を確保するのに有用な元素である。また、Cは、600℃近傍の温度域でMoなどと微細な炭化物を形成し600℃での強度を確保するのに有用である。さらに、Cは、ベイナイトなどの硬質相の体積率を増加させ、降伏比を低下させる作用を有する。このような効果を得るためには0.04%以上の含有を必要とする。一方、0.12%を超える含有は、溶接性と靭性を顕著に低下させる。このため、C量は0.04〜0.12%の範囲とする。好ましくは0.07〜0.10%の範囲である。
C: 0.04 to 0.12%
C is an element useful for increasing the strength of steel and ensuring the strength at room temperature necessary as a structural steel material. Further, C is useful for forming a fine carbide with Mo or the like in a temperature range near 600 ° C. and ensuring the strength at 600 ° C. Furthermore, C has an effect of increasing the volume fraction of a hard phase such as bainite and lowering the yield ratio. In order to obtain such an effect, a content of 0.04% or more is required. On the other hand, if the content exceeds 0.12%, weldability and toughness are significantly reduced. For this reason, C amount is taken as 0.04 to 0.12% of range. Preferably it is 0.07 to 0.10% of range.

Si:0.50%以下
Siは、脱酸剤として作用するとともに、鋼中に固溶し鋼材の強度を増加させる。0.50%を超える含有は、母材の靱性を低下させるとともに、溶接熱影響部(HAZとも言う)靱性を顕著に低下させるため、Siの含有は0.50%以下とする。なお鋼板に所望の強度を持たせることを目的とし、好ましくは0.20〜0.40%の範囲とする。
Si: 0.50% or less Si acts as a deoxidizer and dissolves in steel to increase the strength of the steel material. If the content exceeds 0.50%, the toughness of the base metal is reduced and the weld heat affected zone (also referred to as HAZ) toughness is remarkably reduced, so the Si content is 0.50% or less. In addition, it aims at giving desired intensity | strength to a steel plate, Preferably it is 0.20 to 0.40% of range.

Mn:0.50〜1.50%
Mnは、固溶して鋼の強度を増加させる作用を有する元素で安価であり、高価な他の合金元素の含有を最小限に抑えることを目的の一つとする本発明では、所望の高強度(常温引張強さ490MPa以上)を確保するために、0.50%以上の含有を必要とする。一方、1.50%を超える含有は、母材の靱性およびHAZ靱性を著しく低下させる。このため、Mn量は0.50〜1.50%の範囲とする。なお、好ましくは0.60〜1.00%の範囲である。
Mn: 0.50 to 1.50%
Mn is an element that has the effect of increasing the strength of steel by solid solution and is inexpensive, and in the present invention, which aims to minimize the content of other expensive alloy elements, the desired high strength In order to ensure (normal temperature tensile strength 490 MPa or more), 0.50% or more of content is required. On the other hand, if the content exceeds 1.50%, the toughness and the HAZ toughness of the base material are significantly reduced. For this reason, the amount of Mn shall be 0.50 to 1.50% of range. In addition, Preferably it is 0.60 to 1.00% of range.

P:0.02%以下
Pは、鋼の強度を増加させる作用を有する元素であるが、靱性、とくに溶接部の靱性を低下させる元素である。0.02%を超えて含有すると、上記した悪影響が顕著となるため、P量は0.02%以下とする。好ましくは0.01%以下である。
P: 0.02% or less P is an element having an action of increasing the strength of steel, but is an element that lowers toughness, particularly toughness of a welded portion. If the content exceeds 0.02%, the above-described adverse effects become significant, so the P content is 0.02% or less. Preferably it is 0.01% or less.

S:0.0050%以下
Sは、鋼中ではMnS等の硫化物系介在物として存在し、母材および溶接部の靱性を劣化させるとともに、鋳片中央偏析部などに多量に偏在して鋳片等における欠陥を発生しやすくする。このような傾向は0.0050%を超える含有で顕著となる。このため、S量は0.0050%以下とする。好ましくは0.0030%以下である。
S: 0.0050% or less S is present in steel as sulfide inclusions such as MnS, which deteriorates the toughness of the base metal and the welded portion, and is unevenly distributed in the center segregated portion of the slab. It makes it easier to generate defects in pieces. Such a tendency becomes remarkable when the content exceeds 0.0050%. For this reason, the amount of S is made into 0.0050% or less. Preferably it is 0.0030% or less.

Al:0.050%以下
Alは、脱酸剤として作用する元素であり、高張力鋼の溶鋼脱酸プロセスにおいては、脱酸剤として、もっとも汎用的に使われる。このような効果を得るためには、0.010%以上含有することが望ましいが、0.050%を超える含有は、母材の靱性が低下するとともに、溶接時に溶接金属に混入して溶接金属部靱性を低下させる。このため、Alは0.050%以下とする。好ましくは0.010〜0.045%の範囲である。
Al: 0.050% or less Al is an element that acts as a deoxidizer, and is most commonly used as a deoxidizer in a molten steel deoxidation process for high-strength steel. In order to obtain such an effect, it is desirable to contain 0.010% or more. However, if the content exceeds 0.050%, the toughness of the base material decreases, and the weld metal is mixed into the weld metal during welding. Reduce toughness. For this reason, Al is made into 0.050% or less. Preferably it is 0.010 to 0.045% of range.

Mo:0.40〜0.70%
Moは、600℃近傍の温度域で微細な炭化物を形成し、鋼の高温強度を確保する上で必要不可欠の元素である。とりわけ、600℃で製造上安定的に降伏強度217MP以上であるためには0.40%以上の含有が必要である。しかし、0.70%を超える含有は溶接性や耐HIC性が劣化する。従って、Mo量は0.40〜0.70%の範囲とする。好ましくは0.45〜0.65%の範囲である。より好ましくは0.49〜0.62%の範囲である。
Mo: 0.40 to 0.70%
Mo is an indispensable element for forming fine carbides in the temperature range near 600 ° C. and ensuring the high temperature strength of the steel. In particular, in order to stably obtain a yield strength of 217 MP or more at 600 ° C., a content of 0.40% or more is necessary. However, the content exceeding 0.70% deteriorates weldability and HIC resistance. Therefore, the Mo amount is set to a range of 0.40 to 0.70%. Preferably it is 0.45 to 0.65% of range. More preferably, it is 0.49 to 0.62% of range.

V:0.070〜0.120%
Vは、析出強化によって、強度を増加させるのに有効な元素であり、また、600℃近傍の温度域で微細な炭化物を形成し、高温強度を確保する上で重要である。このような効果を得るためには、0.070%以上の含有を必要とする。しかし、0.120%を超えて含有すると、HAZ靭性および母材靭性が劣化する。従って、V量は0.070〜0.120%の範囲とする。好ましくは0.070〜0.110%の範囲である。より好ましくは0.080〜0.100%の範囲である。
V: 0.070 to 0.120%
V is an element effective for increasing the strength by precipitation strengthening, and is important for forming a fine carbide in a temperature range near 600 ° C. and ensuring high temperature strength. In order to acquire such an effect, 0.070% or more of content is required. However, if it exceeds 0.120%, HAZ toughness and base metal toughness deteriorate. Therefore, the V amount is in the range of 0.070 to 0.120%. Preferably it is 0.070 to 0.110% of range. More preferably, it is 0.080 to 0.100% of range.

Cr:0.05〜0.40%
Crは、焼入性向上を介し、母材の強度を増加させる元素であり、厚鋼板の高強度化に有用な元素である。このような効果を得るためには、0.05%以上の含有が必要であるが、0.40%を超える含有は、合金コストの増加を招く。このため、Cr量は0.05〜0.40%の範囲とする。なお、好ましくは0.10〜0.40%の範囲である。より好ましくは0.20〜0.40%の範囲である。
Cr: 0.05-0.40%
Cr is an element that increases the strength of the base material through improvement in hardenability, and is an element useful for increasing the strength of thick steel plates. In order to obtain such an effect, a content of 0.05% or more is necessary, but a content exceeding 0.40% causes an increase in alloy cost. For this reason, the Cr content is in the range of 0.05 to 0.40%. In addition, Preferably it is 0.10 to 0.40% of range. More preferably, it is 0.20 to 0.40% of range.

Ceq:0.46以下
Ceqが、0.46を超えて高くなると、溶接性が低下するとともに、母材靭性、HAZ靭性が低下する。このため、Ceqは0.46以下とする。なお、Ceqは次式による。
Ceq=C+Si/24+Mn/6+Cr/5+Ni/40+Mo/4+V/14
(1)
ここで、C、Mn、Cr、Mo、V、Cu、Niは各元素の含有量(質量%)を表し、含有しない場合は0とする。
Ceq: 0.46 or less When Ceq exceeds 0.46, weldability decreases, and base metal toughness and HAZ toughness decrease. For this reason, Ceq is set to 0.46 or less. Ceq is based on the following equation.
Ceq = C + Si / 24 + Mn / 6 + Cr / 5 + Ni / 40 + Mo / 4 + V / 14
(1)
Here, C, Mn, Cr, Mo, V, Cu, and Ni represent the content (% by mass) of each element, and 0 when not contained.

以上が本発明の基本化学成分であり、残部はFe及び不可避的不純物からなるが、さらに強度を高める目的でCu、Ni、Ti、Nb、Bの中から選ばれる1種以上を選択元素として添加してもよい。   The above is the basic chemical component of the present invention, and the balance is composed of Fe and unavoidable impurities, but one or more selected from Cu, Ni, Ti, Nb, and B are added as selective elements for the purpose of further increasing the strength. May be.

Cu:0.05〜0.30%
Cuは、固溶強化や焼入性向上を介して、鋼板の強度を増加させ、厚鋼板の高強度化に寄与する。このような効果を得るためには、0.05%以上含有することが好ましいが、0.30%を超える含有は、合金コストの増加や熱間脆性による表面性状の劣化を招く。このため、含有する場合は、Cu量は0.05〜0.30%の範囲とすることが好ましい。なお、より好ましくは0.05〜0.20%の範囲である。
Cu: 0.05-0.30%
Cu increases the strength of the steel sheet through solid solution strengthening and hardenability improvement, and contributes to increasing the strength of the thick steel sheet. In order to acquire such an effect, it is preferable to contain 0.05% or more, but inclusion exceeding 0.30% causes an increase in alloy cost and deterioration of surface properties due to hot brittleness. For this reason, when it contains, it is preferable to make Cu amount into the range of 0.05 to 0.30%. In addition, More preferably, it is 0.05 to 0.20% of range.

Ni:0.05〜0.30%
Niは、靱性をほとんど劣化させることなく、鋼板の強度を増加させる元素であり、しかもHAZ靱性への悪影響も小さく、厚鋼板の高強度化に有用な元素である。このような効果を得るためには、0.05%以上含有することが好ましいが、0.30%を超える多量の含有は、Niが高価な元素であるため、合金コストの増加を招く。このため、含有する場合は、Ni量は0.05〜0.30%の範囲とすることが好ましい。なお、より好ましくは0.05〜0.20%の範囲である。
Ni: 0.05-0.30%
Ni is an element that increases the strength of the steel sheet with little deterioration in toughness, and has a small adverse effect on the HAZ toughness, and is an element useful for increasing the strength of thick steel sheets. In order to obtain such an effect, the content is preferably 0.05% or more. However, if the content exceeds 0.30%, Ni is an expensive element, which causes an increase in alloy costs. For this reason, when it contains, it is preferable to make Ni amount into the range of 0.05 to 0.30%. In addition, More preferably, it is 0.05 to 0.20% of range.

Ti:0.005〜0.020%
Tiは、Nとの親和力が強い元素であり、凝固時にTiNとして析出し、鋼中の固溶Nを減少させ、冷間加工後のNの歪時効による靭性劣化を低減する作用を有する。また、Tiは、HAZの組織改善を介して、HAZ靭性の向上にも寄与する。このような効果を得るためには、0.005%以上含有することが好ましい。一方、0.020%を超えて含有すると、TiN粒子が粗大化し、上記した効果が期待できなくなる。このため、含有する場合は、Ti量は0.005〜0.020%の範囲とすることが好ましい。なお、より好ましくは0.007〜0.015%の範囲である。
Ti: 0.005-0.020%
Ti is an element having a strong affinity for N, and precipitates as TiN during solidification, thereby reducing solid solution N in the steel and reducing the toughness deterioration due to strain aging of N after cold working. Ti also contributes to the improvement of HAZ toughness through the improvement of the HAZ structure. In order to acquire such an effect, it is preferable to contain 0.005% or more. On the other hand, if the content exceeds 0.020%, the TiN particles become coarse and the above-described effects cannot be expected. For this reason, when it contains, it is preferable to make Ti amount into the range of 0.005-0.020%. In addition, More preferably, it is 0.007 to 0.015% of range.

Nb:0.005〜0.030%
Nbは、焼入性を高めるとともに、制御圧延の効果を高めミクロ組織を微細化する作用を介して、母材強度を増加させる元素であり、高強度化のために有用な元素である。このような効果を得るためには、0.005%以上含有することが必要となる。一方、0.030%を超える含有は、母材やHAZの靭性を低下させる。このため、含有する場合は、Nb量は0.005〜0.030%の範囲とすることが好ましい。なお、より好ましくは0.007〜0.025%の範囲である。
Nb: 0.005 to 0.030%
Nb is an element that increases hardenability and increases the strength of the base metal through the action of increasing the effect of controlled rolling and refining the microstructure, and is a useful element for increasing the strength. In order to acquire such an effect, it is necessary to contain 0.005% or more. On the other hand, the content exceeding 0.030% reduces the toughness of the base material and the HAZ. For this reason, when it contains, it is preferable to make Nb amount into 0.005 to 0.030% of range. In addition, More preferably, it is 0.007 to 0.025% of range.

B:0.0003〜0.0030%
Bは焼入れ性の向上を介し、鋼の強度増加に寄与する元素である。このような効果を得るために、0.0003%以上含有するが、0.0030%を超える含有は、母材やのHAZ靭性を劣化させる。このため、含有する場合は、B量は0.0003〜0.0030%の範囲とすることが好ましい。なお、より好ましくは0.0006〜0.0020%の範囲である。
B: 0.0003 to 0.0030%
B is an element that contributes to an increase in the strength of steel through the improvement of hardenability. In order to acquire such an effect, 0.0003% or more is contained, but inclusion exceeding 0.0030% deteriorates the HAZ toughness of the base material. For this reason, when it contains, it is preferable to make B amount into the range of 0.0003 to 0.0030%. In addition, More preferably, it is 0.0006 to 0.0020% of range.

本発明の高張力鋼板は、上記組成に加えて、さらに材質を改善する目的でCa、REMの中から選ばれる1種以上を選択元素として含有してもよい。   In addition to the above composition, the high-tensile steel plate of the present invention may contain one or more selected from Ca and REM as selective elements for the purpose of further improving the material.

Ca:0.0005〜0.0050%、REM:0.0010〜0.0050%
Ca、REM(希土類金属)はいずれも、硫化物の形態制御を介して母材の靭性向上および延性向上に寄与する。また、Ca、REM(希土類金属)は微細な硫化物粒子を鋼中に生成する。これらの硫化物粒子はフェライト変態核として作用することによってHAZ靱性の向上にも寄与する。これらの効果を得るためには、Caは少なくとも0.0005%、REMは少なくとも0.0010%を含有することが好ましい。しかし、Ca、REMをいずれも0.0050%を超えて含有すると、過剰に介在物が生成し、逆に靱性が低下する場合がある。このため、含有する場合には、Ca量は0.0005〜0.0050%の範囲、REMは0.0010〜0.0050%の範囲とすることが好ましい。
Ca: 0.0005 to 0.0050%, REM: 0.0010 to 0.0050%
Both Ca and REM (rare earth metal) contribute to improvement of the toughness and ductility of the base material through the form control of the sulfide. Moreover, Ca and REM (rare earth metal) produce fine sulfide particles in the steel. These sulfide particles contribute to the improvement of HAZ toughness by acting as ferrite transformation nuclei. In order to obtain these effects, Ca preferably contains at least 0.0005% and REM contains at least 0.0010%. However, when both Ca and REM contain more than 0.0050%, inclusions are excessively generated, and the toughness may be reduced. For this reason, when it contains, it is preferable to make Ca amount into the range of 0.0005 to 0.0050%, and REM into the range of 0.0010 to 0.0050%.

本発明の高張力鋼板は、フェライトを主相とし、フェライトの平均結晶粒径を5〜70μmとする。   The high-tensile steel sheet of the present invention has ferrite as a main phase and an average crystal grain size of ferrite of 5 to 70 μm.

フェライト:主相(面積率60%以上)
所望の強度および降伏比を満足するため、フェライトを主相とする。フェライト以外の残部はベイナイトおよびパーライトの1種または2種である。ベイナイトおよびパーライトはフェライトと比較して高硬度であり、フェライトに対し、いずれも硬質相である。フェライトの面積率が60%を下回ると、硬質相の面積率が大きくなり、降伏強度が高くなるため、所望の低降伏比が得られなくなる。このため、本発明の高張力鋼板は、フェライトを面積率で60%以上の主相とする。ここで主相とは、鋼板の組織全体に対し、面積率で60%以上の相を意味する。また、フェライトに代えて、ベイナイトなどの低温変態相を主相とすると所望の低降伏比が得られなくなる上、所望の高温強度も得られなくなる。
Ferrite: main phase (area ratio 60% or more)
In order to satisfy the desired strength and yield ratio, ferrite is the main phase. The balance other than ferrite is one or two of bainite and pearlite. Bainite and pearlite have higher hardness than ferrite, and both are hard phases with respect to ferrite. When the area ratio of ferrite is less than 60%, the area ratio of the hard phase increases and the yield strength increases, so that a desired low yield ratio cannot be obtained. For this reason, the high-tensile steel sheet of the present invention uses ferrite as the main phase with an area ratio of 60% or more. Here, the main phase means a phase having an area ratio of 60% or more with respect to the entire structure of the steel sheet. In addition, when a low-temperature transformation phase such as bainite is used as the main phase instead of ferrite, a desired low yield ratio cannot be obtained and a desired high-temperature strength cannot be obtained.

ベイナイトなどの低温変態相は、低温で変態することによって、高い転位密度を有し、微細な炭化物(主に鉄の炭化物であるセメンタイト)が分散した組織を有する。このため、低温変態相が600℃近傍の温度域に加熱されると、低温変態相は、転位の回復、炭化物の溶解により強度が著しく低下してしまう。このため、高温強度確保の観点からも、本発明の高張力鋼板はフェライトを主相とする。   A low-temperature transformation phase such as bainite has a high dislocation density by transformation at a low temperature, and has a structure in which fine carbides (mainly cementite which is an iron carbide) are dispersed. For this reason, when the low temperature transformation phase is heated to a temperature range near 600 ° C., the strength of the low temperature transformation phase is significantly reduced due to recovery of dislocations and dissolution of carbides. For this reason, also from a viewpoint of ensuring high temperature strength, the high-tensile steel sheet of the present invention has ferrite as a main phase.

フェライトの平均結晶粒径:5〜70μm
フェライトの平均結晶粒径が5μm未満では、結晶粒の細粒化強化によって降伏強度が高くなりすぎてしまい、所望の低降伏比が得られなくなる。また、フェライトの平均結晶粒径が70μmを超えると組織が粗大なため、靭性が劣化する。このため、フェライトの平均結晶粒径は5〜70μmとする。
Average crystal grain size of ferrite: 5 to 70 μm
If the average crystal grain size of ferrite is less than 5 μm, the yield strength becomes too high due to the strengthening of crystal grains, and a desired low yield ratio cannot be obtained. On the other hand, if the average crystal grain size of ferrite exceeds 70 μm, the structure is coarse and the toughness deteriorates. Therefore, the average crystal grain size of ferrite is set to 5 to 70 μm.

2.製造条件について
上述した成分組成を有する鋼を転炉、電気炉等の溶製手段で常法により溶製し、連続鋳造法または造塊分塊法等で常法によりスラブとする。その後、加熱圧延し、圧延後に空冷したのち、焼戻しを行う。なお、溶製方法、鋳造方法については上述した方法に限定されるものではない。
2. Production Conditions Steel having the above-described component composition is melted by a conventional method using a melting means such as a converter or an electric furnace, and is formed into a slab by a conventional method such as a continuous casting method or an ingot-making agglomeration method. Then, it heat-rolls, air-cools after rolling, and then performs tempering. The melting method and the casting method are not limited to the methods described above.

加熱温度:1050〜1200℃
加熱温度が1050℃未満では、炭化物が完全に溶解せず、固溶Cが不足するため、強度が低下しやすい。一方、加熱温度が1200℃を超えると、組織が粗大化して鋼板の靱性が低下する。また焼入性が増加して、表層硬さが増加する。このため、鋼素材の加熱温度は1050℃〜1200℃の範囲とする。なお、好ましくは1080℃〜1150℃の範囲である。
Heating temperature: 1050-1200 ° C
When the heating temperature is less than 1050 ° C., the carbide is not completely dissolved and the solid solution C is insufficient, so that the strength tends to decrease. On the other hand, when heating temperature exceeds 1200 degreeC, a structure will coarsen and the toughness of a steel plate will fall. Moreover, hardenability increases and surface hardness increases. For this reason, the heating temperature of a steel raw material shall be the range of 1050 degreeC-1200 degreeC. In addition, Preferably it is the range of 1080 to 1150 degreeC.

表面温度で950℃以下の温度域での累積圧下量:30%以上50%未満
ミクロ組織を適度に微細化するため、鋼板の表面温度が950℃以下の温度域で制御圧延を行う。950℃を超える温度域では、圧延により伸展したオーステナイト結晶粒の再結晶と粒成長が圧延直後に速やかに起こるため、950℃を超える温度域での圧延は結晶粒の微細化にほとんど寄与しない。このため、950℃以下の温度域での累積圧下量を規定する。該温度域での累積圧下率が30%未満では、組織が粗大化し、また焼入性が増加して、表層硬さが増加する。また所望の靭性を確保できなくなる。このため、表面温度で950℃以下の温度域での累積圧下率を30%以上とする。また、950℃以下の温度域での累積圧下率が50%以上では、組織が微細化しすぎてしまい、結晶粒微細化強化により降伏強度が増加するため、所望の低降伏比を確保できなくなる。このため、累積圧下率は50%未満とした。なお、好ましくは35%以上45%以下である。
Cumulative rolling reduction in a temperature range of 950 ° C. or less at the surface temperature: 30% or more and less than 50% Control rolling is performed in a temperature range where the surface temperature of the steel sheet is 950 ° C. or less in order to refine the microstructure appropriately. In the temperature range exceeding 950 ° C., recrystallization and grain growth of the austenite crystal grains extended by rolling occur immediately after rolling, so that rolling in the temperature range exceeding 950 ° C. hardly contributes to the refinement of crystal grains. For this reason, the cumulative amount of reduction in the temperature range of 950 ° C. or lower is specified. When the cumulative rolling reduction in the temperature range is less than 30%, the structure becomes coarse, hardenability increases, and surface hardness increases. Moreover, desired toughness cannot be ensured. For this reason, the cumulative rolling reduction in the temperature range of 950 ° C. or less at the surface temperature is set to 30% or more. Further, when the cumulative rolling reduction in the temperature range of 950 ° C. or lower is 50% or more, the structure is excessively refined, and the yield strength is increased by strengthening the grain refinement, so that a desired low yield ratio cannot be ensured. For this reason, the cumulative rolling reduction is set to less than 50%. In addition, Preferably they are 35% or more and 45% or less.

圧延終了温度(表面温度):Ar−100℃以上800℃以下
鋼板に圧延を施し、鋼板に転位を導入し、歪みを持たせることによって、鋼板の高温強度を上げることができる。また、この効果は圧延終了温度を低くする程顕著である。よって、所望の高温強度を確保するために、圧延終了温度は800℃以下とする。なお、圧延終了温度を低くしすぎると圧延効率を著しく悪化させるため、Ar−100℃以上の温度とした。
Rolling end temperature (surface temperature): Ar 3 −100 ° C. or more and 800 ° C. or less Rolling the steel plate, introducing dislocations into the steel plate, and imparting strain can increase the high temperature strength of the steel plate. Further, this effect becomes more remarkable as the rolling end temperature is lowered. Therefore, in order to ensure a desired high temperature strength, the rolling end temperature is set to 800 ° C. or less. In addition, since the rolling efficiency will be remarkably deteriorated if the rolling end temperature is too low, the temperature is set to Ar 3 -100 ° C or higher.

圧延後の冷却:空冷
熱間圧延後の冷却は空冷とする。これは、鋼板の組織を、フェライトを主相とするためである。空冷とは大気中に放置して冷却することを指し、空気を送風機などで鋼板に吹き付けて強制的に冷却することは、この場合の空冷に含まれない。空冷時の冷却速度は1℃/s以下、通常は0.5℃/s程度である。空冷を超える冷却速度で冷却するとベイナイトなどのフェライト以外の相が増加し、フェライトを主相とする鋼板が得られない。また、本発明の鋼板は、極めて低い圧延終了温度で圧延されるため、圧延終了後の鋼板には高い残留応力が発生している。このため、空冷以外の冷却方法(水冷など)で冷却を行うと、さらに鋼板中の応力分布の不均一を招き、鋼板が変形する恐れがある。
Cooling after rolling: Air cooling Cooling after hot rolling is air cooling. This is because the structure of the steel sheet has ferrite as the main phase. Air cooling refers to cooling by leaving in the atmosphere, and forcibly cooling by blowing air onto a steel plate with a blower or the like is not included in the air cooling in this case. The cooling rate during air cooling is 1 ° C./s or less, usually about 0.5 ° C./s. When cooling at a cooling rate exceeding air cooling, phases other than ferrite such as bainite increase, and a steel sheet having ferrite as a main phase cannot be obtained. Moreover, since the steel plate of the present invention is rolled at a very low rolling end temperature, a high residual stress is generated in the steel plate after the end of rolling. For this reason, if cooling is performed by a cooling method other than air cooling (water cooling or the like), the stress distribution in the steel sheet may be further uneven, and the steel sheet may be deformed.

空冷後の鋼板温度:300℃以下
圧延後、空冷によって300℃以下まで冷却する。これは、焼戻しの前には、フェライト変態が完了しフェライトが主相である組織としておく必要があるためである。フェライト変態が完了しておらず、オーステナイトが残存している状態で焼き戻しを行うと、オーステナイト中にCが濃化する。このように、オーステナイト中にCが濃化すると、焼き戻し後の冷却によって、Cの濃化したオーステナイトがマルテンサイトとなり、鋼板の靭性が著しく低下する。
Steel plate temperature after air cooling: 300 ° C. or less Rolled and then cooled to 300 ° C. or less by air cooling. This is because, before tempering, it is necessary to complete the ferrite transformation and to have a structure in which ferrite is the main phase. When tempering is performed in a state where the ferrite transformation is not completed and austenite remains, C is concentrated in the austenite. Thus, when C concentrates in austenite, the austenite enriched in C becomes martensite by cooling after tempering, and the toughness of the steel sheet is remarkably lowered.

焼戻し温度:400℃以上700℃未満
上述のように圧延終了後の鋼板には高い残留応力が発生しており、この残留応力は空冷後の鋼板にも残存している。このため鋼板の歪(残留応力)除去のため、焼き戻しが必要である。この効果を得るためには400℃以上で行うことが必要であるが、700℃以上では強度の低下と降伏比の上昇を招くため、700℃未満にする必要がある。
Tempering temperature: 400 ° C. or higher and lower than 700 ° C. As described above, a high residual stress is generated in the steel sheet after the rolling is completed, and this residual stress remains in the steel sheet after air cooling. For this reason, tempering is necessary to remove the distortion (residual stress) of the steel sheet. In order to acquire this effect, it is necessary to carry out at 400 degreeC or more, but since 700 degreeC or more causes the fall of intensity | strength and a raise of a yield ratio, it needs to be less than 700 degreeC.

表1に示す成分組成の鋼(鋼No.A〜K)を連続鋳造法によりスラブとし板厚30mmまたは40mmの厚鋼板(N0.1〜18)を製造した。各鋼のAr3温度は熱膨張曲線を測定することにより決定した。   Steel sheets (steel Nos. A to K) having the composition shown in Table 1 were made into slabs by a continuous casting method to produce a thick steel plate (N 0.1 to 18) having a plate thickness of 30 mm or 40 mm. The Ar3 temperature of each steel was determined by measuring the thermal expansion curve.

Figure 0006164171
Figure 0006164171

加熱したスラブを熱間圧延により圧延した後、空冷により300℃以下まで冷却を行い、誘導加熱炉を用いて焼戻を行った。   The heated slab was rolled by hot rolling, cooled to 300 ° C. or lower by air cooling, and tempered using an induction heating furnace.

各鋼板(N0.1〜18)の製造条件を表2に示す。なお、加熱温度、圧延終了温度、冷却開始、冷却後温度および焼戻し温度は鋼板表面温度とした。   Table 2 shows the production conditions of each steel plate (N0.1-18). The heating temperature, rolling end temperature, cooling start, post-cooling temperature, and tempering temperature were the steel sheet surface temperature.

Figure 0006164171
Figure 0006164171

以上のようにして製造した厚鋼板から試験片を採取し、ミクロ組織を観察し、室温および高温での引張り特性を測定した。また、鋼板の母材靭性および溶接性について評価した。 Test pieces were collected from the thick steel plates produced as described above, the microstructure was observed, and the tensile properties at room temperature and high temperature were measured. In addition, the base metal toughness and weldability of the steel sheet were evaluated.

組織観察
厚鋼板から圧延方向に対して90°方向(C方向)の断面を切り出し、鏡面まで研磨し、ナイタール(1%濃硝酸メタノール溶液)により腐食して組織を現出した。1/4厚み位置で、光学顕微鏡により400倍の写真を撮影し、組織の同定を行った。また、組織写真の画像解析により、フェライトの面積率と平均結晶粒径を求めた。なお、このフェライト平均結晶粒径は円相当粒径である。
Microstructure observation A 90 ° direction (C direction) cross section was cut from a thick steel plate, polished to a mirror surface, and corroded with nital (1% concentrated nitric acid methanol solution) to reveal a structure. At a 1/4 thickness position, a 400 times photograph was taken with an optical microscope, and the tissue was identified. Further, the area ratio of ferrite and the average crystal grain size were determined by image analysis of the structure photograph. The ferrite average crystal grain size is a circle equivalent grain size.

室温引張試験
圧延方向に対して90°方向(C方向)にJIS5号引張試験片を採取し、JIS Z2241の規定に準拠してクロスヘッド速度10mm/minで引張試験をおこない、降伏応力(YS)、引張強度(TS)を測定した。引張強度(TS)が490MPa以上で、かつ、降伏比(YS/TS)が80%以下を良好と評価できる。
Room temperature tensile test JIS No. 5 tensile test specimen was sampled in 90 ° direction (C direction) with respect to the rolling direction, and tensile test was conducted at a crosshead speed of 10 mm / min in accordance with the provisions of JIS Z2241, yield stress (YS) The tensile strength (TS) was measured. A tensile strength (TS) of 490 MPa or more and a yield ratio (YS / TS) of 80% or less can be evaluated as good.

高温引張試験
圧延方向に対して90°方向(C方向)に試験片を採取し、JIS G 0567の規定に準拠して試験温度600℃で高温引張試験を行い、降伏応力(YS)を測定した。降伏応力(YS)が217MPa以上を良好と評価できる。
High temperature tensile test Specimens were sampled in the 90 ° direction (C direction) with respect to the rolling direction, subjected to a high temperature tensile test at a test temperature of 600 ° C. in accordance with JIS G 0567, and yield stress (YS) was measured. . A yield stress (YS) of 217 MPa or more can be evaluated as good.

母材靭性
JIS Z 2242に準拠して、シャルピー衝撃試験をおこなった。鋼板の圧延方向に対して90°方向(C方向)が長手方向になるように、Vノッチシャルピー衝撃試験片(幅10mm)を採取し、0℃で衝撃試験を行い、吸収エネルギーを測定した。0℃での吸収エネルギーvE0が47J以上を母材靭性が良好であると評価した。
Base metal toughness A Charpy impact test was conducted in accordance with JIS Z 2242. A V-notch Charpy impact test piece (width 10 mm) was taken so that the 90 ° direction (C direction) was the longitudinal direction with respect to the rolling direction of the steel sheet, an impact test was performed at 0 ° C., and the absorbed energy was measured. When the absorbed energy vE0 at 0 ° C. was 47 J or more, the base material toughness was evaluated as good.

溶接性評価(y形溶接割れ試験)
JIS Z 3158に準拠してy形溶接割れ試験を行い、溶接性を評価した。予熱温度および雰囲気温度は5℃とし、溶接条件;電流:240A、電圧:28V、溶接速度:24cm/minでCO溶接し、溶接後48時間以上経過してから試験溶接部について、表面並びに断面の割れの有無を観察し、割れが無ければ良好と評価できる。
Weldability evaluation (y-type weld cracking test)
A y-type weld cracking test was performed in accordance with JIS Z 3158 to evaluate weldability. Preheating temperature and ambient temperature are 5 ° C., welding conditions: current: 240 A, voltage: 28 V, welding speed: CO 2 welding at 24 cm / min. The presence or absence of cracks is observed, and if there are no cracks, it can be evaluated as good.

試験結果を表2に示す。   The test results are shown in Table 2.

本発明例はいずれも、室温での引張強度(TS)が490MPa以上、降伏比が80%以下、600℃での引張強度(TS)が217MPa以上、vE0が47J以上と優れた室温強度、高温強度、母材靭性を示し、低降伏比を実現している。さらに、本発明例はいずれも、y形溶接割れ試験において割れを発生することもなく、優れた溶接性を有する。これに対し、比較例は降伏比、高温強度、母材靭性、溶接性のいずれかの目標性能を満足していない。   In all of the inventive examples, the tensile strength (TS) at room temperature is 490 MPa or more, the yield ratio is 80% or less, the tensile strength (TS) at 600 ° C. is 217 MPa or more, and vE0 is 47 J or more. It exhibits strength and base metal toughness and achieves a low yield ratio. Furthermore, all of the inventive examples have excellent weldability without generating cracks in the y-type weld crack test. On the other hand, the comparative example does not satisfy any target performance of yield ratio, high temperature strength, base metal toughness, and weldability.

Claims (4)

成分組成が、質量%で、C:0.04〜0.12%、Si:0.50%以下、Mn:0.50〜1.50%、P:0.02%以下、S:0.0050%以下、Al:0.050%以下、Mo:0.40〜0.70%、V:0.070〜0.120%、Cr:0.05〜0.40%を含有し、さらに下記(1)式で定義されるCeqが、0.46以下を満たし、残部Feおよび不可避的不純物からなり、フェライトが面積率で60%以上の主相であり、更に、フェライトの平均結晶粒径が5〜70μmであり、600℃での降伏強度が217MPa以上であることを特徴とする高温強度と溶接性に優れた低降伏比高張力鋼板。
Ceq=C+Si/24+Mn/6+Cr/5+Ni/40+Mo/4+V/14
(1)
ここで、C、Si、Mn、Cr、Ni、Mo、Vは各元素の含有量(質量%)を表し、含有しない場合は0とする。
The component composition is mass%, C: 0.04 to 0.12%, Si: 0.50% or less, Mn: 0.50 to 1.50%, P: 0.02% or less, S: 0.00. 0050% or less, Al: 0.050% or less, Mo: 0.40 to 0.70%, V: 0.070 to 0.120%, Cr: 0.05 to 0.40%, and further below Ceq defined by the formula (1) satisfies 0.46 or less, consists of the balance Fe and unavoidable impurities, ferrite is the main phase of 60% or more in area ratio, and the average crystal grain size of ferrite is A low-yield ratio high-strength steel sheet excellent in high-temperature strength and weldability, characterized by having a yield strength of 5 to 70 μm and a yield strength at 600 ° C. of 217 MPa or more.
Ceq = C + Si / 24 + Mn / 6 + Cr / 5 + Ni / 40 + Mo / 4 + V / 14
(1)
Here, C, Si, Mn, Cr, Ni, Mo, and V represent the content (% by mass) of each element, and 0 when not contained.
成分組成が、さらに質量%で、Cu:0.05〜0.30%、Ni:0.05〜0.30%、Ti:0.005〜0.020%、Nb:0.005〜0.030%、B:0.0003〜0.0030%の1種以上を含有することを特徴とする請求項1に記載の高温強度と溶接性に優れた低降伏比高張力鋼板。   The component composition is further mass%, Cu: 0.05-0.30%, Ni: 0.05-0.30%, Ti: 0.005-0.020%, Nb: 0.005-0. The low yield ratio high tensile strength steel sheet excellent in high temperature strength and weldability according to claim 1, comprising at least one of 030% and B: 0.0003 to 0.0030%. 成分組成が、さらに質量%で、Ca:0.0005〜0.0050%、REM:0.0010〜0.0050%の1種以上を含有することを特徴とする請求項1または2に記載の高温強度と溶接性に優れた低降伏比高張力鋼板。   The component composition further comprises one or more of Ca: 0.0005 to 0.0050% and REM: 0.0010 to 0.0050% in terms of mass%. Low-yield ratio high-tensile steel sheet with excellent high-temperature strength and weldability. 請求項1乃至3の何れかに記載の高温強度と溶接性に優れた低降伏比高張力鋼板の製造方法であって、
素材を1050〜1200℃に加熱後、表面温度で950℃以下の温度域での累積圧下量が30%以上50%未満の熱間圧延を行い、かつ、圧延終了温度がAr−100℃以上800℃以下であり、その後、300℃以下まで空冷し、更に、400℃以上700℃以下の温度で焼戻しを行うことを特徴とする高温強度と溶接性に優れた低降伏比高張力鋼板の製造方法。
A method for producing a low-yield ratio high-tensile steel sheet excellent in high-temperature strength and weldability according to any one of claims 1 to 3 ,
After heating a steel material to 1050 to 1200 ° C., cumulative reduction ratio in the temperature range of 950 ° C. or less at a surface temperature makes a hot rolling less than 30% 50%, and rolling end temperature is Ar 3 -100 ° C. The low yield ratio high-tensile steel sheet excellent in high-temperature strength and weldability, characterized by being air-cooled to 800 ° C. or lower, then air-cooled to 300 ° C. or lower, and further tempered at a temperature of 400 ° C. to 700 ° C. Production method.
JP2014148483A 2014-07-22 2014-07-22 Low yield ratio high strength steel sheet with excellent high temperature strength and weldability and method for producing the same Active JP6164171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014148483A JP6164171B2 (en) 2014-07-22 2014-07-22 Low yield ratio high strength steel sheet with excellent high temperature strength and weldability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014148483A JP6164171B2 (en) 2014-07-22 2014-07-22 Low yield ratio high strength steel sheet with excellent high temperature strength and weldability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016023336A JP2016023336A (en) 2016-02-08
JP6164171B2 true JP6164171B2 (en) 2017-07-19

Family

ID=55270386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014148483A Active JP6164171B2 (en) 2014-07-22 2014-07-22 Low yield ratio high strength steel sheet with excellent high temperature strength and weldability and method for producing the same

Country Status (1)

Country Link
JP (1) JP6164171B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115044840B (en) * 2022-05-19 2023-08-08 包头钢铁(集团)有限责任公司 800 MPa-level low-yield-ratio easy-welding steel plate and production method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371678B2 (en) * 1996-04-15 2003-01-27 日本鋼管株式会社 Manufacturing method of low yield ratio refractory steel for structural use
JP3371699B2 (en) * 1996-07-22 2003-01-27 日本鋼管株式会社 Manufacturing method of earthquake resistant building steel with excellent fire resistance
JPH10265895A (en) * 1997-03-26 1998-10-06 Nippon Steel Corp High temperature refractory steel with low yield ratio

Also Published As

Publication number Publication date
JP2016023336A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP5354164B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP6149368B2 (en) Manufacturing method of high-tensile steel plate with excellent delayed fracture resistance
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JP4848966B2 (en) Thick-wall high-tensile steel plate and manufacturing method thereof
JP5509685B2 (en) Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method
JP6252291B2 (en) Steel sheet and manufacturing method thereof
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP2012122111A (en) Method for producing tmcp and tempering process type high-strength thick steel plate having both excellent productivity and weldability, and excellent in drop-weight characteristic after pwht
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP2011202210A (en) Refractory steel having excellent reheat embrittlement resistance and low temperature toughness and method for producing the same
JP7243826B2 (en) steel plate
JP5999005B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP5157387B2 (en) Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability
JP4008378B2 (en) Low yield ratio high strength steel with excellent toughness and weldability
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JPWO2010119989A1 (en) Manufacturing method of high production type 780 MPa class high strength steel sheet with excellent low temperature toughness
JP6146429B2 (en) Tempered high tensile steel plate and method for producing the same
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
JP6164171B2 (en) Low yield ratio high strength steel sheet with excellent high temperature strength and weldability and method for producing the same
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP4951938B2 (en) Manufacturing method of high toughness high tensile steel sheet
JP2014029004A (en) Method of producing high tensile steel sheet excellent in weldability and delayed fracture resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R150 Certificate of patent or registration of utility model

Ref document number: 6164171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250