JP2006274388A - HIGH TENSILE STRENGTH STEEL SHEET SATISFYING YIELD STRENGTH OF >=650 MPa AND HAVING LOW ACOUSTIC ANISOTROPY, AND METHOD FOR PRODUCING THE SAME - Google Patents

HIGH TENSILE STRENGTH STEEL SHEET SATISFYING YIELD STRENGTH OF >=650 MPa AND HAVING LOW ACOUSTIC ANISOTROPY, AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2006274388A
JP2006274388A JP2005097728A JP2005097728A JP2006274388A JP 2006274388 A JP2006274388 A JP 2006274388A JP 2005097728 A JP2005097728 A JP 2005097728A JP 2005097728 A JP2005097728 A JP 2005097728A JP 2006274388 A JP2006274388 A JP 2006274388A
Authority
JP
Japan
Prior art keywords
less
mpa
yield strength
cooling
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005097728A
Other languages
Japanese (ja)
Other versions
JP4418391B2 (en
Inventor
Tatsuya Kumagai
達也 熊谷
Masaaki Fujioka
政昭 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005097728A priority Critical patent/JP4418391B2/en
Publication of JP2006274388A publication Critical patent/JP2006274388A/en
Application granted granted Critical
Publication of JP4418391B2 publication Critical patent/JP4418391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high tensile strength steel sheet satisfying yield strength in a class of ≥650 MPa and having low acoustic anisotropy, and to provide a production method where off-line heat treatment for the steel sheet is not required. <P>SOLUTION: The steel sheet has a composition comprising 0.04 to 0.09% C, 0.01 to 0.6% Si, >2.00 to 3.00% Mn, and 0.0005 to 0.005% B, and comprising Nb and Ti so as to satisfy 0.045%≤Nb+2Ti≤0.090%, and in which A=(Nb+2Ti)×(C+N×12/14) satisfies 0.0025 to 0.0055, and has a structure composed of ≥80% bainite. In the method for producing the steel sheet, the componential steel is heated at T(=6300/(1.9-Log(A))-273) to 1,300°C, and is subjected to rolling so as to be rough-rolled at ≥1,020°C, thereafter to be rolled at a cumulative draft of ≤15% in the range from >920 to <1,020°C, to be rolled at a cumulative draft of 20 to 50% in the range from 860 to 920°C, and to be rolled at a finishing temperature of 860°C, successively, accelerated cooling is started from ≥800°C, and the cooling is stopped at 420 to 570°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、音響異方性が小さい降伏強さ650MPa級以上の高張力鋼板およびその製造方法に関し、特に、オフラインでの熱処理を必要としない高い生産性のもとに製造することのできる、音響異方性が小さい降伏強さ650MPa級以上の高張力鋼板およびその製造方法に関するものである。本発明鋼は、建築、橋梁をはじめ、船舶、建設機械、産業機械、海洋構造物、ペンストックなどの溶接構造物の構造部材として、厚鋼板の形態で用いられるものである。   The present invention relates to a high-strength steel sheet having a yield strength of 650 MPa or higher with a small acoustic anisotropy and a method for producing the same, and in particular, an acoustic that can be produced with high productivity that does not require off-line heat treatment. The present invention relates to a high-tensile steel plate having a low anisotropy and a yield strength of 650 MPa or more and a method for producing the same. The steel of the present invention is used in the form of a thick steel plate as a structural member of a welded structure such as a building, a bridge, a ship, a construction machine, an industrial machine, an offshore structure, and a penstock.

建築、橋梁、建設機械、産業機械などの分野の溶接構造部材には、近年構造物の大型化にともない、鋼材重量を軽減する目的のために、従来よりもいっそう高強度、例えば降伏強さ650MPa以上の鋼材が用いられる傾向にある。   For welded structural members in the fields of architecture, bridges, construction machinery, industrial machinery, etc., with the recent increase in size of structures, for the purpose of reducing the weight of steel materials, higher strength than conventional ones, for example, yield strength 650 MPa. The above steel materials tend to be used.

このクラスの高張力鋼は、従来、鋼板を圧延後にオフラインで再加熱焼入れし、さらに再加熱による焼戻し熱処理を行うことによって製造されるのが一般的であった。最近では、鋼板の圧延後にオンラインで焼入れを行う、いわゆる直接焼入れされる場合も多いが、この場合でも再加熱による焼戻し熱処理は必要である。   Conventionally, this class of high-strength steel has been generally manufactured by rolling a steel plate offline after re-heating and further performing tempering heat treatment by re-heating. Recently, there are many cases of so-called direct quenching, in which quenching is performed on-line after rolling of the steel sheet, but even in this case, tempering heat treatment by reheating is necessary.

しかし、オフラインでの熱処理工程を要することはどうしても生産性を阻害してしまうことから、生産性を高めるには、焼戻し熱処理も省略してオフラインでの熱処理を必要としない、いわゆる非調質の製造方法が望ましい。   However, the need for an off-line heat treatment step inevitably hinders productivity, so to improve productivity, so-called non-tempered production that does not require off-line heat treatment by omitting tempering heat treatment. The method is desirable.

このクラスの高張力鋼の非調質での製造方法はいくつか開示されており、いずれも合金組成の調整と、加熱、圧延条件と、オンラインでの水冷条件の工夫によって製造する技術である。   Several methods for producing this class of high-strength steel with no tempering have been disclosed, all of which are techniques for producing an alloy by adjusting the alloy composition, heating, rolling conditions, and online water-cooling conditions.

例えば、特許文献1には、特定組成の鋼を熱間圧延後500℃を下回らない温度域から300℃以下の温度に加速冷却する製造方法に関する発明が開示されている。しかし、このような低温域まで加速冷却することにより、マルテンサイトを含む組織となるために強度は得やすいが、鋼板の残留応力が大きくなってしまう。鋼板の残留応力が大きいと、切断を行った際に鋼板の変形が大きくなる場合があるので、溶接構造用部材として用いるには問題がある。   For example, Patent Document 1 discloses an invention relating to a manufacturing method in which steel having a specific composition is accelerated and cooled from a temperature range not lower than 500 ° C. to a temperature of 300 ° C. or less after hot rolling. However, by accelerated cooling to such a low temperature range, a structure containing martensite is obtained, so that it is easy to obtain strength, but the residual stress of the steel sheet increases. If the residual stress of the steel plate is large, the steel plate may be greatly deformed when it is cut, so that there is a problem in using it as a member for a welded structure.

特許文献2に記載の発明も、このクラスの高張力鋼をオンラインで製造する技術に関するものであるが、一度加速冷却を中断して復熱させた後、再び加速冷却するという複雑な制御を要しており、特殊な設備を要すると推察され、一般的な技術とはいえない。   The invention described in Patent Document 2 also relates to a technique for producing this class of high-strength steel on-line. However, it requires complicated control of accelerating cooling after interrupting accelerating cooling and reheating. It is presumed that special equipment is required, and it cannot be said that it is a general technique.

特許文献3に記載の発明は、加速冷却を途中で停止するプロセスにおいて、その水冷停止温度を比較的高温の550℃以上とするものである。このように加速冷却を比較的高温で停止すれば前記のような残留応力の問題はないが、この発明ではCuを1.0%以上含有することが必須となっており、合金コストが高くなる問題がある。   The invention described in Patent Document 3 sets the water cooling stop temperature to a relatively high temperature of 550 ° C. or higher in the process of stopping accelerated cooling in the middle. Thus, if accelerated cooling is stopped at a relatively high temperature, there is no problem of the residual stress as described above. However, in the present invention, it is essential to contain 1.0% or more of Cu, which increases the alloy cost. There's a problem.

さらに、特許文献4にも、加速冷却の停止温度を580℃〜450℃とする加速冷却−途中停止プロセスによる製造方法に関する発明が開示されている。しかし、強度を得るために低温での制御圧延が必要とされていて、圧延完了温度が800℃以下(実施例では700℃以下)であることが必須条件となっている。特に、橋梁、建築などの用途では溶接部の超音波斜角探傷試験の精度に影響するために鋼板の音響異方性が小さいことが要求されるが、800℃以下の温度で圧延を完了する制御圧延では、集合組織が形成されるために鋼板の音響異方性が大きくなり、こうした用途には必ずしも合致しない。   Further, Patent Document 4 also discloses an invention relating to a manufacturing method by an accelerated cooling-intermediate stopping process in which an accelerated cooling stop temperature is set to 580 ° C. to 450 ° C. However, controlled rolling at a low temperature is required to obtain strength, and the rolling completion temperature is 800 ° C. or lower (700 ° C. or lower in the examples). In particular, in applications such as bridges and buildings, it is required that the acoustic anisotropy of the steel sheet be small in order to affect the accuracy of the ultrasonic oblique flaw detection test of the weld, but the rolling is completed at a temperature of 800 ° C. or lower. In controlled rolling, since a texture is formed, the acoustic anisotropy of the steel sheet increases, and this does not necessarily match such applications.

さらに、このような高張力鋼板には溶接性が要求されるが、近年では特に大入熱での溶接が適用されることも多く、大入熱溶接での溶接熱影響部の靭性が高いことが要求されることもある。   Furthermore, weldability is required for such high-tensile steel sheets, but in recent years, welding with particularly high heat input is often applied, and the toughness of the heat affected zone in high heat input welding is high. May be required.

降伏強さ650MPa以上の高張力鋼については、音響異方性、鋼板の残留応力、さらに溶接性を総合的に考慮した経済的な非調質の製造方法はこれまでなかったといえる。   For high-strength steel with a yield strength of 650 MPa or more, it can be said that there has never been an economical non-tempered manufacturing method that comprehensively considers acoustic anisotropy, residual stress of a steel sheet, and weldability.

特開2003−003233号公報JP 2003-003233 A 特開2003−277829号公報JP 2003-277829 A 特開平11−264017号公報Japanese Patent Laid-Open No. 11-264017 特開平06−093332号公報Japanese Patent Laid-Open No. 06-093332

そこで、本発明においては、音響異方性が小さい降伏強さ650MPa以上の高張力鋼板を、合金添加量が少ない経済的な成分組成と、生産性が高くかつ鋼板の残留応力が小さくなる加速冷却−途中停止プロセスを前提とした製造方法により得ることを課題とした。   Accordingly, in the present invention, a high-tensile steel sheet having a yield strength of 650 MPa or less with a small acoustic anisotropy, an economical component composition with a small amount of alloy addition, an accelerated cooling with a high productivity and a small residual stress of the steel sheet. -It was made into the subject obtained by the manufacturing method premised on the stop process on the way.

降伏強さ650MPa以上を得るためには、やはり鋼組織の影響が大きい。Ms点(マルテンサイト変態開始温度)以下まで加速冷却をしてマルテンサイトを含む組織とすると引張強さは高くなるが、転位密度が高くなりすぎ、結果として可動転位が多くなるために降伏強さは低下する場合がある。逆に、水冷停止温度を高くしてフェライトが生成すると、降伏強さは低下するので高強度を得るには不利になる。より高い降伏強さを得るためには、水冷停止温度をある程度低く、かつMs点(マルテンサイト変態開始温度)よりは高くして、組織をマルテンサイトを含まないベイナイト主体組織とすることが有利である。   In order to obtain a yield strength of 650 MPa or more, the influence of the steel structure is still great. When a structure containing martensite is accelerated by cooling to an Ms point (martensite transformation start temperature) or lower, the tensile strength increases, but the dislocation density becomes too high, and as a result, the number of movable dislocations increases, yield strength increases. May decline. On the other hand, if the water cooling stop temperature is raised and ferrite is produced, the yield strength decreases, which is disadvantageous for obtaining high strength. In order to obtain a higher yield strength, it is advantageous that the water cooling stop temperature is lowered to some extent and higher than the Ms point (martensite transformation start temperature), so that the structure is a bainite-based structure containing no martensite. is there.

しかしながら、加速冷却−途中停止プロセスを前提とする場合、素地の強度だけに頼って強度を得ようとすると焼入性を確保するためにC量あるいは合金を多量に添加せざるを得ず、コストあるいは溶接性とのバランスがとれない。   However, if an accelerated cooling-intermediate stop process is presupposed, relying solely on the strength of the substrate to obtain strength requires the addition of a large amount of C or alloy in order to ensure hardenability and cost. Or balance with weldability cannot be taken.

比較的少ない合金成分での強化が可能な強化手段として、Nb、V、Ti、Mo、Crの炭化物あるいは窒化物などの析出強化を利用する方法がある。その際、大きな析出強化量を得るためには素地と整合性のある析出物を形成させることが重要となる。   As a strengthening means capable of strengthening with relatively few alloy components, there is a method using precipitation strengthening such as carbide or nitride of Nb, V, Ti, Mo, Cr. At that time, in order to obtain a large precipitation strengthening amount, it is important to form precipitates that are consistent with the substrate.

加速冷却−途中停止プロセスでは、圧延中の段階では鋼組織はオーステナイトであり、加速冷却によって変態させてベイナイト主体の組織とする。圧延や加速冷却前にオーステナイト中で析出した析出物は変態後には素地との整合性を失って強化効果は小さくなる。また、圧延の早い段階で析出した析出物は粗大化して靭性を低下させる要因ともなる。したがって、圧延中および加速冷却前には析出物の析出は抑制しておき、加速冷却停止後の徐冷中の段階でベイナイト組織中にできるだけ析出物を析出させることが重要である。水冷後に再加熱して焼戻し熱処理を行うプロセスであれば、析出物の析出のための温度と時間を十分にとることができるので、大きな析出強化を容易に得やすい。これに対して、再加熱焼戻しを行わない加速冷却−途中停止プロセスの場合は、加速冷却停止後の徐冷中に析出物の析出を期待するのであるが、焼入れ組織を得るために加速冷却停止温度はある程度低温にせざるを得ないので、析出物の析出のための温度、時間がともに制約され、析出強化には一般に不利である。こうしたことから、前述のように非調質プロセスは生産性が高い反面、調質プロセスと同じ強度を得るには、低温まで加速冷却するか、合金元素を多く必要とするか、比較的低温での制御圧延を行わざるを得なかったわけである。   In the accelerated cooling-intermediate stop process, the steel structure is austenite at the stage of rolling, and is transformed by accelerated cooling to a bainite-based structure. Precipitates precipitated in austenite before rolling or accelerated cooling lose their consistency with the substrate after transformation and the strengthening effect is reduced. In addition, precipitates precipitated at an early stage of rolling become coarse and cause toughness to decrease. Therefore, it is important to suppress the precipitation of precipitates during rolling and before accelerated cooling, and to precipitate the precipitates as much as possible in the bainite structure at the stage of slow cooling after the stop of accelerated cooling. If it is a process in which tempering heat treatment is performed by reheating after water cooling, a sufficient temperature and time for precipitation of the precipitate can be obtained, so that large precipitation strengthening can be easily obtained. On the other hand, in the case of the accelerated cooling-intermediate stop process without reheating and tempering, precipitation is expected during the slow cooling after stopping the accelerated cooling, but the accelerated cooling stop temperature is set to obtain a quenched structure. Since the temperature has to be lowered to some extent, both the temperature and time for precipitation are limited, which is generally disadvantageous for precipitation strengthening. For this reason, as described above, the non-tempering process is highly productive, but in order to obtain the same strength as the tempering process, accelerated cooling to a low temperature, a large amount of alloying elements are required, or a relatively low temperature is required. This is why the controlled rolling of the material has to be performed.

そこで、発明者らは、生産性の高い加速冷却−途中停止プロセスを前提としながら、合金元素を多量に添加することや低温での制御圧延によることなく降伏強さ650MPa以上の高強度を得るために、ベイナイト主体の組織を得ながら析出強化も最大限生かす方法について鋭意検討を重ねた。   Therefore, the inventors have obtained a high strength with a yield strength of 650 MPa or more without adding a large amount of alloy elements or by controlled rolling at a low temperature, assuming a highly productive accelerated cooling-interruption process. In addition, we have made extensive studies on how to make the most of precipitation strengthening while obtaining a bainite-based structure.

まず、加速冷却停止後徐冷過程における析出挙動を明らかにするため、ベイナイト組織中での各合金元素の炭化物、窒化物、炭窒化物の析出速度および析出強化量と、温度および保持時間との関係について詳細に検討した。その結果、ベイナイト組織中ではNb炭窒化物、Ti炭化物の析出速度がVなど他の元素に比べて速く、かつこれらは素地と整合な析出物となるために強化量が大きい。600〜700℃の温度域での析出速度がもっとも速いが、NbとTi、あるいはNbとTiとMoとを併用して複合析出させることによって600℃未満での比較的短時間の保持でも素地と整合な析出物が微細分散する。発明者らは、加速冷却の途中停止温度を420℃〜570℃とすることで、マルテンサイトを含まないベイナイト主体の組織を得ながら、相当な析出強化も可能であることを知見した。   First, in order to clarify the precipitation behavior in the slow cooling process after stopping the accelerated cooling, the precipitation rate and precipitation strengthening amount of carbide, nitride and carbonitride of each alloy element in the bainite structure, and the temperature and holding time The relationship was examined in detail. As a result, in the bainite structure, the precipitation rate of Nb carbonitride and Ti carbide is faster than other elements such as V, and these are precipitates that are consistent with the base material, so the amount of strengthening is large. Although the deposition rate is the fastest in the temperature range of 600 to 700 ° C., it is possible to form a substrate even in a relatively short time of holding at less than 600 ° C. by performing composite precipitation using Nb and Ti or Nb, Ti and Mo in combination. Consistent precipitates are finely dispersed. The inventors have found that, by setting the midway temperature of accelerated cooling to 420 ° C. to 570 ° C., considerable precipitation strengthening is possible while obtaining a bainite-based structure that does not contain martensite.

しかしながら、Nb、Tiの添加量が多すぎると、生成する析出物が粗大になる傾向があり、析出物の個数はかえって少なくなるために、析出強化量が低下する。Nb、Tiの炭化物、窒化物および炭窒化物のオーステナイト中およびベイナイト中での析出速度や析出物の形態はNb、Ti添加量とC、N量によって大きく影響を受ける。発明者らは種々の実験および解析により、Nb、Tiの炭化物、窒化物および炭窒化物の析出速度、析出形態は、パラメータA=([Nb]+2×[Ti])×([C]+[N]×12/14)でよく整理され、この値を一定範囲内にすることで圧延中の析出を抑制しながら水冷途中停止後の徐冷中の微細な析出を十分に得ることができるという知見を得た。すなわち、Nb、Ti添加量が多いほどC、Nの添加量を少なくする必要があることになる。Aの値が小さすぎるとベイナイト中の析出速度が遅くなり、十分な析出強化が得られない。逆に、Aの値が大きすぎるとオーステナイト中の炭化物、窒化物および炭窒化物の析出速度が速くなりすぎて析出物が粗大化し、加速冷却停止後の徐冷中の整合析出量も不足するため、やはり析出強化量が低下する。具体的には、Nbを0.02%以上、0.08%以下、Tiを0.005%以上、かつ[Nb]+2×[Ti]が0.045%以上となるように添加し、上記パラメータAの値を、0.0025以上、0.0055以下とすることが、本発明鋼において降伏強さ650MPaを得るための条件となる。   However, if the amount of Nb and Ti added is too large, the generated precipitates tend to be coarse, and the number of precipitates is rather reduced, so that the amount of precipitation strengthening decreases. The precipitation rate and form of precipitates in the austenite and bainite of Nb and Ti carbides, nitrides and carbonitrides are greatly affected by the amounts of Nb and Ti added and the amounts of C and N. Through various experiments and analyses, the inventors have found that the precipitation rate and precipitation form of carbides, nitrides, and carbonitrides of Nb and Ti are parameters A = ([Nb] + 2 × [Ti]) × ([C] + [N] × 12/14) is well organized, and by setting this value within a certain range, it is possible to sufficiently obtain fine precipitation during slow cooling after stopping during water cooling while suppressing precipitation during rolling. Got. That is, it is necessary to decrease the addition amount of C and N as the addition amount of Nb and Ti increases. When the value of A is too small, the precipitation rate in bainite becomes slow, and sufficient precipitation strengthening cannot be obtained. Conversely, if the value of A is too large, the precipitation rate of carbides, nitrides and carbonitrides in austenite becomes too high and the precipitates become coarser, and the amount of matched precipitation during slow cooling after accelerating cooling is stopped, Again, the precipitation strengthening amount decreases. Specifically, Nb is added to be 0.02% or more, 0.08% or less, Ti is 0.005% or more, and [Nb] + 2 × [Ti] is 0.045% or more. Setting the value of parameter A to 0.0025 or more and 0.0055 or less is a condition for obtaining a yield strength of 650 MPa in the steel of the present invention.

ベイナイト組織は、フェライトに比べ転位密度など加工組織を維持しやすい。微細整合析出を促進させるには、加工組織に含まれる転位や変形帯などの析出サイトが十分に存在することが非常に有効に作用する。発明者らの検討によれば、十分な組織強化に加え析出強化を得るには、ベイナイトの体積率を少なくとも80%以上とすることが好ましい。ここでいうベイナイト組織とは、いわゆる上部ベイナイトと下部ベイナイトのいずれかあるいは両方を含むものである。   The bainite structure is easier to maintain a processed structure such as dislocation density than ferrite. In order to promote fine alignment precipitation, it is very effective that there are sufficient precipitation sites such as dislocations and deformation bands included in the processed structure. According to the study by the inventors, in order to obtain precipitation strengthening in addition to sufficient structure strengthening, the volume fraction of bainite is preferably at least 80% or more. The bainite structure here includes one or both of so-called upper bainite and lower bainite.

ひきつづき発明者らは、最大限の析出強化効果を得るための具体的な製造条件について検討を行い、以下の知見を得た。   Subsequently, the inventors examined specific manufacturing conditions for obtaining the maximum precipitation strengthening effect, and obtained the following knowledge.

本発明は、ベイナイトによる組織強化に加えて、圧延に引き続く加速冷却−途中停止プロセスにおいて、Nb、Ti等の析出強化を最大限に生かして強度を得ようとするものであり、圧延に先立つ鋼片または鋳片の加熱時にNb、Tiを十分に固溶させておく必要がある。しかしながら、NbとTiが共存すると単独で存在する場合よりも固溶しにくくなる傾向があり、それぞれの溶解度積などから予想される固溶温度への加熱では必ずしもこれらは十分には固溶できないことがわかった。発明者らは、本発明鋼において加熱温度とNb、Tiの固溶状態を調査し、特に、上記のA値とNb、Tiの固溶状態との関係を熱力学的に詳細に解析した。その結果、鋼片または鋳片の加熱温度を、下記に示すようなA値を含む条件式で算出される温度T(℃)よりも高くすることで、Nb、Tiを十分に固溶させることができるとの結論に至った。
T=6300/(1.9−Log(A))−273
ここで、
A=([Nb]+2×[Ti])×([C]+[N]×12/14)
であり、[Nb]、[Ti]、[C]、[N]は、それぞれ、Nb、Ti、C、Nの質量%で表した含有量を意味する。
The present invention aims to obtain strength by making the best use of precipitation strengthening of Nb, Ti, etc. in the accelerated cooling-intermediate stop process following rolling, in addition to the structural strengthening by bainite. It is necessary to sufficiently dissolve Nb and Ti when the piece or slab is heated. However, when Nb and Ti coexist, they tend to be harder to dissolve than when they exist alone, and these cannot always be sufficiently dissolved by heating to the solid solution temperature expected from the respective solubility products. I understood. The inventors investigated the heating temperature and the solid solution state of Nb and Ti in the steel of the present invention, and particularly analyzed the relationship between the A value and the solid solution state of Nb and Ti in detail thermodynamically. As a result, by making the heating temperature of the steel slab or slab higher than the temperature T (° C.) calculated by the conditional expression including the A value as shown below, Nb and Ti are sufficiently dissolved. I came to the conclusion that I could do it.
T = 6300 / (1.9-Log (A))-273
here,
A = ([Nb] + 2 × [Ti]) × ([C] + [N] × 12/14)
[Nb], [Ti], [C], and [N] mean the contents expressed by mass% of Nb, Ti, C, and N, respectively.

圧延段階でのNb、Tiの析出は圧延歪によって促進されるので、オーステナイトの高温域での圧延条件、いわゆる粗圧延の条件が、最終的な析出強化効果に大きく影響する。具体的には、粗圧延は1020℃以上の温度域で完了し、1020℃〜920℃の温度域では極力圧延をしないことが圧延中の析出を抑制するための要件である。しかしながら、すべての圧延を1020℃以上の温度域で完了してしまうと、回復、再結晶によって加速冷却−途中停止後には加工組織はほとんど残らないため、転位や変形帯などの析出サイトが十分に存在せず、十分な析出強化は得られない。したがって、未再結晶温度域において必要かつ十分な圧延を行い、圧延後すみやかに加速冷却を行うことが必須条件となる。発明者らの検討の結果、920℃〜860℃の限定された範囲において累積圧下率20%〜50%の比較的軽度な圧延を行うことが、その具体的条件であることを知見した。この条件であれば圧延歪は過度に大きくないので、不必要なNb、Tiの析出は抑制され、また強い集合組織を形成することはないので、音響異方性も大きくならない。なおかつ、加速冷却停止後も適度な析出サイトを残存させるために必要な量の圧延歪は確保することができる。   Since precipitation of Nb and Ti in the rolling stage is promoted by rolling strain, rolling conditions in a high temperature range of austenite, so-called rough rolling conditions, greatly influence the final precipitation strengthening effect. Specifically, the rough rolling is completed in a temperature range of 1020 ° C. or higher, and not rolling as much as possible in the temperature range of 1020 ° C. to 920 ° C. is a requirement for suppressing precipitation during rolling. However, if all rolling is completed in a temperature range of 1020 ° C. or higher, almost no work structure remains after accelerated cooling-interruption due to recovery and recrystallization, so there are sufficient precipitation sites such as dislocations and deformation bands. It does not exist and sufficient precipitation strengthening cannot be obtained. Therefore, it is an essential condition to perform necessary and sufficient rolling in the non-recrystallization temperature range and to perform accelerated cooling immediately after rolling. As a result of the study by the inventors, it has been found that it is a specific condition to perform relatively mild rolling with a cumulative rolling reduction of 20% to 50% within a limited range of 920 ° C to 860 ° C. Under these conditions, the rolling strain is not excessively large, so that unnecessary precipitation of Nb and Ti is suppressed and a strong texture is not formed, so that acoustic anisotropy does not increase. In addition, a necessary amount of rolling strain can be ensured in order to leave an appropriate precipitation site even after the accelerated cooling is stopped.

加速冷却−途中停止プロセスの加速冷却停止温度は、ベイナイト主体の組織を得つつNb、Tiの析出にも有利なように420℃〜570℃とするが、この停止温度範囲でベイナイトの体積率を80%以上とするためには、鋼の成分組成を後述する特定範囲に限定するとともに、加速冷却においては5℃/sec以上の冷却速度が必要である。   The accelerated cooling / stopping temperature of the accelerated cooling / intermediate stopping process is set to 420 ° C. to 570 ° C. so as to be advantageous for precipitation of Nb and Ti while obtaining a bainite-based structure. In order to set it to 80% or more, the component composition of steel is limited to a specific range described later, and a cooling rate of 5 ° C./sec or more is required in accelerated cooling.

ここで得られた知見は、強い集合組織をつくらない圧延条件によって音響異方性を小さくし、マルテンサイトを含まないベイナイト主体の組織を得ることで残留応力を小さくし、さらにベイナイト組織へのNb、Tiの炭化物あるいは炭窒化物の析出を、高温域を含む圧延中、加速冷却中および冷却停止後の徐冷過程に至るまでオンラインで制御する新しい考え方であり、従来の調質プロセス並以上の組織強化と析出強化の両立が、オフライン熱処理を必要としない加速冷却−途中停止プロセスで実現できる。   The knowledge obtained here is that the acoustic anisotropy is reduced by rolling conditions that do not form a strong texture, the residual stress is reduced by obtaining a bainite-based structure that does not contain martensite, and Nb into the bainite structure. This is a new concept that controls the precipitation of Ti carbides or carbonitrides on-line from rolling, including high temperature range, to accelerated cooling, and to the slow cooling process after stopping cooling. Both structural strengthening and precipitation strengthening can be realized by an accelerated cooling-interruption process that does not require off-line heat treatment.

また、この製造プロセスによれば、鋼材組成の溶接割れ感受性指数Pcm(Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B]:ここで、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[B]は、それぞれ、C、Si、Mn、Cu、Ni、Cr、Mo、V、Bの質量%で表した含有量を意味する。)を低く抑えることができ、Pcm≦0.20で降伏強さ650MPa以上の強度を得ることができる。本発明の鋼材においてPcm≦0.20とすれば、溶接入熱6kJ/mm程度の溶接に対しては十分な高い溶接熱影響部の靭性を得ることができる。しかし、溶接熱影響部の靭性に対しては、Siの影響も大きく、例えば、溶接入熱10kJ/mm程度の大入熱溶接でも高い溶接熱影響部靭性を得るためには、さらに、Si量を0.3%以下とすることが必要となる。   Moreover, according to this manufacturing process, the weld cracking sensitivity index Pcm (Pcm = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [ Mo] / 15 + [V] / 10 + 5 [B]: Here, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V], [B ] Means the content expressed by mass% of C, Si, Mn, Cu, Ni, Cr, Mo, V, and B, respectively)), and yield strength is strong when Pcm ≦ 0.20. A strength of 650 MPa or more can be obtained. If Pcm ≦ 0.20 in the steel material of the present invention, sufficiently high toughness of the weld heat affected zone can be obtained for welding with a welding heat input of about 6 kJ / mm. However, the influence of Si on the toughness of the weld heat affected zone is also large. For example, in order to obtain a high weld heat affected zone toughness even in high heat input welding with a heat input of about 10 kJ / mm, the amount of Si is further increased. Must be 0.3% or less.

本発明は、以上のような知見に基づき初めて完成されたものであって、その要旨とするところは、以下のとおりである。
(1) 質量%で、C:0.04%以上、0.09%以下、Si:0.01%以上、0.6%以下、Mn:2.00%超、3.00%以下、Al:0.003%以上、0.10%以下、N:0.002%以上、0.008%以下、B:0.0005%以上、0.005%以下を含有し、さらに、Nb、Tiを、Nb:0.02%以上、0.08%以下、Ti:0.005%以上、0.03%以下で、かつ、0.045%≦[Nb]+2×[Ti]≦0.090%を満たすように含有し、さらに、Nb、Ti、C、Nを、下記に示されるAの値が、0.0025以上、0.0055以下となる関係を満足する範囲で含有し、溶接割れ感受性指数Pcm≦0.20であり、残部Feおよび不可避不純物からなる成分組成を有するとともに、鋼組織が、ベイナイトの体積率が80%以上であることを特徴とする、音響異方性が小さい降伏強さ650MPa以上の高張力鋼板。
A=([Nb]+2×[Ti])×([C]+[N]×12/14)
であり、Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B]
である。ここで、[Nb]、[Ti]、[C]、[N]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[B]は、それぞれ、Nb、Ti、C、N、Si、Mn、Cu、Ni、Cr、Mo、V、Bの質量%で表した含有量を意味する。
(2) さらに、質量%で、Mo:0.01%以上、0.25%以下を含有することを特徴とする、上記(1)に記載の音響異方性が小さい降伏強さ650MPa以上の高張力鋼板。
(3) さらに、質量%で、Cu:0.05%以上、0.8%以下、Ni:0.05%以上、1%以下、Cr:0.05%以上、0.6%以下、V:0.005%以上、0.05%以下、W:0.1%以上、3%以下の1種または2種以上を含有することを特徴とする、上記(1)または(2)に記載の音響異方性が小さい降伏強さ650MPa以上の高張力鋼板。
(4) さらに、質量%で、Mg:0.0005%以上、0.01%以下、Ca:0.0005%以上、0.01%以下の1種または2種を含有することを特徴とする、上記(1)ないし(3)のいずれか1項に記載の音響異方性が小さい降伏強さ650MPa以上の高張力鋼板。
(5) 上記(1)ないし(4)のいずれかに記載の成分組成を有する鋼片または鋳片を、下記に示されるT(℃)以上、1300℃以下に加熱し、1020℃以上の温度範囲での粗圧延の後、1020℃未満、920℃超の範囲での累積圧下率を15%以下に抑制し、920℃以下、860℃以上の範囲での累積圧下率を20%以上、50%以下とし、圧延仕上げ温度を860℃以上とする仕上げ圧延を行い、これに引き続き、冷却速度が5℃/sec以上となる加速冷却を800℃以上から開始し、570℃以下、420℃以上で該加速冷却を停止して、その後0.5℃/sec以下の冷却速度で冷却することを特徴とする、音響異方性が小さい降伏強さ650MPa以上の高張力鋼板の製造方法。
T=6300/(1.9−Log(A))−273
ここで、
A=([Nb]+2×[Ti])×([C]+[N]×12/14)
であり、[Nb]、[Ti]、[C]、[N]は、それぞれ、Nb、Ti、C、Nの質量%で表した含有量を意味する。
The present invention has been completed for the first time based on the above findings, and the gist of the present invention is as follows.
(1) By mass%, C: 0.04% or more, 0.09% or less, Si: 0.01% or more, 0.6% or less, Mn: more than 2.00%, 3.00% or less, Al : 0.003% or more, 0.10% or less, N: 0.002% or more, 0.008% or less, B: 0.0005% or more, 0.005% or less, and further Nb and Ti Nb: 0.02% or more, 0.08% or less, Ti: 0.005% or more, 0.03% or less, and 0.045% ≦ [Nb] + 2 × [Ti] ≦ 0.090% In addition, Nb, Ti, C, and N are contained within a range that satisfies the relationship that the value of A shown below is 0.0025 or more and 0.0055 or less, and is susceptible to weld cracking. Index Pcm ≦ 0.20, having a component composition consisting of the balance Fe and inevitable impurities, and having a steel structure High-tensile steel plate that the features, the more acoustic anisotropy is small yield strength 650MPa the volume ratio of bainite is 80% or more.
A = ([Nb] + 2 × [Ti]) × ([C] + [N] × 12/14)
Pcm = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 [B]
It is. Here, [Nb], [Ti], [C], [N], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V], [B] Means the content expressed by mass% of Nb, Ti, C, N, Si, Mn, Cu, Ni, Cr, Mo, V, and B, respectively.
(2) Further, the composition contains Mo: 0.01% or more and 0.25% or less in terms of mass%, and the yield strength is 650 MPa or more with low acoustic anisotropy according to (1) above. High tensile steel plate.
(3) Further, by mass, Cu: 0.05% or more, 0.8% or less, Ni: 0.05% or more, 1% or less, Cr: 0.05% or more, 0.6% or less, V : 0.005% or more, 0.05% or less, W: 0.1% or more, 3% or less, 1 type or 2 types or more are contained, It is characterized by the above-mentioned (1) or (2) A high-tensile steel sheet with a yield strength of 650 MPa or more with low acoustic anisotropy.
(4) Further, it is characterized by containing one or two of Mg: 0.0005% or more and 0.01% or less and Ca: 0.0005% or more and 0.01% or less in mass%. The high-tensile steel sheet having a yield strength of 650 MPa or more with small acoustic anisotropy according to any one of (1) to (3) above.
(5) A steel slab or slab having the composition described in any one of (1) to (4) above is heated to T (° C.) or higher and 1300 ° C. or lower as shown below, and a temperature of 1020 ° C. or higher. After rough rolling in the range, the cumulative reduction rate in the range of less than 1020 ° C. and over 920 ° C. is suppressed to 15% or less, and the cumulative reduction rate in the range of 920 ° C. or less and 860 ° C. or more is 20% or more, 50 %, And finish rolling with a rolling finish temperature of 860 ° C. or higher is performed. Subsequently, accelerated cooling at a cooling rate of 5 ° C./sec or higher is started at 800 ° C. or higher, and at 570 ° C. or lower and 420 ° C. or higher. A method for producing a high-tensile steel plate having a low acoustic anisotropy and a yield strength of 650 MPa or more, wherein the accelerated cooling is stopped and then cooled at a cooling rate of 0.5 ° C./sec or less.
T = 6300 / (1.9-Log (A))-273
here,
A = ([Nb] + 2 × [Ti]) × ([C] + [N] × 12/14)
[Nb], [Ti], [C], and [N] mean the contents expressed by mass% of Nb, Ti, C, and N, respectively.

本発明によれば、音響異方性が小さい降伏強さ650MPa級以上の高張力鋼板を、合金添加量が少ない経済的な成分系と生産性の高い非調質の製造方法により得ることができ、その工業界への効果は極めて大きい。   According to the present invention, a high-tensile steel sheet having a yield strength of 650 MPa or more with low acoustic anisotropy can be obtained by an economical component system with a small amount of alloy addition and a highly tempered manufacturing method with high productivity. The effect on the industry is extremely large.

以下に、本発明における各成分および製造方法の限定理由を説明する。   Below, the reason for limitation of each component and manufacturing method in this invention is demonstrated.

Cは、ベイナイト組織を得るとともに、Nb、Tiとの炭化物、炭窒化物を形成し本発明鋼の強化機構の主要素となる重要な元素である。C量が不足であると加速冷却停止後の徐冷中の析出量が不足して強度が得られない。逆に過剰であっても圧延中のγオーステナイト域における析出速度が速くなり、結果的に加速冷却停止後の徐冷中の整合析出量が不足して強度が得られない。そのため、C量は、0.04%以上、0.09%以下の範囲に限定する。   C is an important element which obtains a bainite structure and forms carbides and carbonitrides with Nb and Ti and becomes a main element of the strengthening mechanism of the steel of the present invention. If the amount of C is insufficient, the amount of precipitation during slow cooling after the stop of accelerated cooling is insufficient, and the strength cannot be obtained. On the other hand, even if it is excessive, the precipitation rate in the γ-austenite region during rolling is increased, and as a result, the amount of consistent precipitation during slow cooling after the stop of accelerated cooling is insufficient, and the strength cannot be obtained. Therefore, the C content is limited to a range of 0.04% or more and 0.09% or less.

Siは、脱酸元素であり、また、焼入性を高めて強度を上げる効果があるので、0.01%以上添加する。加速冷却−途中停止プロセスにおいては、冷却停止後の徐冷中におけるセメンタイトの粗大化を抑制して母材の強度−靭性バランスの向上にも有利である。しかし、溶接熱影響部においては島状マルテンサイトの生成を促進して靭性を低下させる場合があるので、溶接性の観点からは添加量を抑えるほうがよい。したがって、例えば、入熱6kJ/mm程度の一般的な溶接施工による溶接構造物を用途とする部材に対しては、Siの添加範囲は、0.01%以上、0.6%以下とするが、入熱10kJ/mm程度の大入熱溶接施工による溶接構造物を用途とする部材に対しては、Siの添加量は0.3%以下、さらに好ましくは0.1%未満とする。   Since Si is a deoxidizing element and has the effect of increasing the hardenability and increasing the strength, 0.01% or more is added. In the accelerated cooling-intermediate stop process, it is advantageous for improving the strength-toughness balance of the base material by suppressing the coarsening of cementite during the slow cooling after the cooling stop. However, in the weld heat-affected zone, the formation of island martensite may be promoted and the toughness may be lowered, so it is better to suppress the addition amount from the viewpoint of weldability. Therefore, for example, for a member that uses a welded structure by a general welding construction with a heat input of about 6 kJ / mm, the addition range of Si is 0.01% or more and 0.6% or less. In addition, for a member that uses a welded structure with a large heat input welding with a heat input of about 10 kJ / mm, the amount of Si added is 0.3% or less, more preferably less than 0.1%.

Mnは、焼入性を高めベイナイト分率80%以上のベイナイト組織を得るために必要な元素である。この目的のためには、2.00%超の添加が必要であるが、3.00%を超えて添加すると母材靭性の低下をもたらす場合があるので、上限を3.00%とする。   Mn is an element necessary for increasing the hardenability and obtaining a bainite structure having a bainite fraction of 80% or more. For this purpose, addition of more than 2.00% is necessary, but if added over 3.00%, the toughness of the base metal may be lowered, so the upper limit is made 3.00%.

Alは、通常脱酸元素として添加される範囲の0.003%以上、0.1%以下とする。   Al is made 0.003% to 0.1% of the range usually added as a deoxidizing element.

Nは、Tiと結びついてTiNを形成する。TiNは微細に分散している場合にはピニング効果によって溶接熱影響部組織の粗大化を抑えて溶接熱影響部靭性を向上させるが、Nが不足であるとTiNは粗大になってピニング効果が得られない。TiNを微細に分散させるために、Nは、0.002%以上、好ましくは0.004%超の添加とする。また、Nを過剰に含有するとかえって母材や溶接熱影響部の靭性を低下させる場合があるため、上限は0.008%とする。   N combines with Ti to form TiN. If TiN is finely dispersed, the pinning effect suppresses the coarsening of the weld heat affected zone structure and improves the weld heat affected zone toughness. However, if N is insufficient, TiN becomes coarse and the pinning effect is increased. I can't get it. In order to finely disperse TiN, N is added in an amount of 0.002% or more, preferably more than 0.004%. Moreover, since it may reduce the toughness of a base material and a welding heat affected zone rather than containing N excessively, an upper limit shall be 0.008%.

Bは、少量の添加で焼入性を高めるので経済的にベイナイト主体組織を得るために必須な元素であり、0.0005%以上の添加を必要とするが、0.005%を超えて添加してもその効果は変わらないので、添加量は0.0005%以上、0.005%以下とする。   B is an essential element for economically obtaining a bainite-based structure because it enhances hardenability with a small amount of addition, and requires addition of 0.0005% or more, but it exceeds 0.005%. Even if the effect is not changed, the addition amount is set to 0.0005% or more and 0.005% or less.

NbおよびTiは、NbC、Nb(CN)、TiC、TiN、Ti(CN)、あるいはこれらの複合析出物と、さらにこれらとMoとの複合析出物を形成し本発明鋼の強化機構の主要素となる重要な元素である。課題を解決するための手段の項で述べたように、加速冷却−途中停止プロセスにおいて十分な複合析出物を得るためには、析出速度を考慮した適切な範囲の添加が必要である。すなわち、Nbが0.02%以上、好ましくは0.025%以上、0.08%以下であり、Tiが0.005%以上であり、[Nb]+2×[Ti]が0.045%以上、好ましくは0.055%以上、0.090%以下であって、さらにA=([Nb]+2×[Ti])×([C]+[N]×12/14)とするときに、Aの値が、0.0025以上、0.0055以下であることが条件となる(ここで、[Nb]、[Ti]、[C]、[N]は、それぞれ、Nb、Ti、C、Nの質量%で表した含有量を意味する。)。   Nb and Ti form NbC, Nb (CN), TiC, TiN, Ti (CN), or a composite precipitate thereof, and a composite precipitate of these and Mo, and are the main elements of the strengthening mechanism of the steel of the present invention. Is an important element. As described in the section of the means for solving the problem, in order to obtain a sufficient composite precipitate in the accelerated cooling-intermediate stop process, it is necessary to add an appropriate range in consideration of the precipitation rate. That is, Nb is 0.02% or more, preferably 0.025% or more and 0.08% or less, Ti is 0.005% or more, and [Nb] + 2 × [Ti] is 0.045% or more. , Preferably 0.055% or more and 0.090% or less, and when A = ([Nb] + 2 × [Ti]) × ([C] + [N] × 12/14) The condition is that the value of A is 0.0025 or more and 0.0055 or less (where [Nb], [Ti], [C], and [N] are Nb, Ti, C, It means the content expressed by mass% of N.)

また、Nb、Tiは過剰に添加すると母材あるいは溶接熱影響部の靭性を低下させる場合がある。Nbが0.08%以下、[Nb]+2×[Ti]が0.090%以下であればこれらの靭性低下は回避できるが、Ti単独の添加量が0.03%を超えるとこれらの靭性低下が懸念されるので、上限を0.03%とする。   Further, when Nb and Ti are added excessively, the toughness of the base material or the weld heat affected zone may be lowered. If Nb is 0.08% or less and [Nb] + 2 × [Ti] is 0.090% or less, these toughness reductions can be avoided, but if the added amount of Ti alone exceeds 0.03%, these toughnesses can be avoided. Since there is concern about the decline, the upper limit is made 0.03%.

Moは、焼入性を向上させ、かつNb、Tiとの複合析出物を形成して強化に大きく寄与する。この効果を得るためには0.01%以上を添加する。しかし過剰に添加すると溶接熱影響部靭性を阻害するため添加は0.25%以下とする。   Mo improves hardenability and forms a composite precipitate with Nb and Ti, thereby greatly contributing to strengthening. In order to obtain this effect, 0.01% or more is added. However, if added in excess, the weld heat-affected zone toughness is impaired, so the addition is made 0.25% or less.

Cuは、強化元素として添加する場合、その効果を発揮するには0.05%以上を必要とするが、0.8%を超えて添加しても添加量の割にはその効果は大きくなく、過剰に添加すると溶接熱影響部靭性を阻害する場合があるので、0.8%以下とする。   When Cu is added as a strengthening element, 0.05% or more is required to exert its effect, but even if added over 0.8%, the effect is not great for the added amount. If added excessively, the weld heat-affected zone toughness may be hindered, so 0.8% or less.

Niは、母材靭性を高めるために添加する場合は0.05%以上を必要とするが、過剰に添加すると溶接影響部靭性を阻害する場合があり、高価な元素でもあるので添加の上限は1%とする。   When Ni is added to increase the toughness of the base metal, 0.05% or more is required. However, if added excessively, the weld affected zone toughness may be hindered, and since it is an expensive element, the upper limit of addition is 1%.

Crは、Mnと同様に焼入れ性を高め、ベイナイト組織を得やすくする効果がある。その目的のためには0.05%以上添加するが、過剰に添加すると溶接熱影響部靭性を阻害するので、上限を0.6%とする。   Cr, like Mn, has the effect of enhancing hardenability and making it easier to obtain a bainite structure. For that purpose, 0.05% or more is added, but if added excessively, the weld heat affected zone toughness is inhibited, so the upper limit is made 0.6%.

Vは、Nb、Tiに比べ強化効果は少ないが、ある程度の析出強化と焼入性を高める効果がある。この効果を得るには、0.005%以上の添加が必要であるが、過剰に添加すると溶接熱影響部靭性の低下をもたらすので添加する場合でも0.05%以下とする。   V has less strengthening effect than Nb and Ti, but has an effect of increasing precipitation strengthening and hardenability to some extent. In order to obtain this effect, 0.005% or more of addition is necessary. However, if excessively added, the weld heat-affected zone toughness is lowered.

Wは、強度を向上させる。添加する場合には0.1%以上添加するが、多量に添加するとコストが高くなるので添加量は3%以下とする。   W improves strength. When added, 0.1% or more is added. However, if added in a large amount, the cost increases, so the added amount is made 3% or less.

MgおよびCaの1種または2種を添加することにより、硫化物や酸化物を形成して母材靭性および溶接熱影響部靭性を高めることができる。この効果を得るためにはMgあるいはCaはそれぞれ0.0005%以上の添加が必要である。しかし、0.01%を超えて過剰に添加すると粗大な硫化物や酸化物が生成するためかえって靭性を低下させることがある。したがって、添加量をそれぞれ0.0005%以上、0.01%以下とする。   By adding one or two of Mg and Ca, sulfides and oxides can be formed to increase the base metal toughness and the weld heat affected zone toughness. In order to obtain this effect, Mg or Ca needs to be added in an amount of 0.0005% or more. However, excessive addition over 0.01% may produce coarse sulfides and oxides, which may reduce toughness. Therefore, the addition amount is set to 0.0005% or more and 0.01% or less, respectively.

上記の成分の他に不可避不純物として、P、Sは、母材靭性を低下させる有害な元素であるので、その量は少ないほうが良い。好ましくは、Pは0.02%以下、Sは0.02%以下とする。   In addition to the above components, P and S are harmful elements that lower the base material toughness as unavoidable impurities. Preferably, P is 0.02% or less, and S is 0.02% or less.

次に製造方法について述べる。   Next, a manufacturing method will be described.

鋼片または鋳片の加熱温度は、Nb、Tiを十分に固溶させるために、下記に示すようなA値を含む条件式で算出される温度T(℃)よりも高くする。
T=6300/(1.9−Log(A))−273
ここで、
A=([Nb]+2×[Ti])×([C]+[N]×12/14)
であり、[Nb]、[Ti]、[C]、[N]は、それぞれ、Nb、Ti、C、Nの質量%で表した含有量を意味する。しかし、1300℃を超える加熱温度とするとオーステナイト粒径が粗大化して靭性低下の原因ともなるので、圧延時の鋼片または鋳片の加熱温度は、T(℃)以上、1300℃以下とする。
The heating temperature of the steel slab or cast slab is set higher than the temperature T (° C.) calculated by the conditional expression including the A value as shown below in order to sufficiently dissolve Nb and Ti.
T = 6300 / (1.9-Log (A))-273
here,
A = ([Nb] + 2 × [Ti]) × ([C] + [N] × 12/14)
[Nb], [Ti], [C], and [N] mean the contents expressed by mass% of Nb, Ti, C, and N, respectively. However, if the heating temperature exceeds 1300 ° C., the austenite grain size becomes coarse and causes toughness reduction, so the heating temperature of the steel slab or slab during rolling is set to T (° C.) or more and 1300 ° C. or less.

圧延は、できるだけ圧延中のNb、Tiの析出を抑制するため、1020℃以上の温度範囲での適当な圧下率での粗圧延の後、1020℃未満、920℃超の範囲での圧延は累積圧下率15%以下に抑制する。さらに、析出サイトとして必要十分な加工組織を得るために、920℃以下、860℃以上の範囲で累積圧下率20%以上、50%以下の圧延を行う。さらに、圧延仕上げ温度は860℃以上とする。この圧延条件であれば集合組織の形成が抑制されるので音響異方性が大きくならない。   In order to suppress the precipitation of Nb and Ti during the rolling as much as possible, the rolling in the range below 1020 ° C. and above 920 ° C. is cumulative after rough rolling at an appropriate reduction rate in the temperature range of 1020 ° C. or higher. The rolling reduction is suppressed to 15% or less. Furthermore, in order to obtain a necessary and sufficient processed structure as a precipitation site, rolling is performed at a cumulative reduction ratio of 20% or more and 50% or less in a range of 920 ° C. or less and 860 ° C. or more. Furthermore, the rolling finishing temperature is 860 ° C. or higher. Under these rolling conditions, the formation of texture is suppressed, so that the acoustic anisotropy does not increase.

加工組織の回復、加工後の析出を抑制するため、仕上げ圧延終了後すみやかに加速冷却を行う。冷却は800℃以上から、冷却速度が5℃/sec以上となる条件で水冷を行う。マルテンサイトを含まず、かつベイナイトの体積率を80%以上とするために5℃/sec以上の冷却速度が必要である。鋼板温度が570℃以下、420℃以上となるように加速冷却を途中停止し、その後放冷等により冷却速度を0.5℃/sec以下とする。この目的は、Nb、Tiおよびこれらの複合析出、さらにMoとの複合析出に十分な温度、時間を確保することにある。加速冷却停止温度が高温すぎるとベイナイト組織が得にくく、低温では前記の析出が遅くなって十分な強化が得られない。なお、加速冷却停止直後には鋼板の中心部温度は表面よりも高温になっているため、その後内部からの復熱によって鋼板表面の温度は一度上昇し、その後冷却に転じる。ここでいう加速冷却停止温度とは、復熱した後の最高到達温度を意味する。   In order to suppress the recovery of the processed structure and precipitation after the processing, accelerated cooling is performed immediately after finishing rolling. Cooling is performed from 800 ° C. or higher under conditions where the cooling rate is 5 ° C./sec or higher. A cooling rate of 5 ° C./sec or more is required in order to make the volume fraction of bainite 80% or more without containing martensite. Accelerated cooling is stopped halfway so that the steel sheet temperature is 570 ° C. or lower and 420 ° C. or higher, and then the cooling rate is set to 0.5 ° C./sec or lower by cooling. The purpose is to ensure sufficient temperature and time for Nb, Ti and their composite precipitation, and further for their composite precipitation with Mo. When the accelerated cooling stop temperature is too high, it is difficult to obtain a bainite structure, and at a low temperature, the precipitation is delayed and sufficient strengthening cannot be obtained. Since the temperature at the center of the steel sheet is higher than that of the surface immediately after the accelerated cooling is stopped, the temperature of the steel sheet surface once rises due to recuperation from the inside, and then starts cooling. The accelerated cooling stop temperature here means the highest temperature reached after recuperation.

また、この製造プロセスによれば、鋼材組成の溶接割れ感受性指数Pcmを低く抑えることができ、Pcm≦0.20で降伏強さ650MPa以上の強度を得ることができる。本発明の鋼材においてPcm≦0.20とすれば、溶接入熱6kJ/mm程度の溶接に対しては十分な高い溶接熱影響部の靭性を得ることができる。   Moreover, according to this manufacturing process, the weld cracking sensitivity index Pcm of the steel material composition can be kept low, and a strength of 650 MPa or more can be obtained with Pcm ≦ 0.20. If Pcm ≦ 0.20 in the steel material of the present invention, sufficiently high toughness of the weld heat affected zone can be obtained for welding with a welding heat input of about 6 kJ / mm.

本発明鋼は、建築、橋梁をはじめ、船舶、建設機械、産業機械、海洋構造物、ペンストックなどの溶接構造物の構造部材として、厚鋼板の形態で用いられるものである。   The steel of the present invention is used in the form of a thick steel plate as a structural member of a welded structure such as a building, a bridge, a ship, a construction machine, an industrial machine, an offshore structure, and a penstock.

表1に示す成分組成の鋼を溶製して得られた鋼片を、表2に示す製造条件にて10〜70mm厚さの鋼板とした。これらのうち1−A〜22−Vは本発明鋼であり、23−W〜62−Bは比較例である。表中、下線で示す数字は成分または製造条件が本発明範囲を逸脱しているか、あるいは特性が下記の目標値を満足していないものである。   Steel pieces obtained by melting steel having the component composition shown in Table 1 were made into steel plates having a thickness of 10 to 70 mm under the manufacturing conditions shown in Table 2. Among these, 1-A to 22-V are steels of the present invention, and 23-W to 62-B are comparative examples. In the table, underlined numbers indicate that the components or production conditions deviate from the scope of the present invention, or the characteristics do not satisfy the following target values.

これらの鋼板についての引張強さと入熱6kJ/mmの溶接熱影響部靭性、および音響異方性の測定結果を表2に示す。引張強さは、JIS Z2201に規定の10号丸棒引張試験片を採取し、JIS Z2241に規定の方法で測定した。母材靭性は、圧延方向に直角な方向の板厚中心部からJIS Z2202に規定の衝撃試験片を採取し、JISZ2242に規定の方法で破面遷移温度(vTrs)を求めて評価した。溶接熱影響部靭性は、板厚32mm以下の鋼材は元の厚さのまま、板厚32mm超の鋼材は32mmに減厚した鋼板を用意して、レ型開先の突合せ部に入熱量6kJ/mmの炭酸ガスアーク溶接を行い、ノッチ底が溶融線(フュージョン・ライン)に沿うようにJIS Z2202に規定の衝撃試験片を採取して、−5℃での吸収エネルギー(vE-5)にて評価した。音響異方性は、日本非破壊検査協会規格NDIS2413−86に従って、音速比が1.02以下であれば音響異方性が小さいものと評価した。各特性の目標値は、それぞれ、降伏強さが650MPa、vTrsが−20℃以下、vE-5が70J以上、音速比が1.02以下とした。母材組織の体積分率は、倍率500倍の顕微鏡組織写真で100mm×100mmの範囲の10視野を観察して各視野毎の面積率の平均から体積分率に換算して算出した。 Table 2 shows the measurement results of tensile strength, weld heat-affected zone toughness of heat input 6 kJ / mm, and acoustic anisotropy for these steel plates. Tensile strength was measured by taking a No. 10 round bar tensile test piece specified in JIS Z2201 and measuring it according to JIS Z2241. The base material toughness was evaluated by taking a test specimen specified in JIS Z2202 from the center of the thickness in the direction perpendicular to the rolling direction and obtaining the fracture surface transition temperature (vTrs) by the method specified in JISZ2242. The weld heat-affected zone toughness is the same as the original thickness of steel materials with a thickness of 32 mm or less, and steel plates with a thickness of more than 32 mm are reduced to 32 mm. / Mm2 carbon dioxide arc welding was performed, and the impact test piece specified in JIS Z2202 was taken so that the notch bottom was along the fusion line, and the absorbed energy at -5 ° C (vE -5 ) evaluated. The acoustic anisotropy was evaluated as having a small acoustic anisotropy if the sound speed ratio was 1.02 or less in accordance with the NDIS 2413-86 standard of the Japan Nondestructive Inspection Association. The target values of the respective characteristics were set such that the yield strength was 650 MPa, vTrs was −20 ° C. or lower, vE −5 was 70 J or higher, and the sound velocity ratio was 1.02 or lower. The volume fraction of the base material tissue was calculated by observing 10 visual fields in the range of 100 mm × 100 mm with a microscopic microstructure photograph at a magnification of 500 times and converting the average area ratio for each visual field into a volume fraction.

実施例1−A〜22−Vは、いずれも降伏強さが650MPa超であり、母材シャルピー試験の破面遷移温度(vTrs)が−20℃以下と良好な母材靭性を示し、vE-5が100J超と良好な溶接熱影響部靭性を示し、かつ音速比が1.02以下と音響異方性が小さい。 Example 1-A~22-V are both yield strength 650MPa greater, fracture appearance transition temperature of the base material Charpy test (vTrs) indicates -20 ° C. or less and a good base material toughness, vE - 5 is more than 100 J, indicating good weld heat-affected zone toughness, and the sound speed ratio is 1.02 or less and the acoustic anisotropy is small.

また、表1の鋼板についての入熱10kJ/mmの溶接熱影響部靭性の測定結果を表3に示す。ここでも、板厚32mm以下の鋼材は元の厚さのまま、板厚32mm超の鋼材は32mmに減厚した鋼板を用意して、レ型開先の突合せ部に入熱量10kJ/mmのサブマージアーク溶接を行い、ノッチ底が溶融線(フュージョン・ライン)に沿うようにJIS Z2202に規定の衝撃試験片を採取して、−5℃での吸収エネルギー(vE-5)にて評価した。 Table 3 shows the measurement results of the weld heat-affected zone toughness with a heat input of 10 kJ / mm for the steel plates in Table 1. Here again, a steel sheet with a thickness of 32 mm or less is kept at its original thickness, and a steel sheet with a thickness of more than 32 mm is prepared with a thickness reduced to 32 mm, and the submerged with a heat input of 10 kJ / mm is applied to the butt portion of the mold groove. Arc welding was performed, an impact test piece specified in JIS Z2202 was taken so that the bottom of the notch was along the melting line (fusion line), and evaluated by absorbed energy (vE -5 ) at -5 ° C.

入熱10kJ/mmのサブマージアーク溶接については、Si量が0.1%未満の実施例ではいずれもvE-5が70J以上と良好な溶接熱影響部靭性を示すが、Siが0.3%を超える実施例のうち実施例5−E、実施例8−H、実施例10−J、実施例20−TはvE-5が70J未満とこの入熱では溶接熱影響部靭性がやや低い。 For submerged arc welding with a heat input of 10 kJ / mm, all examples with Si content less than 0.1% show good weld heat affected zone toughness with vE- 5 of 70 J or more, but Si is 0.3%. Among these examples, Example 5-E, Example 8-H, Example 10-J, and Example 20-T have vE- 5 of less than 70 J, and the weld heat affected zone toughness is somewhat low at this heat input.

また、比較例23−Wと24−XはCが低いため、比較例28−ABと29−ACはMnが低いため、比較例32−AFと33−AGはNbが低いため、比較例36−AJと37−AKはパラメータAの値(A=([Nb]+2×[Ti])×([C]+[N]×12/14))が0.0025に満たないため、比較例40−ANと41−AOはBが低いため、比較例47−Dと48−Bは加熱温度がTよりも低いため、比較例49−Dと50−Bは1020℃未満、920℃超の範囲での累積圧下率が高いため、比較例51−Dと52−Bは920℃以下860℃以上の範囲での累積圧下率が低いため、比較例57−Dと58−Bは冷却速度が小さいため、比較例59−Dと60−Bは加速冷却の停止温度が高いため、比較例61−Dと62−Bは加速冷却の停止温度が低いため、それぞれ降伏強さが650MPaに満たない。   Since Comparative Examples 23-W and 24-X have low C, Comparative Examples 28-AB and 29-AC have low Mn, and Comparative Examples 32-AF and 33-AG have low Nb. Since -AJ and 37-AK have a value of parameter A (A = ([Nb] + 2 × [Ti]) × ([C] + [N] × 12/14)) less than 0.0025, a comparative example Since 40-AN and 41-AO have a low B, Comparative Examples 47-D and 48-B have a heating temperature lower than T, so Comparative Examples 49-D and 50-B are less than 1020 ° C and more than 920 ° C. Since the cumulative reduction ratio in the range is high, Comparative Examples 51-D and 52-B have a low cumulative reduction ratio in the range of 920 ° C. or lower and 860 ° C. or higher, and Comparative Examples 57-D and 58-B have a cooling rate. Since the comparative example 59-D and 60-B have high stop temperature of accelerated cooling because it is small, comparative example 61-D and 62 Since the lower stop temperature of accelerated cooling is B, and yield strength is less than 650 MPa.

比較例25−Yと26−ZはCが高いため、比較例46−ATはMg添加量が高すぎるため、それぞれ降伏強さが650MPaに満たず、溶接熱影響部の靭性も低い。   Since Comparative Examples 25-Y and 26-Z have high C, Comparative Example 46-AT has an excessively high Mg addition amount, so that the yield strength is less than 650 MPa, respectively, and the toughness of the weld heat affected zone is also low.

比較例27−AAはSiが高いため、比較例43−AQはNが高いため、それぞれ溶接熱影響部の靭性が低い。   Since Comparative Example 27-AA has high Si and Comparative Example 43-AQ has high N, the toughness of the weld heat affected zone is low.

比較例30−ADと31−AEはMnが高いため母材靭性が低い。   Since Comparative Example 30-AD and 31-AE have high Mn, the base material toughness is low.

比較例34−AHと35−AIはNbが高いため、降伏強さが650MPaに満たず、母材および溶接熱影響部の靭性が低い。   Since Comparative Examples 34-AH and 35-AI have high Nb, the yield strength is less than 650 MPa, and the toughness of the base metal and the weld heat affected zone is low.

比較例38−ALと39−AMはTiが高いため、比較例42−APはNが低いため、比較例44−ARはMoが高いため、比較例45−ASはVが高いため、それぞれ母材および溶接熱影響部の靭性が低い。   Since Comparative Examples 38-AL and 39-AM have high Ti, Comparative Example 42-AP has low N, Comparative Example 44-AR has high Mo, and Comparative Example 45-AS has high V, respectively. The toughness of the material and weld heat affected zone is low.

比較例53−Dと54−Bは920℃以下860℃以上の範囲での累積圧下率が高いため、降伏強さが650MPaに満たず、母材の靭性が低く、かつ音響異方性が大きい。   Since Comparative Examples 53-D and 54-B have a high cumulative rolling reduction in the range of 920 ° C. or lower and 860 ° C. or higher, the yield strength is less than 650 MPa, the toughness of the base material is low, and the acoustic anisotropy is large. .

比較例55−Dと56−Bは圧延完了温度が低いため、音響異方性が大きい。   Since Comparative Examples 55-D and 56-B have a low rolling completion temperature, the acoustic anisotropy is large.

Figure 2006274388
Figure 2006274388

Figure 2006274388
Figure 2006274388

Figure 2006274388
Figure 2006274388

Figure 2006274388
Figure 2006274388

Figure 2006274388
Figure 2006274388

Figure 2006274388
Figure 2006274388

Claims (5)

質量%で、
C :0.04%以上、0.09%以下、
Si:0.01%以上、0.6%以下、
Mn:2.00%超、3.00%以下、
Al:0.003%以上、0.10%以下、
N :0.002%以上、0.008%以下、
B :0.0005%以上、0.005%以下
を含有し、さらに、Nb、Tiを、
Nb:0.02%以上、0.08%以下、
Ti:0.005%以上、0.03%以下
で、かつ、
0.045%≦[Nb]+2×[Ti]≦0.090%
を満たすように含有し、さらに、Nb、Ti、C、Nを、下記に示されるAの値が、0.0025以上、0.0055以下となる関係を満足する範囲で含有し、溶接割れ感受性指数Pcm≦0.20であり、残部Feおよび不可避不純物からなる成分組成を有するとともに、鋼組織が、ベイナイトの体積率が80%以上であることを特徴とする、音響異方性が小さい降伏強さ650MPa以上の高張力鋼板。
A=([Nb]+2×[Ti])×([C]+[N]×12/14)
Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B]
ここで、 [Nb]、[Ti]、[C]、[N]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[B]は、それぞれ、Nb、Ti、C、N、Si、Mn、Cu、Ni、Cr、Mo、V、Bの質量%で表した含有量を意味する。
% By mass
C: 0.04% or more, 0.09% or less,
Si: 0.01% or more, 0.6% or less,
Mn: more than 2.00%, 3.00% or less,
Al: 0.003% or more, 0.10% or less,
N: 0.002% or more, 0.008% or less,
B: 0.0005% or more and 0.005% or less, and further Nb and Ti,
Nb: 0.02% or more, 0.08% or less,
Ti: 0.005% or more and 0.03% or less, and
0.045% ≦ [Nb] + 2 × [Ti] ≦ 0.090%
In addition, Nb, Ti, C, and N are contained within a range that satisfies the relationship that the value of A shown below is 0.0025 or more and 0.0055 or less, and is susceptible to weld cracking. Yield strength with low acoustic anisotropy characterized by an index Pcm ≦ 0.20, having a component composition consisting of the balance Fe and inevitable impurities, and having a steel structure with a volume fraction of bainite of 80% or more A high-tensile steel plate with a thickness of 650 MPa or more.
A = ([Nb] + 2 × [Ti]) × ([C] + [N] × 12/14)
Pcm = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 [B]
Here, [Nb], [Ti], [C], [N], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V], [B] Means the content expressed by mass% of Nb, Ti, C, N, Si, Mn, Cu, Ni, Cr, Mo, V, and B, respectively.
さらに、質量%で、
Mo:0.01%以上、0.25%以下
を含有することを特徴とする、請求項1に記載の音響異方性が小さい降伏強さ650MPa以上の高張力鋼板。
Furthermore, in mass%,
Mo: 0.01% or more and 0.25% or less, The high-tensile steel sheet having a low acoustic anisotropy and a yield strength of 650 MPa or more according to claim 1.
さらに、質量%で、
Cu:0.05%以上、0.8%以下、
Ni:0.05%以上、1%以下、
Cr:0.05%以上、0.6%以下、
V :0.005%以上、0.05%以下、
W :0.1%以上、3%以下
の1種または2種以上を含有することを特徴とする、請求項1または請求項2に記載の音響異方性が小さい降伏強さ650MPa以上の高張力鋼板。
Furthermore, in mass%,
Cu: 0.05% or more, 0.8% or less,
Ni: 0.05% or more, 1% or less,
Cr: 0.05% or more, 0.6% or less,
V: 0.005% or more, 0.05% or less,
W: 0.1% or more, 3% or less of 1 type or 2 types or more, characterized by low acoustic anisotropy and high yield strength of 650 MPa or more according to claim 1 or 2 Tensile steel plate.
さらに、質量%で、
Mg:0.0005%以上、0.01%以下、
Ca:0.0005%以上、0.01%以下
の1種または2種を含有することを特徴とする、請求項1ないし3のいずれか1項に記載の音響異方性が小さい降伏強さ650MPa以上の高張力鋼板。
Furthermore, in mass%,
Mg: 0.0005% or more, 0.01% or less,
The yield strength with low acoustic anisotropy according to any one of claims 1 to 3, characterized by containing one or two of Ca: 0.0005% or more and 0.01% or less. A high-tensile steel plate of 650 MPa or more.
請求項1ないし4のいずれかに記載の成分組成を有する鋼片または鋳片を、下記に示されるT(℃)以上、1300℃以下に加熱し、1020℃以上の温度範囲での粗圧延の後、1020℃未満、920℃超の範囲での累積圧下率を15%以下に抑制し、920℃以下、860℃以上の範囲での累積圧下率を20%以上、50%以下とし、圧延仕上げ温度を860℃以上とする仕上げ圧延を行い、これに引き続き、冷却速度が5℃/sec以上となる加速冷却を800℃以上から開始し、570℃以下、420℃以上で該加速冷却を停止して、その後0.5℃/sec以下の冷却速度で冷却することを特徴とする、音響異方性が小さい降伏強さ650MPa以上の高張力鋼板の製造方法。
T=6300/(1.9−Log(A))−273
ここで、
A=([Nb]+2×[Ti])×([C]+[N]×12/14)
であり、[Nb]、[Ti]、[C]、[N]は、それぞれ、Nb、Ti、C、Nの質量%で表した含有量を意味する。
The steel slab or slab having the component composition according to any one of claims 1 to 4 is heated to T (° C) or higher and 1300 ° C or lower as shown below, and subjected to rough rolling in a temperature range of 1020 ° C or higher. Later, the cumulative reduction in the range of less than 1020 ° C. and over 920 ° C. is suppressed to 15% or less, and the cumulative reduction in the range of 920 ° C. or less and 860 ° C. or more is set to 20% or more and 50% or less. Finish rolling is performed at a temperature of 860 ° C. or higher, and subsequently, accelerated cooling at a cooling rate of 5 ° C./sec or higher is started at 800 ° C. or higher, and the accelerated cooling is stopped at 570 ° C. or lower and 420 ° C. or higher. And then cooling at a cooling rate of 0.5 ° C./sec or less, a method for producing a high-tensile steel sheet having a low acoustic anisotropy and a yield strength of 650 MPa or more.
T = 6300 / (1.9-Log (A))-273
here,
A = ([Nb] + 2 × [Ti]) × ([C] + [N] × 12/14)
[Nb], [Ti], [C], and [N] mean the contents expressed by mass% of Nb, Ti, C, and N, respectively.
JP2005097728A 2005-03-30 2005-03-30 High tensile strength steel sheet having yield strength of 650 MPa or more with small acoustic anisotropy and method for producing the same Active JP4418391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097728A JP4418391B2 (en) 2005-03-30 2005-03-30 High tensile strength steel sheet having yield strength of 650 MPa or more with small acoustic anisotropy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097728A JP4418391B2 (en) 2005-03-30 2005-03-30 High tensile strength steel sheet having yield strength of 650 MPa or more with small acoustic anisotropy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006274388A true JP2006274388A (en) 2006-10-12
JP4418391B2 JP4418391B2 (en) 2010-02-17

Family

ID=37209421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097728A Active JP4418391B2 (en) 2005-03-30 2005-03-30 High tensile strength steel sheet having yield strength of 650 MPa or more with small acoustic anisotropy and method for producing the same

Country Status (1)

Country Link
JP (1) JP4418391B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138203A (en) * 2005-11-15 2007-06-07 Jfe Steel Kk High tensile strength thick steel plate having excellent weldability and its production method
JP2008280602A (en) * 2007-05-14 2008-11-20 Nippon Steel Corp High productivity type high-strength high-toughness steel plate and its production method
JP2008303423A (en) * 2007-06-07 2008-12-18 Nippon Steel Corp METHOD FOR PRODUCING HIGH-TENSION STEEL HAVING TENSILE STRENGTH OF >=570 N/mm2 CLASS AND EXCELLENT IN WELDING-CRACK SENSITIVITY
JP2011012315A (en) * 2009-07-02 2011-01-20 Nippon Steel Corp NON-TEMPERED HIGH TENSILE STRENGTH THICK STEEL PLATE HAVING YIELD STRENGTH OF 885 MPa OR MORE, AND METHOD FOR PRODUCING THE SAME
JP2011074446A (en) * 2009-09-30 2011-04-14 Jfe Steel Corp Steel for high heat input welding
JP2014043642A (en) * 2012-07-30 2014-03-13 Jfe Steel Corp Method of manufacturing steel plate for high heat input welding
EP2816128A4 (en) * 2012-02-15 2015-05-20 Jfe Bars & Shapes Corp Soft-nitriding steel and soft-nitrided component using steel as material
JP2017512903A (en) * 2014-03-25 2017-05-25 宝山鋼鉄股▲分▼有限公司 Yield strength 890 MPa class low weld crack sensitive steel plate and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138203A (en) * 2005-11-15 2007-06-07 Jfe Steel Kk High tensile strength thick steel plate having excellent weldability and its production method
JP2008280602A (en) * 2007-05-14 2008-11-20 Nippon Steel Corp High productivity type high-strength high-toughness steel plate and its production method
JP2008303423A (en) * 2007-06-07 2008-12-18 Nippon Steel Corp METHOD FOR PRODUCING HIGH-TENSION STEEL HAVING TENSILE STRENGTH OF >=570 N/mm2 CLASS AND EXCELLENT IN WELDING-CRACK SENSITIVITY
JP2011012315A (en) * 2009-07-02 2011-01-20 Nippon Steel Corp NON-TEMPERED HIGH TENSILE STRENGTH THICK STEEL PLATE HAVING YIELD STRENGTH OF 885 MPa OR MORE, AND METHOD FOR PRODUCING THE SAME
JP2011074446A (en) * 2009-09-30 2011-04-14 Jfe Steel Corp Steel for high heat input welding
EP2816128A4 (en) * 2012-02-15 2015-05-20 Jfe Bars & Shapes Corp Soft-nitriding steel and soft-nitrided component using steel as material
JP2014043642A (en) * 2012-07-30 2014-03-13 Jfe Steel Corp Method of manufacturing steel plate for high heat input welding
JP2017512903A (en) * 2014-03-25 2017-05-25 宝山鋼鉄股▲分▼有限公司 Yield strength 890 MPa class low weld crack sensitive steel plate and manufacturing method thereof

Also Published As

Publication number Publication date
JP4418391B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
JP4226626B2 (en) High tensile strength steel sheet with low acoustic anisotropy and excellent weldability, including yield stress of 450 MPa or more and tensile strength of 570 MPa or more, including the central part of the plate thickness, and method for producing the same
EP2272994B1 (en) High-tensile strength steel and manufacturing method thereof
JP4897125B2 (en) High-strength steel sheet and its manufacturing method
EP2305850B1 (en) High-strength thick steel products excellent in toughness and weldability, high-strength ultra-thick h shape steel and processes for manufacturing both
JP4855553B2 (en) High-strength ultra-thick H-section steel and its manufacturing method
WO2013089156A1 (en) High-strength h-section steel with excellent low temperature toughness, and manufacturing method thereof
JP5565531B2 (en) High strength extra thick H-section steel
WO2009125863A1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
JP4418391B2 (en) High tensile strength steel sheet having yield strength of 650 MPa or more with small acoustic anisotropy and method for producing the same
US20080295920A1 (en) High Tension Steel Plate with Small Acoustic Anisotropy and with Excellent Weldability and Method of Production of Same
JP2017115200A (en) H-shaped steel for low temperature and production method therefor
WO2008126944A1 (en) Steel material having excellent high-temperature strength and toughness, and method for production thereof
JP2005290554A (en) Steel plate excellent in machinability, toughness and weldability, and method for production thereof
JP2012122111A (en) Method for producing tmcp and tempering process type high-strength thick steel plate having both excellent productivity and weldability, and excellent in drop-weight characteristic after pwht
JP4823841B2 (en) High tensile strength steel sheet for super high heat input welding with low acoustic anisotropy and excellent weldability and tensile strength of 570 MPa class or more and method for producing the same
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP6277679B2 (en) High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness
JP2008069380A (en) High-strength thick steel plate excellent in brittle crack propagation preventing property and its manufacturing method
WO2017150665A1 (en) H-shaped steel for low temperatures and method for manufacturing same
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP5747398B2 (en) High strength steel
JP2017186594A (en) H-shaped steel for low temperature and manufacturing method therefor
JPH05112823A (en) Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint
JP2001059142A (en) High strength steel plate excellent in strain aging resistance, and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091127

R151 Written notification of patent or utility model registration

Ref document number: 4418391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350