WO2009125863A1 - High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both - Google Patents

High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both Download PDF

Info

Publication number
WO2009125863A1
WO2009125863A1 PCT/JP2009/057420 JP2009057420W WO2009125863A1 WO 2009125863 A1 WO2009125863 A1 WO 2009125863A1 JP 2009057420 W JP2009057420 W JP 2009057420W WO 2009125863 A1 WO2009125863 A1 WO 2009125863A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
steel sheet
strength steel
toughness
rolling
Prior art date
Application number
PCT/JP2009/057420
Other languages
French (fr)
Japanese (ja)
Inventor
藤城泰志
坂本真也
原卓也
朝日均
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/736,359 priority Critical patent/US8110292B2/en
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to BRPI0911117A priority patent/BRPI0911117A2/en
Priority to CN2009801070812A priority patent/CN101965414B/en
Priority to EP09730216.0A priority patent/EP2264205B1/en
Priority to KR1020107019073A priority patent/KR101252920B1/en
Publication of WO2009125863A1 publication Critical patent/WO2009125863A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • C21D7/12Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars by expanding tubular bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12292Workpiece with longitudinal passageway or stopweld material [e.g., for tubular stock, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12639Adjacent, identical composition, components
    • Y10T428/12646Group VIII or IB metal-base
    • Y10T428/12653Fe, containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • Y10T428/12965Both containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]

Definitions

  • the present invention relates to a high-strength steel plate and a steel pipe excellent in low-temperature toughness, particularly suitable for line pipes for transporting crude oil and natural gas.
  • Japanese Patent Laid-Open No. 2 0 0 3-2 9 3 0 78 Japanese Patent Laid-Open No. 2 0 0 3-3 0 6 7 4 9 and Japanese Patent Laid-Open No. 2 0 0 5-1 4 6 4 0 7 .
  • these are high-strength steel pipes of the American Petroleum Institute (A P I) standard X I 0 0 (tensile strength of 760 M Pa or more).
  • API standard X 70 tensile strength of 5 70 MPa or more
  • API standard X 8 0 tensile strength of 6 25 MPa or more
  • HA Z heat affected zone
  • the carbon equivalent C e Q and cracking susceptibility index P cm are controlled, and B and Mo are added to improve the hardenability. Is effective.
  • B and Mo are added to improve the hardenability.
  • the present invention controls the carbon equivalent CeQ and cracking susceptibility index Pcm, and further generates polygonal ferrite on a high-strength steel sheet with improved hardenability by adding B and Mo. Is.
  • the present invention is intended to improve the low-temperature toughness of the base material, and to provide a high-strength steel pipe using the high-strength steel plate as a base material and a method for producing them.
  • a ferrite that is not stretched in the rolling direction and has an aspect ratio of 4 or less is referred to as a polygonal ferrite.
  • the aspect ratio is a value obtained by dividing the length of ferrite grains by the width.
  • the metallographic structure of a steel sheet having a high hardenability component composition is made into a multiphase structure of polygonal ferrite and a hard phase by optimizing the hot rolling conditions.
  • the gist of the present invention is as follows.
  • C, Si, Mn, Ni, Cu, Cr, Mo, V, and B are the content [% by mass] of each element.
  • a high-strength steel sheet having excellent low temperature toughness (1) A high-strength steel sheet having excellent low temperature toughness.
  • M g 0. 0 0 0 1 to 0.0 1 0%
  • C a 0. 0 0 0 1 to 0. 0 0 5%
  • REM 0. 0 0 0 1 to 0. 0 0 5%
  • Y 0. 0 0 0 1 to 0. 0 0 5%
  • H f 0. 0 0 0 0 to 0. 0 0 5%
  • Re 0. 0 0 0
  • the high-strength steel sheet according to any one of (1) to (3) above, which contains one or more of 1 to 0.05%.
  • a high-strength steel pipe excellent in low-temperature toughness characterized in that the base material is the steel sheet described in any of (1) to (4) above.
  • the steel slab comprising the component described in any of (1) to (4) above is reheated to 9500 or more, hot rolled, and started as the final stage of the hot rolling.
  • Strain-introducing rolling is performed at a temperature of A r 3 + 60 or less, an end temperature of A r 3 or more, and a reduction ratio of 1.5 or more, and then air-cooled, A r 3-1 0 0: ⁇ A r 3 —
  • C, Mn, Ni, Cr, and Mo are the contents [% by mass] of each element.
  • Figure 1 shows the relationship between hot working temperature and polygonal ferrite area ratio.
  • Figure 2 shows the relationship between the water cooling start temperature and the polygonal ferrite area ratio.
  • Fig. 3 shows the relationship between the polygonal ferrite area ratio, toughness, and strength.
  • the present inventors have directed a method for improving the low-temperature toughness of high-strength steel sheets by generating polygonal ferrite at the time of cooling at high temperature after completion of hot rolling.
  • the steel sheet In order to generate polygonal ferrite, the steel sheet is hot-rolled directly. It is effective to increase the dislocation density of unrecrystallized austenite after air cooling.
  • the inventors first studied the rolling conditions in the temperature range where the metal structure is austenite and does not recrystallize, that is, in the non-recrystallized region.
  • thermomechanical processing simulating hot rolling.
  • a thermomechanical treatment a single process with a rolling reduction ratio of 1.5 was performed, cooled by 0.2 at 0.2 corresponding to air cooling, and further accelerated at 15: Z s corresponding to water cooling.
  • the machining temperature was set to a temperature equal to or higher than the transformation temperature Ar 3 during cooling.
  • the transformation temperature A r 3 during cooling was obtained from the thermal expansion curve.
  • the area ratio of the polygonal ferrite ridge of the test piece was measured.
  • polygonal ferrite was used for ferrite with an aspect ratio of 1 to 4 that was not stretched in the rolling direction.
  • the temperature at which accelerated cooling at 1 5: Z s corresponding to water cooling starts is A r 3 — 90, and A r 3-7 O:, A r 3 — 4 0.
  • Figure 1 plots the area ratio of polygonal ferrule ⁇ against the difference between the processing temperature and A r 3. Yes, “O”, “Mouth”, “ ⁇ ” indicate the start temperature of accelerated cooling, respectively, A r 3 — 90, A r 3 — 7 0, A r 3 — 4 0 ⁇ : This is the result.
  • the relationship between the acceleration start temperature and the area ratio of polygonal ferrite and the relationship between the area ratio of polygonal ferrite and toughness were investigated.
  • the reheating temperature was set to 10 50
  • the number of passes was set to 20 to 3 times
  • the rolling was finished at Ar 3 or more
  • air cooling was performed
  • water cooling was performed as accelerated cooling.
  • strain-introducing rolling The final process of hot rolling, that is, rolling from 8 1 " 3 + 60 to below is called strain-introducing rolling.
  • the rolling reduction ratio was set to 1.5 or more, and after air cooling, water cooling (accelerated cooling) was started from various temperatures
  • the number of passes of strain-introducing rolling was 4 to 20 times.
  • the area ratio of the polygonal ferrite plate of the obtained steel sheet was measured using an optical microscope, and a tensile test and a drop weight test (referred to as Drop Weight Tear Test, DWT) were performed. Tensile properties were evaluated using A PI standard test pieces. DWT T was performed at ⁇ 60, and the ductile fracture surface ratio (referred to as Shear Area, SA) of the crack was determined.
  • SA Shear Area
  • Figure 2 shows the relationship between the accelerated cooling start temperature and the area ratio of polygonal ferrite. From Fig. 2, if the starting temperature of accelerated cooling after hot rolling is Ar 3-100 0 ⁇ Ar 3 — 1 0, the area ratio of the polygonal ferrite of the steel sheet is 20 ⁇ 9 It was found to be 0%. That is, after the hot rolling is completed, when the air cooling is performed from a temperature of A r 3 or higher to a temperature within the range of A r 3 — 1 0 0: to A r 3 — 1 0, the area ratio 2 0 to 9 0 % Polygonal ferrite can be generated.
  • Figure 3 shows the relationship between the area ratio of polygonal ferrite, the tensile strength, and the ductile fracture surface area SA at 1 6 Ot :. From Fig. 3, it can be seen that extremely good low-temperature toughness can be obtained if the area ratio of polygonal ferrule is 20% or more. From Fig. 3, it is clear that the area ratio of polygonal ferrite ⁇ needs to be 90% or less in order to secure a tensile strength of 5 7 OMPa or more corresponding to X70. Furthermore, as shown in FIG. 3, in order to secure a tensile strength of 6 25 MPa or more corresponding to X 80, it is preferable that the area ratio of the polygonal ferrule is 80% or less.
  • the present inventors have found that in order to secure polygonal ferrite, it is important to introduce strain due to rolling in an unrecrystallized region when performing hot rolling.
  • the present inventors have conducted further detailed studies and obtained the following findings to complete the present invention.
  • the strain-introduced rolling is Ar 3 +60 in hot rolling, and is a pass to the end of rolling. At least one pass is required, and multiple passes may be used. In order to generate polygonal ferrite by air cooling after hot rolling, the reduction ratio of strain-introducing rolling should be 1.5 or more.
  • the rolling reduction ratio of the strain-introduced rolling is the ratio of the thickness of Ar 3 +60: and the thickness after the rolling.
  • C is an element that improves the strength of steel, and in order to form a hard phase composed of one or both of bainite and martensite in the metal structure, addition of 0.1% or more is necessary.
  • the C content is set to 0.08% or less.
  • S i is a deoxidizing element, and in order to obtain an effect, addition of 0.0 1% or more is necessary. On the other hand, if containing Si exceeding 0.50%, the toughness of HA Z deteriorates, so the upper limit is made 0.5%.
  • M n is an element that enhances hardenability, and it is necessary to add 0.5% or more in order to ensure strength and toughness. On the other hand, if the Mn content exceeds 2.0%, the toughness of HA Z is impaired. Therefore, the content of M n is 0.5 to 2.0%.
  • the P is an impurity, and if it contains more than 0.050%, the toughness of the base material is significantly lowered. In order to improve the toughness of HA Z, the P content is preferably 0.02% or less.
  • S is an impurity, and if it exceeds 0.05%, coarse sulfides are produced and the toughness is lowered.
  • MnS precipitates and causes intragranular transformation, improving the toughness of the steel sheet and HAZ.
  • a 1 0.0 2 0% or less
  • a 1 is a deoxidizer, but it suppresses the formation of inclusions and suppresses the formation of steel plates and HAZ.
  • the upper limit In order to increase the toughness of the steel, the upper limit must be 0.020%.
  • the content of A 1 it is possible to finely disperse the Ti oxide that contributes to the intragranular transformation.
  • the content of 8 1 In order to promote the formation of intragranular transformation, it is preferable that the content of 8 1 is not more than 0.010%. A more preferred upper limit is 0.0 0 8%.
  • T i is an element that forms a nitride of T i that contributes to the refinement of the grain size of the steel sheet and HA Z, and it is necessary to add 0.003% or more.
  • Ti is contained excessively, coarse inclusions are formed and the toughness is impaired, so the upper limit is made 0.030%.
  • Ti oxides are finely dispersed, they effectively act as nuclei for intragranular transformation.
  • the amount of oxygen at the time of adding T 1 is large, a coarse oxide of T 1 is formed. Therefore, during steelmaking, it is preferable to deoxidize with Si and M n to reduce the amount of oxygen. . In this case, since the oxide of A 1 is easier to form than the oxide of T i, it is not preferable to contain an excessive amount of A 1.
  • B is an important element that significantly enhances hardenability and suppresses the formation of coarse grain boundary ferrite in HA Z. In order to obtain this effect, it is necessary to add B 0.003% or more. On the other hand, when B is added excessively, coarse B N is produced, and in particular, the toughness of HA Z is lowered. Therefore, the upper limit of B content is set to 0.0 10%.
  • Mo is an element that remarkably enhances the hardenability especially by the combined addition with B, and 0.05% or more is added to improve strength and toughness.
  • Mo is an expensive element, and it is necessary to set the upper limit of the addition amount to 1.0%.
  • O is an impurity, and the upper limit of the content must be 0.08% in order to avoid a decrease in toughness due to the formation of inclusions.
  • the amount of ⁇ remaining in the steel at the time of forging is set to not less than 0.0 0 0 1%.
  • one or more of Cu, Ni, Cr, W, V, Nb, Zr, and Ta may be added as elements for improving strength and toughness.
  • these elements when the content of these elements is less than the preferred lower limit, they do not have a particularly bad influence, and can be regarded as impurities.
  • the lower limit of the Cu content and the Ni content must be 0.05% or more. Is preferred.
  • the upper limit of the Cu content is preferably 1.5% in order to suppress the occurrence of cracks during heating and welding of the steel slab. If Ni is contained excessively, weldability is impaired, so the upper limit is preferably made 5.0%.
  • Cu and Ni are preferably included in combination in order to suppress the occurrence of surface flaws. Further, from the viewpoint of cost, it is preferable that the upper limit of Cu and Ni is 1.0%.
  • Cr, W, V, Nb, Zr, and Ta are elements that generate carbides and nitrides and improve the strength of steel by precipitation strengthening, and contain one or more. You may let them.
  • the lower limit of the Cr amount is 0.02%
  • the lower limit of the ⁇ ⁇ amount is 0.01%
  • the lower limit of the V amount is 0.01%
  • the Nb amount is preferably 0.0 0 1%
  • the lower limits of the Zr amount and the Ta amount are both preferably 0.0 0 0 1%.
  • the hardenability will improve and the strength will be increased and the toughness may be impaired.
  • the upper limit of Cr content is 1.50% and the upper limit of W content. Is preferably 0.5%.
  • the upper limit of V content is set to 0. It is preferable that the upper limit of the amount of 10%, the amount of Nb is 0.20%, and the upper limit of the amount of Zr and Ta is both 0.05%.
  • Mg, Ca, REM, Y, Hf, and Re may be added.
  • these elements can be regarded as impurities because they do not have an adverse effect when the content is less than the preferred lower limit.
  • Mg is an element that has an effect on the refinement of oxides and the suppression of sulfide morphology.
  • fine Mg oxides act as nuclei for intragranular transformation and also suppress the coarsening of the particle size as pinning particles.
  • Mg in an amount exceeding 0.010% is added, a coarse oxide is formed, which may reduce the toughness of HA Z. % Is preferable.
  • C a and REM are useful for controlling the morphology of sulfides, suppress the formation of sulfides and the formation of M n S that stretches in the rolling direction, and the properties in the thickness direction of steel materials, especially lamellar resistance. It is an element that improves the properties.
  • the lower limits of the Ca content and the REM content are both 0.0 0 0 1%.
  • one or both of Ca and REM when the content exceeds 0.05%, the oxide increases, the fine Ti-containing oxide decreases, and the formation of intragranular transformation is inhibited. Therefore, it is preferable to set the content to 0.05% or less.
  • Y, H f, and R e are elements that exhibit the same effects as Ca and REM, and if added in excess, they may inhibit the formation of intragranular transformation. Therefore, the preferred range of the amount of Y, H f, and Re is 0 0 0 0 1 to 0. 0 0 5%.
  • the contents of C, M n, Ni, Cu, Cr, Mo, and V [mass%]
  • the carbon equivalent C eQ of the following (formula 1) calculated from the equation (3) is set to 0.30 to 0.53.
  • the carbon equivalent C eQ is known to correlate with the maximum hardness of the weld and is a value that can be used as an index of hardenability and weldability.
  • the cracking sensitivity index P cm is set to 0.10 to 0.20.
  • the crack susceptibility index P cm is known as a coefficient that can be used to estimate the susceptibility to cold cracking during welding, and is a value that serves as an index of hardenability and weldability.
  • the metal structure of the steel sheet is a composite structure containing polygonal ferrite and hard phase.
  • Polygonal ferrite is generated at a relatively high temperature during air cooling after hot rolling.
  • Polygonal ferrite has an aspect ratio of 1 to 4, and is a processed ferrite that is rolled and stretched, and a fine ferrite that is formed at a relatively low temperature during accelerated cooling and has insufficient grain growth.
  • the hard phase is either one or both of paynite and martensite Organization.
  • residual austenite and MA may be included as the remainder of the polygonal ferrite and the vine and martensite.
  • the area ratio of Polygonal Ferai is 20% or more.
  • a steel sheet having a component composition with improved hardenability has a good balance between strength and toughness by generating polygonal ferrite and using the balance as the hard phase of bainite and martensite.
  • the area ratio of the polygonal ferrule is 20% or more, as shown in Fig. 3, the low temperature toughness is remarkably improved.
  • SA is 85% This can be done.
  • the area ratio of polygonal X-ray rice must be 90% or less. As shown in Fig. 3, if the area ratio of L 3 ⁇ 4 gonal ferrule ⁇ is 90% or less, X 7
  • a tensile strength corresponding to 0 or more can be secured. Furthermore, in order to increase the strength and secure a tensile strength corresponding to X 80 or more, it is preferable that the area ratio of the polygonal ferri iron is 80% or less.
  • the remainder of the polygonal ferrite is a hard phase composed of one or both of bainai and martensite.
  • the area ratio of the hard phase is 2 0 90% because the area ratio of polygonal ferrule is 1 0
  • a polygonal ferrite is a white rounded lump that has an aspect ratio of 14 and does not contain precipitates such as coarse cementite MA in the grain in an optical microscope. Observed as an organization.
  • the aspect ratio is the value obtained by dividing the length of the ferrite grains by the width.
  • Bainite is defined as a structure in which carbides are precipitated between the laths or block ferrite, or a structure in which carbides are precipitated in the laths.
  • martensite is a structure in which carbides are not precipitated between the laths or within the laths.
  • Residual austenite is austenite that remains without transformation of austenite soot generated at high temperature.
  • the above-mentioned components have improved hardenability in order to improve the toughness of HAZ, and in order to improve the low temperature toughness of the steel sheet, it is necessary to control hot rolling conditions and generate ferrite. is necessary.
  • a reduction ratio at a relatively low temperature is ensured. As a result, a ferrite can be generated.
  • steel is melted in the steelmaking process, and then forged into billets.
  • Steel melting and forging can be carried out by conventional methods, but continuous forging is preferred from the viewpoint of productivity.
  • the billet is reheated for hot rolling.
  • the reheating temperature during hot rolling is 9 50 or more. This is because hot rolling is performed at a temperature at which the steel structure becomes an austenite single phase, that is, in the austenite region, and the crystal grain size of the base steel sheet is made fine.
  • the upper limit is not specified, in order to suppress the coarsening of the effective crystal grain size, it is preferable to set the reheating temperature to 1 2 500 or less. In order to increase the area ratio of polygonal ferrite, it is preferable to set the upper limit of the reheating temperature to 10 50 or less.
  • the reheated slab is subjected to multiple passes of hot rolling while controlling the temperature and reduction ratio, and after completion, it is air-cooled and accelerated.
  • hot rolling must be completed at an Ar 3 temperature or higher at which the base metal structure becomes an austenite single phase. This is hot rolling at less than A r 3 temperature This is because machining ferrite is generated and toughness decreases.
  • it is extremely important to perform strain-introducing rolling as the final step of hot rolling. This is because, after the rolling is completed, a large amount of distortion, which is a site for generating polygonal ferrite, is introduced into the non-recrystallized austenite.
  • Strain-introduced rolling is defined as the path from A r 3 +60: below to the end of rolling.
  • the starting temperature of strain-introducing rolling is the temperature of the first pass below A r 3 +60.
  • the starting temperature of the strain-introducing rolling is preferably a lower temperature of Ar 3 +40 or lower.
  • the reduction ratio of strain-introduced rolling is 1.5 or more in order to generate polygonal ferrite during air cooling after hot rolling.
  • the reduction ratio of strain-introducing rolling is the thickness at Ar 3 +60: or the thickness at the starting temperature of strain-introducing rolling is divided by the thickness after the end of hot rolling. It is a ratio.
  • the upper limit of the reduction ratio is not specified, it is usually 12.0 or less considering the thickness of the steel slab before rolling and the thickness of the base steel plate after rolling.
  • recrystallization rolling and non-recrystallization rolling may be performed before the strain-introducing rolling.
  • the recrystallization rolling is rolling in a recrystallization region exceeding 90 °
  • the non-recrystallization rolling is rolling in the following non-recrystallization region at 90 °.
  • Recrystallization rolling may be started immediately after the slab is extracted from the heating furnace, so the starting temperature is not specified.
  • the reduction ratio of recrystallization rolling is preferably 2.0 or more.
  • air cooling and accelerated cooling are performed.
  • the cooling rate for accelerated cooling must be at least l O ⁇ Z s.
  • Accelerated cooling suppresses the formation of pearlite and cementite, and in order to generate a hard phase consisting of one or both of bainey ⁇ and martensite ⁇ , the stop temperature is set below B s in (Equation 3).
  • B s is the bainitic transformation start temperature, and it is known that it can be obtained from the contents of C, M n, Ni, Cr and Mo by (Equation 3).
  • Payne ⁇ can be generated by accelerated cooling to temperatures below B s.
  • the lower limit of the water cooling stop temperature is not stipulated, and it may be cooled to room temperature. However, considering productivity and hydrogen defects, it is preferable to set the temperature to 1550 or higher.
  • These steel plates were piped in the U0 process, the butted parts were submerged arc welded from the inner and outer surfaces, and expanded to produce steel pipes.
  • the structure of these steel pipes was the same as that of the steel plate, the strength was 20 to 30 MPa higher than that of the steel plate, and the low temperature toughness was equivalent to that of the steel plate.
  • production No. 4 is an example in which the start temperature of accelerated cooling is low, the area ratio of ferrite increases, and the strength decreases.
  • Production No. 5 is an example in which the cooling rate of accelerated cooling is slow, a hard phase for securing the strength cannot be obtained, and the strength is lowered.
  • Production No. 8 has a rolling finish temperature lower than A r 3 , so a machining ferrite with a aspect ratio exceeding 4 is generated, polygonal ferrite is reduced, and low-temperature toughness is reduced. This is an example.
  • the polygonal ferrite and the remainder of the hard phase are ferrite with an aspect ratio of more than 4.
  • Production No. 9, 13 and 15 have higher accelerated cooling start temperatures, and Production No. 11 has a lower strain reduction rolling reduction, resulting in insufficient ferrite formation and toughness. This is an example of a decline.
  • the production No 2 0 to 2 2 is a comparative example whose chemical component is outside the scope of the present invention.
  • Production No. 20 has a small amount of B, and Production No. 22 does not contain Mo. Therefore, the production conditions of the present invention are examples in which the polygonal ferrite is increased and the strength is lowered.
  • Production No 2 1 is an example in which the amount of Mo is large, and the area ratio of polygonal ferrite is low even under the production conditions of the present invention, and the toughness is lowered.
  • the present invention in the metal structure of a high-strength steel sheet having a component composition in which the carbon equivalent C ec i and the cracking susceptibility index P cm are controlled and B and Mo are further added and the hardenability is enhanced, ⁇ can be generated.
  • the strength and HAZ toughness are improved, and the low-temperature toughness is extremely excellent, and the high-strength steel pipe whose metal structure consists of polygonal ferrite and hard phase, and the high-strength steel pipe using this as a base material, And it becomes possible to provide their manufacturing methods, and the industrial contribution is very remarkable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provided are a high-strength steel plate excellent in low -temperature toughness, a high-strength steel pipe made by using the plate as the base material, and processes for the production of both. The steel plate contains Mo: 0.05 to 1.00% and B: 0.0003 to 0.0100% with Ceq of 0.30 to 0.53 and Pcm of 0.10 to 0.20, and has a metal structure which has an area fraction of polygonal ferrite of 20 to 90% with the balance being a hard phase consisting of either bainite or martensite, or both. The steel plate is produced by conducting, successively, strain-introducing rolling at an initiation temperature of (Ar3+60°C) or below, an end temperature of Ar3 or above and a rolling ratio of 1.5 or above, air cooling, and accelerated cooling from a temperature of (Ar3-100°C) to (Ar3-10°C) at a rate of 10°C/s or above.

Description

明 細 書 発明の名称  Description Title of Invention
低温靭性に優れた高強度鋼板及び鋼管並びにそれらの製造方法 技術分野  High strength steel plate and pipe excellent in low temperature toughness and manufacturing method thereof Technical Field
本発明は、 特に、 原油及び天然ガス輸送用のラインパイプに好適 な、 低温靱性に優れた高強度鋼板及び鋼管に関する。 背景技術  The present invention relates to a high-strength steel plate and a steel pipe excellent in low-temperature toughness, particularly suitable for line pipes for transporting crude oil and natural gas. Background art
近年、 原油及び天然ガスの輸送効率向上のために、 パイプライン の内圧の高圧化が検討されている。 これに伴い、 ラインパイプ用鋼 管の高強度化が要求されている。 さらに、 高強度ラインパイプ用鋼 管には、 靱性、 変形性能、 耐ァレス ト性なども要求される。 そのた めべイナイ ト、 マルテンサイ トを主体とし、 微細なフェライ 卜を生 成させた鋼板及び鋼管が提案されている。  In recent years, increasing the internal pressure of pipelines has been studied in order to improve the transport efficiency of crude oil and natural gas. Along with this, high strength steel pipes for line pipes are required. In addition, steel pipes for high-strength line pipes are required toughness, deformation performance, and wear resistance. For this reason, steel plates and steel pipes have been proposed, which are mainly composed of bainite and martensite and produce fine ferrules.
例えば、 特開 2 0 0 3 — 2 9 3 0 7 8号公報、 特開 2 0 0 3 — 3 0 6 7 4 9号公報及び特開 2 0 0 5— 1 4 6 4 0 7号公報参照。 し かし、 これらは、 米国石油協会 (A P I ) 規格 X I 0 0 (引張強さ 7 6 0 M P a以上) 以上の高強度鋼管である。  For example, see Japanese Patent Laid-Open No. 2 0 0 3-2 9 3 0 78, Japanese Patent Laid-Open No. 2 0 0 3-3 0 6 7 4 9 and Japanese Patent Laid-Open No. 2 0 0 5-1 4 6 4 0 7 . However, these are high-strength steel pipes of the American Petroleum Institute (A P I) standard X I 0 0 (tensile strength of 760 M Pa or more).
一方、 幹線パイプラインの素材として実用化されている、 A P I 規格 X 7 0 (引張強さ 5 7 0 M P a以上) や、 A P I規格 X 8 0 ( 引張強さ 6 2 5 M P a以上) の高強度鋼管の高性能化も要求されて いる。 これに対しては、 ベイナイ ト中に微細なフェライ 卜を生成さ せた母材を有する鋼管の溶接熱影響部 (HA Z ) を加熱処理し、 変 形性能と低温靭性を高める方法が提案されている。 例えば、 特開 2 0 0 4— 1 3 1 7 9 9号公報参照。 このように、 強度と靭性を両立させたベイナイ ト、 マルテンサイ トを主体とする鋼板及び鋼管を基に、 さらに、 フェライ トを生成さ せて、 変形性能などの特性を向上させる方法が提案されている。 し かし、 最近では、 低温靭性に対する要求がますます高くなり、 一 6 0で以下といった極低温での母材靭性が要求されている。 また、 母 材だけでなく、 H A Zの低温靭性も非常に重要である。 発明の概要 On the other hand, API standard X 70 (tensile strength of 5 70 MPa or more) and API standard X 8 0 (tensile strength of 6 25 MPa or more), which have been put to practical use as materials for mainline pipelines. There is also a demand for high-performance steel pipes. In response to this, a method has been proposed in which the heat affected zone (HA Z) of a steel pipe having a base material that generates fine ferritic flaws in the bainite is heat-treated to improve deformation performance and low-temperature toughness. ing. For example, see Japanese Patent Application Laid-Open No. 2 0 0 4-1 3 1 7 9 9. In this way, a method has been proposed for improving the properties such as deformation performance by further generating ferrite based on bainite that has both strength and toughness, steel sheet and steel pipe mainly composed of martensite. Yes. However, recently, the demand for low-temperature toughness is increasing, and base metal toughness at a cryogenic temperature of 160 or below is required. In addition to the base metal, the low temperature toughness of HAZ is also very important. Summary of the Invention
H A Z靭性の向上のためには、 炭素当量 C e Q及び割れ感受性指数 P cmを制御し、 更に B及び M oを添加し、 焼入れ性を高めて、 ペイ ナイ トを主体とする微細な金属組織とすることが有効である。 しか し、 その一方では、 母材にフェライ 卜生成させることが困難になる 。 特に、 Bと M oとを複合添加して焼入れ性を高めると、 フェライ 卜の変態が起こり難くなる。 特に、 熱間圧延の終了直後に空冷し、 ポリゴナルフェライ トを生成させることは、 極めて困難であった。 本発明は、 このような実情に鑑み、 炭素当量 C eQ及び割れ感受性 指数 P cmを制御し、 更に B及び M oの添加により焼入れ性を高めた 高強度鋼板に、 ポリゴナルフェライ トを生成させるものである。 本 発明は、 特に、 母材の低温靭性を改善し、 更に、 この高強度鋼板を 母材とする高強度鋼管及びそれらの製造方法の提供を課題とするも のである。  In order to improve HAZ toughness, the carbon equivalent C e Q and cracking susceptibility index P cm are controlled, and B and Mo are added to improve the hardenability. Is effective. However, on the other hand, it becomes difficult to generate ferrules on the base material. In particular, when hardenability is improved by adding B and Mo in combination, the transformation of Ferai will not easily occur. In particular, it was extremely difficult to produce polygonal ferrite by air cooling immediately after the end of hot rolling. In view of such circumstances, the present invention controls the carbon equivalent CeQ and cracking susceptibility index Pcm, and further generates polygonal ferrite on a high-strength steel sheet with improved hardenability by adding B and Mo. Is. In particular, the present invention is intended to improve the low-temperature toughness of the base material, and to provide a high-strength steel pipe using the high-strength steel plate as a base material and a method for producing them.
なお、 本発明では、 圧延方向に延伸していない、 アスペク ト比が 4以下のフェライ トをポリゴナルフェライ トという。 ここで、 ァス ぺク ト比はフェライ ト粒の長さを幅で除した値である。  In the present invention, a ferrite that is not stretched in the rolling direction and has an aspect ratio of 4 or less is referred to as a polygonal ferrite. Here, the aspect ratio is a value obtained by dividing the length of ferrite grains by the width.
従来、 B及び M oを同時に添加し、 焼入れ性の指標 C e Q及び溶接 性の指標である割れ感受性指数 P cmを最適な範囲に制御し、 H A Z 靱性の向上させた高強度鋼板の金属組織に、 ポリゴナルフェライ ト を生成させることは困難であった。 本発明は、 焼入れ性の高い成分 組成を有する鋼板の金属組織を、 熱間圧延の条件の最適化によって 、 ポリゴナルフェライ 卜と硬質相との複相組織としたものである。 本発明の要旨は、 以下のとおりである。 Conventionally, B and Mo were added simultaneously, hardenability index C e Q and crack susceptibility index P cm, which is an index of weldability, were controlled within the optimum range, and the metal structure of high-strength steel sheet with improved HAZ toughness The polygonal ferrite It was difficult to generate. In the present invention, the metallographic structure of a steel sheet having a high hardenability component composition is made into a multiphase structure of polygonal ferrite and a hard phase by optimizing the hot rolling conditions. The gist of the present invention is as follows.
( 1 ) 質量%で、 C : 0. 0 1 0〜 0. 0 8 %、 S i : 0. 0 1 〜 0. 5 0 %、 M n : 0. 5〜 2. 0 %、 S : 0. 0 0 0 1〜 0. 0 0 5 %、 T i : 0. 0 0 3〜 0. 0 3 0 %、 M o : 0. 0 5〜 1 . 0 0 %、 B : 0. 0 0 0 3〜 0. 0 1 0 %、 0 : 0. 0 0 0 1〜 0. 0 0 8 %を含み、 P : 0. 0 5 0 %以下、 A 1 : 0. 0 2 0 % 以下に制限し、 残部が鉄及び不可避的不純物からなる成分組成を有 し、 下記 (式 1 ) によって求められる CeQが 0. 3 0〜 0. 5 3で あり、 下記 (式 2 ) によって求められる P cmが 0. 1 0〜 0. 2 0 であり、 金属組織のポリゴナルフェライ 卜の面積率が 2 0〜 9 0 % であり、 残部がベイナイ ト、 マルテンサイ トの一方又は双方からな る硬質相であることを特徴とする低温靭性に優れた高強度鋼板。  (1) By mass%, C: 0.0 1 0 to 0.0 8%, S i: 0.0 1 to 0.5 0%, M n: 0.5 to 2.0%, S: 0 0 0 0 1 to 0. 0 0 5%, T i: 0. 0 0 3 to 0.0. 0 3 0%, Mo: 0. 0 5 to 1.0 0%, B: 0. 0 0 0 3 to 0. 0 1 0%, 0: 0. 0 0 0 1 to 0. 0 0 8% included, P: 0. 0 5 0% or less, A 1: 0. 0 2 0% or less The remainder has a composition composed of iron and inevitable impurities, CeQ determined by the following (Equation 1) is 0.30 to 0.53, and P cm determined by the following (Equation 2) is 0. 10 to 0.20, and the area ratio of polygonal ferrite ridges in the metal structure is 20 to 90%, and the balance is a hard phase consisting of one or both of bainite and martensite. A high-strength steel sheet with excellent low-temperature toughness.
C eq= C + M n / 6 + (N i + C u) / 1 5  C eq = C + M n / 6 + (N i + C u) / 1 5
+ (C r +M o + V) / 5 · · · (式 1 )  + (C r + M o + V) / 5 (Equation 1)
P cm= C + S i / 3 0 + (M n + C u + C r ) / 2 0  P cm = C + S i / 3 0 + (M n + C u + C r) / 2 0
+ N i / 6 0 +M o / 1 5 + V/ l 0 + 5 B - · . (式 2 + N i / 6 0 + M o / 1 5 + V / l 0 + 5 B-
) )
ここで、 C、 S i 、 M n、 N i 、 C u、 C r、 M o、 V、 及び、 Bは、 各元素の含有量 [質量%] である。  Here, C, Si, Mn, Ni, Cu, Cr, Mo, V, and B are the content [% by mass] of each element.
( 2 ) さらに、 質量%で、 C u : 0. 0 5〜: I . 5 %、 N i : 0 . 0 5〜 5. 0 %の一方又は双方を含有することを特徴とする上記 (2) The above-mentioned, further comprising one or both of Cu: 0.05 to: I. 5% and Ni: 0.05 to 5.0% by mass%.
( 1 ) に記載の低温靭性に優れた高強度鋼板。 (1) A high-strength steel sheet having excellent low temperature toughness.
( 3 ) さらに、 質量%で、 C r : 0. 0 2〜; . 5 0 %、 W : 0 . 0 1〜 0. 5 0 %、 V : 0. 0 1〜 0. 1 0 %、 N b : 0. 0 0 1〜 0. 2 0 %、 Z r : 0. 0 0 0 1〜 0. 0 5 0 %、 T a : 0. 0 0 0 1〜 0. 0 5 0 %のうち 1種又は 2種以上を含有することを 特徴とする上記 ( 1 ) 又は ( 2 ) に記載の低温靱性に優れた高強度 鋼板。 (3) Further, in mass%, Cr: 0.02 to; .50%, W: 0.01 to 0.50%, V: 0.01 to 0.10%, N b: 0. 0 0 1 to 0.20%, Z r: 0. 0 0 0 1 to 0.0 0 50%, T a: 0. 0 0 0 0 1 to 0. A high-strength steel sheet excellent in low-temperature toughness as described in (1) or (2) above.
( 4 ) さらに、 質量%で、 M g : 0. 0 0 0 1〜 0. 0 1 0 %、 C a : 0. 0 0 0 1〜 0. 0 0 5 %、 R E M : 0. 0 0 0 1〜 0. 0 0 5 %, Y : 0. 0 0 0 1〜 0. 0 0 5 %、 H f : 0. 0 0 0 1 〜 0. 0 0 5 %、 R e : 0. 0 0 0 1〜 0. 0 0 5 %のうち 1種又 は 2種以上を含有することを特徴とする上記 ( 1 ) 〜 ( 3 ) の何れ かに記載の高強度鋼板。  (4) Further, in mass%, M g: 0. 0 0 0 1 to 0.0 1 0%, C a: 0. 0 0 0 1 to 0. 0 0 5%, REM: 0. 0 0 0 1 to 0. 0 0 5%, Y: 0. 0 0 0 1 to 0. 0 0 5%, H f: 0. 0 0 0 0 to 0. 0 0 5%, Re: 0. 0 0 0 The high-strength steel sheet according to any one of (1) to (3) above, which contains one or more of 1 to 0.05%.
( 5 ) 金属組織のポリゴナルフェライ トの面積率が 2 0〜 8 0 % であることを特徴とする上記 ( 1 ) 〜 ( 4 ) の何れか 1項に記載の 高強度鋼板。  (5) The high-strength steel sheet according to any one of (1) to (4) above, wherein the area ratio of the polygonal ferrite of the metal structure is 20 to 80%.
( 6 ) 母材が上記 ( 1 ) 〜 ( 4 ) の何れかに記載の鋼板であるこ とを特徴とする低温靭性に優れた高強度鋼管。  (6) A high-strength steel pipe excellent in low-temperature toughness, characterized in that the base material is the steel sheet described in any of (1) to (4) above.
( 7 ) 上記 ( 1 ) 〜 ( 4 ) の何れかに記載の成分からなる鋼片を 、 9 5 0 以上に再加熱し、 熱間圧延を行い、 該熱間圧延の最終ェ 程として、 開始温度が A r 3 + 6 0 以下、 終了温度が A r 3以上、 圧下比が 1. 5以上である歪み導入圧延を行い、 その後、 空冷し、 A r 3 - 1 0 0 :〜 A r 3— 1 0での温度から、 1 O Z s以上の冷 却速度で、 下記 (式 3 ) によって求められる B s以下の温度まで加 速冷却することを特徴とする低温靭性に優れた高強度鋼板の製造方 法。 (7) The steel slab comprising the component described in any of (1) to (4) above is reheated to 9500 or more, hot rolled, and started as the final stage of the hot rolling. Strain-introducing rolling is performed at a temperature of A r 3 + 60 or less, an end temperature of A r 3 or more, and a reduction ratio of 1.5 or more, and then air-cooled, A r 3-1 0 0: ~ A r 3 — A high-strength steel sheet with excellent low-temperature toughness characterized by accelerated cooling from a temperature of 10 to a temperature of B s or less determined by the following (Equation 3) at a cooling rate of 1 OZ s or more. Production method.
B s (で) = 8 3 0 - 2 7 0 C - 9 0 M n - 3 7 N i - 7 0 C r B s (in) = 8 3 0-2 7 0 C-9 0 M n-3 7 N i-7 0 C r
— 8 3 M o · · · (式 3 ) — 8 3 M o · · · (Formula 3)
ここで、 C、 M n、 N i 、 C r、 及び、 M oは、 各元素の含有量 [質量%] である。 ( 8 ) 上記 ( 7 ) に記載の方法で製造した鋼板を、 U O工程で管 状に成形し、 突き合せ部を内外面からサブマージドア一ク溶接し、 その後、 拡管することを特徴とする低温靭性に優れた高強度鋼管の 製造方法。 図面の簡単な説明 Here, C, Mn, Ni, Cr, and Mo are the contents [% by mass] of each element. (8) A low temperature characterized in that the steel sheet produced by the method described in (7) above is formed into a tubular shape in the UO process, the butt portion is welded to the submerged door from the inner and outer surfaces, and then expanded. A manufacturing method for high strength steel pipes with excellent toughness. Brief Description of Drawings
図 1 は、 熱間加工温度とポリゴナルフェライ ト面積率との関係を 示す図である。  Figure 1 shows the relationship between hot working temperature and polygonal ferrite area ratio.
図 2は、 水冷開始温度とポリゴナルフェライ ト面積率との関係を 示す図である。  Figure 2 shows the relationship between the water cooling start temperature and the polygonal ferrite area ratio.
図 3は、 ポリゴナルフェライ ト面積率と靭性及び強度との関係を 示す図である。 発明を実施するための形態  Fig. 3 shows the relationship between the polygonal ferrite area ratio, toughness, and strength. BEST MODE FOR CARRYING OUT THE INVENTION
高強度鋼板の靭性の向上、 特に、 一 4 0で、 更には、 — 6 0 と いう極低温での靱性の確保には、 結晶粒の微細化が必要である。 し かし、 ベイナイ ト、 マルテンサイ トからなる金属組織を、 圧延によ つて微細化することは困難である。 また、 軟質であるフェライ トを 生成させると、 靭性は向上する。 しかし、 オーステナイ トとフェラ ィ トとが共存する温度域で熱間圧延を行い、 加工フェライ 卜を生成 させると、 靭性が低下することがわかった。  In order to improve the toughness of high-strength steel sheets, particularly to secure the toughness at a very low temperature of 1-40 and −60, it is necessary to refine crystal grains. However, it is difficult to refine a metal structure composed of bainite and martensite by rolling. In addition, toughness improves when soft ferrite is generated. However, it was found that toughness decreases when hot rolling is performed in a temperature range where austenite and ferrite coexist to produce machined ferrite.
そこで、 本発明者らは、 熱間圧延の終了後、 高温での冷却時にポ リゴナルフェライ トを生成させ、 高強度鋼板の低温靭性を向上させ る方法を指向した。 しかし、 H A Zの強度及び靱性を確保するため に焼入れ性を高めた高強度鋼板では、 ポリゴナルフェライ トを生成 させることは難しい。  Therefore, the present inventors have directed a method for improving the low-temperature toughness of high-strength steel sheets by generating polygonal ferrite at the time of cooling at high temperature after completion of hot rolling. However, it is difficult to generate polygonal ferrite with a high-strength steel plate with high hardenability to ensure the strength and toughness of HAZ.
ポリゴナルフェライ トを生成させるには、 鋼板を熱間圧延した直 後、 即ち、 空冷前に、 未再結晶のオーステナイ トの転位密度を高め ておく ことが有効である。 本発明者らは、 まず、 金属組織がオース テナイ トであり、 再結晶しない温度域、 即ち、 未再結晶ァ域での圧 延の条件について検討を行った。 In order to generate polygonal ferrite, the steel sheet is hot-rolled directly. It is effective to increase the dislocation density of unrecrystallized austenite after air cooling. The inventors first studied the rolling conditions in the temperature range where the metal structure is austenite and does not recrystallize, that is, in the non-recrystallized region.
質量%で、 C : 0. 0 1〜 0. 0 8 %、 S i : 0. 0 1〜 0. 5 0 % , M n : 0. 5〜 2. 0 %、 S : 0. 0 0 0 1〜 0. 0 0 5 % 、 T i : 0. 0 0 3〜 0. 0 3 0 %、 〇 : 0. 0 0 0 1〜 0. 0 0 8 %を含み、 P : 0. 0 5 0 %以下、 A 1 : 0. 0 2 0 %以下に制 限し、 M oの含有量を 0. 0 5〜 ; L . 0 0 %、 Bの含有量を 0. 0 0 0 3〜 0. 0 1 0 %とし、 焼入れ性の指標である炭素等量 CeQを 0. 3 0〜 0. 5 3、 及び、 溶接性の指標である割れ感受性指数 P cmを 0. 1 0〜 0. 2 0 とした鋼を溶製し、 铸造して鋼片を製造し た。  % By mass: C: 0.0 1 to 0.0 8%, S i: 0.0 1 to 0.5 0%, M n: 0.5 to 2.0%, S: 0.0 0 0 0 1 to 0. 0 0 5%, T i: 0. 0 0 3 to 0.0 3 0%, ○: 0. 0 0 0 1 to 0.0. 0 0 8% included, P: 0. 0 5 0 %, A 1: 0. 0 20% or less, Mo content is 0.05 ~; L. 0 0%, B content is 0.00 0 3 ~ 0. The carbon equivalent CeQ is 0.30 to 0.53 and the crack susceptibility index Pcm is 0.1 to 0 to 0.20. Steel smelted was produced and forged to produce steel slabs.
次に、 得られた鋼片から高さ 1 2 mm、 直径 8 mmの試験片を切 り出し、 熱間圧延を模擬した加工熱処理を施した。 加工熱処理とし て、 圧下比を 1. 5 とする 1回の加工を施し、 空冷に相当する 0. 2でノ 5で冷却し、 更に、 水冷に相当する 1 5 :Z sで加速冷却し た。 なお、 加工フェライ トの生成を避けるため、 加工温度は冷却時 の変態温度 A r 3以上の温度とした。 冷却時の変態温度 A r 3は、 熱 膨張曲線から求めた。 加工熱処理後、 試験片のポリゴナルフェライ 卜の面積率を測定した。 なお、 圧延方向に延伸していない、 ァスぺ ク ト比が 1〜 4のフェライ トをポリゴナルフェライ トとした。 Next, a test piece having a height of 12 mm and a diameter of 8 mm was cut from the obtained steel slab and subjected to thermomechanical processing simulating hot rolling. As a thermomechanical treatment, a single process with a rolling reduction ratio of 1.5 was performed, cooled by 0.2 at 0.2 corresponding to air cooling, and further accelerated at 15: Z s corresponding to water cooling. . In order to avoid the formation of machining ferrite, the machining temperature was set to a temperature equal to or higher than the transformation temperature Ar 3 during cooling. The transformation temperature A r 3 during cooling was obtained from the thermal expansion curve. After the thermomechanical treatment, the area ratio of the polygonal ferrite ridge of the test piece was measured. In addition, polygonal ferrite was used for ferrite with an aspect ratio of 1 to 4 that was not stretched in the rolling direction.
水冷に相当する 1 5 :Z sでの加速冷却を開始する温度は、 A r 3— 9 0で、 A r 3 - 7 O :, A r 3— 4 0でとし、 加工を加える温 度 (加工温度) を変化させて、 ポリゴナルフェライ トが生成する条 件を検討した。 結果を、 図 1 に示す。 図 1 は、 ポリゴナルフェライ 卜の面積率を加工温度と A r 3との差に対してプロッ トしたもので あり、 「〇」 、 「口」 、 「△」 は、 加速冷却の開始温度を、 それぞ れ、 A r 3— 9 0で、 A r 3— 7 0で、 A r 3— 4 0 ^:とした結果で ある。 図 1 に示したように、 熱間加工の加工温度を A r 3 + 6 0 t: 以下にすれば、 面積率 2 0 %以上のポリゴナルフェライ トが生成す ることがわかった。 The temperature at which accelerated cooling at 1 5: Z s corresponding to water cooling starts is A r 3 — 90, and A r 3-7 O:, A r 3 — 4 0. We examined the conditions under which polygonal ferrite was generated by changing the processing temperature. The results are shown in Figure 1. Figure 1 plots the area ratio of polygonal ferrule 卜 against the difference between the processing temperature and A r 3. Yes, “O”, “Mouth”, “△” indicate the start temperature of accelerated cooling, respectively, A r 3 — 90, A r 3 — 7 0, A r 3 — 4 0 ^: This is the result. As shown in Fig. 1, it was found that polygonal ferrite with an area ratio of 20% or more was generated if the hot working temperature was set to Ar 3 + 60 t: or less.
更に、 熱間圧延機を用いて、 加速^ _開始温度とポリゴナルフエ ライ トの面積率との関係、 及びポリゴナルフェライ トの面積率と靭 性との関係について検討を行った。 熱間圧延は、 再加熱温度を 1 0 5 0でとし、 パス回数を 2 0〜 3 3回とし、 A r 3以上で圧延を終 了し、 空冷した後、 加速冷却として水冷を行った。 Furthermore, using a hot rolling mill, the relationship between the acceleration start temperature and the area ratio of polygonal ferrite and the relationship between the area ratio of polygonal ferrite and toughness were investigated. In the hot rolling, the reheating temperature was set to 10 50, the number of passes was set to 20 to 3 times, the rolling was finished at Ar 3 or more, air cooling was performed, and water cooling was performed as accelerated cooling.
なお、 熱間圧延の最終工程、 即ち、 八 1" 3 + 6 0 以下から終了 までの圧延を歪導入圧延という。 A r 3 + 6 0で以下から終了まで の圧下比、 即ち、 歪み導入圧延の圧下比を 1. 5以上とし、 空冷し た後、 種々の温度から水冷 (加速冷却) を開始した。 歪み導入圧延 のパス回数は 4〜 2 0回とした。 The final process of hot rolling, that is, rolling from 8 1 " 3 + 60 to below is called strain-introducing rolling. The rolling ratio from below to the end at Ar 3 + 60, ie, strain-introducing rolling. The rolling reduction ratio was set to 1.5 or more, and after air cooling, water cooling (accelerated cooling) was started from various temperatures The number of passes of strain-introducing rolling was 4 to 20 times.
得られた鋼板のポリゴナルフェライ 卜の面積率を光学顕微鏡を用 いて測定し、 引張試験と落重試験 (Drop Weight Tear Test, D W T Tという。 ) を行った。 引張特性は、 A P I規格の試験片を用い て評価した。 DWT Tは— 6 0でで行い、 き裂の延性破面率 (Shea r Area, S Aという。 ) を求めた。  The area ratio of the polygonal ferrite plate of the obtained steel sheet was measured using an optical microscope, and a tensile test and a drop weight test (referred to as Drop Weight Tear Test, DWT) were performed. Tensile properties were evaluated using A PI standard test pieces. DWT T was performed at −60, and the ductile fracture surface ratio (referred to as Shear Area, SA) of the crack was determined.
加速冷却の開始温度と、 ポリゴナルフェライ トの面積率との関係 を、 図 2に示す。 図 2から、 熱間圧延後の加速冷却の開始温度を A r 3 - 1 0 0で〜 A r 3— 1 0でとすれば、 鋼板のポリゴナルフェラ イ トの面積率が 2 0〜 9 0 %となることがわかった。 即ち、 熱間圧 延の終了後、 A r 3以上の温度から、 A r 3— 1 0 0 :〜 A r 3— 1 0での範囲内の温度まで空冷すると、 面積率 2 0〜 9 0 %のポリゴ ナルフェライ トを生成させることができる。 また、 ポリゴナルフェライ トの面積率と、 引張強さ及び一 6 O t: での延性破面率 S Aとの関係を、 図 3に示す。 図 3から、 ポリゴナ ルフェライ 卜の面積率を 2 0 %以上とすれば、 極めて良好な低温靭 性が得られることがわかる。 また、 図 3から、 X 7 0に相当する 5 7 O M P a以上の引張強さを確保するにはポリゴナルフェライ 卜の 面積率を 9 0 %以下にすることが必要であることがわかる。 更に、 図 3に示したように、 X 8 0に相当する 6 2 5 M P a以上の引張強 さを確保するには、 ポリゴナルフェライ 卜の面積率を 8 0 %以下と することが好ましい。 Figure 2 shows the relationship between the accelerated cooling start temperature and the area ratio of polygonal ferrite. From Fig. 2, if the starting temperature of accelerated cooling after hot rolling is Ar 3-100 0 ~ Ar 3 — 1 0, the area ratio of the polygonal ferrite of the steel sheet is 20 ~ 9 It was found to be 0%. That is, after the hot rolling is completed, when the air cooling is performed from a temperature of A r 3 or higher to a temperature within the range of A r 3 — 1 0 0: to A r 3 — 1 0, the area ratio 2 0 to 9 0 % Polygonal ferrite can be generated. Figure 3 shows the relationship between the area ratio of polygonal ferrite, the tensile strength, and the ductile fracture surface area SA at 1 6 Ot :. From Fig. 3, it can be seen that extremely good low-temperature toughness can be obtained if the area ratio of polygonal ferrule is 20% or more. From Fig. 3, it is clear that the area ratio of polygonal ferrite 卜 needs to be 90% or less in order to secure a tensile strength of 5 7 OMPa or more corresponding to X70. Furthermore, as shown in FIG. 3, in order to secure a tensile strength of 6 25 MPa or more corresponding to X 80, it is preferable that the area ratio of the polygonal ferrule is 80% or less.
以上のように、 本発明者らは、 ポリゴナルフェライ トを確保する には、 熱間圧延を行う際に、 未再結晶域での圧延による歪の導入が 重要であることを見出した。 本発明者らは、 更なる詳細な検討を行 い、 以下の知見を得て本発明を完成させた。  As described above, the present inventors have found that in order to secure polygonal ferrite, it is important to introduce strain due to rolling in an unrecrystallized region when performing hot rolling. The present inventors have conducted further detailed studies and obtained the following findings to complete the present invention.
熱間圧延では、 A r 3 + 6 0 以下での圧下比の確保が重要であ る。 そのため、 熱間圧延の最終工程として、 歪み導入圧延を行うこ とが必要である。 歪み導入圧延は、 熱間圧延における、 A r 3 + 6 0で以下、 圧延終了までのパスであり、 少なく とも 1パスは必要で あり、 複数のパスとしてもよい。 熱間圧延後の空冷によってポリゴ ナルフェライ トを生成させるために、 歪み導入圧延の圧下比は 1. 5以上とする。 なお、 歪み導入圧延の圧下比は、 A r 3 + 6 0 :の 板厚と圧延終了後の板厚の比である。 In hot rolling, it is important to secure a reduction ratio below A r 3 +60. Therefore, it is necessary to perform strain-introducing rolling as the final hot rolling process. The strain-introduced rolling is Ar 3 +60 in hot rolling, and is a pass to the end of rolling. At least one pass is required, and multiple passes may be used. In order to generate polygonal ferrite by air cooling after hot rolling, the reduction ratio of strain-introducing rolling should be 1.5 or more. The rolling reduction ratio of the strain-introduced rolling is the ratio of the thickness of Ar 3 +60: and the thickness after the rolling.
圧延後、 空冷してポリゴナルフェライ トを生成させた後、 ベイナ イ ト変態による強度の向上のため、 1 0 ノ s以上の冷却速度で加 速冷却する。 また、 強度を確保するために、 加速冷却はべイナイ ト 生成温度 B s以下で停止させることが必要である。  After rolling, air-cooled to generate polygonal ferrite, and then accelerated and cooled at a cooling rate of 10 s or more to improve the strength by bainitic transformation. In addition, in order to ensure the strength, it is necessary to stop the accelerated cooling below the vane generation temperature B s.
以下、 本発明の鋼板について詳細に説明する。 なお、 %は質量% を意味する。 C : 0. 0 1〜 0. 0 8 % Hereinafter, the steel sheet of the present invention will be described in detail. “%” Means “% by mass”. C: 0.0 1 to 0.0 8%
Cは、 鋼の強度を向上させる元素であり、 金属組織にベイナイ ト 、 マルテンサイ 卜の一方又は双方からなる硬質相を生成させるため 、 0. 0 1 %以上の添加が必要である。 また、 本発明では、 高強度 と高靭性を両立させるため、 Cの含有量を 0. 0 8 %以下とする。  C is an element that improves the strength of steel, and in order to form a hard phase composed of one or both of bainite and martensite in the metal structure, addition of 0.1% or more is necessary. In the present invention, in order to achieve both high strength and high toughness, the C content is set to 0.08% or less.
S i : 0. 0 1〜 0. 5 0 %  S i: 0.0 1 to 0.5 0%
S i は、 脱酸元素であり、 効果を得るために 0. 0 1 %以上の添 加が必要である。 一方、 0. 5 0 %超の S i を含有させると、 HA Zの靱性が劣化するので、 上限を 0. 5 0 %とする。  S i is a deoxidizing element, and in order to obtain an effect, addition of 0.0 1% or more is necessary. On the other hand, if containing Si exceeding 0.50%, the toughness of HA Z deteriorates, so the upper limit is made 0.5%.
M n : 0. 5〜 2. 0 %  M n: 0.5 to 2.0%
M nは、 焼入れ性を高める元素であり、 強度及び靭性の確保のた めに、 0. 5 %以上の添加が必要である。 一方、 M nの含有量が 2 . 0 %を超えると、 HA Zの靭性を損なう。 したがって、 M nの含 有量を 0. 5 0〜 2. 0 %する。  M n is an element that enhances hardenability, and it is necessary to add 0.5% or more in order to ensure strength and toughness. On the other hand, if the Mn content exceeds 2.0%, the toughness of HA Z is impaired. Therefore, the content of M n is 0.5 to 2.0%.
P : 0. 0 5 0 %以下  P: 0.05 0% or less
Pは、 不純物であり、 0. 0 5 0 %超を含有すると、 母材の靭性 が著しく低下する。 HA Zの靭性を向上させるには、 Pの含有量を 0. 0 2 %以下とすることが好ましい。  P is an impurity, and if it contains more than 0.050%, the toughness of the base material is significantly lowered. In order to improve the toughness of HA Z, the P content is preferably 0.02% or less.
S : 0. 0 0 0 1〜 0. 0 0 5 %  S: 0. 0 0 0 1 to 0.0. 0 5%
Sは、 不純物であり、 0. 0 0 5 %超を含有すると粗大な硫化物 を生成して、 靱性を低下させる。 また、 鋼板に T i の酸化物を微細 に分散させると、 M n Sが析出して、 粒内変態が生じ、 鋼板及び H A Zの靱性が向上する。 この効果を得るには、 Sを 0. 0 0 0 1 % 以上含有させることが必要である。 また、 HA Zの靱性を向上させ るには、 S量の上限を 0. 0 0 3 %とすることが好ましい。  S is an impurity, and if it exceeds 0.05%, coarse sulfides are produced and the toughness is lowered. In addition, when Ti oxide is finely dispersed in the steel sheet, MnS precipitates and causes intragranular transformation, improving the toughness of the steel sheet and HAZ. In order to obtain this effect, it is necessary to contain S in an amount of 0.001% or more. Further, in order to improve the toughness of HA Z, it is preferable to set the upper limit of the S amount to 0.03%.
A 1 : 0. 0 2 0 %以下  A 1: 0.0 2 0% or less
A 1 は、 脱酸剤であるが、 介在物の生成を抑制して鋼板び H A Z の靭性を高めるには、 上限を 0. 0 2 0 %にすることが必要である 。 A 1 の含有量を制限することにより、 粒内変態に寄与する T i の 酸化物を微細に分散させることができる。 粒内変態の生成を促進さ せるには、 八 1 量を 0. 0 1 0 %以下にすることが好ましい。 更に 好ましい上限は、 0. 0 0 8 %である。 A 1 is a deoxidizer, but it suppresses the formation of inclusions and suppresses the formation of steel plates and HAZ. In order to increase the toughness of the steel, the upper limit must be 0.020%. By limiting the content of A 1, it is possible to finely disperse the Ti oxide that contributes to the intragranular transformation. In order to promote the formation of intragranular transformation, it is preferable that the content of 8 1 is not more than 0.010%. A more preferred upper limit is 0.0 0 8%.
T i : 0. 0 0 3〜 0. 0 3 0 %  T i: 0.0.03 to 0.0.30%
T i は、 鋼板及び HA Zの粒径の微細化に寄与する T i の窒化物 を生成する元素であり、 0. 0 0 3 %以上の添加が必要である。 一 方、 T i を過剰に含有させると粗大な介在物を生じて靱性を損なう ため、 上限を 0. 0 3 0 %とする。 また、 T i の酸化物は、 微細に 分散させると、 粒内変態の生成核として有効に作用する。  T i is an element that forms a nitride of T i that contributes to the refinement of the grain size of the steel sheet and HA Z, and it is necessary to add 0.003% or more. On the other hand, if Ti is contained excessively, coarse inclusions are formed and the toughness is impaired, so the upper limit is made 0.030%. In addition, when Ti oxides are finely dispersed, they effectively act as nuclei for intragranular transformation.
T 1 を添加する際の酸素量が多いと、 粗大な T 1 の酸化物を生成 するため、 製鋼時には、 S i 、 M nにより脱酸を行い、 酸素量を低 下させておく ことが好ましい。 この場合、 A 1 の酸化物は、 T i の 酸化物よりも生成し易いので、 過剰な A 1 の含有は好ましくない。  If the amount of oxygen at the time of adding T 1 is large, a coarse oxide of T 1 is formed. Therefore, during steelmaking, it is preferable to deoxidize with Si and M n to reduce the amount of oxygen. . In this case, since the oxide of A 1 is easier to form than the oxide of T i, it is not preferable to contain an excessive amount of A 1.
B : 0. 0 0 0 3〜 0. 0 1 0 %  B: 0. 0 0 0 3 to 0.0. 0 1 0%
Bは、 焼入れ性を著しく高め、 また、 HA Zでの粗大な粒界フエ ライ 卜の生成を抑制する重要な元素である。 この効果を得るには、 Bを 0. 0 0 0 3 %以上添加することが必要である。 一方、 Bを過 剰に添加すると粗大な B Nを生じ、 特に HA Zの靭性を低下させる ため、 B量の上限を 0. 0 1 0 %とする。  B is an important element that significantly enhances hardenability and suppresses the formation of coarse grain boundary ferrite in HA Z. In order to obtain this effect, it is necessary to add B 0.003% or more. On the other hand, when B is added excessively, coarse B N is produced, and in particular, the toughness of HA Z is lowered. Therefore, the upper limit of B content is set to 0.0 10%.
M o : 0. 0 5〜: 1. 0 0 %  M o: 0.0 5 ~: 1. 0 0%
M oは、 特に、 Bとの複合添加によって、 焼入れ性を著しく高め る元素であり、 強度及び靭性の向上のために、 0. 0 5 %以上を添 加する。 一方、 M oは、 高価な元素であり、 添加量の上限を 1. 0 0 %とすることが必要である。  Mo is an element that remarkably enhances the hardenability especially by the combined addition with B, and 0.05% or more is added to improve strength and toughness. On the other hand, Mo is an expensive element, and it is necessary to set the upper limit of the addition amount to 1.0%.
0 : 0. 0 0 0 1〜 0. 0 0 8 % Oは、 不純物であり、 介在物の生成による靭性の低下を避けるた めに、 含有量の上限を 0. 0 0 8 %にすることが必要である。 粒内 変態に寄与する Τ ί の酸化物を生成させるためには、 铸造時に鋼中 に残存する〇量を、 0. 0 0 0 1 %以上とする。 0: 0. 0 0 0 1 to 0. 0 0 8% O is an impurity, and the upper limit of the content must be 0.08% in order to avoid a decrease in toughness due to the formation of inclusions. In order to produce oxides of ίί that contribute to intragranular transformation, the amount of ◯ remaining in the steel at the time of forging is set to not less than 0.0 0 0 1%.
更に、 強度及び靭性を向上させる元素として、 C u、 N i 、 C r 、 W、 V、 N b、 Z r、 及び、 T aのうち、 1種又は 2種以上を添 加してもよい。 また、 これらの元素は含有量が好ましい下限未満の 場合は、 特に悪影響を及ぼすことはないので、 不純物と見做すこと ができる。  Further, one or more of Cu, Ni, Cr, W, V, Nb, Zr, and Ta may be added as elements for improving strength and toughness. . In addition, when the content of these elements is less than the preferred lower limit, they do not have a particularly bad influence, and can be regarded as impurities.
C u及び N i は、 靭性を損なうことなく強度を上昇させる有効な 元素であり、 効果を得るためには、 C u量、 及び、 N i 量の下限を 0. 0 5 %以上とすることが好ましい。 一方、 C u量の上限は、 鋼 片の加熱時及び溶接時の割れの発生を抑制するために、 1. 5 %と することが好ましい。 N i は、 過剰に含有させると溶接性を損なう ため、 上限を 5. 0 %とすることが好ましい。  Cu and Ni are effective elements that increase the strength without impairing toughness. To obtain the effect, the lower limit of the Cu content and the Ni content must be 0.05% or more. Is preferred. On the other hand, the upper limit of the Cu content is preferably 1.5% in order to suppress the occurrence of cracks during heating and welding of the steel slab. If Ni is contained excessively, weldability is impaired, so the upper limit is preferably made 5.0%.
なお、 C uと N i は、 表面傷の発生を抑制するために複合して含 有させることが好ましい。 また、 コス トの観点からは、 C u及び N i の上限を 1. 0 %とすることが好ましい。  Note that Cu and Ni are preferably included in combination in order to suppress the occurrence of surface flaws. Further, from the viewpoint of cost, it is preferable that the upper limit of Cu and Ni is 1.0%.
C r、 W、 V、 N b、 Z r、 及び、 T aは、 炭化物、 窒化物を生 成し、 析出強化によって鋼の強度を向上させる元素であり、 1種又 は 2種以上を含有させてもよい。 強度を効果的に上昇させるために は、 C r量の下限は 0. 0 2 %、 \¥量の下限は 0. 0 1 %、 V量の 下限は 0. 0 1 %、 N b量の下限は 0. 0 0 1 %、 Z r量、 及び、 T a量の下限は、 共に、 0. 0 0 0 1 %とすることが好ましい。 一方、 C r、 Wの一方又は双方を過剰に添加すると、 焼入れ性の 向上により強度が上昇し、 靭性を損なう ことがあるため、 C r量の 上限を 1. 5 0 %、 W量の上限を 0. 5 0 %とすることが好ましい 。 また、 V、 N b、 Z r、 T aの 1種又は 2種以上を過剰に添加す ると、 炭化物、 窒化物が粗大化し、 靱性を損なうことがあるので、 V量の上限を 0. 1 0 %、 N b量の上限を 0. 2 0 %、 Z r量及び T a量の上限を、 共に、 0. 0 5 0 %とすることが好ましい。 Cr, W, V, Nb, Zr, and Ta are elements that generate carbides and nitrides and improve the strength of steel by precipitation strengthening, and contain one or more. You may let them. In order to increase the strength effectively, the lower limit of the Cr amount is 0.02%, the lower limit of the \ ¥ amount is 0.01%, the lower limit of the V amount is 0.01%, and the Nb amount The lower limit is preferably 0.0 0 1%, and the lower limits of the Zr amount and the Ta amount are both preferably 0.0 0 0 1%. On the other hand, if one or both of Cr and W are added excessively, the hardenability will improve and the strength will be increased and the toughness may be impaired. Therefore, the upper limit of Cr content is 1.50% and the upper limit of W content. Is preferably 0.5%. . In addition, excessive addition of one or more of V, Nb, Zr, and Ta may cause carbides and nitrides to become coarse and impair toughness, so the upper limit of V content is set to 0. It is preferable that the upper limit of the amount of 10%, the amount of Nb is 0.20%, and the upper limit of the amount of Zr and Ta is both 0.05%.
更に、 介在物の形態を制御して、 靱性の向上を図るため、 M g、 C a、 R E M, Y、 H f 、 及び、 R eのうち、 1種又は 2種以上を 添加してもよい。 また、 これらの元素も、 含有量が好ましい下限未 満の場合は特に悪影響を及ぼすことはないため、 不純物と見做すこ とができる。  Furthermore, in order to control the form of inclusions and improve toughness, one or more of Mg, Ca, REM, Y, Hf, and Re may be added. . In addition, these elements can be regarded as impurities because they do not have an adverse effect when the content is less than the preferred lower limit.
M gは、 酸化物の微細化や、 硫化物の形態抑制に効果を発現する 元素である。 特に、 微細な M gの酸化物は粒内変態の生成核として 作用し、 また、 ピニング粒子として粒径の粗大化を抑制する。 これ らの効果を得るためには、 0. 0 0 0 1 %以上の M gを添加するこ とが好ましい。 一方 0. 0 1 0 %を超える量の M gを添加すると、 粗大な酸化物が生成して、 HA Zの靭性を低下させることがあるの で、 M g量の上限を 0. 0 1 0 %とすることが好ましい。  Mg is an element that has an effect on the refinement of oxides and the suppression of sulfide morphology. In particular, fine Mg oxides act as nuclei for intragranular transformation and also suppress the coarsening of the particle size as pinning particles. In order to obtain these effects, it is preferable to add 0.001% or more of Mg. On the other hand, if Mg in an amount exceeding 0.010% is added, a coarse oxide is formed, which may reduce the toughness of HA Z. % Is preferable.
C a及び R E Mは、 硫化物の形態制御に有用であり、 硫化物を生 成して圧延方向に伸長した M n Sの生成を抑制し、 鋼材の板厚方向 の特性、 特に、 耐ラメラティアー性を改善する元素である。 この効 果を得るためには、 C a量及び R E M量の下限を、 共に、 0. 0 0 0 1 %とすることが好ましい。 一方、 C a、 R E Mの一方又は双方 は、 含有量が 0. 0 0 5 %を超えると酸化物が増加して、 微細な T i含有酸化物が減少し、 粒内変態の生成を阻害することがあるため 、 0. 0 0 5 %以下とすることが好ましい。  C a and REM are useful for controlling the morphology of sulfides, suppress the formation of sulfides and the formation of M n S that stretches in the rolling direction, and the properties in the thickness direction of steel materials, especially lamellar resistance. It is an element that improves the properties. In order to obtain this effect, it is preferable that the lower limits of the Ca content and the REM content are both 0.0 0 0 1%. On the other hand, one or both of Ca and REM, when the content exceeds 0.05%, the oxide increases, the fine Ti-containing oxide decreases, and the formation of intragranular transformation is inhibited. Therefore, it is preferable to set the content to 0.05% or less.
Y、 H f 、 及び、 R e も、 C a及び R E Mと同様の効果を発現す る元素であり、 過剰に添加すると粒内変態の生成を阻害することが ある。 そのため、 Y、 H f 、 及び、 R eの量の好ましい範囲は、 0 . 0 0 0 1 〜 0 . 0 0 5 %である。 Y, H f, and R e are elements that exhibit the same effects as Ca and REM, and if added in excess, they may inhibit the formation of intragranular transformation. Therefore, the preferred range of the amount of Y, H f, and Re is 0 0 0 0 1 to 0. 0 0 5%.
更に、 本発明においては、 特に、 H A Zの焼入れ性を確保して靭 性を高めるため、 C、 M n , N i 、 C u、 C r 、 M o、 及び、 Vの 含有量 [質量%] から計算される、 下記 (式 1 ) の炭素当量 C eQを 0 . 3 0 〜 0 . 5 3 とする。 炭素当量 C eQは溶接部の最高硬さと相 関があることが知られており、 焼入れ性や溶接性の指標となる値で ある。  Furthermore, in the present invention, in order to secure the hardenability of HAZ and enhance the toughness, the contents of C, M n, Ni, Cu, Cr, Mo, and V [mass%] The carbon equivalent C eQ of the following (formula 1) calculated from the equation (3) is set to 0.30 to 0.53. The carbon equivalent C eQ is known to correlate with the maximum hardness of the weld and is a value that can be used as an index of hardenability and weldability.
C ea= C + M n / 6 + (N i + C u ) / 1 5  C ea = C + M n / 6 + (N i + C u) / 1 5
+ ( C r + M o + V) / 5 - - - (式 1 )  + (C r + Mo + V) / 5---(Formula 1)
また、 鋼板及び H A Zの低温靱性を確保するために、 C、 S i 、 M n、 C u C r 、 N i 、 M o、 V、 及び、 Bの含有量 [質量%] か ら計算される、 下記 (式 2 ) の割れ感受性指数 P cmを 0 . 1 0 〜 0 . 2 0 とする。 割れ感受性指数 P cmは溶接時の低温割れの感受性を 推測できる係数として知られており、 焼入れ性や溶接性の指標とな る値である。  In order to ensure the low temperature toughness of the steel sheet and HAZ, it is calculated from the contents [mass%] of C, Si, Mn, CuCr, Ni, Mo, V, and B. In the following (Equation 2), the cracking sensitivity index P cm is set to 0.10 to 0.20. The crack susceptibility index P cm is known as a coefficient that can be used to estimate the susceptibility to cold cracking during welding, and is a value that serves as an index of hardenability and weldability.
P cm= C + S 1 / 3 0 + (M n + C u + C r ) / 2 0  P cm = C + S 1/3 0 + (M n + C u + C r) / 2 0
+ N i / 6 0 + M o / 1 5 + V/ l 0 + 5 B - · · (式 2 ) なお、 選択的に含有される元素である、 N i 、 C u 、 C r 、 Vは 、 上述した好ましい下限未満である場合、 不純物であるから、 上記 (式 1 ) 及び (式 2 ) においては、 0 として計算する。  + N i / 60 + Mo / 1 5 + V / l 0 + 5 B-(Formula 2) In addition, the selectively contained elements, Ni, Cu, Cr, V are If it is less than the above-mentioned preferred lower limit, it is an impurity, so in the above (formula 1) and (formula 2), it is calculated as 0.
鋼板の金属組織は、 ポリゴナルフェライ トと硬質相とを含む、 複 合組織とする。 ポリゴナルフェライ トは、 熱間圧延後の空冷時に比 較的高温で生成したフェライ トである。 ポリゴナルフェライ トは、 ァスぺク ト比が 1 〜 4であり、 圧延されて延伸した加工フェライ ト や、 加速冷却時に比較的低温で生成し、 粒成長が不十分である微細 フェライ 卜とは区別される。  The metal structure of the steel sheet is a composite structure containing polygonal ferrite and hard phase. Polygonal ferrite is generated at a relatively high temperature during air cooling after hot rolling. Polygonal ferrite has an aspect ratio of 1 to 4, and is a processed ferrite that is rolled and stretched, and a fine ferrite that is formed at a relatively low temperature during accelerated cooling and has insufficient grain growth. Are distinguished.
なお、 硬質相は、 ペイナイ ト、 マルテンサイ 卜の一方又は双方か らなる組織である。 鋼板の光学顕微鏡組織では、 ポリゴナルフェラ ィ ト及びべィナイ 卜とマルテンサイ 卜との残部として残留オーステ ナイ ト、 M Aを含むことがある。 The hard phase is either one or both of paynite and martensite Organization. In the optical microstructure of the steel sheet, residual austenite and MA may be included as the remainder of the polygonal ferrite and the vine and martensite.
ポリゴナルフェライ 卜の面積率は 2 0 %以上とする。 上述のよう に、 焼入れ性を高めた成分組成を有する鋼板では、 ポリゴナルフエ ライ トを生成させ、 かつ、 残部をべイナイ トとマルテンサイ トの硬 質相とすることで強度と靱性のバランスが良好になる 0 特に 、 ポリ ゴナルフェライ 卜の面積率を 2 0 %以上とすることにより、 図 3に 示されるように、 低温靭性は著しく向上し、 一 6 0ででの D W T T の結果、 S Aを 8 5 %以上とすることができる。  The area ratio of Polygonal Ferai is 20% or more. As described above, a steel sheet having a component composition with improved hardenability has a good balance between strength and toughness by generating polygonal ferrite and using the balance as the hard phase of bainite and martensite. In particular, by setting the area ratio of the polygonal ferrule to 20% or more, as shown in Fig. 3, the low temperature toughness is remarkably improved. As a result of DWTT at 160, SA is 85% This can be done.
一方、 強度を確保するためには、 ポリゴナルフ Xライ 卜の面積率 を 9 0 %以下とすることが必要である。 図 3 に示されるよう L ¾ リゴナルフェライ 卜の面積率を 9 0 %以下とする とにより X 7 On the other hand, in order to ensure the strength, the area ratio of polygonal X-ray rice must be 90% or less. As shown in Fig. 3, if the area ratio of L ¾ gonal ferrule 卜 is 90% or less, X 7
0以上に相当する引張強さを確保することができる 。 更に、 強度を 高め、 X 8 0以上に相当する引張強さを確保するには、 ポリゴナル フェライ 卜の面積率を 8 0 %以下とすることが好ましい o A tensile strength corresponding to 0 or more can be secured. Furthermore, in order to increase the strength and secure a tensile strength corresponding to X 80 or more, it is preferable that the area ratio of the polygonal ferri iron is 80% or less.
また、 ポリゴナルフェライ トの残部はべイナィ 、 マルテンサイ 卜の一方又は双方からなる硬質相である。 硬質相の面積率は 、 ポリ ゴナルフェライ 卜の面積率が 2 0 9 0 %である とから、 1 0 Further, the remainder of the polygonal ferrite is a hard phase composed of one or both of bainai and martensite. The area ratio of the hard phase is 2 0 90% because the area ratio of polygonal ferrule is 1 0
8 0 %になる。 一方、 例えば、 圧延終了温度が A r 3 を下回り、 ァ スぺク 卜比が 4を超える加工フェライ 卜が生成すると、 靭性が低下 する。 8 0%. On the other hand, for example, if a milling ferrit with a finish temperature lower than A r 3 and an aspect ratio exceeding 4 is generated, the toughness decreases.
本発明において、 ポリゴナルフェライ トとは、 光学顕微鏡組織に おいて、 粒内に粗大なセメンタイ トゃ M Aなどの析出物を含まない 、 アスペク ト比 1 4である、 白い丸みを帯びた塊状の組織として 観察される。 ここで、 アスペク ト比は、 フェライ ト粒の長さを幅で 除した値である。 また、 ベイナイ トは、 ラスもしくは塊状フェライ ト間に炭化物が 析出したもの、 又はラス内に炭化物が析出した組織と定義される。 更に、 マルテンサイ トは、 ラス間又はラス内に炭化物が析出してい ない組織である。 残留オーステナイ トは、 高温で生成したオーステ ナイ 卜が変態せず、 残留したオーステナイ トである。 In the present invention, a polygonal ferrite is a white rounded lump that has an aspect ratio of 14 and does not contain precipitates such as coarse cementite MA in the grain in an optical microscope. Observed as an organization. Here, the aspect ratio is the value obtained by dividing the length of the ferrite grains by the width. Bainite is defined as a structure in which carbides are precipitated between the laths or block ferrite, or a structure in which carbides are precipitated in the laths. Furthermore, martensite is a structure in which carbides are not precipitated between the laths or within the laths. Residual austenite is austenite that remains without transformation of austenite soot generated at high temperature.
次に、 本発明の鋼板を得るための製造方法について説明する。 上述した成分は、 H A Zの靭性を向上させるために焼入れ性を高 めたものであり、 鋼板の低温靭性を向上させるためには、 熱間圧延 の条件を制御し、 フェライ トを生成させることが必要である。 特に 、 本発明によれば、 板厚が 2 0 m m以上の鋼板のように、 熱間圧延 工程での圧下比を高めることが難しい場合であっても、 比較的低温 での圧下比を確保することにより、 フェライ トを生成させることが できる。  Next, the manufacturing method for obtaining the steel plate of this invention is demonstrated. The above-mentioned components have improved hardenability in order to improve the toughness of HAZ, and in order to improve the low temperature toughness of the steel sheet, it is necessary to control hot rolling conditions and generate ferrite. is necessary. In particular, according to the present invention, even when it is difficult to increase the reduction ratio in the hot rolling process, such as a steel sheet having a thickness of 20 mm or more, a reduction ratio at a relatively low temperature is ensured. As a result, a ferrite can be generated.
まず、 製鋼工程で鋼を溶製した後、 銬造して鋼片とする。 鋼の溶 製及び铸造は常法で行えばよいが、 生産性の観点から連続铸造が好 ましい。 鋼片は熱間圧延のために再加熱される。  First, steel is melted in the steelmaking process, and then forged into billets. Steel melting and forging can be carried out by conventional methods, but continuous forging is preferred from the viewpoint of productivity. The billet is reheated for hot rolling.
熱間圧延時の再加熱温度は 9 5 0で以上とする。 これは、 熱間圧 延を鋼の組織がオーステナイ ト単相になる温度、 即ちオーステナィ ト域で行い、 母材鋼板の結晶粒径を微細にするためである。 上限は 規定しないが、 有効結晶粒径の粗大化抑制のためには、 再加熱温度 を 1 2 5 0で以下とすることが好ましい。 なお、 ポリゴナルフェラ イ トの面積率を高めるためには、 再加熱温度の上限を 1 0 5 0 以 下にすることが好ましい。  The reheating temperature during hot rolling is 9 50 or more. This is because hot rolling is performed at a temperature at which the steel structure becomes an austenite single phase, that is, in the austenite region, and the crystal grain size of the base steel sheet is made fine. Although the upper limit is not specified, in order to suppress the coarsening of the effective crystal grain size, it is preferable to set the reheating temperature to 1 2 500 or less. In order to increase the area ratio of polygonal ferrite, it is preferable to set the upper limit of the reheating temperature to 10 50 or less.
再加熱された鋼片は、 温度と圧下比を制御しながら複数回のパス 熱間圧延を実施し、 終了後、 空冷して、 加速冷却を行う。 また、 熱 間圧延は、 母材の組織がオーステナイ ト単相になる A r 3温度以上 で終了することが必要である。 これは、 A r 3温度未満で熱間圧延 を行うと、 加工フェライ トが生成し、 靭性が低下するためである。 本発明では、 熱間圧延の最終工程として、 歪み導入圧延を行うこ とが、 極めて重要である。 これは、 圧延終了後、 未再結晶オーステ ナイ 卜に、 ポリゴナルフェライ トの生成サイ トとなる歪みを多く導 入するためである。 歪み導入圧延は、 A r 3 + 6 0 :以下から圧延 終了までのパスと定義される。 歪み導入圧延の開始温度は、 A r 3 + 6 0 以下での、 最初のパスの温度である。 歪み導入圧延の開始 温度は、 より低温である A r 3 + 4 0 以下の温度が好ましい。 The reheated slab is subjected to multiple passes of hot rolling while controlling the temperature and reduction ratio, and after completion, it is air-cooled and accelerated. In addition, hot rolling must be completed at an Ar 3 temperature or higher at which the base metal structure becomes an austenite single phase. This is hot rolling at less than A r 3 temperature This is because machining ferrite is generated and toughness decreases. In the present invention, it is extremely important to perform strain-introducing rolling as the final step of hot rolling. This is because, after the rolling is completed, a large amount of distortion, which is a site for generating polygonal ferrite, is introduced into the non-recrystallized austenite. Strain-introduced rolling is defined as the path from A r 3 +60: below to the end of rolling. The starting temperature of strain-introducing rolling is the temperature of the first pass below A r 3 +60. The starting temperature of the strain-introducing rolling is preferably a lower temperature of Ar 3 +40 or lower.
歪み導入圧延の圧下比は、 熱間圧延後の空冷時にポリゴナルフエ ライ トを生成させるため、 1 . 5以上とする。 本発明において、 歪 み導入圧延の圧下比とは、 A r 3 + 6 0 :における板厚、 又は、 歪 み導入圧延の開始温度での板厚を、 熱間圧延終了後の板厚で除した 比である。 圧下比の上限は規定しないが、 圧延前の鋼片の板厚と圧 延後の母材鋼板の板厚を考慮すると、 通常、 1 2. 0以下である。 焼入れ性を高めた成分組成の鋼板のポリゴナルフェライ 卜の面積率 を増加させるには、 歪み導入圧延の圧下比を、 2. 0以上とするこ とが好ましい。 The reduction ratio of strain-introduced rolling is 1.5 or more in order to generate polygonal ferrite during air cooling after hot rolling. In the present invention, the reduction ratio of strain-introducing rolling is the thickness at Ar 3 +60: or the thickness at the starting temperature of strain-introducing rolling is divided by the thickness after the end of hot rolling. It is a ratio. Although the upper limit of the reduction ratio is not specified, it is usually 12.0 or less considering the thickness of the steel slab before rolling and the thickness of the base steel plate after rolling. In order to increase the area ratio of the polygonal ferritic iron of the steel sheet having a component composition with improved hardenability, it is preferable to set the rolling reduction ratio of the strain-introducing rolling to 2.0 or more.
なお、 歪み導入圧延の前に、 再結晶圧延、 未再結晶圧延を行って もよい。 再結晶圧延は、 9 0 0で超の再結晶域での圧延であり、 未 再結晶域圧延は、 9 0 0で以下の未再結晶域での圧延である。 再結 晶圧延は、 鋼片を加熱炉から抽出後、 直ちに開始してもよいため、 開始温度は特に規定しない。 鋼板の有効結晶粒径を微細化するため には、 再結晶圧延の圧下比を、 2. 0以上することが好ましい。 更に、 圧延終了後、 空冷し、 加速冷却を実施する。 面積率が 2 0 〜 9 0 %のポリゴナルフェライ トを生成させるためには、 八 1" 3未 満の温度まで空冷することが必要である。 したがって、 加速冷却を 、 A r 3 - 1 0 0で〜 A r 3— 1 0での範囲内の温度で開始する必要 がある。 また、 パーライ トやセメンタイ トの生成を抑制し、 引張強 さ及び靭性を確保するには、 加速冷却の冷却速度を、 l O ^Z s以 上とすることが必要である。 Note that recrystallization rolling and non-recrystallization rolling may be performed before the strain-introducing rolling. The recrystallization rolling is rolling in a recrystallization region exceeding 90 °, and the non-recrystallization rolling is rolling in the following non-recrystallization region at 90 °. Recrystallization rolling may be started immediately after the slab is extracted from the heating furnace, so the starting temperature is not specified. In order to refine the effective crystal grain size of the steel sheet, the reduction ratio of recrystallization rolling is preferably 2.0 or more. In addition, after rolling, air cooling and accelerated cooling are performed. For the area ratio to produce 2 0-9 0% of polygonal Blow wells, it is necessary to air-cooled to eight 1 "3 of less than the temperature Thus, the accelerated cooling, A r 3 -. 1 0 0 to ~ A r 3 — 1 Need to start at a temperature in the range of 0 There is. In order to suppress the formation of pearlite and cementite and to secure tensile strength and toughness, the cooling rate for accelerated cooling must be at least l O ^ Z s.
加速冷却は、 パーライ トやセメン夕イ トの生成を抑制し、 ベイナ ィ 卜、 マルテンサイ 卜の一方又は双方からなる硬質相を生成させる ために、 停止温度を (式 3 ) の B s以下にする必要がある。 なお、 B s はべイナイ ト変態開始温度であり、 (式 3 ) により、 C、 M n 、 N i 、 C r、 M oの含有量から求められることが知られている。 B s以下の温度まで加速冷却すれば、 ペイナイ 卜を生成させること ができる。  Accelerated cooling suppresses the formation of pearlite and cementite, and in order to generate a hard phase consisting of one or both of bainey 卜 and martensite 卜, the stop temperature is set below B s in (Equation 3). There is a need. B s is the bainitic transformation start temperature, and it is known that it can be obtained from the contents of C, M n, Ni, Cr and Mo by (Equation 3). Payne 卜 can be generated by accelerated cooling to temperatures below B s.
B s (で) = 8 3 0 - 2 7 0 C - 9 0 M n - 3 7 N i - 7 0 C r — 8 3 M o · · · (式 3 )  B s (in) = 8 3 0-2 7 0 C-90 M n-3 7 N i-70 C r — 8 3 M o · · · (Equation 3)
水冷停止温度の下限は規定せず、 室温まで水冷してもよいが、 生 産性や水素性欠陥を考慮すると、 1 5 0で以上とすることが好まし い。 実施例  The lower limit of the water cooling stop temperature is not stipulated, and it may be cooled to room temperature. However, considering productivity and hydrogen defects, it is preferable to set the temperature to 1550 or higher. Example
表 1 に示す成分組成を有する鋼を溶製し、 2 4 0 mmの厚みを有 する鋼片とした。 これらの鋼片を、 表 2に示す条件で熱間圧延し、 冷却して、 鋼板を製造した。 各鋼種の A r 3は、 溶製した鋼片から 高さ 1 2 mm、 直径 8 mmの試験片を切り出し、 熱間圧延を模擬し た加工熱処理を施した後、 熱膨張測定によって求めた。 表 1 Steel having the composition shown in Table 1 was melted into steel pieces having a thickness of 240 mm. These steel slabs were hot-rolled under the conditions shown in Table 2 and cooled to produce steel plates. The Ar 3 of each steel type was obtained by measuring the thermal expansion after cutting a test piece having a height of 12 mm and a diameter of 8 mm from the melted steel piece and subjecting it to a heat treatment simulating hot rolling. table 1
Figure imgf000020_0001
Figure imgf000020_0001
*CeQ=C+Mn/6 + (Ni+Cu) /15+ (Cr + Mo + V) /5  * CeQ = C + Mn / 6 + (Ni + Cu) / 15 + (Cr + Mo + V) / 5
*Pci=C+Si/30+ (Mn + Cu + Cr) /20 + Ni/60 + Mo/15 + V/10 + 5B *成分の空檷は無添加を意味する * Pci = C + Si / 30 + (Mn + Cu + Cr) / 20 + Ni / 60 + Mo / 15 + V / 10 + 5B * Ingredient empty means no additive
*表中の下線は本発明の範囲外であることを意味する * Underline in the table means outside the scope of the present invention
表 2 Table 2
Figure imgf000021_0001
Figure imgf000021_0001
*圧下比は、 (歪導入圧延開始前の板厚) / (最終板厚) である。 *圧延終了温度、 水冷開始温度、 水冷停止温度は、 Ar3との差である < *表中の下線は本発明の範囲外であることを意味する * The reduction ratio is (sheet thickness before the start of strain-introducing rolling) / (final sheet thickness). * Rolling end temperature, water cooling start temperature, water cooling stop temperature are differences from Ar 3 <* Underline in the table means outside the scope of the present invention
鋼板の板厚中央部のミクロ組織を光学顕微鏡によって観察し、 ポ リ ゴナルフェライ トと、 残部であるべィナイ ト及びマルテンサイ ト の面積率を測定した。 更に、 鋼板から、 A P I 、 5 L 3、 A S T M 、 E 4 3 6 に準拠して、 板幅方向を長手方向とし、 ノ ッチを板厚方 向と平行にして設けたプレスノ ッチ試験片を作製した。 DWT Tは 一 6 0でで行い、 S Aを求めた。 引張特性は、 A P I規格の試験片 を用いて評価した。 結果を表 3に示す。 The microstructure of the central part of the steel sheet was observed with an optical microscope, and the area ratios of the polygonal ferrite and the remainder of the vein and martensite were measured. In addition, press notch test specimens were prepared from steel plates in accordance with API, 5 L 3, ASTM, E 4 36, with the plate width direction as the longitudinal direction and the notches parallel to the plate thickness direction. Produced. DWT T was performed at 1 60 and SA was obtained. Tensile properties were evaluated using API standard test pieces. The results are shown in Table 3.
表 3 Table 3
Figure imgf000022_0001
Figure imgf000022_0001
*表中の下線は本発明の範囲外であることを意味する 製造 N o . 1〜 3、 6、 7、 1 0、 1 2、 1 4、 1 6〜 1 9は、 本発明例であり、 ァスぺク ト比 1〜 4のポリ ゴナルフェライ 卜が面 積率で 2 0〜 9 0 %になっている。 これらは、 X 7 0以上、 更には X 8 0以上の強度を満足し、 DWT Tでの S Aが 8 5 %以上となる 低温靭性に優れた鋼板である。 * Underline in the table means outside the scope of the present invention Manufacturing No. 1 to 3, 6, 7, 10, 12, 14, 16 to 19 are examples of the present invention, and a polygonal ferrule with an aspect ratio of 1 to 4 is an area. The rate is 20 to 90%. These are steel sheets excellent in low-temperature toughness that satisfy the strength of X 70 or more, further X 80 or more, and the SA in DWT T is 85% or more.
これらの鋼板を U〇工程で造管し、 突き合せ部を内外面からサブ マージドアーク溶接し、 拡管して鋼管を製造した。 これらの鋼管の 組織は、 鋼板と同様であり、 強度は鋼板より も 2 0〜 3 0 M P a高 く、 低温靭性は鋼板と同等であった。  These steel plates were piped in the U0 process, the butted parts were submerged arc welded from the inner and outer surfaces, and expanded to produce steel pipes. The structure of these steel pipes was the same as that of the steel plate, the strength was 20 to 30 MPa higher than that of the steel plate, and the low temperature toughness was equivalent to that of the steel plate.
一方、 製造 N o . 4は、 加速冷却の開始温度が低く、 フェライ ト の面積率が増加し、 強度が低下した例である。 また製造 N o . 5は 、 加速冷却の冷却速度が遅く、 強度を確保するための硬質相が得ら れず、 強度が低下した例である。 製造 N o . 8は、 圧延終了温度が A r 3を下回っているため、 ァスぺク ト比が 4を超える加工フェラ イ トが生成し、 ポリ ゴナルフェライ トが減少し、 低温靭性が低下し た例である。 On the other hand, production No. 4 is an example in which the start temperature of accelerated cooling is low, the area ratio of ferrite increases, and the strength decreases. Production No. 5 is an example in which the cooling rate of accelerated cooling is slow, a hard phase for securing the strength cannot be obtained, and the strength is lowered. Production No. 8 has a rolling finish temperature lower than A r 3 , so a machining ferrite with a aspect ratio exceeding 4 is generated, polygonal ferrite is reduced, and low-temperature toughness is reduced. This is an example.
なお、 製造 N o . 8において、 ポリゴナルフェライ トおよび硬質 相の残部は、 アスペク ト比が 4超のフェライ トである。  In production No. 8, the polygonal ferrite and the remainder of the hard phase are ferrite with an aspect ratio of more than 4.
製造 N o . 9、 1 3、 1 5は、 加速冷却の開始温度が高く、 製造 N o . 1 1は、 歪導入圧延の圧下比が低く、 フェライ トの生成が不 十分になり、 靱性が低下した例である。  Production No. 9, 13 and 15 have higher accelerated cooling start temperatures, and Production No. 11 has a lower strain reduction rolling reduction, resulting in insufficient ferrite formation and toughness. This is an example of a decline.
また、 製造 N o 2 0〜 2 2は、 化学成分が本発明の範囲外の比較 例である。 製造 N o 2 0は、 B量が少なく、 製造 N o 2 2は、 M o を添加していないため、 本発明の製造条件は、 ポリ ゴナルフェライ 卜が増加し、 強度が低下した例である。 製造 N o 2 1 は、 M o量が 多く、 本発明の製造条件でもポリゴナルフェライ トの面積率が低く 、 靭性が低下した例である。 産業上の利用可能性 In addition, the production No 2 0 to 2 2 is a comparative example whose chemical component is outside the scope of the present invention. Production No. 20 has a small amount of B, and Production No. 22 does not contain Mo. Therefore, the production conditions of the present invention are examples in which the polygonal ferrite is increased and the strength is lowered. Production No 2 1 is an example in which the amount of Mo is large, and the area ratio of polygonal ferrite is low even under the production conditions of the present invention, and the toughness is lowered. Industrial applicability
本発明によれば、 炭素当量 C e ci及び割れ感受性指数 P cmを制御し 、 更に B及び M oを添加し、 焼入れ性を高めた成分組成を有する高 強度鋼板の金属組織において、 ポリゴナルフェライ 卜を生成させる ことが可能になる。 これにより、 強度及び H A Z靱性を向上させ、 かつ、 低温靭性にも極めて優れ、 金属組織がポリゴナルフェライ ト と硬質相とからなる高強度鋼板、 更に、 これを母材とする高強度鋼 管、 及び、 それらの製造方法の提供が可能になり、 産業上の貢献が 極めて顕著である。  According to the present invention, in the metal structure of a high-strength steel sheet having a component composition in which the carbon equivalent C ec i and the cracking susceptibility index P cm are controlled and B and Mo are further added and the hardenability is enhanced,卜 can be generated. As a result, the strength and HAZ toughness are improved, and the low-temperature toughness is extremely excellent, and the high-strength steel pipe whose metal structure consists of polygonal ferrite and hard phase, and the high-strength steel pipe using this as a base material, And it becomes possible to provide their manufacturing methods, and the industrial contribution is very remarkable.

Claims

請 求 の 範 囲 請求項 1.質量%で、 Scope of claim Claim 1.
C : 0 • 0 1 〜 0 . 0 8 % 、  C: 0 • 0 1 to 0.08%,
S 1 : 0 0 1 0. 5 0 % 、  S1: 0 0 1 0.5.50%,
M n : 0 • 5 2 . 0 % 、  M n: 0 • 5 2.0%,
S : 0 • 0 0 0 1 〜 0. 0 0 5 /o、  S: 0 • 0 0 0 1 to 0.0 0 5 / o,
T i : 0 0 0 3 〜 0. 0 3 0 0/  T i: 0 0 0 3 to 0. 0 3 0 0 /
/o、  / o,
M o : 0 • 0 5 1. 0 0 % 、  M o: 0 • 0 5 1. 0 0%
B : 0 0 0 0 3 〜 0. 0 1 0 /ο、  B: 0 0 0 0 3 to 0.0 0 1 0 / ο,
〇 : 0 0 0 0 1 〜 0. 0 0 8 0/  ○: 0 0 0 0 1 to 0. 0 0 8 0 /
/ο  / ο
を含み 、 Including
P : 0 • 0 5 0 %以下、  P: 0 • 0 5 0% or less,
A 1 : 0 0 2 0 %以下  A 1: 0 0 2 0% or less
に制限し、 残部が鉄及び不可避的不純物からなる成分組成を有し、 下記 (式 1 ) によって求められる CeQが 0. 3 0〜 0. 5 3であり 、 下記 (式 2 ) によって求められる Pcmが 0. 1 0〜 0. 2 0であ り、 金属組織のポリゴナルフェライ 卜の面積率が 2 0〜 9 0 %であ り、 残部がベイナイ ト、 マルテンサイ トの一方又は双方からなる硬 質相であることを特徴とする低温靭性に優れた高強度鋼板。 And the balance is a component composition consisting of iron and inevitable impurities, CeQ determined by the following (formula 1) is 0.30 to 0.53, and Pcm determined by the following (formula 2) 0.10 to 0.20, the area ratio of polygonal ferrite ridges in the metal structure is 20 to 90%, and the balance is a hard material composed of one or both of bainite and martensite. A high-strength steel sheet with excellent low-temperature toughness characterized by being a phase.
C eq= C + M n / 6 + (N i + C u ) ノ 1 5 + ( C r + o + V ) ハ . . · (式 1 )  C eq = C + M n / 6 + (N i + C u) ノ 15 + (C r + o + V) c (Equation 1)
P cm= C + S 1 / 3 0 + (M n + C u + C r ) / 2 0  P cm = C + S 1/3 0 + (M n + C u + C r) / 2 0
+ N i / 6 0 +M o / 1 5 + V/ l 0 + 5 B - · · (式 2 ) ここで、 C、 S i 、 M n、 N i 、 C u、 C r、 M o、 V、 及び、 Bは、 各元素の含有量 [質量%] である。  + N i / 6 0 + M o / 1 5 + V / l 0 + 5 B-(Equation 2) where C, S i, M n, N i, Cu, Cr, Mo, V, and B are the content [% by mass] of each element.
請求項 2. さらに、 質量%で、 C u : 0. 0 5〜 : 1. 5 %、 Claim 2. Further, in mass%, C u: 0.0 5 ~: 1.5%,
N i : 0. 0 5〜 5. 0 % N i: 0. 0 5 to 5. 0%
の一方又は双方を含有することを特徴とする請求項 1 に記載の低温 靭性に優れた高強度鋼板。 The high-strength steel sheet excellent in low-temperature toughness according to claim 1, comprising one or both of the following.
請求項 3. さらに、 質量%で、  Claim 3. Further, in mass%,
C r : 0. 0 2〜 : I . 5 0 %、 C r: 0.0 2 to: I. 50%
W : 0. 0 1〜 0. 5 0 %、 W: 0.0 1 to 0.5 0%,
V : 0. 0 1〜 0. 1 0 %、  V: 0.0 1 to 0.1 0%,
N b : 0. 0 0 1〜 0. 2 0 %、  N b: 0.0 0 1 to 0.20%,
Z r : 0. 0 0 0 卜 0. 0 5 0 %、  Z r: 0. 0 0 0 卜 0. 0 5 0%,
T a : 0. 0 0 0 1〜 0. 0 5 0 %  T a: 0. 0 0 0 1 to 0. 0 5 0%
のうち 1種又は 2種以上を含有することを特徴とする請求項 1又は 2に記載の低温靭性に優れた高強度鋼板。 The high-strength steel sheet excellent in low temperature toughness according to claim 1 or 2, characterized by containing one or more of them.
請求項 4. さ らに、 質量%で、  Claim 4. Furthermore, in mass%,
M g : 0. 0 0 0 1〜 0. 0 1 0 %, M g: 0. 0 0 0 1 to 0.0. 0 1 0%,
C a : 0. 0 0 0 1〜 0. 0 0 5 %、 C a: 0.0 0 0 1 to 0.0 0 5%,
R E M : 0. 0 0 0 1〜 0. 0 0 5 %、 R E M: 0. 0 0 0 1 ~ 0.0 0 0 5%,
Y : 0. 0 0 0 1〜 0. 0 0 5 %、  Y: 0. 0 0 0 1 to 0.0 0 5%,
H f : 0. 0 0 0 1〜 0. 0 0 5 %、 H f: 0. 0 0 0 1 to 0.0. 0 5%,
R e : 0. 0 0 0 1〜 0. 0 0 5 % R e: 0. 0 0 0 1 to 0.0. 0 0 5%
のうち 1種又は 2種以上を含有することを特徴とする請求項 1〜 3 の何れか 1項に記載の高強度鋼板。 The high-strength steel sheet according to any one of claims 1 to 3, wherein one or more of them are contained.
請求項 5. 金属組織のポリ ゴナルフェライ 卜の面積率が 2 0〜 8 0 %であることを特徴とする請求項 1〜 4の何れか 1項に記載の高 強度鋼板。  5. The high-strength steel sheet according to any one of claims 1 to 4, wherein the area ratio of the polygonal ferrite ridges having a metal structure is 20 to 80%.
請求項 6. 母材が請求項 1〜 5の何れか 1項に記載の鋼板である ことを特徴とする低温靭性に優れた高強度鋼管。 請求項 7. 請求項 1〜 4の何れか 1項に記載の成分からなる鋼片 を、 9 5 0で以上に再加熱し、 熱間圧延を行い、 該熱間圧延の最終 工程として、 開始温度が A r 3 + 6 0で以下、 終了温度が A r 3以上 、 圧下比が 1. 5以上である歪み導入圧延を行い、 その後、 空冷し 、 A r 3— 1 0 0で〜八 1" 3 _ 1 0 の温度から、 l O ^Z s以上の 冷却速度で、 下記 (式 3 ) によって求められる B s以下の温度まで 加速冷却することを特徴とする低温靭性に優れた高強度鋼板の製造 方法。 6. A high strength steel pipe excellent in low temperature toughness, characterized in that the base material is the steel sheet according to any one of claims 1 to 5. Claim 7. The steel slab comprising the component according to any one of claims 1 to 4 is reheated to 9500 or more, hot rolled, and started as a final step of the hot rolling. Strain-introducing rolling with temperature of Ar 3 + 60 or less, end temperature of Ar 3 or more, and reduction ratio of 1.5 or more, followed by air cooling and A r 3 — 1 0 0 to 8 1 "High-strength steel sheet with excellent low-temperature toughness characterized by accelerated cooling from a temperature of 3 _ 10 to a temperature of B s or less determined by (Equation 3) below at a cooling rate of l O ^ Z s or higher Manufacturing method.
B s (で) = 8 3 0 - 2 7 0 C - 9 0 M n - 3 7 N i - 7 0 C r B s (in) = 8 3 0-2 7 0 C-9 0 M n-3 7 N i-7 0 C r
— 8 3 M o · · · (式 3 ) — 8 3 M o · · · (Formula 3)
ここで、 C、 M n、 N i 、 C r、 及び、 M oは、 各元素の含有量 [質量%] である。  Here, C, Mn, Ni, Cr, and Mo are the contents [% by mass] of each element.
請求項 8. 請求項 7 に記載の方法で製造した鋼板を、 UO工程で 管状に成形し、 突き合せ部を内外面からサブマ一ジドアーク溶接し 、 その後、 拡管することを特徴とする低温靱性に優れた高強度鋼管 の製造方法。  Claim 8. The steel sheet produced by the method according to claim 7 is formed into a tubular shape in the UO process, the butt portion is submerged arc welded from the inner and outer surfaces, and then expanded to a low temperature toughness. An excellent method for manufacturing high-strength steel pipes.
PCT/JP2009/057420 2008-04-07 2009-04-07 High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both WO2009125863A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/736,359 US8110292B2 (en) 2008-04-07 2009-04-04 High strength steel plate, steel pipe with excellent low temperature toughness, and method of production of same
BRPI0911117A BRPI0911117A2 (en) 2008-04-07 2009-04-07 high strength steel plate, steel pipe with excellent hardness at low temperature and production methods thereof
CN2009801070812A CN101965414B (en) 2008-04-07 2009-04-07 High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
EP09730216.0A EP2264205B1 (en) 2008-04-07 2009-04-07 High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
KR1020107019073A KR101252920B1 (en) 2008-04-07 2009-04-07 High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-099653 2008-04-07
JP2008099653 2008-04-07
JP2009092511A JP4358900B1 (en) 2008-04-07 2009-04-06 High-strength steel sheet and steel pipe excellent in low-temperature toughness and method for producing them
JP2009-092511 2009-04-06

Publications (1)

Publication Number Publication Date
WO2009125863A1 true WO2009125863A1 (en) 2009-10-15

Family

ID=41161994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057420 WO2009125863A1 (en) 2008-04-07 2009-04-07 High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both

Country Status (7)

Country Link
US (1) US8110292B2 (en)
EP (1) EP2264205B1 (en)
JP (1) JP4358900B1 (en)
KR (1) KR101252920B1 (en)
CN (1) CN101965414B (en)
BR (1) BRPI0911117A2 (en)
WO (1) WO2009125863A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100106A1 (en) * 2011-12-28 2013-07-04 新日鐵住金株式会社 High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet
WO2015075771A1 (en) * 2013-11-19 2015-05-28 新日鐵住金株式会社 Steel sheet
JP7457843B2 (en) 2020-08-17 2024-03-28 山東鋼鉄股▲分▼有限公司 Steel plate for polar marine construction and its manufacturing method

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098235B2 (en) * 2006-07-04 2012-12-12 新日鐵住金株式会社 High-strength steel pipe for line pipe excellent in low-temperature toughness, high-strength steel sheet for line pipe, and production method thereof
US8039118B2 (en) * 2006-11-30 2011-10-18 Nippon Steel Corporation Welded steel pipe for high strength line pipe superior in low temperature toughness and method of production of the same
JP5251089B2 (en) * 2006-12-04 2013-07-31 新日鐵住金株式会社 Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
JP4528356B2 (en) * 2007-07-23 2010-08-18 新日本製鐵株式会社 Steel pipe with excellent deformation characteristics
JP5573265B2 (en) * 2010-03-19 2014-08-20 Jfeスチール株式会社 High strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more and method for producing the same
JP5857491B2 (en) * 2011-07-19 2016-02-10 Jfeスチール株式会社 Low yield ratio resistant HIC welded steel pipe with excellent weld toughness after SR and method for producing the same
JP5853456B2 (en) * 2011-07-19 2016-02-09 Jfeスチール株式会社 Low yield ratio resistant HIC welded steel pipe with excellent weld toughness after SR and method for producing the same
CA2832021C (en) * 2011-08-23 2014-11-18 Nippon Steel & Sumitomo Metal Corporation Thick wall electric resistance welded steel pipe and method of production of same
CN102383057A (en) * 2011-10-26 2012-03-21 中国石油集团渤海石油装备制造有限公司 Low temperature-resistant K60 pipe line steel, bent pipe made by same and manufacturing method of bent pipe
WO2013121963A1 (en) 2012-02-17 2013-08-22 新日鐵住金株式会社 Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
CN103882305A (en) * 2012-12-21 2014-06-25 鞍钢股份有限公司 High strength boat deck with low-temperature strain aging brittleness resistant property and production method thereof
CN103147006B (en) * 2013-02-19 2016-03-30 宝山钢铁股份有限公司 A kind of anticorrosive seamless gathering-line pipe and manufacture method thereof
CN103215513B (en) * 2013-04-25 2016-03-30 宝山钢铁股份有限公司 A kind of anticorrosive gathering-line pipe and manufacture method thereof
CN103486428B (en) * 2013-09-29 2016-01-20 苏州市凯业金属制品有限公司 A kind of anticorrosive U-shaped metal tube
JP5713135B1 (en) * 2013-11-19 2015-05-07 新日鐵住金株式会社 steel sheet
CA2923586C (en) * 2013-12-20 2020-10-06 Nippon Steel & Sumitomo Metal Corporation Electric-resistance welded steel pipe
CN103741074B (en) * 2013-12-23 2015-12-09 马鞍山市盈天钢业有限公司 Effective weldless steel tube material of a kind of automobile half shaft and preparation method thereof
CN103866204B (en) * 2014-02-27 2016-02-17 济钢集团有限公司 The large sstrain X80 dual phase sheet steel that the large soft reduction process of a kind of low temperature is produced
CN108034885B (en) * 2017-11-09 2020-05-15 江阴兴澄特种钢铁有限公司 Steel plate for low-crack-sensitivity pipe fitting used under low-temperature condition and manufacturing method thereof
KR102010081B1 (en) * 2017-12-26 2019-08-12 주식회사 포스코 Hot-rolled steel sheet having high-strength and high-toughness and method for producing the same
CN109355549B (en) * 2018-12-11 2020-10-02 东北大学 Steel plate with high strength and excellent low-temperature toughness and manufacturing method thereof
CN110951956B (en) * 2019-12-19 2021-07-27 中北大学 Production method of ultra-high plasticity TWIP steel
CN112553526B (en) * 2020-11-20 2022-04-22 林州凤宝管业有限公司 960 MPa-level ultrahigh-strength structural steel, steel pipe and manufacturing method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293078A (en) 2002-03-29 2003-10-15 Nippon Steel Corp Steel pipe having excellent weld heat affected zone toughness and deformability and method of producing steel sheet for steel pipe
JP2003306749A (en) 2002-04-19 2003-10-31 Nippon Steel Corp Method for manufacturing high strength steel tube of excellent deformability and steel plate for steel tube
JP2004131799A (en) 2002-10-10 2004-04-30 Nippon Steel Corp High strength steel pipe excellent in deformability, low-temperature toughness and haz toughness, and its manufacturing method
JP2004143509A (en) * 2002-10-23 2004-05-20 Jfe Steel Kk High strength, high toughness, low yield ratio steel tube stock, and production method therefor
JP2005060838A (en) * 2003-07-31 2005-03-10 Jfe Steel Kk Steel pipe with low yield ratio, high strength, high toughness and superior strain age-hardening resistance, and manufacturing method therefor
JP2005146407A (en) 2003-10-20 2005-06-09 Nippon Steel Corp Ultrahigh strength steel sheet and ultrahigh strength steel tube having excellent high speed ductile fracture property, and their production method
JP2006291348A (en) * 2005-03-17 2006-10-26 Jfe Steel Kk Low yield-ratio high-tensile steel having excellent weldability, and its production method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735663A (en) * 1980-08-11 1982-02-26 Kobe Steel Ltd Hot rolled steel plate for rim of wheel
JPS57101649A (en) * 1980-12-15 1982-06-24 Kobe Steel Ltd Hot rolled steel plate for wheel disc
JPH09296217A (en) * 1996-05-02 1997-11-18 Nippon Steel Corp Production of high strength vent pipe excellent in low temperature toughness
JPH11193445A (en) * 1997-12-26 1999-07-21 Kawasaki Steel Corp Extra thick steel plate for welding excellent in toughness in steel-plate-thickness direction and acoustic anisotropy and having 590 mpa class tensile strength in as-rolled state, and its production
JP3635208B2 (en) * 1999-03-29 2005-04-06 新日本製鐵株式会社 Low yield ratio fireproof steel plate and steel pipe excellent in toughness and method for producing the same
US6451134B1 (en) * 1999-06-24 2002-09-17 Kawasaki Steel Corporation 590MPa class heavy gauge H-shaped steel having excellent toughness and method of producing the same
JP2002012939A (en) * 2000-04-27 2002-01-15 Nippon Steel Corp High tensile steel excellent in hot strength and its production method
JP4309561B2 (en) * 2000-06-20 2009-08-05 新日本製鐵株式会社 High-tensile steel plate with excellent high-temperature strength and method for producing the same
CN1128242C (en) * 2000-10-26 2003-11-19 中国科学院金属研究所 Process for preparing high-cleanness, high-strength and high-toughness steel for gas delivering pipeline
CN1142309C (en) * 2000-11-01 2004-03-17 中国科学院金属研究所 Ultravlow-carbon high-toughness steel resisting hydrogen sulfide for gas deliver pipeline
KR100482208B1 (en) * 2000-11-17 2005-04-21 주식회사 포스코 Method for manufacturing steel plate having superior toughness in weld heat-affected zone by nitriding treatment
EP1254275B1 (en) * 2000-12-14 2008-01-09 Posco STEEL PLATE TO BE PRECIPITATING TiN + ZrN FOR WELDED STRUCTURES, METHOD FOR MANUFACTURING THE SAME AND WELDING FABRIC USING THE SAME
FR2830260B1 (en) * 2001-10-03 2007-02-23 Kobe Steel Ltd DOUBLE-PHASE STEEL SHEET WITH EXCELLENT EDGE FORMABILITY BY STRETCHING AND METHOD OF MANUFACTURING THE SAME
US7105066B2 (en) * 2001-11-16 2006-09-12 Posco Steel plate having superior toughness in weld heat-affected zone and welded structure made therefrom
JP4305216B2 (en) * 2004-02-24 2009-07-29 Jfeスチール株式会社 Hot-rolled steel sheet for sour-resistant high-strength ERW steel pipe with excellent weld toughness and method for producing the same
CA2620049C (en) * 2005-08-22 2014-01-28 Sumitomo Metal Industries, Ltd. Seamless steel pipe for line pipe and a method for its manufacture
JP5098235B2 (en) * 2006-07-04 2012-12-12 新日鐵住金株式会社 High-strength steel pipe for line pipe excellent in low-temperature toughness, high-strength steel sheet for line pipe, and production method thereof
US8039118B2 (en) * 2006-11-30 2011-10-18 Nippon Steel Corporation Welded steel pipe for high strength line pipe superior in low temperature toughness and method of production of the same
JP5251089B2 (en) * 2006-12-04 2013-07-31 新日鐵住金株式会社 Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293078A (en) 2002-03-29 2003-10-15 Nippon Steel Corp Steel pipe having excellent weld heat affected zone toughness and deformability and method of producing steel sheet for steel pipe
JP2003306749A (en) 2002-04-19 2003-10-31 Nippon Steel Corp Method for manufacturing high strength steel tube of excellent deformability and steel plate for steel tube
JP2004131799A (en) 2002-10-10 2004-04-30 Nippon Steel Corp High strength steel pipe excellent in deformability, low-temperature toughness and haz toughness, and its manufacturing method
JP2004143509A (en) * 2002-10-23 2004-05-20 Jfe Steel Kk High strength, high toughness, low yield ratio steel tube stock, and production method therefor
JP2005060838A (en) * 2003-07-31 2005-03-10 Jfe Steel Kk Steel pipe with low yield ratio, high strength, high toughness and superior strain age-hardening resistance, and manufacturing method therefor
JP2005146407A (en) 2003-10-20 2005-06-09 Nippon Steel Corp Ultrahigh strength steel sheet and ultrahigh strength steel tube having excellent high speed ductile fracture property, and their production method
JP2006291348A (en) * 2005-03-17 2006-10-26 Jfe Steel Kk Low yield-ratio high-tensile steel having excellent weldability, and its production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100106A1 (en) * 2011-12-28 2013-07-04 新日鐵住金株式会社 High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet
WO2015075771A1 (en) * 2013-11-19 2015-05-28 新日鐵住金株式会社 Steel sheet
JP7457843B2 (en) 2020-08-17 2024-03-28 山東鋼鉄股▲分▼有限公司 Steel plate for polar marine construction and its manufacturing method

Also Published As

Publication number Publication date
EP2264205B1 (en) 2019-08-28
KR20100105790A (en) 2010-09-29
EP2264205A1 (en) 2010-12-22
JP2009270197A (en) 2009-11-19
KR101252920B1 (en) 2013-04-09
US8110292B2 (en) 2012-02-07
JP4358900B1 (en) 2009-11-04
BRPI0911117A2 (en) 2015-10-06
CN101965414B (en) 2013-08-28
CN101965414A (en) 2011-02-02
EP2264205A4 (en) 2017-05-10
US20110023991A1 (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP4358900B1 (en) High-strength steel sheet and steel pipe excellent in low-temperature toughness and method for producing them
JP5251089B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
JP5590253B2 (en) High strength steel pipe excellent in deformation performance and low temperature toughness, high strength steel plate, and method for producing said steel plate
JP5499733B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP3545770B2 (en) High tensile steel and method for producing the same
JP5292784B2 (en) Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same
KR101410588B1 (en) Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe
JP5251092B2 (en) Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5181639B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
WO2008004680A1 (en) High-strength steel pipe with excellent low-temperature toughness for line pipe, high-strength steel plate for line pipe, and processes for producing these
JP5857491B2 (en) Low yield ratio resistant HIC welded steel pipe with excellent weld toughness after SR and method for producing the same
JP4848966B2 (en) Thick-wall high-tensile steel plate and manufacturing method thereof
WO2007023806A1 (en) Seamless steel pipe for line pipe and method for producing same
JP5151233B2 (en) Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same
JP5499731B2 (en) Thick high-tensile hot-rolled steel sheet with excellent HIC resistance and method for producing the same
WO2011096510A1 (en) High-strength welded steel pipe and method for producing the same
JP2011017061A (en) High-tensile-strength hot-rolled steel plate for high-strength welded steel pipe and manufacturing method therefor
JP5742123B2 (en) High-tensile hot-rolled steel sheet for high-strength welded steel pipe for line pipe and method for producing the same
KR102002241B1 (en) Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
JP2001207220A (en) Method for producing high strength hot rolled steel sheet for electric same welded tube excellent in low temperature toughness and weldability
WO2008069289A1 (en) Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP2008095152A (en) HIGH TENSILE STRENGTH STEEL SHEET FOR LARGE HEAT INPUT WELDING HAVING REDUCED ACOUSTIC ANISOTROPY, EXCELLENT WELDABILITY AND TENSILE STRENGTH IN &gt;=570 MPa CLASS, AND ITS PRODUCTION METHOD
JPH10298707A (en) High toughness and high tensile strength steel and its production
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107081.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09730216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107019073

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12736359

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009730216

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0911117

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101006