JP2005060838A - Steel pipe with low yield ratio, high strength, high toughness and superior strain age-hardening resistance, and manufacturing method therefor - Google Patents

Steel pipe with low yield ratio, high strength, high toughness and superior strain age-hardening resistance, and manufacturing method therefor Download PDF

Info

Publication number
JP2005060838A
JP2005060838A JP2004225682A JP2004225682A JP2005060838A JP 2005060838 A JP2005060838 A JP 2005060838A JP 2004225682 A JP2004225682 A JP 2004225682A JP 2004225682 A JP2004225682 A JP 2004225682A JP 2005060838 A JP2005060838 A JP 2005060838A
Authority
JP
Japan
Prior art keywords
steel pipe
yield ratio
less
bainite
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004225682A
Other languages
Japanese (ja)
Other versions
JP4507745B2 (en
Inventor
Toyohisa Shingu
豊久 新宮
Shigeru Endo
茂 遠藤
Nobuyuki Ishikawa
信行 石川
Mitsuhiro Okatsu
光浩 岡津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004225682A priority Critical patent/JP4507745B2/en
Publication of JP2005060838A publication Critical patent/JP2005060838A/en
Application granted granted Critical
Publication of JP4507745B2 publication Critical patent/JP4507745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel pipe with a low yield ratio, high strength, high toughness and superior strain age-hardening resistance, which is manufactured at high efficiency without adding a large quantity of alloy elements. <P>SOLUTION: The steel pipe with the low yield ratio, high strength, high toughness and superior strain age-hardening resistance comprises, by mass%, 0.03-0.1% C, 0.01-0.5% Si, 0.5-2.5% Mn, 0.08% or less Al, 0.05-0.5% Mo, 0.005-0.04% Ti, while controlling a ratio, by atom%, of a C content to the total content of Ti and Mo, namely C/(Mo+Ti) to 0.5-3, and the balance substantially Fe; and has a metallographic structure of a two-phase structure consisting substantially of ferrite and bainite, in the bainite phase of which fine precipitates containing Ti and Mo are dispersingly precipitated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主に原油や天然ガスを輸送するラインパイプに好適な、コーティング処理後の材質劣化の小さな大径溶接鋼管(UOE鋼管、スパイラル鋼管)およびその製造方法に関するものである。   The present invention relates to a large-diameter welded steel pipe (UOE steel pipe, spiral steel pipe) with small material deterioration after coating treatment, which is suitable mainly for line pipes for transporting crude oil and natural gas, and a method for producing the same.

主に原油や天然ガスを輸送するラインパイプにおいては、高強度、高靱性化に加え、耐震性の観点から低降伏比化も要求されている。一般に、鋼材の金属組織を、フェライトの様な軟質相の中にベイナイトやマルテンサイトなどの硬質相が適度に分散した組織にすることで、鋼材の低降伏比化が可能であることが知られている。この様な軟質相の中に硬質相が適度に分散した組織を得る製造方法として、焼入れ(Q)と焼戻し(T)の中間に、フェライトとオーステナイトの2相域からの焼き入れ(Q’)を施す熱処理方法(例えば、特許文献1参照)が知られている。   In line pipes that mainly transport crude oil and natural gas, in addition to high strength and toughness, a low yield ratio is also required from the viewpoint of earthquake resistance. In general, it is known that the yield ratio of steel can be reduced by making the metal structure of steel a structure in which hard phases such as bainite and martensite are moderately dispersed in a soft phase like ferrite. ing. As a production method for obtaining a structure in which a hard phase is appropriately dispersed in such a soft phase, quenching from a two-phase region of ferrite and austenite (Q ′) between quenching (Q) and tempering (T). There is known a heat treatment method (see, for example, Patent Document 1).

また、特許文献1に開示されている様な複雑な熱処理を行わずに低降伏比化を達成する技術として、Ar3変態点以上で鋼材の圧延を終了し、その後の加速冷却速度と冷却停止温度を制御することで、針状フェライトとマルテンサイトの2相組織とし、低降伏比化を達成する方法が知られている(例えば特許文献2参照。)。   Further, as a technique for achieving a low yield ratio without performing a complicated heat treatment as disclosed in Patent Document 1, the rolling of the steel material is completed at the Ar3 transformation point or higher, and the subsequent accelerated cooling rate and cooling stop temperature. Is known to achieve a low yield ratio with a two-phase structure of acicular ferrite and martensite (see, for example, Patent Document 2).

しかし、ラインパイプに用いられるUOE鋼管やERW鋼管の様な溶接鋼管は、鋼板を冷間で管状へ成形、突き合わせ部を溶接後、通常防食等の観点から鋼管外面にコーティング処理が施されるため、製管時の加工歪みとコーティング処理時の加熱により歪み時効が生じ、降伏応力が上昇する。そのため、上述の様な方法にて素材の鋼板の低降伏比を達成しても、鋼管における低降伏比化を達成することは困難である。   However, welded steel pipes such as UOE steel pipes and ERW steel pipes used for line pipes are formed by cold forming the steel sheet into a tubular shape and welding the butt part, so that the outer surface of the steel pipe is usually coated from the standpoint of corrosion protection. Strain aging occurs due to processing strain during pipe making and heating during coating treatment, and yield stress increases. Therefore, even if the low yield ratio of the raw steel plate is achieved by the method described above, it is difficult to achieve a low yield ratio in the steel pipe.

耐歪み時効特性に優れた鋼材およびその製造方法としては、歪み時効の原因であるC、N含有量を制限し、且つNb、Tiを添加しC、Nと結合させることで、歪み時効を抑制する方法が知られている(例えば、特許文献3参照)。
特開昭55−97425号公報 特開平1−176027号公報 特開2002-220634号公報
Strain aging is suppressed by limiting the C and N contents that cause strain aging, and adding Nb and Ti to bond with C and N as a steel material with excellent strain aging characteristics and its manufacturing method. There is a known method (see, for example, Patent Document 3).
JP-A-55-97425 Japanese Patent Laid-Open No. 1-176027 JP 2002-220634 A

しかし、特許文献3に記載の技術では、高強度の鋼を得るためには、その実施例が示すように、鋼材の炭素含有量を高めるか、あるいはその他の合金元素の添加量を増やす必要があるため、素材コストの上昇を招くだけでなく、溶接熱影響部靭性の劣化が問題となる。   However, in the technique described in Patent Document 3, in order to obtain high-strength steel, as shown in the examples, it is necessary to increase the carbon content of the steel material or to increase the addition amount of other alloy elements. Therefore, not only the cost of the material is increased, but also the deterioration of the toughness of the weld heat affected zone becomes a problem.

このように従来の技術では、生産性を低下させることなく、また多量の合金元素を添加することなく、コーティング処理後も低降伏比を有する鋼管を製造することは困難である。   As described above, in the conventional technique, it is difficult to manufacture a steel pipe having a low yield ratio even after the coating treatment without reducing productivity and without adding a large amount of alloying elements.

したがって本発明の目的は、このような従来技術の課題を解決し、多量の合金元素を添加することなく、製造効率の高い、耐歪時効特性に優れた低降伏比高強度高靱性鋼管およびその製造方法を提供することにある。   Accordingly, an object of the present invention is to solve such problems of the prior art, and without adding a large amount of alloying elements, a high yield and high yield strength high toughness steel pipe with high production efficiency and excellent strain aging characteristics and its It is to provide a manufacturing method.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)、質量%で、C:0.03〜0.1%、Si:0.01〜0.5%、Mn:0.5〜2.5%、Al:0.08%以下、Mo:0.05〜0.5%、Ti:0.005〜0.04%を含有し、残部が実質的にFeからなり、原子%でのC量とMo、Tiの合計量の比であるC/(Mo+Ti)が0.5〜3であり、金属組織が実質的にフェライトとベイナイトの2相組織であり、ベイナイト相中にTiと、Moとを含む微細析出物が分散析出していることを特徴とする、耐歪時効特性に優れた低降伏比高強度高靭性鋼管。
(2)、さらに、質量%で、Nb:0.005〜0.07%および/またはV:0.005〜0.1%を含有し、原子%でのC量とMo、Ti、Nb、Vの合計量の比であるC/(Mo+Ti+Nb+V)が0.5〜3であり、ベイナイト相中にTiと、Moと、Nbおよび/またはVとを含む微細析出物が分散析出していることを特徴とする(1)に記載の耐歪時効特性に優れた低降伏比高強度高靱性鋼管。
(3)、質量%で、C:0.03〜0.1%、Si:0.01〜0.5%、Mn:0.5〜2.5%、Al:0.08%以下を含有し、Ti:0.005〜0.04%、Nb:0.005〜0.07%、V:0.005〜0.1%の中から選ばれる少なくとも2種以上を含有し、残部が実質的にFeからなり、原子%でのC量とTi、Nb、Vの合計量との比であるC/(Ti+Nb+V)が0.5〜3であり、金属組織が実質的にフェライトとベイナイトの2相組織であり、ベイナイト相中にTi、Nb、Vの中から選ばれる2種以上を含む析出物が分散析出していることを特徴とする、耐歪時効特性に優れた低降伏比高強度高靭性鋼管。
(4)、さらに、質量%で、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、B:0.005%以下、Ca:0.0005〜0.003%の中から選ばれる1種又は2種以上を含有することを特徴とする(1)ないし(3)のいずれかに記載の低降伏比高強度高靭性鋼管。
(5)、(1)ないし(4)のいずれかに記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、Ar3温度未満の圧延終了温度で熱間圧延した後、5℃/s以上の冷却速度で300〜600℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜750℃まで再加熱を行い、金属組織が実質的にフェライトとベイナイトの2相組織であり、ベイナイト相中に、TiとMoとを含む微細析出物またはTi、Nb、Vの中から選ばれる2種以上を含む微細析出物が、分散析出している鋼板として、該鋼板を冷間にて管状に成形し、突き合わせ部を溶接して鋼管とすることを特徴とする、耐歪時効特性に優れた低降伏比高強度高靭性鋼管の製造方法。
The features of the present invention for solving such problems are as follows.
(1), in mass%, C: 0.03-0.1%, Si: 0.01-0.5%, Mn: 0.5-2.5%, Al: 0.08% or less, Mo : 0.05 to 0.5%, Ti: 0.005 to 0.04% is contained, the balance is substantially made of Fe, and is the ratio of the amount of C in atomic% and the total amount of Mo and Ti C / (Mo + Ti) is 0.5 to 3, the metal structure is substantially a two-phase structure of ferrite and bainite, and fine precipitates containing Ti and Mo are dispersed and precipitated in the bainite phase. A low yield ratio, high strength, high toughness steel pipe with excellent strain aging characteristics.
(2) Further, by mass%, Nb: 0.005 to 0.07% and / or V: 0.005 to 0.1%, C amount in atomic% and Mo, Ti, Nb, C / (Mo + Ti + Nb + V), which is the ratio of the total amount of V, is 0.5 to 3, and fine precipitates containing Ti, Mo, Nb and / or V are dispersed and precipitated in the bainite phase. A low yield ratio high strength high toughness steel pipe excellent in strain aging resistance as described in (1).
(3) By mass%, C: 0.03 to 0.1%, Si: 0.01 to 0.5%, Mn: 0.5 to 2.5%, Al: 0.08% or less And at least two selected from Ti: 0.005-0.04%, Nb: 0.005-0.07%, V: 0.005-0.1%, with the balance being substantially Fe / Fe and C / (Ti + Nb + V), which is the ratio of the amount of C in atomic% to the total amount of Ti, Nb, and V, is 0.5 to 3, and the metal structure is substantially composed of ferrite and bainite. A low-yield ratio high with excellent strain aging resistance, characterized by a two-phase structure in which a precipitate containing two or more selected from Ti, Nb, and V is dispersed and precipitated in the bainite phase. High strength and toughness steel pipe.
(4) Furthermore, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, B: 0.005% or less, Ca: 0.0005-0. The low yield ratio, high strength, high toughness steel pipe according to any one of (1) to (3), comprising one or more selected from 003%.
(5) After heating the steel having the component composition according to any one of (1) to (4) to a temperature of 1000 to 1300 ° C. and hot rolling at a rolling end temperature below the Ar 3 temperature, 5 ° C. Accelerated cooling to 300-600 ° C. at a cooling rate of at least / s, and then immediately reheating to 550-750 ° C. at a rate of at least 0.5 ° C./s, and the metal structure is substantially ferrite and bainite As a steel sheet in which fine precipitates containing Ti and Mo or fine precipitates containing two or more selected from Ti, Nb, and V are dispersed and precipitated in the bainite phase. A method for producing a low-yield-ratio, high-strength, high-toughness steel pipe excellent in strain aging characteristics, characterized in that the steel sheet is cold-formed into a tubular shape, and a butted portion is welded to form a steel pipe.

本発明によれば、耐歪時効特性に優れた低降伏比高強度高靱性鋼管を、高製造効率、低コストで製造することができる。このためラインパイプとして使用する鋼管を、安価で大量に安定して製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the low yield ratio high strength high toughness steel pipe excellent in the strain aging characteristic can be manufactured with high manufacturing efficiency and low cost. For this reason, the steel pipe used as a line pipe can be stably manufactured in large quantities at a low cost.

本発明者らは前記課題を解決するために、鋼管原板の製造方法、特に制御圧延後の加速冷却とその後の再加熱という製造プロセスについて鋭意検討した結果、以下の(a)、(b)の知見を得た。   In order to solve the above-mentioned problems, the present inventors diligently studied a manufacturing method of a steel pipe original sheet, particularly a manufacturing process of accelerated cooling after controlled rolling and subsequent reheating. As a result, the following (a) and (b) Obtained knowledge.

(a)、オーステナイトとフェライトの2相域での制御圧延後の加速冷却とその後の再加熱という製造プロセスにおいて、加速冷却後に再加熱を行うことによって、加速冷却時のベイナイト変態による強化に加え、再加熱時にベイナイトを主体とする硬質相中に析出する微細析出物による析出強化によって、合金元素が少なく低成分系の鋼においてもフェライトと、ベイナイトを主体とする硬質相の2相組織の高強度化が可能になる。そして、Mo、Tiを含有する微細な複合炭化物を主として分散析出させることによって(第一の実施形態として以下に記載)、またはTi、Nb、Vの中から選ばれる少なくとも2種以上を含有する微細な複合炭化物を分散析出させることによって(第二の実施形態として以下に記載)2相組織中の硬質相の高強度化が達成できる。   (A) In the manufacturing process of accelerated cooling after controlled rolling in the two-phase region of austenite and ferrite and subsequent reheating, by performing reheating after accelerated cooling, in addition to strengthening by bainite transformation during accelerated cooling, Due to precipitation strengthening by fine precipitates precipitated in the hard phase mainly composed of bainite at the time of reheating, high strength of the two-phase structure of ferrite and hard phase mainly composed of bainite even in low-component steels with few alloying elements. Can be realized. And by finely dispersing and precipitating fine composite carbide containing Mo and Ti (described below as the first embodiment), or fine containing at least two or more selected from Ti, Nb and V By dispersing and precipitating complex carbides (described below as a second embodiment), high strength of the hard phase in the two-phase structure can be achieved.

(b)、ベイナイトを主体とする硬質相中の微細析出物の析出により、歪み時効の原因となる固溶CやNが減少するため、鋼管成形、コーティング処理後の歪み時効による降伏応力上昇を抑制することが可能である。   (B) Because of the precipitation of fine precipitates in the hard phase mainly composed of bainite, the solid solution C and N that cause strain aging is reduced, so that the yield stress increases due to strain aging after steel pipe forming and coating treatment. It is possible to suppress.

本発明は上記のような、2相域圧延時に生成したフェライトと、圧延後の加速冷却ならびにその後の再加熱によって生じるMo、Tiと、場合によっては更にNbおよび/またはVとを含有する微細な複合析出物や、Ti、Nb、Vの中から選ばれる2種以上を含有する微細な複合炭化物が分散析出したベイナイトを主体とする硬質相との2相組織を有する耐歪み時効特性に優れた低降伏比高強度高靭性鋼管およびその製造方法に関するものであり、変態強化に加え析出強化を最大限に活用するため、合金元素を多量に添加する必要がなく、溶接熱影響部靭性を損なうことなく高強度化が達成できるものである。さらに、本技術により製造した2相組織鋼は、硬質相の硬さが従来法に比べて高いため軟質相と硬質相の硬度差が大きく、さらなる低降伏比化が達成できる。   The present invention is a fine composition containing the ferrite formed during the two-phase rolling as described above, Mo and Ti generated by accelerated cooling after rolling and subsequent reheating, and optionally Nb and / or V. Excellent strain aging resistance having a two-phase structure of a composite precipitate and a hard phase mainly composed of bainite in which fine composite carbide containing two or more selected from Ti, Nb, and V is dispersed and precipitated. Low yield ratio, high strength, high toughness steel pipe and its manufacturing method. In order to make maximum use of precipitation strengthening in addition to transformation strengthening, it is not necessary to add a large amount of alloying elements, and the heat affected zone toughness is impaired. High strength can be achieved. Furthermore, since the duplex hardened steel produced by the present technology has a higher hardness of the hard phase than the conventional method, the hardness difference between the soft phase and the hard phase is large, and a further lower yield ratio can be achieved.

以下、本発明の高強度鋼管について詳しく説明する。まず、本発明の高強度鋼管の組織について説明する。   Hereinafter, the high-strength steel pipe of the present invention will be described in detail. First, the structure of the high-strength steel pipe of the present invention will be described.

本発明の鋼管の金属組織は実質的に軟質相と硬質相の2相組織であり、実質的にはフェライトとベイナイトの2相組織である。本発明では、加速冷却時のベイナイト変態による変態強化と、加速冷却後に再加熱してベイナイトを主体とする硬質相中に析出する微細析出物による析出強化を複合して活用することにより、合金元素を多量に添加することなく高強度化が可能である。一方、フェライトは軟質で延性に富んでいるが、より高強度の硬質相との2相組織とすることにより鋼管は十分な強度を有するものとなる。さらに、軟質層と硬質層の硬度差が大きくなるため降伏比はさらに低いものとなる。2相組織の硬質相中はベイナイトが主体であり、マルテンサイトやパーライトなどの異なる金属組織が1種または2種以上混在する場合があるが、強度が低下するため、フェライト相とベイナイト相以外の組織分率は少ない程良い。しかし、フェライト相とベイナイト相以外の組織の体積分率が低い場合はその影響が無視できるため、トータルの体積分率で5%未満の他の金属組織を、すなわちマルテンサイト、パーライト等を1種または2種以上含有してもよい。また、強度確保の観点からベイナイト分率を10%以上に、母材の靭性確保の観点からフェライト分率を10%以上にする事が望ましい。   The metal structure of the steel pipe of the present invention is substantially a two-phase structure of a soft phase and a hard phase, and is substantially a two-phase structure of ferrite and bainite. In the present invention, alloy elements are combined by utilizing transformation strengthening by bainite transformation during accelerated cooling and precipitation strengthening by fine precipitates that reheat after accelerated cooling and precipitate in a hard phase mainly composed of bainite. The strength can be increased without adding a large amount of. On the other hand, although ferrite is soft and rich in ductility, the steel pipe has sufficient strength by adopting a two-phase structure with a higher-strength hard phase. Furthermore, since the difference in hardness between the soft layer and the hard layer is increased, the yield ratio is further reduced. In the hard phase of the two-phase structure, bainite is mainly used, and different metal structures such as martensite and pearlite may be mixed in one or more kinds. However, since the strength is reduced, other than the ferrite phase and the bainite phase. The smaller the tissue fraction, the better. However, if the volume fraction of the structure other than the ferrite phase and the bainite phase is low, the effect can be ignored. Therefore, other metal structures of less than 5% in total volume fraction, that is, one type of martensite, pearlite, etc. Or you may contain 2 or more types. Further, it is desirable that the bainite fraction is 10% or more from the viewpoint of securing strength, and the ferrite fraction is 10% or more from the viewpoint of securing toughness of the base material.

さらに、歪み時効の原因である固溶C、Nが微細析出物として固定されるため、鋼管成形、コーティング時の加熱後の歪み時効による降伏比上昇を抑制することが可能である。   Furthermore, since solid solution C and N which are the cause of strain aging are fixed as fine precipitates, it is possible to suppress an increase in yield ratio due to strain aging after heating during steel pipe forming and coating.

次に、上記のベイナイト相(硬質相)内に分散析出する析出物について、鋼管がMoを含有する場合を第一の実施形態として、Moを含有しない場合を第二の実施形態として説明する。   Next, regarding the precipitates dispersed and precipitated in the bainite phase (hard phase), the case where the steel pipe contains Mo will be described as a first embodiment, and the case where no steel is contained will be described as a second embodiment.

第一の実施形態における本発明の鋼管では、硬質相中のMo、Tiを基本として含有する複合析出物による析出強化を利用している。MoおよびTiは鋼中で析出物を形成する元素であり、個々の炭化物の析出により鋼を強化することは従来行われているが、MoとTiを複合添加して、MoとTiとを基本として含有する複合析出物を鋼中に微細に分散析出させることにより、MoCまたはTiCの析出強化の場合に比べて、より大きな強度向上効果が得られることが特徴である。この従来にない大きな強度向上効果は、MoとTiとを基本として含有する複合析出物が安定でかつ成長速度が遅いので、粒径が10nm未満の極めて微細な析出物が得られることによるものである。   In the steel pipe of the present invention in the first embodiment, precipitation strengthening by composite precipitates containing Mo and Ti in the hard phase as a basis is utilized. Mo and Ti are elements that form precipitates in steel, and strengthening of steel by precipitation of individual carbides has been performed in the past. It is a feature that a greater strength improvement effect can be obtained by finely dispersing and depositing the composite precipitate contained in the steel as compared with the case of precipitation strengthening of MoC or TiC. This unprecedented strength improvement effect is due to the fact that composite precipitates containing Mo and Ti as a basis are stable and have a slow growth rate, so that extremely fine precipitates having a particle size of less than 10 nm can be obtained. is there.

MoとTiとを基本として含有する複合析出物は、Mo、Ti、Cのみで構成される場合は、MoとTiの合計とCとが原子比で1:1の付近で化合しているものであり、高強度化に非常に効果がある。本発明では、Nbおよび/またはVを複合添加することにより、析出物がMo、Tiと、Nbおよび/またはVを含んだ複合炭化物となり、同様の析出強化が得られることを見出した。   When the composite precipitate containing Mo and Ti as a basis is composed of only Mo, Ti, and C, the total of Mo and Ti and C are combined in an atomic ratio of about 1: 1. It is very effective for increasing the strength. In the present invention, it has been found that by adding Nb and / or V in combination, the precipitate becomes a composite carbide containing Mo, Ti and Nb and / or V, and the same precipitation strengthening can be obtained.

本発明において鋼管内に分散析出する析出物である、Mo、Tiを含有する複合析出物は、以下に述べる成分の鋼に本発明の製造方法を用いて鋼板を製造することにより、硬質相中に分散させて得ることができる。   In the present invention, composite precipitates containing Mo and Ti, which are precipitates dispersed and precipitated in the steel pipe, are produced in the hard phase by producing steel sheets using the production method of the present invention on the steels having the components described below. It can be dispersed in

また、第二の実施形態における本発明の鋼管では、ベイナイト相(硬質相)内に分散析出する他の析出物として、Ti、Nb、Vの中から選ばれる2種以上を含有する複合炭化物による析出強化を利用することもできる。Ti、Nb、Vは鋼中で炭化物を形成する元素であり、個々の炭化物の析出により鋼を強化することは従来より行われているが、本発明ではTi、Nb、Vの中から選ばれる2種以上を含有する複合炭化物を微細に析出させることにより、より大きな強度向上効果が得られることが特徴である。この従来にない大きな強度向上効果は、Ti、Nb、Vの中から選ばれる2種以上を含有する複合炭化物が安定でかつ成長速度が遅いので、粒径が10nm未満の極めて微細な析出物が得られることによるものである。   Moreover, in the steel pipe of the present invention in the second embodiment, as other precipitates dispersed and precipitated in the bainite phase (hard phase), a composite carbide containing two or more selected from Ti, Nb, and V is used. Precipitation strengthening can also be used. Ti, Nb, and V are elements that form carbides in steel, and strengthening of steel by precipitation of individual carbides has been conventionally performed, but in the present invention, it is selected from Ti, Nb, and V. It is characterized in that a greater strength improvement effect can be obtained by finely depositing composite carbide containing two or more kinds. This unprecedented strength improvement effect is that a composite carbide containing two or more selected from Ti, Nb, and V is stable and has a slow growth rate, so that an extremely fine precipitate having a particle size of less than 10 nm is formed. It is because it is obtained.

本発明の第二の実施形態において鋼管内に分散析出する析出物である、Ti、Nb、Vの中から選ばれる2種以上を含有する複合炭化物は、以下に述べる成分の鋼に本発明の製造方法を用いて鋼管を製造することにより、硬質相中に分散させて得ることができる。尚、Ti、Nb、Vの中から選ばれる2種以上を含有する複合炭化物は、鋼がMoを含有する第一の実施形態の場合にも、MoとTiとを基本として含有する複合炭化物と同時に分散析出する場合もある。   In the second embodiment of the present invention, a composite carbide containing two or more selected from Ti, Nb, and V, which is a precipitate that is dispersed and precipitated in a steel pipe, is applied to the steel of the components described below. By manufacturing a steel pipe using a manufacturing method, it can be obtained by being dispersed in a hard phase. In addition, the composite carbide containing two or more selected from Ti, Nb, and V is a composite carbide containing Mo and Ti as a basis even in the first embodiment in which the steel contains Mo. At the same time, dispersion and precipitation may occur.

これらの複合炭化物の微細析出物の個数率はTiNを除いた全析出物の95%以上であることが好ましい。なお、この微細な複合炭化物の析出物の平均粒径は、透過型電子顕微鏡(TEM)で撮影した写真を画像処理し、個々の析出物と同じ面積の円の直径を個々の複合炭化物について求め、それらの直径の平均値として求めることができる。   The number ratio of fine precipitates of these composite carbides is preferably 95% or more of the total precipitates excluding TiN. The average particle size of the fine composite carbide precipitates is obtained by subjecting a photograph taken with a transmission electron microscope (TEM) to image processing, and obtaining the diameter of a circle having the same area as each precipitate for each composite carbide. , And can be obtained as an average value of their diameters.

本発明の鋼管は以上のように、フェライト相と析出物が微細析出したベイナイト相との2相からなる複合組織を有するが、このような組織は以下のような組成の鋼を用いて、以下のような方法で製造することにより得ることができる。   As described above, the steel pipe of the present invention has a composite structure composed of two phases of a ferrite phase and a bainite phase in which precipitates are finely precipitated. Such a structure is obtained by using a steel having the following composition. It can obtain by manufacturing by the method like this.

まず、本発明の高強度鋼管の化学成分について説明する。以下の説明において%で示す単位は全て質量%である。   First, chemical components of the high-strength steel pipe of the present invention will be described. In the following description, all units represented by% are mass%.

C:0.03〜0.1%とする。Cは炭化物として析出強化に寄与する元素であるが、0.03%未満で十分な強度が確保できない。0.1%を超える添加はHAZ靭性を劣化させるだけでなく、耐歪み時効特性が低下するため、C含有量を0.03%〜0.1%未満に規定する。さらに好適には、0.03〜0.08%である。   C: Set to 0.03 to 0.1%. C is an element that contributes to precipitation strengthening as a carbide, but if it is less than 0.03%, sufficient strength cannot be secured. Addition exceeding 0.1% not only deteriorates the HAZ toughness but also deteriorates the strain aging resistance, so the C content is specified to be 0.03% to less than 0.1%. More preferably, it is 0.03 to 0.08%.

Si:0.01〜0.5%とする。Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、0.5%を超えると靭性や溶接性を劣化させるばかりか、耐歪み時効特性を低下させるため、Si含有量を0.01〜0.5%に規定する。さらに好適には、0.01〜0.3%である。   Si: 0.01 to 0.5%. Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, and if it exceeds 0.5%, not only the toughness and weldability are deteriorated, but also the strain aging resistance is lowered. The Si content is specified to be 0.01 to 0.5%. More preferably, it is 0.01 to 0.3%.

Mn:0.5〜2.5%とする。Mnは強度、靭性のため添加するが、0.5%未満ではその効果が十分でなく、2.5%を超えると靱性ならびに溶接性が劣化するため、Mn含有量を0.5〜2.5%に規定する。   Mn: 0.5 to 2.5%. Mn is added for strength and toughness, but if it is less than 0.5%, the effect is not sufficient, and if it exceeds 2.5%, the toughness and weldability deteriorate, so the Mn content is 0.5 to 2. Specify 5%.

Al:0.08%以下とする。Alは脱酸剤として添加されるが、0.08%を超えると鋼の清浄度が低下し、靱性が劣化するため、Al含有量は0.08%以下に規定する。好ましくは0.01〜0.08%とする。   Al: 0.08% or less. Al is added as a deoxidizer, but if it exceeds 0.08%, the cleanliness of the steel decreases and the toughness deteriorates, so the Al content is specified to be 0.08% or less. Preferably, the content is 0.01 to 0.08%.

第一の実施形態における本発明の鋼板はMoとTiとを含有する。   The steel plate of the present invention in the first embodiment contains Mo and Ti.

Mo:0.05〜0.5%とする。Moは、MoとTiとを基本として含有する複合炭化物を析出させる場合に重要な元素であり、添加する場合は0.05%以上含有させることで、熱間圧延後冷却時のパーライト変態を抑制しつつ、Tiとの微細な複合析出物を形成し、強度上昇に大きく寄与する。しかし、0.5%を超えると溶接熱影響部靭性の劣化を招くことから、Mo含有量を0.05〜0.5%に規定する。さらに、溶接熱影響部靭性の観点からMo含有量を0.1〜0.3%とすることが好ましい。   Mo: 0.05 to 0.5%. Mo is an important element when precipitating composite carbides containing Mo and Ti as a base, and when added, 0.05% or more is included to suppress pearlite transformation during cooling after hot rolling. However, a fine composite precipitate with Ti is formed, which greatly contributes to an increase in strength. However, if it exceeds 0.5%, the weld heat-affected zone toughness is deteriorated, so the Mo content is specified to be 0.05 to 0.5%. Furthermore, it is preferable to make Mo content into 0.1 to 0.3% from a viewpoint of weld heat affected zone toughness.

Ti:0.005〜0.04%とする。Tiは複合炭化物を形成する重要な元素である。0.005%以上添加することで、Moや、Nbおよび/またはVと複合析出物を形成し、強度上昇に大きく寄与する。しかし、0.04%を超える添加は溶接熱影響部靭性の劣化を招くため、Ti含有量は0.005〜0.04%に規定する。さらに、Ti含有量を0.02%未満にすると、より優れた靭性を示す。このため、Nbおよび/またはVを添加する場合は、Ti含有量を0.005%以上、0.02%未満とすることが好ましい。   Ti: 0.005 to 0.04%. Ti is an important element forming a composite carbide. Addition of 0.005% or more forms a composite precipitate with Mo, Nb and / or V, and greatly contributes to an increase in strength. However, since addition exceeding 0.04% causes deterioration of the weld heat affected zone toughness, the Ti content is specified to be 0.005 to 0.04%. Furthermore, when the Ti content is less than 0.02%, more excellent toughness is exhibited. For this reason, when adding Nb and / or V, it is preferable to make Ti content into 0.005% or more and less than 0.02%.

本発明の高強度鋼管はMoとTiとを含有する上記の成分の鋼を用いることで、TiとMoを含有する微細複合析出物が得られるが、析出強化を最大限に利用するためには、複合析出物を形成する元素の含有量の割合を以下のように制限することが必要である。すなわち、原子%でのC量とMo、Tiの合計量との比である、C/(Mo+Ti)を0.5〜3とする。本発明による高強度化はTi、Moを含む析出物によるものである。この複合析出物による析出強化を有効に利用するためには、C量と炭化物形成元素であるMo、Ti量の関係が重要であり、これらの元素を適正なバランスのもとで添加することによって、熱的に安定かつ非常に微細な複合析出物を得ることが出来る。このとき原子%でのC量とMo、Tiの合計量との比である、C/(Mo+Ti)の値が0.5未満の場合、微細析出物の析出が不十分であるため強度不足を招き、更に高強度の硬質相が得られず低降伏比化を達成できない。また、原子%でのC量とMo、Tiの合計量との比であるC/(Mo+Ti)の値が3を超える場合はCが過剰であり、耐歪み時効特性が低下し、また溶接熱影響部に島状マルテンサイトなどの硬化組織が形成し溶接熱影響部靭性の劣化を招くため、C/(Mo+Ti)の値を0.5〜3とする。なお、質量%の含有量を用いる場合には、各元素記号を質量%での各元素の含有量として(C/12.01)/(Mo/95.9+Ti/47.9)の値を1.2〜3とする。さらに好適には、1.4〜3である。   The high-strength steel pipe of the present invention can obtain fine composite precipitates containing Ti and Mo by using the steel of the above components containing Mo and Ti, but in order to make maximum use of precipitation strengthening It is necessary to limit the content ratio of elements forming the composite precipitate as follows. That is, C / (Mo + Ti), which is a ratio of the amount of C in atomic% and the total amount of Mo and Ti, is set to 0.5 to 3. The increase in strength according to the present invention is due to precipitates containing Ti and Mo. In order to effectively use the precipitation strengthening by this composite precipitate, the relationship between the amount of C and the amounts of Mo and Ti which are carbide forming elements is important. By adding these elements in an appropriate balance, Thermally stable and very fine composite precipitates can be obtained. At this time, when the value of C / (Mo + Ti), which is the ratio between the amount of C in atomic% and the total amount of Mo and Ti, is less than 0.5, the precipitation of fine precipitates is insufficient, so the strength is insufficient. In addition, a higher strength hard phase cannot be obtained, and a low yield ratio cannot be achieved. Further, when the value of C / (Mo + Ti), which is the ratio between the amount of C in atomic% and the total amount of Mo and Ti, exceeds 3, C is excessive, strain aging resistance is lowered, and welding heat is reduced. Since a hardened structure such as island martensite is formed in the affected part and the weld heat affected part toughness is deteriorated, the value of C / (Mo + Ti) is set to 0.5 to 3. In addition, when using the content of mass%, the value of (C / 12.01) / (Mo / 95.9 + Ti / 47.9) is used as the content of each element in mass%. Is set to 1.2-3. More preferably, it is 1.4-3.

Nbおよび/またはVは、Ti及びMoとともに微細複合析出物を形成するので、本発明の鋼管は、さらにNbおよび/またはVを含有してもよい。   Since Nb and / or V forms a fine composite precipitate with Ti and Mo, the steel pipe of the present invention may further contain Nb and / or V.

Nb:0.005〜0.07%とする。Nbは組織の微細粒化により靭性を向上させるが、Ti及びMoと共に複合析出物を形成し、強度上昇、耐歪み時効特性に寄与する。しかし、0.005%未満では効果がなく、0.07%を超えると溶接熱影響部の靭性が劣化するため、Nb含有量は0.005〜0.07%に規定する。   Nb: 0.005 to 0.07%. Nb improves the toughness by refining the structure, but forms a composite precipitate with Ti and Mo, contributing to an increase in strength and anti-strain aging characteristics. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.07%, the toughness of the weld heat-affected zone deteriorates, so the Nb content is specified to be 0.005 to 0.07%.

V:0.005〜0.1%とする。VもNbと同様にTi及びMoと共に複合析出物を形成し、強度上昇、耐歪み時効特性に寄与する。しかし、0.005%未満では効果がなく、0.1%を超えると溶接熱影響部の靭性が劣化するため、V含有量は0.005〜0.1%に規定する。   V: Set to 0.005 to 0.1%. V, like Nb, forms a composite precipitate with Ti and Mo and contributes to strength increase and strain aging resistance. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.1%, the toughness of the weld heat affected zone deteriorates, so the V content is specified to be 0.005 to 0.1%.

Nbおよび/またはVを含有する場合には、原子%でのC量とMo、Ti、Nb、Vの合計量の比である、C/(Mo+Ti+Nb+V)は0.5〜3とする。本発明による高強度化はTi、Moを含む析出物によるが、Nbおよび/またはVを含有する場合はそれらを含んだ複合析出物(主に炭化物)となる。このとき各元素の原子%の含有量で表される、C/(Mo+Ti+Nb+V)の値が0.5未満の場合、微細析出物の析出が不十分であるため強度不足を招き、更に高強度の硬質相が得られず低降伏比化を達成できない。また、3を超える場合はCが過剰であり、耐歪み時効特性が低下し、また溶接熱影響部に島状マルテンサイトなどの硬化組織が形成し溶接熱影響部靭性の劣化を招くため、C/(Mo+Ti+Nb+V)の値を0.5〜3とする。なお、質量%の含有量を用いる場合には、各元素記号を質量%での各元素の含有量として(C/12.01)/(Mo/95.9+Ti/47.9+Nb/92.91+V/50.94)の値を1.2〜3とする。さらに好適には、1.4〜3である。   When Nb and / or V are contained, C / (Mo + Ti + Nb + V), which is a ratio of the amount of C in atomic% and the total amount of Mo, Ti, Nb, and V, is set to 0.5 to 3. Strengthening according to the present invention depends on precipitates containing Ti and Mo, but when Nb and / or V are contained, they become composite precipitates (mainly carbides) containing them. At this time, when the value of C / (Mo + Ti + Nb + V) represented by the content of atomic% of each element is less than 0.5, the precipitation of fine precipitates is insufficient, leading to insufficient strength, and higher strength. A hard phase cannot be obtained and a low yield ratio cannot be achieved. Further, when it exceeds 3, C is excessive, the strain aging resistance is lowered, and a hardened structure such as island martensite is formed in the weld heat affected zone, resulting in deterioration of the weld heat affected zone toughness. The value of / (Mo + Ti + Nb + V) is 0.5-3. In addition, when content of mass% is used, each element symbol is defined as the content of each element in mass% (C / 12.01) / (Mo / 95.9 + Ti / 47.9 + Nb / 92. 91 + V / 50.94) is set to 1.2-3. More preferably, it is 1.4-3.

本発明の鋼管はMoを含有しない第二の実施形態においては、Ti、Nb、Vの中から選ばれる2種以上を含有する。この場合のTi、Nb、Vの化学成分も上記の範囲とすることが望ましい。   In the second embodiment that does not contain Mo, the steel pipe of the present invention contains two or more selected from Ti, Nb, and V. In this case, it is desirable that the chemical components of Ti, Nb, and V are also in the above range.

本発明の低降伏比高強度高靭性鋼管はC:0.03〜0.1%、Si:0.01〜0.5%、Mn:0.5〜2.5%、Al:0.08%以下を含有し、Ti:0.005〜0.04%、Nb:0.005〜0.07%、V:0.005〜0.1%の中から選ばれる少なくとも2種以上を含有する成分の鋼を用いることで、Ti、Nb、Vを含有する微細析出物が得られるが、析出強化を最大限に利用するためには、析出物を形成する元素の含有量の割合を以下のように制限することが必要である。すなわち、原子%でのC量とTi、Nb、Vの合計量の比である、C/(Ti+Nb+V)は0.5〜3とする。本発明の第二の実施形態における高強度化はTi、Nb、Vのいずれか2種以上を含有する微細析出物の析出によるものである。このとき各元素の原子%の含有量で表される、C/(Ti+Nb+V)の値が0.5未満の場合、微細析出物の析出が不十分であるため強度不足を招き、更に高強度の硬質相が得られず低降伏比化を達成できない。また、3を超える場合はCが過剰であり、溶接熱影響部に島状マルテンサイトなどの硬化組織が形成し溶接熱影響部靭性の劣化を招き、耐歪み時効特性を劣化させるため、C/(Ti+Nb+V)の値を0.5〜3とする。なお、質量%の含有量を用いる場合には、各元素記号を質量%での各元素の含有量として(C/12.01)/(Ti/47.9+Nb/92.91+V/50.94)の値を1.2〜3とする。さらに好適には、1.4〜3である。   The low yield ratio high strength high toughness steel pipe of the present invention is C: 0.03-0.1%, Si: 0.01-0.5%, Mn: 0.5-2.5%, Al: 0.08. %: Or less, Ti: 0.005-0.04%, Nb: 0.005-0.07%, V: contain at least two or more selected from 0.005-0.1% By using the component steel, fine precipitates containing Ti, Nb, and V can be obtained. In order to make maximum use of precipitation strengthening, the content ratio of elements that form precipitates is set as follows: It is necessary to restrict so that. That is, C / (Ti + Nb + V), which is a ratio of the amount of C in atomic% and the total amount of Ti, Nb, and V, is set to 0.5-3. The increase in strength in the second embodiment of the present invention is due to the precipitation of fine precipitates containing any two or more of Ti, Nb, and V. At this time, when the value of C / (Ti + Nb + V) represented by the content of atomic% of each element is less than 0.5, the precipitation of fine precipitates is insufficient, leading to insufficient strength, and higher strength. A hard phase cannot be obtained and a low yield ratio cannot be achieved. Further, when C exceeds 3, C is excessive, and a hardened structure such as island martensite is formed in the weld heat affected zone, resulting in deterioration of the weld heat affected zone toughness and deterioration of the strain aging resistance. The value of (Ti + Nb + V) is 0.5-3. In addition, when content of mass% is used, each element symbol is defined as content of each element in mass% (C / 12.01) / (Ti / 47.9 + Nb / 92.91 + V / 50.94). Is set to 1.2-3. More preferably, it is 1.4-3.

本発明では、鋼管の強度靱性をさらに改善する目的で、以下に示すCu、Ni、Cr、B、Caの1種又は2種以上を含有してもよい。   In this invention, you may contain 1 type (s) or 2 or more types of Cu, Ni, Cr, B, Ca shown below in order to further improve the strength toughness of a steel pipe.

Cu:0.5%以下とする。Cuは靭性の改善と強度の上昇に有効な元素である。その効果を得るためには、0.1%以上添加することが好ましいが、多く添加すると溶接性が劣化するため、添加する場合は0.5%を上限とする。   Cu: 0.5% or less. Cu is an element effective for improving toughness and increasing strength. In order to acquire the effect, it is preferable to add 0.1% or more. However, if it is added in a large amount, weldability deteriorates.

Ni:0.5%以下とする。Niは靭性の改善と強度の上昇に有効な元素である。その効果を得るためには、0.1%以上添加することが好ましいが、多く添加するとコスト的に不利になり、また、溶接熱影響部靱性が劣化するため、添加する場合は0.5%を上限とする。   Ni: 0.5% or less. Ni is an element effective for improving toughness and increasing strength. In order to obtain the effect, it is preferable to add 0.1% or more, but adding a large amount is disadvantageous in terms of cost, and the weld heat affected zone toughness deteriorates. Is the upper limit.

Cr:0.5%以下とする。CrはMnと同様に低Cでも十分な強度を得るために有効な元素である。その効果を得るためには、0.1%以上添加することが好ましいが、多く添加すると溶接性を劣化させるため、添加する場合は0.5%を上限とする。   Cr: 0.5% or less. Cr, like Mn, is an element effective for obtaining sufficient strength even at low C. In order to acquire the effect, it is preferable to add 0.1% or more. However, when adding a large amount, the weldability is deteriorated, so when adding, the upper limit is 0.5%.

B:0.005%以下とする。Bは強度上昇、HAZ靭性改善に寄与する元素である。その効果を得るためには、0.0005%以上添加することが好ましいが、0.005%を超えて添加すると溶接性を劣化させるため、添加する場合は0.005%以下とする。   B: Set to 0.005% or less. B is an element contributing to strength increase and HAZ toughness improvement. In order to obtain the effect, it is preferable to add 0.0005% or more, but if added over 0.005%, the weldability is deteriorated, so when added, the content is made 0.005% or less.

Ca:0.0005〜0.003%とする。Caは硫化物系介在物の形態を制御して靭性を改善する。0.0005%以上でその効果が現れ、0.003%を超えると効果が飽和し、逆に清浄度を低下させて靭性を劣化させるため、添加する場合には0.0005〜0.003%とする。   Ca: 0.0005 to 0.003%. Ca improves the toughness by controlling the form of sulfide inclusions. The effect appears at 0.0005% or more, and when it exceeds 0.003%, the effect is saturated, and conversely, the cleanliness is lowered and the toughness is deteriorated. And

N:好ましくは0.007%以下とする。Nは不可避的不純物として扱うが、0.007%を越えると、溶接熱影響部靭性が劣化するため、好ましくは0.007%以下とする。   N: Preferably it is 0.007% or less. N is treated as an unavoidable impurity, but if over 0.007%, the weld heat affected zone toughness deteriorates, so the content is preferably made 0.007% or less.

さらに、Ti量とN量の比であるTi/Nを最適化することで、TiN粒子により溶接熱影響部のオーステナイト粗大化を抑制することでき、良好な溶接熱影響部靭性を得ることが出来るため、好ましくはTi/Nを2〜8、さらに好ましくは2〜5とする。   Furthermore, by optimizing Ti / N, which is the ratio of Ti amount to N amount, the austenite coarsening of the weld heat affected zone can be suppressed by TiN particles, and good weld heat affected zone toughness can be obtained. Therefore, Ti / N is preferably 2 to 8, and more preferably 2 to 5.

上記以外の残部は実質的にFeからなり、不可避不純物をはじめ、本発明の作用効果を害さない元素を微量に添加することができる。例えば、Mg、REM、W、Zrをそれぞれ、0.02%以下添加しても良い。   The remainder other than the above consists essentially of Fe, and it is possible to add a trace amount of elements that do not impair the effects of the present invention, including inevitable impurities. For example, each of Mg, REM, W, and Zr may be added by 0.02% or less.

次に、本発明の高強度鋼管原板の製造方法について説明する。   Next, the manufacturing method of the high intensity | strength steel pipe original plate of this invention is demonstrated.

本発明の高強度鋼管の原板は上記の成分組成を有する鋼を用い、加熱温度:1000〜1300℃、圧延終了温度:Ar3温度未満で熱間圧延を行い、その後5℃/s以上の冷却速度で450〜600℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜750℃の温度まで再加熱を行うことで、金属組織を実質的にフェライトとベイナイトの2相組織とし、Mo、Tiを含有する微細析出物、または、Ti、Nb、Vを含有する微細析出物をベイナイト相(ベイナイトを主体とする硬質相)中に分散析出させることができる。ここで、温度は鋼板の平均温度とする。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率等のパラメータを考慮して、計算により求めたものである。また、冷却速度は、熱間圧延終了後、冷却終了温度(300〜600℃)まで冷却に必要な温度差をその冷却を行うのに要した時間で割った平均冷却速度である。また、昇温速度は、冷却後、再加熱温度(550〜750℃)の温度までの再加熱に必要な温度差を再加熱するのに要した時間で割った平均昇温速度である。以下、各製造条件について詳しく説明する。   The base plate of the high-strength steel pipe of the present invention uses steel having the above-mentioned composition, and is hot-rolled at a heating temperature of 1000 to 1300 ° C. and a rolling end temperature of less than Ar 3 temperature, and then a cooling rate of 5 ° C./s or more. Is accelerated to 450 to 600 ° C., and then immediately reheated to a temperature of 550 to 750 ° C. at a temperature rising rate of 0.5 ° C./s or more, so that the metal structure is substantially made of ferrite and bainite. A fine precipitate containing Mo and Ti or a fine precipitate containing Ti, Nb and V can be dispersed and precipitated in the bainite phase (hard phase mainly composed of bainite). Here, the temperature is the average temperature of the steel sheet. The average temperature is obtained by calculation based on the surface temperature of the slab or steel plate, taking into account parameters such as plate thickness and thermal conductivity. Moreover, a cooling rate is an average cooling rate which divided the temperature difference required for cooling to the cooling end temperature (300-600 degreeC) after the completion | finish of hot rolling by the time required to perform the cooling. The temperature increase rate is an average temperature increase rate obtained by dividing the temperature difference required for reheating up to the reheating temperature (550 to 750 ° C.) by the time required for reheating after cooling. Hereinafter, each manufacturing condition will be described in detail.

加熱温度:1000〜1300℃とする。加熱温度が1000℃未満では炭化物の固溶が不十分で必要な強度ならびに降伏比が得られず、1300℃を超えると母材靭性が劣化するため、1000〜1300℃とする。   Heating temperature: 1000-1300 ° C. If the heating temperature is less than 1000 ° C, the solid solution of the carbide is insufficient and the required strength and yield ratio cannot be obtained, and if it exceeds 1300 ° C, the base metal toughness deteriorates, so the temperature is set to 1000 to 1300 ° C.

圧延終了温度:Ar3温度未満とする。このプロセスは本発明における重要な製造条件である。降伏比を低下させるためには軟質相と硬質相の2相組織化が有効であり軟質相と硬質相の硬度差が大きいほど降伏比は低下する。Ar3温度未満での圧延終了により軟質の初析フェライトを析出させた後、後述の加速冷却と再加熱処理での析出強化により高硬度のベイナイト相とし、軟質相と硬質相の硬度差が大きい2相組織が得られる。圧延終了温度がAr3温度を超えるとフェライト変態が十分進行せず降伏比が上昇するため、圧延終了温度をAr3温度未満とする。圧延終了温度が低すぎると、フェライトが加工されて軟質の初析フェライトが得られない場合があるため、圧延終了温度は650℃以上にすることが好ましい。   Rolling end temperature: less than Ar3 temperature. This process is an important manufacturing condition in the present invention. In order to reduce the yield ratio, two-phase organization of the soft phase and the hard phase is effective, and the yield ratio decreases as the hardness difference between the soft phase and the hard phase increases. After precipitation of soft pro-eutectoid ferrite at the end of rolling at less than the Ar3 temperature, a high hardness bainite phase is obtained by accelerated cooling and precipitation strengthening in the reheating process described later, and the hardness difference between the soft phase and the hard phase is large. A phase structure is obtained. When the rolling end temperature exceeds the Ar3 temperature, the ferrite transformation does not proceed sufficiently and the yield ratio increases, so the rolling end temperature is set to be lower than the Ar3 temperature. If the rolling end temperature is too low, ferrite may be processed and soft pro-eutectoid ferrite may not be obtained. Therefore, the rolling end temperature is preferably 650 ° C. or higher.

圧延終了後、直ちに5℃/s以上の冷却速度で冷却する。冷却速度が5℃/s未満では冷却時にパーライトを生成し、ベイナイトによる変態強化が得られないため、十分な強度が得られない。よって、圧延終了後の冷却速度を5℃/s以上に規定する。このときの冷却方法については製造プロセスによって任意の冷却設備を用いることが可能である。   Immediately after completion of rolling, cooling is performed at a cooling rate of 5 ° C./s or more. When the cooling rate is less than 5 ° C./s, pearlite is generated during cooling, and transformation strengthening by bainite cannot be obtained, so that sufficient strength cannot be obtained. Therefore, the cooling rate after the end of rolling is specified to be 5 ° C./s or more. About the cooling method at this time, it is possible to use arbitrary cooling equipment by a manufacturing process.

冷却停止温度:300〜600℃とする。冷却停止温度が300℃未満では、島状マルテンサイト(MA)が生成するため再加熱時の微細炭化物の析出が不十分となり十分な強度が得られないとともに母材靱性が劣化し、さらに耐歪み時効特性も低下する。600℃を超えると冷却中にパーライトが析出するため微細炭化物の析出が不十分となり十分な強度が得られず、さらに耐歪み特性も低下する。そのため、加速冷却停止温度を300〜600℃に規定する。   Cooling stop temperature: 300 to 600 ° C. If the cooling stop temperature is less than 300 ° C., island-shaped martensite (MA) is generated, so that the precipitation of fine carbides during reheating is insufficient and sufficient strength cannot be obtained, and the toughness of the base material is deteriorated, and further, strain resistance is increased. Aging characteristics are also reduced. When the temperature exceeds 600 ° C., pearlite is precipitated during cooling, so that the precipitation of fine carbides becomes insufficient and sufficient strength cannot be obtained, and further, the strain resistance is also lowered. Therefore, the accelerated cooling stop temperature is defined as 300 to 600 ° C.

加速冷却後直ちに0.5℃/s以上の昇温速度で550〜750℃の温度まで再加熱を行う。このプロセスは本発明における重要な製造条件である。硬質相の強化、耐歪み時効特性の向上に寄与する微細析出物は、再加熱時に析出する。このような微細析出物を得るためには、加速冷却後直ちに550〜750℃の温度域まで再加熱する必要がある。また再加熱の際には、冷却後の温度より少なくとも50℃以上昇温することが望ましい。昇温速度が0.5℃/s未満では、目的の再加熱温度に達するまでに長時間を要するため製造効率が悪化し、またパーライト変態が生じるため、微細析出物の分散析出が得られず十分な強度を得ることができない。再加熱温度が550℃未満では十分な析出駆動力が得られず微細析出物の量が少ないため、十分な析出強化や耐歪み時効特性の向上が図れず、750℃を超えると析出物が粗大化し十分な強度が得られないため、再加熱の温度域を550〜750℃に規定する。再加熱温度において、特に温度保持時間を設定する必要はない。本発明の製造方法を用いれば再加熱後直ちに冷却しても、十分な微細析出物が得られるため高い強度が得られる。しかし、十分な微細析出物を確保するために、30分以内の温度保持を行うことができる。30分を超えて温度保持を行うと、析出物の粗大化を生じ強度が低下する場合がある。また、再加熱後の冷却過程において冷却速度によらず微細析出物は粗大化しないため、再加熱後の冷却速度は基本的には空冷とすることが好ましい。   Immediately after the accelerated cooling, reheating is performed to a temperature of 550 to 750 ° C. at a heating rate of 0.5 ° C./s or more. This process is an important manufacturing condition in the present invention. Fine precipitates that contribute to the strengthening of the hard phase and the improvement of strain aging characteristics are precipitated during reheating. In order to obtain such fine precipitates, it is necessary to reheat to a temperature range of 550 to 750 ° C. immediately after accelerated cooling. In reheating, it is desirable to raise the temperature by at least 50 ° C. from the temperature after cooling. If the heating rate is less than 0.5 ° C./s, it takes a long time to reach the target reheating temperature, so that the production efficiency is deteriorated, and pearlite transformation occurs, so that no dispersion of fine precipitates can be obtained. A sufficient strength cannot be obtained. If the reheating temperature is less than 550 ° C, sufficient precipitation driving force cannot be obtained, and the amount of fine precipitates is small. Therefore, sufficient precipitation strengthening and strain aging resistance cannot be improved, and if it exceeds 750 ° C, the precipitates are coarse. Since sufficient strength cannot be obtained, the reheating temperature range is set to 550 to 750 ° C. There is no need to set the temperature holding time at the reheating temperature. Even if it cools immediately after reheating if the manufacturing method of this invention is used, since a sufficient fine precipitate will be obtained, high intensity | strength will be obtained. However, in order to ensure sufficient fine precipitates, the temperature can be maintained within 30 minutes. If the temperature is maintained for more than 30 minutes, precipitates may become coarse and the strength may decrease. Further, in the cooling process after reheating, the fine precipitates do not become coarse regardless of the cooling rate. Therefore, it is preferable that the cooling rate after reheating is basically air cooling.

加速冷却後の再加熱を行うための設備として、加速冷却を行うための冷却設備の下流側に加熱装置を設置することができる。加熱装置としては、鋼板の急速加熱が可能であるガス燃焼炉や誘導加熱装置を用いる事が好ましい。   As equipment for performing reheating after accelerated cooling, a heating device can be installed downstream of the cooling equipment for performing accelerated cooling. As the heating device, it is preferable to use a gas combustion furnace or induction heating device capable of rapid heating of the steel sheet.

本発明の製造方法を実施するための設備の一例を図1に示す。図1に示すように、圧延ライン1には上流から下流側に向かって熱間圧延機3、加速冷却装置4、誘導加熱装置5、ホットレベラー6が配置されている。誘導加熱装置5あるいは他の熱処理装置を、圧延設備である熱間圧延機3およびそれに引き続く冷却設備である加速冷却装置4と同一ライン上に設置する事によって、圧延、冷却終了後迅速に再加熱処理が行えるので、圧延冷却後の鋼板温度を過度に低下させることなく加熱することができる。   An example of equipment for carrying out the production method of the present invention is shown in FIG. As shown in FIG. 1, a hot rolling mill 3, an acceleration cooling device 4, an induction heating device 5, and a hot leveler 6 are arranged in the rolling line 1 from the upstream side toward the downstream side. By installing the induction heating device 5 or other heat treatment device on the same line as the hot rolling mill 3 that is a rolling facility and the accelerated cooling device 4 that is a subsequent cooling facility, reheating is performed quickly after the end of rolling and cooling. Since it can process, it can heat, without reducing the steel plate temperature after rolling cooling too much.

さらに、溶接鋼管の製造方法について説明する。   Furthermore, the manufacturing method of a welded steel pipe is demonstrated.

本発明の溶接鋼管は、上述した成分組成を有する鋼を、上述した製造条件により、金属組織が実質的にフェライトとベイナイトの2相組織であり、第一の実施形態においてはベイナイト相中にTiとMoとを含む微細析出物が分散析出している鋼板として、第二の実施形態においてはTi、Nb、Vの中から選ばれる2種以上を含む微細析出物が分散析出している鋼板として製造し、鋼板を冷間にて管状に成形し、突き合わせ部を溶接し鋼管とする。管状への成形方法については特に規定しない。また、コーティング処理を施す場合の鋼管の加熱温度は特に規定しないが、ベイナイトの軟化による応力比の増加を防ぐため、300℃以下とすることが望ましい。   In the welded steel pipe of the present invention, the metal structure of the steel having the above-described component composition is substantially a two-phase structure of ferrite and bainite according to the manufacturing conditions described above. In the first embodiment, Ti is contained in the bainite phase. As a steel plate in which fine precipitates containing Mo and Mo are dispersed and precipitated, in the second embodiment, as a steel plate in which fine precipitates containing two or more selected from Ti, Nb, and V are dispersed and precipitated. The steel plate is manufactured and formed into a tubular shape in the cold state, and the butt portion is welded to form a steel pipe. The method for forming into a tubular shape is not particularly specified. Further, the heating temperature of the steel pipe in the case of performing the coating treatment is not particularly defined, but it is desirable to set it at 300 ° C. or lower in order to prevent an increase in the stress ratio due to the softening of bainite.

表1に示す化学成分の鋼(鋼種A〜I)を連続鋳造法によりスラブとし、これを用いて板厚18、26mm、外径24、48インチの溶接鋼管(No.1〜15)を製造した。   Steels of the chemical composition shown in Table 1 (steel types A to I) are made into slabs by a continuous casting method, and welded steel pipes (No. 1 to 15) having a plate thickness of 18, 26 mm and an outer diameter of 24, 48 inches are manufactured using this slab. did.

Figure 2005060838
Figure 2005060838

加熱したスラブを熱間圧延により圧延した後、直ちに水冷型の加速冷却設備を用いて冷却を行い、誘導加熱炉またはガス燃焼炉を用いて再加熱を行い鋼板を作製し、該鋼板を用いUOEプロセスにて溶接鋼管を製造し、その後鋼管外面にコーティング処理を施した。誘導加熱炉は加速冷却設備と同一ライン上に設置した。各鋼管(No.1〜15)の製造条件を表2に示す。なお、加熱温度、圧延終了温度、冷却停止(終了)温度および、再加熱温度等の温度は鋼板の平均温度とした。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率等のパラメータを考慮して、計算により求めた。また、冷却速度は、熱間圧延終了後、冷却停止(終了)温度まで冷却に必要な温度差をその冷却を行うのに要した時間で割った平均冷却速度である。また、再加熱速度(昇温速度)は、冷却後、再加熱温度までの再加熱に必要な温度差を再加熱するのに要した時間で割った平均昇温速度である。   After the heated slab is rolled by hot rolling, it is immediately cooled using a water-cooled accelerated cooling facility, reheated using an induction heating furnace or a gas combustion furnace, and a steel plate is produced. A welded steel pipe was produced by the process, and then the outer surface of the steel pipe was coated. The induction furnace was installed on the same line as the accelerated cooling equipment. Table 2 shows the production conditions of each steel pipe (No. 1 to 15). The heating temperature, rolling end temperature, cooling stop (end) temperature, reheating temperature, and other temperatures were the average temperature of the steel sheet. The average temperature was obtained by calculation from the surface temperature of the slab or steel plate, taking into account parameters such as plate thickness and thermal conductivity. The cooling rate is an average cooling rate obtained by dividing the temperature difference required for cooling to the cooling stop (end) temperature after the hot rolling is finished by the time required for the cooling. The reheating rate (temperature increase rate) is an average temperature increase rate divided by the time required to reheat the temperature difference necessary for reheating up to the reheating temperature after cooling.

以上のようにして製造した鋼管の引張特性を測定した。測定結果を表2に併せて示す。引張特性は、圧延方向の全厚試験片を引張試験片として2本採取し、コーティング前後で引張試験を行い、引張強度および降伏比を測定し、その平均値で評価した。引張強度580MPa以上を本発明に必要な強度とし、降伏比85%以下を本発明に必要な降伏比とした。   The tensile properties of the steel pipe manufactured as described above were measured. The measurement results are also shown in Table 2. Tensile properties were evaluated by taking the average thickness of two full thickness specimens in the rolling direction as tensile specimens, conducting tensile tests before and after coating, measuring tensile strength and yield ratio. The tensile strength of 580 MPa or more was determined as the strength required for the present invention, and the yield ratio of 85% or less was determined as the yield ratio required for the present invention.

母材靭性については、圧延垂直方向のフルサイズシャルピーVノッチ試験片を3本採取してシャルピー試験を行い、−10℃での吸収エネルギーを測定して、その平均値を求めた。−10℃での吸収エネルギーが100J以上のものを良好とした。   For base metal toughness, three full-size Charpy V-notch test pieces in the vertical direction of rolling were sampled and subjected to Charpy test. The absorbed energy at −10 ° C. was measured to obtain the average value. The absorption energy at −10 ° C. was 100 J or more.

溶接熱影響部(HAZ)靭性については、図2に示すように試験片を採取してシャルピー試験を行った。図2は鋼管のシーム溶接部の断面の概略図であるが、ノッチ9の部分が長さの比で、溶接金属:HAZ=1:1になるように、シーム溶接部の板厚中央部より、フルサイズシャルピーVノッチ試験片10を3本採取して−10℃でのシャルピー吸収エネルギーを測定し、その平均値を求めた。−10℃での吸収エネルギーが100J以上のものを良好とした。   With respect to the weld heat affected zone (HAZ) toughness, a Charpy test was conducted by collecting test pieces as shown in FIG. FIG. 2 is a schematic view of a cross section of a seam welded portion of a steel pipe. From the center of the plate thickness of the seam welded portion, the notch 9 portion has a length ratio such that weld metal: HAZ = 1: 1. Three full-size Charpy V-notch test specimens 10 were collected, the Charpy absorbed energy at −10 ° C. was measured, and the average value was obtained. The absorption energy at −10 ° C. was 100 J or more.

Figure 2005060838
Figure 2005060838

表2において、本発明例であるNo.1〜7はいずれも、化学成分および製造方法が本発明の範囲内であり、引張強度580MPa以上の高強度で、コーティング処理前の降伏比が80%以下で、コーティング処理後も降伏比85%以下の低降伏比であり、耐歪時効特性に優れ、母材ならびに溶接熱影響部の靭性は100J以上で良好であった。また、透過型電子顕微鏡観察、エネルギー分散型X線分光法による分析の結果、フェライト相中にTiとMo、一部の鋼板についてはさらにNbおよび/またはVを含む粒径10nm未満の微細な複合炭化物の分散析出が観察された。なお、この微細な複合炭化物の平均粒径は、透過型電子顕微鏡(TEM)で撮影した写真を画像処理し、個々の複合炭化物と同じ面積の円の直径を個々の複合炭化物について求め、それらを平均して求めた。   In Table 2, all of Nos. 1 to 7 which are examples of the present invention are within the scope of the present invention in terms of chemical composition and production method, have a high tensile strength of 580 MPa or higher, and a yield ratio before coating treatment of 80%. Below, even after the coating treatment, the yield ratio was a low yield ratio of 85% or less, the strain aging resistance was excellent, and the toughness of the base material and the weld heat affected zone was good at 100 J or more. Further, as a result of transmission electron microscope observation and analysis by energy dispersive X-ray spectroscopy, a fine composite having a grain size of less than 10 nm containing Ti and Mo in the ferrite phase and Nb and / or V in some steel plates. Dispersion precipitation of carbide was observed. In addition, the average particle diameter of the fine composite carbide is obtained by subjecting a photograph taken with a transmission electron microscope (TEM) to image processing, obtaining a diameter of a circle having the same area as that of each composite carbide, for each composite carbide. Obtained on average.

No.8〜11は、化学成分は本発明の範囲内であるが、製造方法が本発明の範囲外であるため、強度もしくは降伏比が不十分であった。No.12〜15は化学成分が本発明の範囲外であるので、十分な強度が得られないか、降伏比が高いか、HAZ靭性が劣っていた。   In Nos. 8 to 11, the chemical components are within the scope of the present invention, but the manufacturing method is outside the scope of the present invention, so the strength or yield ratio is insufficient. Nos. 12 to 15 had chemical components outside the scope of the present invention, so that sufficient strength was not obtained, the yield ratio was high, or HAZ toughness was inferior.

表3に示す化学成分の鋼(鋼種A2〜I2)を連続鋳造法によりスラブとし、これを用いて板厚18、26mm、外径24、48インチの溶接鋼管(No.21〜34)を製造した。   Steel of chemical composition shown in Table 3 (steel types A2 to I2) is made into a slab by a continuous casting method, and a welded steel pipe (No. 21 to 34) having a plate thickness of 18, 26 mm and an outer diameter of 24, 48 inches is manufactured using this. did.

Figure 2005060838
Figure 2005060838

加熱したスラブを熱間圧延により圧延した後、直ちに水冷型の加速冷却設備を用いて冷却を行い、誘導加熱炉またはガス燃焼炉を用いて再加熱を行い鋼板を作製し、該鋼板を用いUOEプロセスにて溶接鋼管を製造し、その後鋼管外面にコーティング処理を施した。誘導加熱炉は加速冷却設備と同一ライン上に設置した。各鋼管(No.21〜34)の製造条件を表4に示す。なお、加熱温度、圧延終了温度、冷却停止(終了)温度および、再加熱温度等の温度は鋼板の平均温度とし、実施例1と同様にして求めた。   After the heated slab is rolled by hot rolling, it is immediately cooled using a water-cooled accelerated cooling facility, reheated using an induction heating furnace or a gas combustion furnace, and a steel plate is produced. A welded steel pipe was produced by the process, and then the outer surface of the steel pipe was coated. The induction furnace was installed on the same line as the accelerated cooling equipment. Table 4 shows the production conditions of each steel pipe (No. 21 to 34). Note that the heating temperature, rolling end temperature, cooling stop (end) temperature, reheating temperature, and other temperatures were average temperatures of the steel sheet and were determined in the same manner as in Example 1.

以上のようにして製造した鋼管の引張特性、母材靭性、溶接熱影響部(HAZ)靭性を実施例1と同様にして測定した。測定結果を表4に併せて示す。   The tensile properties, base metal toughness, and weld heat affected zone (HAZ) toughness of the steel pipe produced as described above were measured in the same manner as in Example 1. The measurement results are also shown in Table 4.

Figure 2005060838
Figure 2005060838

表4において、本発明例であるNo.21〜26はいずれも、化学成分および製造方法が本発明の範囲内であり、引張強度580MPa以上の高強度で、コーティング処理前の降伏比が80%以下で、コーティング処理後も降伏比85%以下の低降伏比であり、耐歪時効特性に優れ、母材ならびに溶接熱影響部の靭性は100J以上で良好であった。また、透過型電子顕微鏡観察、エネルギー分散型X線分光法による分析の結果、フェライト相中にTi、Nb、Vの中から選ばれる2種以上を含有する粒径10nm未満の微細な複合炭化物の分散析出が観察された。   In Table 4, all of Nos. 21 to 26, which are examples of the present invention, have chemical components and production methods within the scope of the present invention, have a high tensile strength of 580 MPa or more, and a yield ratio before coating treatment of 80%. Below, even after the coating treatment, the yield ratio was a low yield ratio of 85% or less, the strain aging resistance was excellent, and the toughness of the base material and the weld heat affected zone was good at 100 J or more. Further, as a result of analysis by transmission electron microscope observation and energy dispersive X-ray spectroscopy, a fine composite carbide having a particle diameter of less than 10 nm and containing two or more selected from Ti, Nb, and V in the ferrite phase. Dispersion precipitation was observed.

No.27〜30は、化学成分は本発明の範囲内であるが、製造方法が本発明の範囲外であるため、強度、降伏比が不十分であった。No.31〜34は化学成分が本発明の範囲外であるので、十分な強度が得られないか、降伏比が高いか、HAZ靭性が劣っていた。   In Nos. 27 to 30, the chemical components were within the scope of the present invention, but the manufacturing method was outside the scope of the present invention, so the strength and yield ratio were insufficient. Nos. 31 to 34 had chemical components outside the scope of the present invention, so that sufficient strength was not obtained, yield ratio was high, or HAZ toughness was inferior.

本発明の製造方法を実施するための製造ラインの一例を示す概略図。Schematic which shows an example of the manufacturing line for enforcing the manufacturing method of this invention. 試験片の採取位置を示す、鋼管のシーム溶接部の断面の概略図。The schematic of the cross section of the seam weld part of a steel pipe which shows the sampling position of a test piece.

符号の説明Explanation of symbols

1 圧延ライン
2 鋼板
3 熱間圧延機
4 加速冷却装置
5 誘導加熱装置
6 ホットレベラー
7 鋼板
8 溶接金属
9 ノッチ
10 試験片
11 HAZ
DESCRIPTION OF SYMBOLS 1 Rolling line 2 Steel plate 3 Hot rolling mill 4 Accelerated cooling device 5 Induction heating device 6 Hot leveler 7 Steel plate 8 Weld metal 9 Notch 10 Test piece 11 HAZ

Claims (5)

質量%で、C:0.03〜0.1%、Si:0.01〜0.5%、Mn:0.5〜2.5%、Al:0.08%以下、Mo:0.05〜0.5%、Ti:0.005〜0.04%を含有し、残部が実質的にFeからなり、原子%でのC量とMo、Tiの合計量の比であるC/(Mo+Ti)が0.5〜3であり、金属組織が実質的にフェライトとベイナイトの2相組織であり、ベイナイト相中にTiと、Moとを含む微細析出物が分散析出していることを特徴とする、耐歪時効特性に優れた低降伏比高強度高靭性鋼管。   In mass%, C: 0.03-0.1%, Si: 0.01-0.5%, Mn: 0.5-2.5%, Al: 0.08% or less, Mo: 0.05 -0.5%, Ti: 0.005-0.04%, the balance is substantially made of Fe, C / (Mo is the ratio of the amount of C in atomic% and the total amount of Mo and Ti + Ti) is 0.5 to 3, the metal structure is substantially a two-phase structure of ferrite and bainite, and fine precipitates containing Ti and Mo are dispersed and precipitated in the bainite phase. A low yield ratio, high strength, high toughness steel pipe with excellent strain aging characteristics. さらに、質量%で、Nb:0.005〜0.07%および/またはV:0.005〜0.1%を含有し、原子%でのC量とMo、Ti、Nb、Vの合計量の比であるC/(Mo+Ti+Nb+V)が0.5〜3であり、ベイナイト相中にTiと、Moと、Nbおよび/またはVとを含む微細析出物が分散析出していることを特徴とする請求項1に記載の耐歪時効特性に優れた低降伏比高強度高靱性鋼管。   Furthermore, it contains Nb: 0.005 to 0.07% and / or V: 0.005 to 0.1% by mass%, and the total amount of C, Mo, Ti, Nb, and V in atomic% The ratio of C / (Mo + Ti + Nb + V) is 0.5 to 3, and fine precipitates containing Ti, Mo, Nb and / or V are dispersed and precipitated in the bainite phase. The low yield ratio high strength high toughness steel pipe excellent in strain aging resistance according to claim 1. 質量%で、C:0.03〜0.1%、Si:0.01〜0.5%、Mn:0.5〜2.5%、Al:0.08%以下を含有し、Ti:0.005〜0.04%、Nb:0.005〜0.07%、V:0.005〜0.1%の中から選ばれる少なくとも2種以上を含有し、残部が実質的にFeからなり、原子%でのC量とTi、Nb、Vの合計量との比であるC/(Ti+Nb+V)が0.5〜3であり、金属組織が実質的にフェライトとベイナイトの2相組織であり、ベイナイト相中にTi、Nb、Vの中から選ばれる2種以上を含む析出物が分散析出していることを特徴とする、耐歪時効特性に優れた低降伏比高強度高靭性鋼管。   In mass%, C: 0.03 to 0.1%, Si: 0.01 to 0.5%, Mn: 0.5 to 2.5%, Al: 0.08% or less, Ti: Contains at least two selected from 0.005 to 0.04%, Nb: 0.005 to 0.07%, V: 0.005 to 0.1%, with the balance being substantially Fe C / (Ti + Nb + V), which is a ratio of the amount of C in atomic% and the total amount of Ti, Nb, and V, is 0.5 to 3, and the metal structure is substantially a two-phase structure of ferrite and bainite. There is a low yield ratio high strength high toughness steel pipe excellent in strain aging resistance, characterized in that a precipitate containing two or more selected from Ti, Nb, and V is dispersed in the bainite phase. . さらに、質量%で、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、B:0.005%以下、Ca:0.0005〜0.003%の中から選ばれる1種又は2種以上を含有することを特徴とする請求項1ないし請求項3のいずれかに記載の低降伏比高強度高靭性鋼管。   Furthermore, in mass%, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, B: 0.005% or less, Ca: 0.0005 to 0.003% The low yield ratio high strength high toughness steel pipe according to any one of claims 1 to 3, characterized in that it contains one or more selected from the group consisting of: 請求項1ないし請求項4のいずれかに記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、Ar3温度未満の圧延終了温度で熱間圧延した後、5℃/s以上の冷却速度で300〜600℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜750℃まで再加熱を行い、金属組織が実質的にフェライトとベイナイトの2相組織であり、ベイナイト相中に、TiとMoとを含む微細析出物またはTi、Nb、Vの中から選ばれる2種以上を含む微細析出物が、分散析出している鋼板として、該鋼板を冷間にて管状に成形し、突き合わせ部を溶接して鋼管とすることを特徴とする、耐歪時効特性に優れた低降伏比高強度高靭性鋼管の製造方法。   The steel having the component composition according to any one of claims 1 to 4 is heated to a temperature of 1000 to 1300 ° C and hot-rolled at a rolling end temperature lower than an Ar3 temperature, and then at least 5 ° C / s. Accelerated cooling to 300 to 600 ° C. is performed at a cooling rate, and then immediately reheated to 550 to 750 ° C. at a heating rate of 0.5 ° C./s or more, and the metal structure is substantially a two-phase structure of ferrite and bainite. The steel sheet is cooled as a steel sheet in which fine precipitates containing Ti and Mo or fine precipitates containing two or more selected from Ti, Nb, and V are dispersed and precipitated in the bainite phase. A method for producing a low yield ratio, high strength, high toughness steel pipe excellent in strain aging characteristics, characterized in that a steel pipe is formed by forming a tube in between and welding a butt portion.
JP2004225682A 2003-07-31 2004-08-02 Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and manufacturing method thereof Active JP4507745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004225682A JP4507745B2 (en) 2003-07-31 2004-08-02 Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003204993 2003-07-31
JP2003204994 2003-07-31
JP2004225682A JP4507745B2 (en) 2003-07-31 2004-08-02 Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005060838A true JP2005060838A (en) 2005-03-10
JP4507745B2 JP4507745B2 (en) 2010-07-21

Family

ID=34381754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004225682A Active JP4507745B2 (en) 2003-07-31 2004-08-02 Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4507745B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283147A (en) * 2005-04-01 2006-10-19 Nippon Steel Corp High strength steel pipe for pipe line having excellent deformation property after aging, and method for producing the same
WO2007136019A1 (en) 2006-05-24 2007-11-29 Nippon Steel Corporation High-strength steel pipe with excellent unsusceptibility to strain aging for line piping, high-strength steel plate for line piping, and processes for producing these
JP2008101242A (en) * 2006-10-19 2008-05-01 Jfe Steel Kk High-strength steel plate with excellent hic resistance for line pipe, and its manufacturing method
WO2008069335A1 (en) * 2006-12-04 2008-06-12 Nippon Steel Corporation Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
JP2008163455A (en) * 2006-12-04 2008-07-17 Nippon Steel Corp Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
JP2009149950A (en) * 2007-12-21 2009-07-09 Jfe Steel Corp High-strength steel sheet superior in toughness in weld heat-affected zone, and manufacturing method therefor
WO2009125863A1 (en) * 2008-04-07 2009-10-15 新日本製鐵株式会社 High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
JP2010235993A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp Method for manufacturing line pipe having high compressive strength
CN102605246A (en) * 2012-03-09 2012-07-25 武汉钢铁(集团)公司 Steel for low-strain-ageing sensitive welding structure and production method of steel
WO2012133558A1 (en) 2011-03-30 2012-10-04 新日本製鐵株式会社 Electroseamed steel pipe and process for producing same
JP2017538583A (en) * 2014-10-16 2017-12-28 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Apparatus and method for the production of rough plates
CN110073018A (en) * 2016-12-12 2019-07-30 杰富意钢铁株式会社 Low yielding ratio rectangular steel tube hot rolled steel plate and its manufacturing method and low yielding ratio rectangular steel tube and its manufacturing method
CN114134416A (en) * 2021-11-16 2022-03-04 山东钢铁集团日照有限公司 Low-yield-ratio high-strength medium-thickness steel plate and short-process manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949050A (en) * 1995-05-30 1997-02-18 Kobe Steel Ltd High strength hot rolled steel sheet small in deterioration in yield strength after forming, pipe formed by using the same and production of high strength hot rolled steel sheet
JPH09111342A (en) * 1995-10-12 1997-04-28 Nkk Corp Production of low yield ratio steel pipe
JPH1030122A (en) * 1996-07-15 1998-02-03 Nkk Corp Production of hot rolled steel strip with high strength and high toughness
JP2001059131A (en) * 1999-08-19 2001-03-06 Nkk Corp 60 kilo class direct-quenched and tempered steel excellent in weldability and toughness after strain aging
JP2001064728A (en) * 1999-08-26 2001-03-13 Nkk Corp Production of 60 kilo class high tensile strength steel excellent in weldability and toughness after strain aging
JP2002220634A (en) * 2001-01-29 2002-08-09 Sumitomo Metal Ind Ltd High tension steel superior in resistance to stress aging, and manufacturing method therefor
JP2003096535A (en) * 2001-07-17 2003-04-03 Nkk Corp High strength steel having excellent workability and material uniformity, and production method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949050A (en) * 1995-05-30 1997-02-18 Kobe Steel Ltd High strength hot rolled steel sheet small in deterioration in yield strength after forming, pipe formed by using the same and production of high strength hot rolled steel sheet
JPH09111342A (en) * 1995-10-12 1997-04-28 Nkk Corp Production of low yield ratio steel pipe
JPH1030122A (en) * 1996-07-15 1998-02-03 Nkk Corp Production of hot rolled steel strip with high strength and high toughness
JP2001059131A (en) * 1999-08-19 2001-03-06 Nkk Corp 60 kilo class direct-quenched and tempered steel excellent in weldability and toughness after strain aging
JP2001064728A (en) * 1999-08-26 2001-03-13 Nkk Corp Production of 60 kilo class high tensile strength steel excellent in weldability and toughness after strain aging
JP2002220634A (en) * 2001-01-29 2002-08-09 Sumitomo Metal Ind Ltd High tension steel superior in resistance to stress aging, and manufacturing method therefor
JP2003096535A (en) * 2001-07-17 2003-04-03 Nkk Corp High strength steel having excellent workability and material uniformity, and production method thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4510680B2 (en) * 2005-04-01 2010-07-28 新日本製鐵株式会社 High-strength steel pipe for pipelines with excellent deformation characteristics after aging and method for producing the same
JP2006283147A (en) * 2005-04-01 2006-10-19 Nippon Steel Corp High strength steel pipe for pipe line having excellent deformation property after aging, and method for producing the same
WO2007136019A1 (en) 2006-05-24 2007-11-29 Nippon Steel Corporation High-strength steel pipe with excellent unsusceptibility to strain aging for line piping, high-strength steel plate for line piping, and processes for producing these
JP2007314828A (en) * 2006-05-24 2007-12-06 Nippon Steel Corp High-strength steel pipe superior in strain aging resistance for line pipe, high-strength steel sheet for line pipe, and method for manufacturing them
JP2008101242A (en) * 2006-10-19 2008-05-01 Jfe Steel Kk High-strength steel plate with excellent hic resistance for line pipe, and its manufacturing method
JP2008163455A (en) * 2006-12-04 2008-07-17 Nippon Steel Corp Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
JP2008163456A (en) * 2006-12-04 2008-07-17 Nippon Steel Corp Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
WO2008069335A1 (en) * 2006-12-04 2008-06-12 Nippon Steel Corporation Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
US8084144B2 (en) 2006-12-04 2011-12-27 Nippon Steel Corporation High strength thick welded steel pipe for line pipe superior in low temperature toughness and method of production of the same
KR101119239B1 (en) 2006-12-04 2012-03-20 신닛뽄세이테쯔 카부시키카이샤 Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
JP2009149950A (en) * 2007-12-21 2009-07-09 Jfe Steel Corp High-strength steel sheet superior in toughness in weld heat-affected zone, and manufacturing method therefor
WO2009125863A1 (en) * 2008-04-07 2009-10-15 新日本製鐵株式会社 High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
KR101252920B1 (en) * 2008-04-07 2013-04-09 신닛테츠스미킨 카부시키카이샤 High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
US8110292B2 (en) 2008-04-07 2012-02-07 Nippon Steel Corporation High strength steel plate, steel pipe with excellent low temperature toughness, and method of production of same
CN101965414B (en) * 2008-04-07 2013-08-28 新日铁住金株式会社 High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
JP2010235993A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp Method for manufacturing line pipe having high compressive strength
WO2012133558A1 (en) 2011-03-30 2012-10-04 新日本製鐵株式会社 Electroseamed steel pipe and process for producing same
CN102605246A (en) * 2012-03-09 2012-07-25 武汉钢铁(集团)公司 Steel for low-strain-ageing sensitive welding structure and production method of steel
JP2017538583A (en) * 2014-10-16 2017-12-28 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Apparatus and method for the production of rough plates
CN110073018A (en) * 2016-12-12 2019-07-30 杰富意钢铁株式会社 Low yielding ratio rectangular steel tube hot rolled steel plate and its manufacturing method and low yielding ratio rectangular steel tube and its manufacturing method
CN110073018B (en) * 2016-12-12 2021-08-27 杰富意钢铁株式会社 Hot-rolled steel sheet for low yield ratio steel pipe, method for producing same, low yield ratio square steel pipe, and method for producing same
CN114134416A (en) * 2021-11-16 2022-03-04 山东钢铁集团日照有限公司 Low-yield-ratio high-strength medium-thickness steel plate and short-process manufacturing method thereof

Also Published As

Publication number Publication date
JP4507745B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
KR101044161B1 (en) Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe
JP4844687B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5821173B2 (en) Low yield ratio high strength high uniform stretch steel sheet and method for producing the same
JP5516784B2 (en) Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
JP4940886B2 (en) High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
JP5092498B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5532800B2 (en) Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
JP5903880B2 (en) High-strength steel sheet for line pipes with excellent sour resistance and weld heat-affected zone toughness and method for producing the same
JP4507747B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and method for producing the same
JP4507746B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and method for producing the same
JP4507745B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and manufacturing method thereof
JP2007009325A (en) High strength steel product having excellent low temperature crack resistance, and method for producing the same
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP4419695B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4412098B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP4419744B2 (en) High strength steel plate for line pipes with excellent HIC resistance and weld heat affected zone toughness and method for producing the same
JP2004003015A (en) High-strength steel sheet for line pipe superior in hic resistance, and manufacturing method therefor
JP4507730B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5842577B2 (en) High toughness, low yield ratio, high strength steel with excellent strain aging resistance
JP4742617B2 (en) Manufacturing method of high-strength steel sheet with excellent weld heat-affected zone toughness
JP7200588B2 (en) ERW steel pipe for oil well and manufacturing method thereof
JP4412099B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4273825B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4273824B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4507745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250